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Abstract. We leverage a family of Riemannian metrics to upsample low frame

rate animations for creative design and compression applications in computer

graphics. Our method interpolates animated characters’ bone orientations along

various geodesics from a family of invariant Riemannian metrics on a product of

SO(3) manifolds. For compression, an optimization step selects the best-fitting

metric. We show that our approach outperforms existing techniques.

1 Introduction

Upsampling for Creative Design Character animation in 3D graphics involves posing

a skeletal rig—an articulated hierarchy of bones—across a sequence of frames. To this

end, animators define a sparse set of keyframes, specifying the position and orientation

of bones at selected times, and then interpolate to generate the full motion [6]. However,

standard interpolation methods such as linear interpolation, SLERP [12] or Squad [13]

degrade in quality when keyframes are sparse, requiring manual corrections or addi-

tional keyframes. Recent learning-based approaches improve interpolation fidelity but

depend on large datasets and do not generalize well across rig structures [11, 15].

These limitations motivate the search for alternative interpolation strategies that pro-

vide higher-quality results under sparse sampling while remaining data-efficient and

rig-agnostic.

Upsampling for Compression Upsampling is also critical for compression, as anima-

tions often demand significant storage. Compressing animations into a small number of

keyframes, with interpolation recovering the full sequence, is an effective strategy – but

hinges on the quality of the interpolation. Upsampling beyond the original frame rate

allows animators to then create an animation curve with an arbitrarily high frame rate.

Thus, there is a motivation for researching new upsampling techniques that can achieve

high accuracy in recovering original animations and even enhance them by increasing

their original frame rate.

Contributions We apply geodesic interpolation techniques to animation upsampling

and compression. We model the animated character’s pose space as the Lie group

SO(3)B , with B the number of bones, and equip it with invariant Riemannian met-

rics. We explore how varying the metric influences interpolation quality and motion

characteristics and how this can be used for creative control and data compression.
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GT SlerpPC LC Ours

Fig. 1: Comparison of traditional interpolation techniques with the proposed geodesic

interpolations. From left to right: ground truth animation, piecewise constant, linear

(cartesian), spherical linear (slerp), and our geodesic interpolation. In this frame our

geodesic interpolation most closely matches the original.

2 Methods

We introduce elements of Riemannian geometry and Lie groups.

2.1 Manifolds and Riemannian Metrics

Lie theory and Riemannian geometry provide mathematics to precisely define the poses

of animation characters, specifically the rotation of each joint of a character. We refer

the reader to [5] for mathematical details. We will represent the space of possible an-

imated character poses as a Lie group equipped with a Riemannian metric. We define

these concepts here.

Definition 1 (Riemannian metric). Let M be a d-dimensional smooth connected man-

ifold and TpM be its tangent space at point p ∈ M. A Riemannian metric <,> on M

is a collection of inner products <,>p: TpM × TpM → R on each tangent space

TpM that vary smoothly with p. A manifold M equipped with a Riemannian metric

<,> is called a Riemannian manifold.

A Riemmanian metric <,> provides a notion of geodesic distance dist on M. Let

γ : [0, 1] → M be a smooth parameterized curve on M with velocity vector at t ∈ [0, 1]

denoted as γ̇t ∈ Tγ(t)M. The length of γ is defined as Lγ =
∫ 1

0

√

< γ̇t, γ̇t >γt
dt and

the distance between any two points p, q ∈ M is: dist(p, q) = infγ:γ(0)=p,γ(1)=q Lγ .

The Riemannian metric also provides the notion of geodesic.

Definition 2 (Geodesic). A geodesic between two points p, q is defined as a curve

which minimizes the energy functional:

E(γ) =
1

2

∫ 1

0

< γ̇(t), γ̇(t)) >γ(t) dt. (1)

Curves minimizing the energy E also minimize the length L: geodesics are locally

distance-minimizing paths on the manifold M.

Intuitively, a geodesic is the generalization of straight lines from vector spaces to

manifolds, see Figure 2a. We note that the notion of geodesic depends on the notion of

geodesic distance, and thus on the choice of Riemannian metric on the manifold M.

Different Riemannian metrics yield different geodesics between two given points.
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2.2 Lie Groups and Metrics

In the context of animation interpolations, we consider specific manifolds: Lie groups.

Definition 3 (Lie group). A Lie group is a group (G, ·) such that G is also a finite

dimensional smooth manifold, and the group and differential structures are compatible,

in the sense that the group law · and the inverse map g 7→ g−1 are smooth. Let e

denote the neutral element, or identity of G. The tangent space TeG of a Lie group at

the identity element e ∈ G is called the Lie algebra of G.

The set of all 3D rotations forms a Lie group. This group is referred to as SO(3),
the special orthogonal group in three dimensions. It is defined as: SO(3) = {R ∈
M3(R)|R

TR = I3, det(R) = 1}, where each element is a 3D rotation matrix R. Its

The Lie algebra is a vector space of dimension 3, which is also called the dimension of

the Lie group SO(3).
Consider an animation of a character with B bones. Each bone is associated with a

joint that has some 3D orientation, represented as a rotation matrix R ∈ SO(3). The

set of all possible poses of this character is the power Lie group SO(3)B = SO(3) ×
· · · × SO(3), which we call the pose Lie group (see Figure 2b).

We equip this Lie group with a Riemannian metric <,>, that is by a collection of

inner-products on the tangent spaces that varies smoothly with the base point. We do

so by equipping each of the SO(3)s with a different invariant Riemannian metric. An

invariant metric on a connected Lie group is fully described by the matrix Z of its inner-

product on its Lie algebra, and whether it is a left- or a right- invariant metric. Once

the pose Lie group is equipped with a Riemannian metric, we can consider geodesics

on it, that is, the generalization of straight lines from vector spaces to manifolds, see

Figure 2a. We refer to [9] for additional details on Riemannian geometry on Lie groups.

Goal: Consider a ground truth animation AG, see Figure 3 (left) with F frames, repre-

sented as a sequence of F poses on the pose Lie group, i.e., AG(t) ∈ SO(3)B for each

time t ∈ [t1, tF ]. Our goal is to learn the Riemannian metric <,> on SO(3)B that best

describes the animated character’s motion in AG, in the following sense: the animation

AG can be downsampled (compressed) to a lower frame rate F ′, such that the geodesic

interpolation with metric <,> brings it back to its original (higher) frame rate F with

the highest accuracy. Once <,> is learned, it can be used for creative design in digital

creation, including extracting perceptual insights on the character’s motion in AG, or

for compression.

Notations: The metric <,> is the result of an optimization problem that depends on AG

and F ′, for which we introduce notations. Consider a sampling rate 0 < s < 1. We call

initial animation, and denote it AI , the animation obtained after uniformly downsam-

pling the ground truth animation AG of frame rate F to the lower frame rate F ′ = sF ,

see Figure 3 (frames colored pink). For example, if we have a ground truth animation of

F = 60 frames, and a sampling rate of s = 0.2, the initial animation will have F ′ = 12
frames, each 5 frames apart in the ground truth. We call interpolated or upsampled an-

imation, and denote it AU , the animation obtained by upsampling the initial animation

AI back up to the ground truth frame rate F , see Figure 3 (frames colored purple). We
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note that AU depends on the interpolation technique used: in particular, in the case of a

geodesic interpolation, AU depends on the choice of metric <,>. Reformulated using

these notations, our goal is to learn the metric <,> so that AU is as close as possible to

AG, according to a quality score Q. Figure 3 shows our pipeline.

γ(t)
γ(t)

tangent vector

t

geodesic

(a) For ease of explanation, we represent SO(3)
as a sphere. At the identity of the group, we define

an inner-product for all vectors u, v in the tangent

space (green). The vector γ̇(t) in the tangent space

at Ri (purple) is the velocity of the parameterized

curve going to Rj . The geodesic curve γ(t) (or-

ange) is the shortest path between two rotations

Ri and Rj . In this example we interpolate 3 in-

between rotations along the geodesic (black dots).

× · · ·× ×

1 1
1

2 2
2

(b) Changing α, β values can be thought of

as deforming the group. The distance be-

tween the same 2 rotations changes. Our

Pose Lie group is a product of manifolds,

one for each bone.

(c) We verify experimentally that updating

α, β leads to different geodesics, and thus

different trajectories despite the same start

and end states.

Fig. 2: Explaining how a geodesic on a manifold can interpolate trajectories.

2.3 Riemannian Metric Learning

We propose to learn the metric <,> that most accurately describes the motion of a

given animated character. We restrict our optimization to a set of invariant Riemannian

metrics on SO(3)B , which provides a convenient parameterization of <,>.

Metric Parameterization Consider one SO(3) within the power Lie group SO(3)B .

We can parameterize a Riemannian metric on the Lie group SO(3) by an inner product

matrix Z on its Lie algebra.

The matrix Z must be symmetric positive definite, meaning it can be decomposed

as Z = PTDP , where D is a diagonal matrix with strictly positive values and P is

orthogonal. In our work, we restrict Z to a diagonal form:

Z =





1 0 0
0 α 0
0 0 β



 , with α, β > 0, (2)

for each component SO(3) within the Pose Lie group SO(3)B . This corresponds to

penalizing displacements along the standard basis directions of the Lie algebra, with

weights 1, α, and β. A more general symmetric positive definite matrix Z would allow

penalizing arbitrary directions (i.e., different orthonormal bases), but in practice we
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Fig. 3: Pipeline of our method. Given an animation, we downsample it, and upsample

new in-between frames using a search sweep for optimal parameters. Then we apply

the animation to the rig and quantitatively and qualitatively analyse the results.

found that restricting to a diagonal form yielded comparable performance. Additional

motivation, including computational considerations and software stability, is discussed

in the implementation section.

Our metric on SO(3)B is parameterized by the set: {α1, β1, ..., αB , βB}, written

{α, β} for short. We also add a categorical parameter, called inv, which indicates

whether whether we propagate the inner-product Z with left or right translations: i.e.,

whether the resulting metric <,> is left- or right- invariant. This parameterization does

not cover every metric on SO(3)B ; yet, it encodes a 4B-dimensional family of metrics

where we can perform metric learning.

Geodesic Interpolation Consider a bone b and two frames i, j that are consecutive in

the initial animation AI and j − i + 1 frames apart in the ground-truth animation AG,

i.e., AI(b, i) = AG(b, i) = Ri ∈ SO(3) and AI(b, j) = AG(b, j) = Rj ∈ SO(3).
Given a metric <,>, we compute the geodesic γ on SO(3) such that γ(0) = Ri and

γ(1) = Rj and the energy E(γ) measured with <,> is minimal according to the

definition of a geodesic. The main challenge is to compute the initial tangent vector

u0 = γ̇(0) required to shoot from γ(0) to γ(1). This requires to numerically invert the

Exp map defined in the previous section, i.e., solving the optimization problem:

u0 = argmin
u∈TRi

SO(3)

∥ExpRi
(u)−Rj∥

2. (3)

The tangent vector u0 then yields values of AU between frames i and j as: AU (b, t) =
ExpRi

(t.u0) for t ∈ [0, 1]. We observe that we do not have a closed form expression

for the interpolating geodesic, which is instead computed via numerical integration and

optimization.

Optimization Criteria: Quality Metrics The upsampled animation AU is obtained by

geodesic interpolation, which depends on the invariant Riemannian metric <,> that is

itself parameterized by α, β and inv. Thus, we write AU as a function of α, β,inv:

AU (α, β,inv). We detail here how we find the optimal parameters α, β,inv and

thus the optimal Riemannian metric <,> for digital animations, see Figure 3 (cen-

ter). Consider a quality metric Q that denotes how close the interpolated animation

AU (α, β,inv) is from the ground truth animation AG. We get:

α∗, β∗,inv∗ = argmin
α,β,inv

Q (AU (α, β,inv), AG) , (4)
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for α, β ∈ (R∗

+)
B and inv in {left, right}. We will experiment with various

quality metrics Q within this optimization criterion.

Quality metrics compare the differences between bones in the ground truth anima-

tion AG and the corresponding bones in the upsampled animation AU . Our first quality

metric quantifies the difference in position between two bones’ endpoints:

Qloc(b1, b2) = ∥b1 − b2∥
2, (5)

where b1 and b2 are the endpoint positions of bones 1 and 2.

Our second quality metric quantifies the angle difference in rotation between two

bones:

Qrot(b1, b2) = arccos
[ tr(b1b

T
2 )− 1

2

]

, (6)

where in this case b1 and b2 are the rotation matrices of bones 1 and 2.

Our third quality metric Qhyb is a weighted sum of Qloc(b1, b2) and Qrot(b1, b2).
Each of these three quality metrics is defined for a given bone of the rig, at a given

frame. To get the quality scores Q across bones and frames, we sum across the bones

b = 1, . . . , B with or without a weight wb > 0 corresponding to the depth of that bone

in the rig, and we average over all frames in the ground truth animation [14]. Thus, the

total quality metric between a pose in the ground truth animation AG and the upsampled

animation AU is:

Q =
1

F

F
∑

t=1

B
∑

b=1

wbQ̃(AU (b, t), AG(b, t)), (7)

and Q̃ equal to Qloc, Qrot or Qhyb. The dependency on α, β,inv is within the bone

bUt,i of the upsampled animation AU . For all results we use Qhyb.

Optimization Method: Gradient-Free We introduce the optimization method chosen to

minimize the criterion of Eq. 4 and learn α∗, β∗ and inv ∗. This criterion does not have

a closed form as a function of α, β and inv. Thus, we cannot compute its gradient, nor

leverage any gradient-based optimization methods. Consequently, we propose to rely

on a gradient-free optimization methods: the Tree-Structured Parzen Estimator (TPE).

Tree-Structured Parzen Estimator algorithm [2] is designed to find parameters that op-

timize a given criterion whose gradient is not available. TPE is an iterative process that

uses history of evaluated parameters α, β,inv to create a probabilistic model, which

is used to suggest the next set of parameters α, β,inv to evaluate, until the optimal set

α∗, β∗,inv∗ is reached.

Implementation Our ground truth animations are motion capture sequences down-

loaded from Adobe Mixamo at 30 frames per second [1]. All animations are imported

to Blender, which we use to visualize, render, and export animation data [4]. Blender

provides functionality to manipulate and access animation data such as rig structures,

animation curves, and keyframes using Python scripting, which allows us to auto-

mate importing the initial animation, downsampling it, and exporting the downsampled

keyframes for processing. After saving the keyframes in NumPy files [7], we load the
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bone locations and rotation matrices into a script which computes the interpolations.

File sizes are calculated as the sum of the sizes (in bytes) of the exported NumPy files.

For cartesian linear interpolation, we linearly interpolate the locations as well as the

rotations in the form of component-wise quaternion interpolation. Blender’s quaternion

interpolation was once implemented this way but was problematic since it can yield

invalid (non-unit) quaternions. Blender has since updated to using a version of spherical

linear interpolation (slerp), which we also compare to.

Riemannian metric learning with TPE is performed using HyperOpt [3] and

Tune [8]. See the supplementary material for details on the TPE algorithm. During

geodesic interpolation on SO(3), we generate new rotation matrices representing the

orientation of each bone at a frame using the implementation of invariant Riemannian

metrics parameterized by α, β,inv and available through the Geomstats library [10].

In implementation, we restricted Z to a diagonal form primarily for computational and

numerical reasons. Although a full symmetric positive definite matrix could in princi-

ple allow finer control by penalizing arbitrary directions, earlier experiments using such

matrices did not yield significant improvements in reconstruction quality. Moreover, we

encountered numerical instabilities when working with full matrices in Geomstats at the

time.

To compute quality metrics, we need to recover the new bone positions b at each

frame given the interpolated orientations R ∈ SO(3) and the position of the root bone.

To do so, we start from the root bone of the rig (e.g. hips) and traverse the tree breadth

first, applying each new rotation to the bones on that “level” of the tree, computing the

new positions, iteratively until we have leaf node (e.g. fingertips) positions.

Once we have the interpolated frames for all interpolation schemes also saved in

NumPy files, we then load them back into Blender to be applied to copies of the down-

sampled animation.

3 Results

We compare our geodesic interpolations (purple) to the three most commonly used

schemes: piecewise constant (PC, teal), linear cartesian (LC, orange), spherical linear

(slerp, yellow), on 5 different increasingly complex Mixamo animations: Pitching,

Rolling, Punching, Jumping, and Sitting. Our supplemental video contains

the full animations.

Perceptual Accuracy We visualize and qualitatively compare the accuracy of each in-

terpolation scheme. We present this comparison using a sampling rate of s = 0.3 in

Figs. 4a-4d, while the corresponding figures for other sampling rates can be found in

the supplemental materials. Our visualizations show the ground truth animation, with

the interpolation methods layered transparently over to highlight where the interpola-

tion deviates from the original.

The Pitching animation in Fig. 1 has 24 bones and shows our method working

with animations with a fixed root node. Sitting in Fig. 4a is an example where the

fixed node is in the middle of the armature. Jumping contains vertical motion and

rotations in the legs that are far apart, i.e., differ by a large angle close to pi. Punching

animation in Fig. 4c shows horizontal translations with contacts. For example, it would
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GT SlerpPC LC Ours

(a)

GT SlerpPC LC Ours

(b)

GT SlerpPC LC Ours

(c)

GT SlerpPC LC Ours

(d)

Fig. 4: Figure 4a shows our geodesic almost perfectly recreating the pose in frame 24 of

the Sitting animation. Figure 4b shows the entire purple overlay for the Jumping

animation which indicates a high quality reconstruction. Figure 4c shows extremities

like hands are captured more accurately in our method for the Punching animation.

In Figure 4d, we capture the fast Rolling motion in frame 44.

be undesirable for an interpolation to miss frames where her feet touch the floor to

create an illusion of floating. Our approach outperforms traditional techniques, as it

most accurately interpolates characters within this diversity of animations: displaying a

larger purple overlay in Figs. 4a-4b, effectively capturing extremities (hands and feet) in

Fig. 4c as well as fast motions in Fig. 4d. The Rolling animation is difficult because it

has the complexity of all previous animations. Bones rotations are large and flip upside

down (see Fig. 4d). In this difficult setting, visual inspection shows that our interpolation

performs particularly well.

Quantitative Accuracy and Compression In addition to these perceptual comparisons,

we compare the interpolations’ accuracies using the weighted error Qhyb = 0.5 Qloc +
0.5 Qrot and present it in Fig. 5 for the Rolling animation. The supplementary ma-

terials show these plots for the 4 other animations. Our approach presents the lowest

error just in front of slerp’s. Despite the seemingly small quantitative difference be-

tween these two, we note that Fig. 4d shows significant perceptual differences. Fig. 5

also allows us to evaluate our method in terms of compression: we require a lower

sampling rate s to achieve a given interpolation error (or accuracy). Consequently, this

method can decrease the memory required to store animations: Our compressed anima-

tion is a factor of s smaller than the ground truth, plus the Bα and Bβ float values. The

supplemental materials provide additional details on compression and exact file size.
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4 Conclusion and Future Work

Fig. 5: As the sampling rate for the

Pitching animation increases, the er-

ror metric Qhyb decreases.

We presented a method for animation in-

terpolation using geodesics on Riemannian

manifolds where we learn the optimal met-

ric. To our knowledge, this is the first time

that Riemannian metric learning is proposed

for computer graphics. We hope that these

ideas will inspire other applications in this

field. We showed that our method interpo-

lates animations with high accuracy (both

perceptually and quantitatively) on a vari-

ety of different motion capture sequences.

Because we are able to accurately repre-

sent a high frame rate animation with very

few frames, we achieve a compression rate

that requires digital animators to pose fewer

keyframes during the creation process.

Future work will involve a deeper analysis of the metric parameters α and β to

better understand how they influence the perceived qualities of motion. By studying the

optimal values α∗, β∗ learned across different animations, we hope to uncover patterns

that reflect stylistic choices or emotional intent—e.g.., whether higher α values in a

joint correlate with faster, more expressive movement. These insights could not only

offer semantic intuition into motion design but also inform tools that give animators

direct, real-time control over interpolation styles. To that end, we plan to integrate our

geodesic interpolation framework into animation software, allowing users to experiment

interactively with different parameter settings. We are also interested in conducting

perceptual studies to evaluate which interpolations are most appealing or expressive

to animators and viewers.

One can also explore how choice of keyframes impacts interpolation and compres-

sion results. Our experiments uniformly downsample the ground-truth animation. Yet,

with an extremely low sampling rate, the downsampled animation consists of very few

frames which might not capture all important actions. One can explore how a smart

downsampling of the animation improves interpolation quality by ensuring that the most

important frames are kept.
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