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ABSTRACT

The proliferation of programmable network devices o�ers a wide

range of device options for developers of packet processing pro-

grams. However, there are several di�erences in programming lan-

guage usage, hardware resource constraints, and hardware architec-

ture across these devices. Programmers must understand multiple

programming languages and hardware designs to write programs

for various devices.

We propose an alternative: leveraging program synthesis to build

a transpiler, Polyglotter, that outputs programs for target hardware

devices from input programs written for source hardware devices.

This can reduce the e�orts required to write algorithms across plat-

forms. Our evaluation results show that, compared to traditional

program rewriting methods, Polyglotter can quickly produce cor-

rect results with e�cient use of hardware resources. We also outline

several directions for future work in such transpilers.
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1 INTRODUCTION

Programmable network devices are becoming increasingly popular

because of their �exibility in supporting customized network func-

tions and their ability to handle packet processing workloads with

high throughput. Devices including Barefoot To�no [5], Broadcom

Trident 4 [6], the Intel IPU [1], and the Pensando SmartNIC [4]

share similar architecture (e.g., RMT pipeline [8]) but have varying

hardware resource constraints. Although the emergence of these

hardware devices provides more choices, the diversity of their fea-

tures increases programmers’ di�culty in writing code for each

speci�c device.

To alleviate the di�culty of writing programs for multiple hard-

ware devices, we propose automatically generating these programs

using a program synthesis-based transpiler called Polyglotter. Given

as input a program written for a source device, Polyglotter will take

into consideration the hardware constraints of the target device

before generating programs that can run on the target device.

Program synthesis tools use an exhaustive search algorithm to

�nd an output program that is semantically equivalent to the in-

put program. Compared with performing transpilation based on

numerous rewriting rules, there are several bene�ts to incorporat-

ing program synthesis into the transpiler. First, it is impractical for

humans to exhaustively list all rewriting rules without ignoring cor-

ner cases. This is why we believe that traditional pattern-matching

compilers, consisting of many program rewrite rules, need to be re-

peatedly updated by adding new rules. Second, even if we could list

all possible rewriting rules, the program synthesis-based approach

can output more resource-e�cient results as it can search through

all feasible solutions within the hardware resource constraints.

Manually-developed rules may guarantee semantic equivalence but

cannot ensure that the outcome is ideal in resource usage. Exceed-

ing available resources, such as pipeline stages in a programmable

switch, can lead to transpilation failures.

The work�ow of our transpiler is represented in Figure 1. To

design our transpiler, we use hardware con�guration �les to help

the transpiler interpret the semantics of the input program and gen-

erate programs that follow the target hardware device’s resource

constraints. This requires the transpiler developers to be familiar

with the source and target hardware constraints (§2); and the pro-

gramming language semantics for the input and output programs

(§2). They need to ensure that output programs do not exceed the

target devices’ resource limit and are semantically equivalent to

input programs. All of these should be encoded into our transpiler.

However, building the transpiler using program synthesis re-

quires overcoming a key challenge: long running time due to the

large search space of all implementation candidates. Hence, our

design divides the whole synthesis problem into several smaller

steps, each of which only solves a subproblem (§3.3.3), either state

transition or packet �eld extraction, of the whole transpilation,

leading to faster transpilation speed.

We test this idea over P4 programs and NPL programs that ex-

ercise the packet parser on the To�no switch [5] and Trident 4

switch [6]. The preliminary results (§4) show that Polyglotter can

quickly generate correct target programs that are semantically

equivalent to source programs. Compared with transpilation using
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Figure 1: Work�ow of the transpiler design where language

A and B can be the same or di�erent.

several rewrite rules, our output is more e�cient in terms of re-

source usage. We outline future directions to extend our approach

to entire packet processing programs including the parser, pipeline,

and stateful packet processing functions across devices.

2 WHERE IS TRANSPILATION USEFUL?

A transpiler should tackle the di�erences between the source/target

programming language designs and source/target hardware con-

straints. Below, we list several examples of language and hardware

di�erences that necessitate transpilation, with source and target

language snippets. When these examples occur concurrently in

one program, there could be a combinatorial explosion for the to-

tal number of semantically equivalent output options, each with

di�erent usage for di�erent types of hardware resources.

2.1 Wide state transition key

parser_node N0 {
... // pkt.field1 is 16-bit
switch(pkt.field1) {

0x0101 : next_node N1;
default : next_node N2;

}
}

state N0 {
transition select (pkt.field[0:8]) {

0x01 :  N01;
default :  N2;

}
}
state N01 {

transition select (pkt.field[8:16]) {
0x01 :  N1;
default :  N2;

}
}

source.npl target.p4

Figure 2: Transpiling a parser node with wide match key (16

bits) into multiple parser nodes with narrower match key (8

bits).

A hardware packet parser identi�es headers and extracts packet

�elds for subsequent processing in the ingress/egress switch pipeline.

A parser is commonly modeled as a �nite state machine (FSM). Each

state is a parser node. Each parser node can take a packet �eld as

its state transition key and transit to subsequent states based on

the key’s value. However, hardware limits the bit width of a state

transition key and this limit varies across platforms. We may have

to convert one parser node on a particular hardware into multiple

parser nodes on a di�erent hardware.

As a concrete example shown in Figure 2, N0 from the input

program on the LHS has a transition key pkt.field1 of size 16

with 2 switch cases. The language of the output program has a limit

on the transition key to be of size ≤ 8. As a result, the transpiler

needs to use 2 parser nodes, each of which checks 8 bits of the

transition key. One solution is presented on the RHS of Figure 2.

In general, when the size of the transition key is larger than the

transition key width limit of the target hardware, multiple parser

nodes are required in the transpiled program to express the same

semantics.

2.2 Table operations in parsers

In a parser, the allowed operations might be di�erent across lan-

guages and hardware devices. In NPL programs, the language allows

parse break and parse continue to allow interleaving parser and

logical table operations. Speci�cally, the Trident switch hardware

jumps out of the parser after parse break, does a series of logical ta-

ble operations, and jumps back to the parser after parse continue.

However, such interleaving is not allowed in P4 programs. So the

transpiler should express the same behavior in a di�erent manner

that is supported by the P4 programming language.

parser_node N0 {
... 
parse_break(N1); 

}
// Leave from parser node to logical table operation
logical_table T {

...
key_construct() {system_source = pkt.system_source;}
fields_assign() {

obj_bus.enable = enable;
obj_bus.pipelineuse = pipelineuse; // used in pipeline

}
}
parse_continue(N1);  // return back to parser node
parser_node N1 {

if (ing_obj_bus.enable) {next_node N2;}
...

}

// pvs is a value set variable
value_set<bit<...>>(4) pvs; 
state N0 {

...
transition select(pkt.system_source) {

pvs    : N2;
default : accept;

}
}

control ingress {
Update(bit<16> pipelineuse) {

md.pipelineuse = pipelineuse;
}
table T {

key = {pkt.system_source : exact;};
action = {Update};

}
}

source.npl target.p4

Figure 3: Transpiling parse break/continue into the a value

set data structure and table operation in a pipeline.

The logical table in NPL performs match action operations based

on rules from the control plane. If we put one logical table between

2 parser nodes, the variables updated in the logical table might

in�uence the behavior of the subsequent parser node. We observe

that, depending on the rules programmed by the control plane, a

P4 value_setmay be used to mimic the same semantics of an NPL

table that in�uences the behavior of a downstream parser node.

A P4 value_set is a data structure that may be used as part of a

parser transition to check whether or not the value of a packet �eld

belongs to a set.

The NPL program in Figure 3 has one logical table between 2

parser nodes (parser N0 and parser N1). This table updates a bus �eld

(obj_bus.enable) that is used in parser node N1. Even though P4

does not support table operations within its parser, it can implement

the same semantic by using value_set. In this example, checking

the updated value of the bus �eld is equivalent to checking the

execution status of the logical table. Thus, we could know the

updated value by checking whether the key of the logical table is

in the match set or not using value_set.

Additionally, logical tables within the parser in languages such

as NPL might update variables that are used in the pipeline. In

Figure 3, obj_bus.pipelineuse is updated in one logical table

of the parser and used in the pipeline later. Given P4 language

cannot do temporary variable updates in the parser, the generated

transpiled program adds one extra P4 table at the beginning of the



pipeline to guarantee that the rest of the pipeline can witness the

latest value of obj_bus.pipelineuse. There could be other ways

to generate semantically-equivalent transpiled programs as well.

2.3 Multiple lookups per table

logical_table T {
...
key_construct() {

if (_LOOKUP0==1) {key = pkt.key1;}
if (_LOOKUP1==1) {key = pkt.key2;}

}
fields_assign() {

if (_LOOKUP0==1) {obj_bus.dst = port;}
if (_LOOKUP1==1) {obj_bus.src = port;}

}
}
T.lookup(0); T.lookup(1);

action T0A (...) {md.dst = port;}
table T0 {

key = {
pkt.flag  : ... // decide first/second time
pkt.key1 : ...}

action = {T0A;}
}
action T1A (...) {md.src = port;}
table T1 {

key = {
pkt.flag  : ... // decide first/second time
pkt.key2 : ...}

action = {T1A;}
}
T0.apply(); T1.apply();

table T1 {
key = {

pkt.recirulate  : ...
pkt.key2 : ...}

action = {T0A; T1A;}
const entries = {

(0, ...) : T0A; {pkt.recirculate = 1;} // First time
(1, ...) : T1A; // Re-circulation time

}
}

T1.apply();

1

2

source.npl target1.p4

target2.p4

Figure 4: LHS shows an NPL program with 2 lookups for 1

logical table; the RHS shows 2 alternatives for the transpila-

tion results in P4.

We use packet headers and temporary variables to store interme-

diate information during the parsing process. We use the table data

structure to update packet headers or temporary variables based

on match-action rules. But there are di�erences in the # lookups

per table across languages (e.g., NPL vs P4).

The program on the LHS of Figure 4 shows one logical table in

NPL which can support 2 lookups. Allowing more than one lookup

per table can let programmers write more complex functions into

one table without usingmultiple tables. More bene�ts of this feature

in the NPL language can be seen from the NPL spec [2]. However,

P4 can only support one lookup for each table. This restriction

forces the transpiler to �nd non-trivial ways to express the same

functionality in P4.

We show two methods to implement the multiple lookup func-

tionality in P4. The method labeled 1© in Figure 4 de�nes 2 tables,

each containing a copy of the match-action rules in the NPL table.

Each table maps to one lookup in the NPL’s logical table. We need

to add one extra boolean match key flag in each P4 table. If its

value is 0, it maps to the �rst lookup from NPL; otherwise, its value

is 1, meaning it is the second lookup from NPL.

It is also possible to use packet re-circulation to transpile multiple

lookups. 2© of Figure 4 realizes such an implementation using only 1

table by adding an extra match key pkt.recirculate. The bene�t

of re-circulation is that it can store useful information in a �rst pass

and continue processing packets in a second pass. But this may

reduce the throughput. The choice of which transpilation method

to use depends on the programmers’ objectives.

2.4 Initialization for temporary variables

The initialization approaches for temporary variables are di�erent

in the NPL and P4 languages. Speci�cally, the NPL initializes all

temporary variables (called bus �elds in the NPL program) through

one initialization function before the parser while P4 does so by

extracting bits from the input bit stream at the beginning of the

parser. This di�erence leads to a potential failure in transpilation.

/* Initialize a bus field
ing_obj_bus.field1 in ing_bus_init() */
function ing_bus_init() {

ing_obj_bus.field1 = XXX;
}
parser_node start {

root_node : 1;
switch(ing_obj_bus.field1) {

...
}

}

state start {
/* Initialize the metadata md 
through packet extraction*/
pkt.extract(md); 
transition select(md.field1) {

...
}

}

source_fail.npl

target.p4

/* Initialize a bus field
ing_obj_bus.field1 in ing_bus_init() */
function ing_bus_init() {

ing_obj_bus.field1 = XXX;
}
parser_node start {

extract_fields(ing_pkt.field1);
ing_obj_bus.field1 = ing_pkt.field1;

}

source_success.npl

Figure 5: Di�erent ways to initialize temporary vars.

Figure 5 gives a concrete example. source_fail.npl initial-

izes ing_obj_bus.field1 and the initial value decides transition

logic in the parser node start. We cannot �nd an equivalent

expression in P4 due to its language design constraints. How-

ever, source_success.npl initializes ing_obj_bus.field1 but

its value is later updated by one extracted packet �eld. We can ex-

press this semantic through packet extraction shown in target.p4.

3 PRELIMINARYWORK: AUTOMATED
PARSER TRANSPILATION

We build Polyglotter, a cross-platform transpiler for the parser

portion of NPL and P4. This requires us to handle transpilation

examples such as those mentioned at §2.1 and §2.2. All other cases

described in §2 are beyond the parser and left for Polyglotter’s

future development. It consists of 3 main steps (Figure 7). In step 1,

Polyglotter generates the corresponding intermediate representa-

tion (IR) from the input program; step 2 turns the IR format into a

semantically equivalent version that follows the target hardware’s

constraints using program synthesis; in step 3, Polyglotter lifts the

synthesized IR format back to the target programming language.

3.1 IR design for parser behavior

Designing a new IR format can simplify complex data structures

(e.g., logical table in NPL and value set in P4) and help extend the

transpilation process across more hardware platforms and program-

ming languages. Verifying the semantic equivalence at the IR level

is much simpler and more generic.

The parser determines packet headers from an input bit stream

through a sequence of parser nodes. Therefore, the IR design should

be capable of re�ecting the parser’s behavior (e.g., state transition

and packet header extraction). Inspired by [17], Figure 6 shows the

IR grammar. The general work�ow of a parser starts from variable

declaration for packet �elds, temporary variables, and extraction

status bit vectors. Then, the whole parser will be represented by a

nested if-then-else (ITE) block.

Parser node transition. We use a sequence of ITE blocks to

model the parser behavior. In the nested ITE statement, the predi-

cate consists of at least one clause and each clause checks whether



Literals: ę ::= NUMBER

Extraction status bit vector: ĘĬ ::= BIT VECTOR

Bit vector: ą ::= INPUT BIT VECTOR

Value sets: ď ::= ď1 | ď2 ... | ďġ1

Packet �elds: ĦġĪ ::= Ĝ1 | Ĝ2 ... | Ĝġ2

Temp variables: ĪģĦ ::= Ī1 | Ī2 ... | Īġ3

Operations: ĥĦ ::= “==" | “in" | “="

Expressions: ě ::= ę | ĦġĪ | ĪģĦ | ĘĬ [ę ] | ď | ą [ę : ę ] | e op e

Predicates: ĦĨěĚ ::= ě (&& ě )∗ | ĐĎđā

Statements: ĩ ::= ě | ĩ ; ĩ | Ċ | if (ĦĨěĚ ) {ĩ } |

if(ĦĨěĚ ) {ĩ } (elif(pred) {s})∗ else{ĩ }

Packet �elds de�nition: ĦġĪĀěĜ ::= bit<c> ĦġĪ ; ĦġĪĀěĜ | Ċ

Temp variables de�nition: ĪģĦĀěĜ ::= bit<c> ĪģĦ = ę ; ĪģĦĀěĜ | Ċ

Bit vec de�nition: ĘĬěęĀěĜ ::= bit<c> ĘĬ = {0, 0, ..., 0}; | Ċ

Ħ ∈ program ::= ĦġĪĀěĜ ; ĪģĦĀěĜ ; ĘĬěęĀěĜ ; ĩ

Figure 6: The BNF of IR for parser.

the value of one variable is equal to a constant or belongs to one

set. We include “True" as a possible predicate for completeness. All

these predicates are concatenated by “&&". The “||" logic can be

represented by using the elif statement it is not in the predicate IR.

If the predicate is satis�ed, it will enter into the next level ITE block,

meaning the transition to the next parser node; the else keyword

can be considered as the default statement in the parser.

P4 program for Intel
Tofino

NPL program for
Broadcom Trident 4

Trident IR

Step 3: 
IR to program

 Step 1:
Program to IR

Step 3:
IR to program

Step 1:
Program to IR

Step 2: IR to IR using 
Program Synthesis 

Tofino IR

Figure 7: 3 steps in Polyglotter’s transpilation.

Packet �eld extraction. There are 3 types of operators (e.g.,

==, in, and =) in the IR design, and the operator “=" is used to

de�ne the packet �eld extraction behavior. To be speci�c, bv is

a set of indicator variables, each of which represents whether a

corresponding packet �eld is extracted or not. Setting its value to 1

means this packet �eld should be extracted in the parser node. Then,

we update a packet �eld’s value by setting it to one slice of a input

bit stream using I[c:c]. Our current IR design is expressive to express

parser for both To�no and Trident 4 programmable switches.

3.2 Step 1: Generating low-level IR

In this IR generation step, developers need to make sure that the

generated IR is semantically equivalent to the input program and

complies with hardware capabilities. Polyglotter analyzes the in-

put program’s semantics and outputs the IR format. This process

involves predicate generation and packet extraction generation.

Predicate generation. In our IR design (Figure 6), one predi-

cate might include several clauses and each clause is to compare a

variable (e.g., packet �eld or temporary variable) against either a

constant or a set. In hardware such as To�no, it does not support

temporary variable modi�cation in the parser so we should treat

packet �elds and bus �elds di�erently. Speci�cally, if the variable

parser_node N0 {
...
obj_bus.enable = pkt.enable;
next_node : N1;

}
parser_node N1 {

extract(pkt.field);
if (pkt.field == 0x1111 && obj_bus.enable == 1 ){

next_node N2;
}
next_node ingress;

}

// fields[idx] represents pkt.field's extraction status
fields[idx] = 1;  
if (pkt.field == 0x1111 && pkt.enable == 1 ) {

// Go to the ITE of N2
} else {

// Go to ITE of ingress
}

Generated IR (used as spec)

Figure 8: Predicate generation.

is a packet �eld, we should leave it as it is. However, when the vari-

able is a temporary variable, Polyglotter does a backward data�ow

analysis to �nd all possible packet bits that in�uence this temporary

variable, and then replaces the predicate by one or more conditions

over those packet bits.

As a concrete example, the predicate in Figure 8 has 3 clauses

“pkt.field==0x1111 && obj_bus.enable==1". The predicate replace-

ment pass leaves the packet �eld (e.g., pkt.field) as it is. How-

ever, it has to determine the packet bits that a�ect the value of

bus �elds. Given the temporary variable obj_bus.enable is af-

fected by pkt.enable, the clause obj_bus.enable==1 is replaced

by pkt.enable==1.

Packet extraction generation. Each parser node might extract

a range from the input bit stream and set values to several packet

�elds. Our IR design regards the whole parser as a nested ITE block.

Polygotter uses one bit vector to represent each packet �eld’s ex-

traction status. In the output IR, we represent the packet extraction

behavior by setting the corresponding indicator variables to 1.

struct ing_pkt_t {
fields {

bit[4] field1; bit[4] field2;
}

}
packet ing_pkt_t pkt;

parser_node N0 {
extract(pkt.field1);
switch (pkt.field1) {

0 : next_node N1;
default : next_node ingress;

}
}
parser_node N1 {

extract(pkt.field2);
next_node ingress;

}

Input to the program: bit[8] I;

// Variable definition
bit[2] bv = {0, 0}; // 2 fields in input packet
bit[4] pkt_field1; bit[4] pkt_field2;

bv[0] = 1;
pkt_field1 = I[0 : 4]; // extract(pkt.field1);
if (pkt_field1 == 0) {

bv[1] = 1;
pkt_field2 = I[4 : 8]; // extract(pkt.field2);

} else {
...

}

source.npl Output IR

Figure 9: The generated IR for one given input NPL program.

Output IR from input program. After predicate generation

and packet extraction generation, we can output the IR format.

Figure 9 provides one concrete example of the IR generation process

for anNPL program. Speci�cally, in the output IR, we use a bit vector

variable, bv, and some other bit vector variables, �eld1 and �eld2, to

record the extraction status of each packet �eld. There are 2 �elds

in the input program so the size of the bit vector is 2 as well. All

other bit vectors are used to store the extracted packet �elds’ value.

The whole parser is presented by a large “nested" ITE statement,

where each if predicate is one state transition logic, determining

the subsequent packet extraction behavior of the parser.

3.3 Step 2: Generating IR for target device

Polyglotter encodes hardware constraints and generates the target

IR format through program synthesis. The output program not only

guarantees the semantic equivalence but also obeys the resource



constraints. We divide the IR to IR transformation into 2 parts:

synthesis for predicates and synthesis for packet extraction.

// fields[idx] represents pkt.field's extraction status
// pkt.field is 16-bit; 
// pkt.enable and obj_bus.flag is 1-bit
fields[idx] = 1;  

if (pkt.field == 0x1111 && pkt.enable == 1 
&& obj_bus.flag == 1) {

// Go to the ITE of N2
} else {

// Go to ITE of ingress
}

// fields[idx] represents pkt.field's extraction
status
fields[idx] = 1;  

if (pkt.field == 0x1111) {
if (pkt.enable == 1 && obj_bus.flag == 1) {

// Go to the ITE of N2
} else { // Go to ITE of ingress}

} else { // Go to ITE of ingress}

Packet_extraction(??);  
if (clause1 is True) {

if (clause2 is True) {...}
} else {...}

1 2

3
IR output from program

synthesis

Figure 10: Synthesis-based IR generation for target.

3.3.1 Synthesis for predicates. Polyglotter splits the predicate

synthesis into multiple sub-problems, each of which takes all predi-

cates within one parser node as the speci�cation. Hardware resource

constraints such as the size limit of a state transition key will be

encoded. As an example, if the target device limits the transition key

to be at most 16 bits, we cannot �t the if-condition (the transition

key is 18 bits) in 1© of Figure 10 into 1 parser node and need to use

2 in 2© of Figure 10. In addition, Polyglotter captures common con-

ditions in all if-predicates and places them before other conditions

in the generated IR. Its bene�ts will be discussed in §3.3.3.

3.3.2 Synthesis for packet extraction. The next step is to decide

where in the process of parsing we extract speci�c packet �elds.

In this case, the speci�cation is the generated IR after predicate

synthesis where we could replace all conditions with one boolean

variable; while the implementation is a partial program where we

put one packet extraction function in each if-else body. The function

will decide what new �elds to extract in this node. In 3© of Figure 10,

the transpiler represents the packet �eld extraction behavior by

setting the indicator variable fields[idx] to 1. Polyglotter ensures

that each packet �eld is extracted at most once in the parser.

3.3.3 Why do we use the program synthesis-based approach?

Synthesis for ITE predicates. Polyglotter generates the imple-

mentation of all ITE predicates within a parser node at one time.

Usually, the state transition logic within one parser node is not

that complex so the synthesis engine can output the result quickly.

Besides, compared with a manual approach to creating the result,

using synthesis tools can reduce resource usage (e.g., # transitions

and # nodes). For example, in Figure 11 the input program does a

N0

parser_node N0 {
switch(I[0:3]) {

0b1101 : {next_node : N1};
0b0001: {next_node : N2};
default : {next_node : N3};

}
}

N01

N2N3

I[2:3] == 0b01

N1

I[0:1] == 0b11

otherwise

otherwise

I[0:1] == 0b00

N02

I[2:3] == 0b01otherwise

Default: 6 parser nodes with 7 transition arrows

N0

N00

N3

I[0:1] == 0b11

N1

I[2:3] == 0b01 otherwise

otherwise

Better: 5 parser nodes with 5 transition arrows

N2

I[0:1] == 0b00

Figure 11: Two semantically equivalent transpilation results

with the limit of transition key size to be 2 bits. Each result

uses di�erent resources.

parser state transition depending on one 4-bit variable. The target

hardware can match at most 2 bits in one parser node. One way is

to match the �rst 2 bits and then the next 2 bits in sequence before

deciding the next transition parser node. This example is illustrated

as in the �rst tree-based �nite state machine which uses 6 parser

nodes and 7 transition arrows. However, the right �gure shows

an alternative, which only needs 5 parser nodes and 5 transition

arrows by matching the last 2 bits before matching the �rst 2 bits. In

our synthesis procedure, we let the synthesis engine �nd common

conditions among all predicates and the transpiler will prioritize

putting these common conditions before others.

Synthesis for packet extraction. We let the synthesis solver de-

termine the concrete extraction behavior in each generated parser

node. Given there are several paths from the �rst parser node to

the last one, it is both time-consuming and error-prone for humans

to manually �gure out a solution. However, a synthesis solver can

generate the correct result quickly.

Bene�ts of decoupling predicate synthesis and packet extrac-

tion synthesis. Compared to generating the whole parser from

one synthesis problem, we need to do implementation con�gura-

tions exploration. Each con�guration is determined by di�erent

hyper-parameters (e.g., the number of state transition rules per

parser node, the value of each constant value, and the total num-

ber of parser nodes). Instead, Polyglotter generates the IR format

for state transition predicate and packet extraction in sequence.

Synthesizing all ITE predicates can give us the ITE skeleton and

the subsequent synthesis is to �ll packet extraction behaviors into

each ITE’s body. Therefore, such decomposition not only makes the

transpilation faster but also avoids the skeleton exploration work.

3.3.4 Why do we use di�erent granularity for predicate and ex-

traction synthesis? We synthesize all predicates within a parser node

because common conditions may exist among all these predicates.

There are other alternatives. For instance, we could synthesize pred-

icate by predicate, but this may lose the bene�ts of �nding common

conditions from these predicates; if we synthesize all paths within

the whole parser together, there may be no conditions shared by

them. Synthesizing all packet extraction operations for the whole

parser is a good balance. First of all, the search space is propor-

tional to # packet �elds and # parser nodes, which is in a reasonable

size; additionally, this choice can leverage the advantage that some

packet extraction behavior can be shared across paths instead of

appearing multiple times.

3.4 Step 3: Lifting to switch program

The last step is to turn the IR back to a complete program written in

the target language that can run over the target hardware. This step

can be considered as the reversed process for step 1. The concrete

implementation is just a straightforward rewriting process. For

instance, in our IR design, we use indicator variables to determine

the extraction status of a packet bit but in a high-level program,

we should replace it with corresponding keywords that follow the

language syntax. Currently, we manually transform the synthesized

output IR to the high-level programs in the target language.

4 EVALUATION

We measure Polyglotter in 2 main parts. Correctness: can it cor-

rectly generate the output program within a reasonable time pe-

riod? E�ciency: how many resources does the output program

consume?



Program Rule-based transpilation Polyglotter
# nodes # transition depth # nodes # transition depth

Wide Key 6 7 3 5 5 3
Parser break/continue 3 3 3 1 0 1

Temporary variable initialization 1 0 1 1 0 1
Move update to pipeline 2 2 2 2 1 2

Table 1: Resource usage comparison.

Setup.We generate benchmarks by extracting portions of one

NPL program used in production. All these benchmarks re�ect

some features mentioned in (§2) because we want to check whether

Polyglotter can successfully realize the transpilation for programs

with these features. The syntax of the output P4 program is checked

by the commercial To�no compiler and the semantics are veri�ed

manually. Currently, Polyglotter focuses on the parser portion and

realize the transpilation from a NPL program for the Trident 4

switch to a P4 program for the To�no switch. We plan to extend it

into the pipeline portion and realize multi-directional transpilation

across languages in the future.

Results. Preliminary results are in Table 1. The rule-based tran-

spilation implements a series of rewriting rules to get the output

program, including dividing a condition with a big transition key

into several conditions with small transition keys in order. All these

rules might generate locally optimal results but the combination

of several rules can be far from the globally optimal outcome. In

fact, Polyglotter can successfully generate correct output for 4 rep-

resentative benchmarks that �t the target hardware’s constraints

within seconds. In terms of the resource usage, Polyglotter can

output results that use fewer number of # nodes, # transition, and

the depth of the parser. In addition, it is useful to decompose the

whole synthesis problem into 2 subproblems (e.g., predicate and

packet extraction) to speed up the transpilation procedure.

5 RELATED WORK

Programming languages for programmable network devices.

P4 [3] and NPL [2] are widely used programming languages for en-

gineers to develop programs for high-speed network devices. Many

domain-speci�c languages (DSLs) have emerged in academia to

remedy some of the shortcomings of P4 and NPL. Examples include

Lyra [10], microP4 [20], Domino [18], Lucid [19], FlightPlan [21],

P4All [15] and NetKAT [7]. Di�erent languages serve di�erent

design purposes, such as o�ering convenient data structures [15]

and incorporating the target hardware’s speci�c features [10] [11].

Our work, with a focus on cross-platform transpilation of existing

DSLs, is complementary to the design work of new DSLs. This

paper aims to unify features of di�erent languages and hardware

devices by building a cross-platform transpiler. This could avoid

forcing programmers to understand several language-speci�c and

hardware-speci�c features.

Program synthesis for compilers. Program synthesis [14] selects

one program from a space of programs such that this program is se-

mantically equivalent to the input speci�cation. This technique was

used in compiler design (e.g., Chipmunk [11] and CaT [12]) for pro-

grammable network devices. However, their focus is to compile a

high-level packet processing program into low-level representation

without considering the parser portion of the program. In addi-

tion, the output of our proposed transpiler is a high-level program

that satis�es the constraints of a target that can have a di�erent

architecture from the source.

Expressing and verifying parser behavior. The principles of

parser design were discussed by Gibb et al. [13]. We can consider

a parser as a �nite state machine (FSM). The state transition logic

can be determined by comparing certain �elds against constants

and each parser node executes packet extractions to identify packet

headers from the input bit stream. Leapfrog [9] proposes a new

framework to verify the equivalence of 2 parser structures. However,

our goal is to generate a new parser through a synthesis procedure,

which is orthogonal to their implementation.

6 FUTUREWORK

In this section, we discuss 3 future directions.

Is the transpiler retargetable to a more complex parser

structure? At a high level, a parser identi�es headers and ex-

tracts packet �elds for subsequent processing in the ingress/egress

pipeline. Di�erent hardware parsers might support various opera-

tions including speci�c hardware constraints and con�guration. As

an example, Kangaroo [16] supports a non-streaming parser design

that does not limit the window size while Gibb et al. [13] designs a

streaming packet parser that restricts the window size. So the natu-

ral question becomes: could we easily tailor our synthesis-based

transpiler to parsers in various hardware devices? We believe this

is possible but requires the transpiler to encode new operations

and adjust the setting to be consistent with the target hardware’s

constraints.

Is the transpiler extensible to the packet processing pipeline

portion of a network device? The current implementation of the

transpiler is over the parser level of a packet processing program

but we want to extend to the full program �nally. Then, the research

question is: can we encode the computation capabilities (e.g., ALU

and extern functions) into our transpiler? Can the transpiler encode

all hardware constraints automatically through a uni�ed hardware

description language? Such an extension can help the transpiler go

beyond the parser and realize program-to-program transpilation.

Can we develop a transpiler for software platforms? This

paper is about developing a transpiler for various programmable

network devices. Can we extend the technique to software targets

such as eBPF or DPDK framework? In such cases, the transpiler

needs to transform the P4 to C program. It can focus less on the

hardware constraints or language features but should pay more

attention to the performance of the output program (e.g., runtime).

7 CONCLUSION

The proliferation of programmable network devices motivates en-

gineers to write programs for di�erent targets. This paper proposes

to build a program synthesis-based transpiler, Polyglotter, that real-

izes transpilation for the parser part of P4 and NPL programs over

To�no and Trident 4 programmable switches. Our initial results

show the correctness and e�ciency of Polyglotter. We hope our

work can prompt further research on the transpiler design across

more network languages and hardware devices.
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