
TopoTune: A Framework for Generalized

Combinatorial Complex Neural Networks

Mathilde Papillon 1 Guillermo Bernárdez 1 Claudio Battiloro * 2 Nina Miolane * 1

Abstract

Graph Neural Networks (GNNs) excel in learn-

ing from relational datasets as they preserve

the symmetries of the graph domain. However,

many complex systems—such as biological or

social networks—involve multiway complex in-

teractions that are more naturally represented by

higher-order topological domains. The emerging

field of Topological Deep Learning (TDL) aims

to accommodate and leverage these higher-order

structures. Combinatorial Complex Neural Net-

works (CCNNs), fairly general TDL models, have

been shown to be more expressive and better per-

forming than GNNs. However, differently from

the GNN ecosystem, TDL lacks a principled and

standardized framework for easily defining new

architectures, restricting its accessibility and ap-

plicability. To address this issue, we introduce

Generalized CCNNs (GCCNs), a simple yet pow-

erful family of TDL models that can be used to

systematically transform any (graph) neural net-

work into its TDL counterpart. We prove that GC-

CNs generalize and subsume CCNNs, while ex-

tensive experiments on a diverse class of GCCNs

show that these architectures consistently match

or outperform CCNNs, often with less model com-

plexity. In an effort to accelerate and democratize

TDL, we introduce TopoTune, a lightweight soft-

ware for defining, building, and training GCCNs

with unprecedented flexibility and ease.

1. Introduction

Graph Neural Networks (GNNs) (Scarselli et al., 2008;

Corso et al., 2024) have demonstrated remarkable perfor-

mance in several relational learning tasks by incorporating

prior knowledge through graph structures (Kipf & Welling,

2017; Zhang & Chen, 2018). However, constrained by the

*Equal contribution 1University California Santa Barbara, USA
2Harvard University, USA. Correspondence to: Mathilde Papillon
<papillon@ucsb.edu>.

pairwise nature of graphs, GNNs are limited in their ability

to capture and model higher-order interactions—crucial in

complex systems like particle physics, social interactions,

or biological networks (Lambiotte et al., 2019). Topologi-

cal Deep Learning (TDL) (Bodnar, 2023; Battiloro, 2024)

precisely emerged as a framework that naturally encom-

passes multi-way relationships, leveraging beyond-graph

combinatorial topological domains such as simplicial and

cell complexes, or hypergraphs (Papillon et al., 2023).1

In this context, Hajij et al. (2023; 2024a) have recently in-

troduced combinatorial complexes, fairly general objects

that are able to model arbitrary higher-order interactions

along with a hierarchical organization among them–hence

generalizing (for learning purposes) most of the combina-

torial topological domains within TDL, including graphs.

The elements of a combinatorial complex are cells, being

nodes or groups of nodes, which are categorized by ranks.

The simplest cell, a single node, has rank zero. Cells of

higher ranks define relationships between nodes: rank one

cells are edges, rank two cells are faces, and so on. Hajij

et al. (2023) also proposes Combinatorial Complex Neural

Networks (CCNNs), deep learning architectures that lever-

age the versatility of combinatorial complexes to naturally

model higher-order interactions. For instance, consider the

task of predicting the solubility of a molecule from its struc-

ture. GNNs model molecules as graphs, thus considering

atoms (nodes) and bonds (edges) (Gilmer et al., 2017). By

contrast, CCNNs model molecules as combinatorial com-

plexes, hence considering atoms (nodes, i.e., cells of rank

zero), bonds (edges, i.e., cells of rank one), and also im-

portant higher-order structures such as rings or functional

groups (i.e., cells of rank two) (Battiloro et al., 2025).

TDL Research Trend. To date, research in TDL has

largely progressed by taking existing GNNs architectures

(convolutional, attentional, message-passing, etc.) and gen-

eralizing them one-by-one to a specific TDL counterpart,

whether that be on hypergraphs (Feng et al., 2019; Chen

et al., 2020a; Yadati, 2020), on simplicial complexes (Rod-

denberry et al., 2021; Yang & Isufi, 2023; Ebli et al., 2020;

1Simplicial and cell complexes model specific higher-order
interactions organized hierarchically, while hypergraphs model
arbitrary higher-order interactions but without any hierarchy.

1

ar
X

iv
:2

4
1
0
.0

6
5
3
0
v
4

[c

s.
L

G
]

 1
9
 M

ay
 2

0
2
5

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

R
e

a
d

o
u

t

Rank-Level
Aggregation

Layer

nodes nodes

edges edges

faces edges

�� �� �� �� ��

Layer

Figure 1. Generalized Combinatorial Complex Network (GCCN). The input complex C has neighborhoods NC = {N1,N2,N3}.

A. The complex is expanded into three augmented Hasse graphs GNi
, i = {1, 2, 3}, each with features HNi

represented as a colored

disc. B. A GCCN layer dedicates one base architecture ωNi
(GNN, Transformer, MLP, etc.) to each neighborhood. C. The output of

all the architectures ωNi
is aggregated rank-wise, then updated. In this example, only the complex’s edge features (originally pink) are

aggregated across multiple neighborhoods (N2 and N3).

Giusti et al., 2022a; Battiloro et al., 2024; Bodnar et al.,

2021b; Maggs et al., 2024; Lecha et al., 2025), on cell com-

plexes (Hajij et al., 2020; Giusti et al., 2022b; Bodnar et al.,

2021a), or on combinatorial complexes (Battiloro et al.,

2025; Eitan et al., 2024). Although overall valuable and

insightful, such a fragmented research trend is slowing the

development of standardized methodologies and software

for TDL, as well as limiting the analysis of its cost-benefits

trade-offs (Papamarkou et al., 2024). We argue these two

challenges are hindering the use and application of TDL be-

yond the community of experts. This is particularly relevant

as practitioners are beginning to turn to TDL for tackling

application-specific scenarios, such as computer network

modelling (Bernárdez et al., 2025).

Current Efforts and Gaps for TDL Standardization.

TopoX (Hajij et al., 2024b) and TopoBench(Telyatnikov

et al., 2024) have become the reference Python libraries for

developing and benchmarking TDL models, respectively.

However, despite their potential in defining and implement-

ing novel standardized methodologies in the field, the cur-

rent focus of these packages is on replicating and analyzing

existing message-passing CCNNs. Works like Jogl et al.

(2022b;a) have instead focused on making TDL accessi-

ble by porting models to the graph domain. They do so

via principled transformations from combinatorial topolog-

ical domains to graphs. However, although these architec-

tures are as expressive as their TDL counterparts (using the

Weisfeiler-Lehman criterion (Xu et al., 2019b)), they are

neither formally equivalent to nor a generalization of their

TDL counterparts. Due to collapse of rank information dur-

ing the graph expansion, the GNNs on the resulting graph

do not preserve the same topological information.

Contributions. This works seeks to accelerate TDL re-

search and increase its accessibility and standardization for

outside practitioners. To that end, we introduce a novel joint

methodological and software framework that easily enables

the development of new TDL architectures in a principled

way—overcoming the limitations of existing works. We

outline our main contributions and specify which of the

field’s open problems (OPs), as defined in Papamarkou et al.

(2024), they help answer:

• Systematic Generalization. We propose the first method

to systematically generalize any neural network to its

topological counterpart with minimal adaptation. Specifi-

cally, we define a novel expansion mechanism that trans-

forms a combinatorial complex into a collection of graphs,

enabling the training of TDL models as an ensemble of

synchronized models. To our knowledge, this is the first

method designed to accommodate many topological do-

mains. (OPs 6, 11: foundational, cross-domain TDL.)

• General Architectures. Our method induces a novel

wide class of TDL architectures, Generalized Combina-

torial Complex Networks (GCCNs), portrayed in Fig. 1.

GCCNs (i) formally generalize CCNNs, (ii) are cell per-

mutation equivariant, and (iii) are as expressive as CCNNs.

(OP 9: consolidating TDL advantages in a unified theory.)

• Implementation. We provide TopoTune, a lightweight

PyTorch module for developing GCCNs fully integrated

into TopoBench (Telyatnikov et al., 2024). (OP 4: need

for software). Using TopoTune, practitioners can, for the

first time, easily define and iterate upon TDL models,

making TDL a much more practical tool for real-world

datasets (OP 1: need for accessible TDL).

• Benchmarking. Using TopoTune, we create a broad class

of GCCNs using four base GNNs and one base Trans-

2

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

former over two combinatorial topological spaces (simpli-

cial and cell complexes). Unlike prior works that compare

models under heterogeneous conditions, our systematic

benchmarking provides a controlled evaluation of GCCNs

across diverse architectures, datasets, and topological do-

mains. A wide range of experiments on graph-level and

node-level benchmark datasets shows GCCNs generally

outperform existing CCNNs, often with smaller model

sizes. Some of these results are obtained with GCCNs that

cannot be reduced to standard CCNNs, further underlin-

ing our methodological contribution. A guide to the code

is available at geometric-intelligence.github.io/topotune.

(OP 3: need for standardized benchmarking.)

Outline. Section 2 provides necessary background. Sec-

tion 3 motivates and positions our work in the current TDL

literature. Section 4 introduces and discusses GCCNs. Sec-

tion 5 describes TopoTune. Finally, Section 6 showcases

extensive numerical experiments and comparisons.

2. Background

To properly contextualize our work, we revisit the funda-

mentals of combinatorial complexes and CCNNs—closely

following the works of Hajij et al. (2023) and Battiloro et al.

(2025)—as well as the notion of augmented Hasse graphs.

Appendix A briefly introduces all topological domains used

in TDL, such as simplicial and cell complexes.

Combinatorial Complex. A combinatorial complex is

a triple (V, C, rk) consisting of a set V , a subset C of the

powerset P(V)\{∅}, and a rank function rk : C → Zg0

with the following properties:

1. for all v ∈ V, {v} ∈ C and rk({v}) = 0;

2. the function rk is order-preserving, i.e., if Ã, Ä ∈ C
satisfy Ã ¦ Ä , then rk(Ã) f rk(Ä).

The elements of V are the nodes, while the elements of C
are called cells (i.e., group of nodes). The rank of a cell

Ã ∈ C is k := rk(Ã), and we call it a k-cell. C simplifies

notation for (V, C, rk), and its dimension is defined as the

maximal rank among its cell: dim(C) := maxσ∈C rk(Ã).

Neighborhoods. Combinatorial complexes can be

equipped with a notion of neighborhood among cells. In

particular, a neighborhood N : C → P(C) on a combinato-

rial complex C is a function that assigns to each cell Ã in C
a collection of “neighbor cells” N (Ã) ¢ C ∪ ∅. Examples

of neighborhood functions are adjacencies, connecting cells

with the same rank, and incidences, connecting cells with

different consecutive ranks. Usually, up/down incidences

NI,↑ and NI,³ are defined as

NI,↑(Ã) =
{

Ä ∈ C
∣

∣ rk(Ä) = rk(Ã) + 1, Ã ¢ Ä
}

,

NI,³(Ã) =
{

Ä ∈ C
∣

∣ rk(Ä) = rk(Ã)− 1, Ä ¢ Ã
}

.
(1)

Therefore, a k + 1-cell Ä is a neighbor of a k-cell Ã w.r.t. to

NI,↑ if Ã is contained in Ä ; analogously, a k − 1-cell Ä is

a neighbor of a k-cell Ã w.r.t. to NI,³ if Ä is contained in

Ã. These incidences induce up/down adjacencies NA,↑ and

NA,³ as

NA,↑(Ã) =
{

Ä ∈ C
∣

∣ rk(Ä) = rk(Ã), (2)

∃¶ ∈ C : rk(¶) = rk(Ã) + 1, Ä ¢ ¶, Ã ¢ ¶
}

,

NA,³(Ã) =
{

Ä ∈ C
∣

∣ rk(Ä) = rk(Ã), (3)

∃¶ ∈ C : rk(¶) = rk(Ã)− 1, ¶ ¢ Ä, ¶ ¢ Ã
}

.

Therefore, a k-cell Ä is a neighbor of a k-cell Ã w.r.t. to NA,↑

if they are both contained in a k + 1-cell ¶; analogously, a

k-cell Ä is a neighbor of a k-cell Ã w.r.t. to NA,³ if they both

contain a k − 1-cell ¶. Other neighborhood functions can

be defined for specific applications (Battiloro et al., 2025).

Combinatorial Complex Message-Passing Neural Net-

works. Let C be a combinatorial complex, and NC a collec-

tion of neighborhood functions. The l-th layer of a CCNN

updates the embedding h
l
σ ∈ R

F l

of cell Ã as

h
l+1
σ = ϕ



h
l
σ,
⊗

N∈NC

⊕

τ∈N (σ)

ÈN ,rk(σ)

(

h
l
σ,h

l
τ

)



 ∈ R
F l+1

,

(4)

where h
0
σ := hσ are the initial features,

⊕

is an intra-

neighborhood aggregator,
⊗

is an inter-neighborhood ag-

gregator. The functions ÈN ,rk(·) : RF l

→ R
F l+1

and the

update function ϕ are learnable functions, which are typi-

cally homogeneous across all neighborhoods and ranks. In

other words, the embedding of a cell is updated in a learn-

able fashion by first aggregating messages with neighboring

cells per each neighborhood, and then by further aggregat-

ing across neighborhoods. We remark that by this definition,

all CCNNs are message-passing architectures. Moreover,

they can only leverage neighborhood functions that consider

all ranks in the complex.

Augmented Hasse Graphs. In TDL, a Hasse graph is a

graph expansion of a combinatorial complex. Specifically, it

represents the incidence structure NI,³ by representing each

cell (node, edge, face) as a node and drawing edges between

cells that are incident to each other. Going beyond just con-

sidering NI,³ , given a collection of multiple neighborhood

functions, a combinatorial complex C can be expanded into

a unique graph representation. We refer to this represen-

tation as an augmented Hasse graph (Fig. 2) (Hajij et al.,

2023). Formally, let NC be a collection of neighborhood

3

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Figure 2. Augmented Hasse graphs. Expansions of a combinato-

rial complex C (middle) into two augmented Hasse graphs: (left)

the Hasse graph induced by NC = {NI,↓}; (right) the augmented

Hasse graph induced by NC = {NI,↓,NA,↑}. Information on cell

rank is discarded (we retain rank color for illustrative purposes).

functions on C: the augmented Hasse graph GNC
of C in-

duced by NC is a directed graph GNC
= (C, ENC

) with cells

represented as nodes, and edges given by

ENC
= {(Ä, Ã)|Ã, Ä ∈ C, ∃ N ∈ NC : Ä ∈ N (Ã)}. (5)

The augmented Hasse graph of C is thus obtained by con-

sidering the cells as nodes, and inserting directed edges

among them if the cells are neighbors in C. Notably, such

a representation of a combinatorial complex discards all

information about cell rank.

3. Motivation and Related Works

As outlined in the introduction, TDL lacks a comprehensive

framework for easily creating and experimenting with novel

topological architectures—unlike the more established GNN

field. This section outlines some previous works that have

laid important groundwork in addressing this challenge.

Formalizing CCNNs on graphs. The position paper

(Veličković, 2022) proposed that any function over a higher-

order domain can be computed via message passing over

a transformed graph, but without specifying how to design

GNNs that reproduce CCNNs. Hajij et al. (2023) showed

that, given a combinatorial complex C and a collection of

neighborhoods NC , a message-passing GNN that runs over

the augmented Hasse graph GNC
is equivalent to a specific

CCNN as in (4) running over C using: i) NC as collection of

neighborhoods; ii) same intra- and inter-aggregations, i.e.,
⊕

=
⊗

; and iii) no rank- and neighborhood-dependent

message functions, i.e., ÈN ,rk(·) = È ∀N ∈ NC .

Retaining expressivity, but not topological symmetry.

Jogl et al. (2022a;b) demonstrate that GNNs on augmented

Hasse graphs GNC
are as expressive as CCNNs on C (us-

ing the WL criterion), suggesting that some CCNNs can be

simulated with standard graph libraries. 2. However, as the

authors state, such GNNs do not structurally distinguish be-

tween cells of different ranks or neighborhoods, collapsing

2The same authors generalize these ideas to non-standard
message-passing GNNs (Jogl et al., 2024).

Figure 3. Ensemble of strictly augmented Hasse Graphs. Given

a complex C with neighborhood structure including both incidence

and upper adjacency (left), this graph expansion (right) produces

one augmented Hasse graph for each neighborhood.

topological relationships. For instance, in a molecule (cellu-

lar complex), two bonds (edges) may simultaneously share

multiple neighborhoods: lower-adjacent through a shared

atom (node) and upper-adjacent through a shared ring (face).

A GNN on GNC
collapses these distinctions, applying the

same weights to all connections and losing the structural

symmetries encoded in the domain. While this may suffice

for preserving expressivity, it is inherently a very different

computation than that of TDL models.

The Particular Case of Hypergraphs. Hypergraph neu-

ral networks have long relied on graph expansions (Telyat-

nikov et al., 2023), which has allowed the field to leverage

advances in the graph domain and, by extension, a much

wider breadth of models (Antelmi et al., 2023; Papillon et al.,

2023). Most hypergraph models are expanded into graphs

using the star (Zhou et al., 2006; Solé et al., 1996), the clique

(Bolla, 1993; Rodrı́guez, 2002; Gibson et al., 2000), or the

line expansion (Bandyopadhyay et al., 2020). As noted by

Agarwal et al. (2006), many hypergraph learning algorithms

leverage graph expansions.

The success story of hypergraph neural networks motivates

further research on new graph-based expansions of CCNNs.

These expansions could, at the same time, subsume current

CCNNs and exploit progress in the GNN field. Therefore,

returning to our core goal of accelerating and democratizing

TDL while preserving its theoretical properties, we propose

a two-part approach: a novel graph-based methodology

able to generate general architectures (Section 4), and a

lightweight software framework to easily and widely im-

plement it (Section 5).

4. Generalized Combinatorial Complex

Neural Networks

We propose Generalized Combinatorial Complex Neural

Networks (GCCNs), a novel broad class of TDL architec-

tures. GCCNs overcome the limitations of previous graph-

based TDL architectures by leveraging the notions of strictly

augmented Hasse graphs and per-rank neighborhoods.

4

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Ensemble of Strictly Augmented Hasse Graphs. This

graph expansion method (see Fig. 3) extends from the

established definition of an augmented Hasse graph (see

Fig. 2). Specifically, given a combinatorial complex C and

a collection of neighborhood functions NC , we expand it

into |NC | graphs, each of them representing a neighborhood

N ∈ NC . In particular, the strictly augmented Hasse graph

GN = (CN , EN) of a neighborhood N ∈ NC is a directed

graph whose nodes CN and edges EN are given by:

CN = {Ã ∈ C |N (Ã) ̸= ∅}, EN = {(Ä, Ã) | Ä ∈ N (Ã)}.
(6)

Following the same arguments from (Hajij et al., 2023), a

GNN over the strictly augmented Hasse graph GN induced

by N is equivalent to a CCNN running over C and using

NC = {N} up to the (self-)update of the cells in C/CN .

Per-rank Neighborhoods. The standard definition of ad-

jacencies and incidences given in Section 2 implies that they

are applied to each cell regardless of its rank. For instance,

consider a combinatorial complex of dimension two with

nodes (0-cells), edges (1-cells), and faces (2-cells). Employ-

ing the down incidence NI,³ as in (1) means the edges must

exchange messages with their endpoint nodes, and faces

must exchange messages with the edges on their sides. It is

impossible for edges to communicate while faces do not.

This limitation increases the computational cost of standard

CCNNs while not always increasing the learning perfor-

mance, as experiments will show. For this reason, we in-

troduce per-rank neighborhoods, examples of which are

depicted in Fig. 4. Formally, a per-rank neighborhood func-

tion N r maps a cell Ã to the empty set if Ã is a cell of rank

r. For example, the up/down r-incidences N r
I,↑ and N r

I,³

are defined as

N r
I,↑(Ã) =











{

Ä ∈ C
∣

∣ rk(Ä) = rk(Ã) + 1, Ã ¢ Ä
}

,

if rk(Ã) = r,

∅, otherwise,

N r
I,³(Ã) =











{

Ä ∈ C
∣

∣ rk(Ä) = rk(Ã)− 1, Ã ¢ Ä
}

,

if rk(Ã) = r,

∅, otherwise.

(7)

and the up/down r-adjacencies N r
A,↑ and N r

A,³ can be ob-

tained analogously. So, it is now straightforward to model

a setting in which employing only N 1
I,³ (Fig. 4iii) allows

edges to exchange messages with their bounding nodes but

not triangles with their bounding edges.

Generating Graph-based TDL Architectures. We use

these notions to define a novel graph-based methodology

for generating principled TDL architectures. Given a com-

binatorial complex C and a set NC of neighborhoods, the

Figure 4. Per-rank neighborhoods. Given a complex C (left), we

illustrate four examples of per-rank neighborhoods (right). In each

case, they only include rank-specific cells.

method works as follows (see also Fig. 1): (i) C is expanded

into an ensemble of strictly augmented Hasse graphs—one

for each N ∈ NC . (ii) Each strictly augmented Hasse

graph GN and the features of its cells are independently

processed by a base model. (iii) An aggregation module
⊗

synchronizes the cell features across the different strictly

augmented Hasse graphs (as the same cells can belong to

multiple strictly augmented Hasse graphs).

This method enables an ensemble of synchronized models

per layer— the ÉN s—each of them applied to a specific

strictly augmented Hasse graph.3. The rest of this section

formalizes the architectures induced by this methodology.

Generalized Combinatorial Complex Networks. We

formally introduce a broad class of novel TDL architectures

called Generalized Combinatorial Complex Networks (GC-

CNs), depicted in Fig. 1. Let C be a combinatorial complex

containing |C| cells and NC a collection of neighborhoods on

it. Assume an arbitrary labeling of the cells in the complex,

and denote the i-th cell with Ãi. Denote by H ∈ R
|C|×F

the feature matrix collecting some embeddings of the cells

on its rows, i.e., [H]i = hσi
, and by HN ∈ R

|CN |×F the

submatrix containing just the embeddings of the cells be-

longing to the strictly augmented Hasse graph GN of N .

The l-th layer of a GCCN updates the embeddings of the

cells Hl ∈ R
|C|×F l

as

H
l+1 = ϕ

(

H
l,
⊗

N∈NC

ÉN (Hl
N ,GN)

)

∈ R
|C|×F l+1

,

(8)

where H
0 collects the initial features, and the update

function ϕ is a learnable row-wise update function, i.e.,

[ϕ(A,B)]i = ϕ([A]i, [B]i). The neighborhood-dependent

sub-module ÉN : R|CN |×F l

→ R
|CN |×F l+1

, which we re-

fer to as the neighborhood message function, is a learnable

(matrix) function that takes as input the whole strictly aug-

mented Hasse graph of the neighborhood, GN and the em-

beddings of the cells that are part of it, and gives as output a

processed version of them. Finally, the inter-neighborhood

3Contrary to past CCNN simulation works that apply a model
to the singular, whole augmented Hasse graph.

5

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

aggregation module
⊗

synchronizes the possibly multiple

neighborhood messages arriving on a single cell across mul-

tiple strictly augmented Hasse graphs into a single message.

GCCNs enjoy increased flexibility over CCNS (eq. 4) as

their neighborhoods are allowed to be rank-dependent and

their ÉN ’s are not necessarily message-passing.

Theoretical properties of GCCNs.

1. Generality. GCCNs formally generalize CC-

NNs.

Proposition 4.1. Let C be a combinatorial com-

plex. Let NC be a collection of neighborhoods

on C. Then, there exists a GCCN that exactly

reproduces the computation of a CCNN over C
using NC .

Proof of Prop. 4.1 (Appendix B.1) relies on

setting the ÉN of a GCCN to a simple, single-

layer convolution.

2. Permutation Equivariance. Generalizing CC-

NNs, GCCNs layers are equivariant with re-

spect to the relabeling of cells in the combina-

torial complex.

Proposition 4.2. A GCCN layer is cell permu-

tation equivariant if the neighborhood message

function is node permutation equivariant and

the inter-neighborhood aggregator is cell per-

mutation invariant.

Proof of Prop 4.2 (Appendix B.2) hinges on

the node-wise permutation equivariance of ÉN

and the permutation invariance of the inter-

neighborhood aggregation.

3. Expressivity. The expressiveness of TDL mod-

els is tied to their ability to distinguish non-

isomorphic graphs. Variants of the Weisfeiler-

Leman (WL) test, like the cellular WL for cell

complexes (Bodnar et al., 2021a), set upper

bounds on their corresponding TDL models’

expressiveness, as the WL test does for GNNs

(Xu et al., 2019b).

Proposition 4.3. GCCNs are strictly more ex-

pressive than CCNNs.

Proof of Prop. 4.3 (Appendix B.3) shows that

GCCNs surpass CCNNs in expressivity by re-

lating CCNNs to Weisfeiler-Leman (WL) and

GCCNs to k-WL on augmented Hasse graphs.

Given Proposition 4.1, GCCNs allow us to define general

TDL models using any neighborhood message function ÉN ,

such as any GNN. Not only does this framework avoid

having to approximate CCNN computations, as is the case

in previous works 4 (Jogl et al., 2022b;a; 2023), but it also

enjoys the same permutation equivariance as regular CCNNs

(Proposition 4.2). We show in Appendix C that the resulting

time complexity of a GCCN is a compromise between a

typical GNN and a CCNN. Differently from the work in

(Hajij et al., 2023), the fact that GCCNs can have arbitrary

neighborhood message functions implies that non message-

passing TDL models can be readily defined. For example,

one could choose ÉN to be a spectral convolution neural

network such as Defferrard et al. (2016). To the best of our

knowledge, GCCNs are the only objects in the literature that

encompass all the above properties.

5. TopoTune

Our proposed methodology, together with its resulting GC-

CNs architectures, addresses the challenge of systemati-

cally generating principled, general TDL models. Here,

we introduce TopoTune, a software module for defin-

ing and benchmarking GCCN architectures on the fly—

a vehicle for accelerating TDL research. A quick start

guide to the code and tutorial are provided at geometric-

intelligence.github.io/topotune. This section details Topo-

Tune’s main features.

Change of Paradigm. TopoTune introduces a new per-

spective on TDL through the concept of “neighborhoods of

interest,” enabling unprecedented flexibility in architectural

design. Previously fixed components of CCNNs, such as

choice of topological domain, become hyperparameters of

our framework.

Accessible TDL. Using TopoTune, a practitioner can in-

stantiate customized GCCNs simply by modifying a few

lines of a configuration file. In fact, it is sufficient to specify

(i) a collection of per-rank neighborhoods NC , (ii) a neigh-

borhood message function ÉN , and optionally (iii) some

architectural parameters—e.g., the number l of GCCN lay-

ers.5 For the neighborhood message function ÉN , the same

configuration file enables direct import of models from Py-

Torch libraries such as PyTorch Geometric (Fey & Lenssen,

2019) and Deep Graph Library (Chen et al., 2020b). Topo-

Tune’s simplicity provides both newcomers and experts with

an accessible tool for defining topological architectures.

4These models employ GNNs running on one augmented Hasse
graph, i.e. a GCCN that, given a collection of neighborhoods
NC , uses a single neighborhood Ntot defined, for a cell σ, as
Ntot(σ) =

⋃
N∈NC

N (σ).
5We provide a detailed pseudo-code for TopoTune module in

Appendix D.

6

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Accelerating TDL Research. TopoTune is fully inte-

grated into TopoBench (Telyatnikov et al., 2024), a com-

prehensive package offering a wide range of standardized

methods and tools for TDL. Practitioners can access ready-

to-use models, training pipelines, tasks, and evaluation met-

rics, including leading open-source models from TopoX

(Hajij et al., 2024b). In addition, TopoBench features the

largest collection of topological liftings currently avail-

able—transformations that map graph datasets into higher-

order topological domains. Together, TopoBench and Topo-

Tune organize the vast design space of TDL into an ac-

cessible framework, providing unparalleled versatility and

standardization for practitionners.

6. Experiments

We present experiments showcasing a broad class of

GCCN’s constructed with TopoTune. These models con-

sistently match, outperform, or finetune existing CCNNs,

often with smaller model sizes. TopoTune’s integration into

the TopoBench experiment infrastructure ensures a fair com-

parison with CCNNs from the literature, as data processing,

domain lifting, and training are homogeonized.

6.1. Experimental Setup

We generate our class of GCCNs by considering ten possi-

ble choices of neighborhood structure NC (including both

regular and per-rank, see Appendix E.1) and five possible

choices of ÉN : GCN (Kipf & Welling, 2017), GAT (Velick-

ovic et al., 2017), GIN (Xu et al., 2019a), GraphSAGE

(Hamilton et al., 2017), and Transformer (Vaswani et al.,

2017). We import these models directly from PyTorch Geo-

metric (Fey & Lenssen, 2019) and PyTorch (Paszke et al.,

2019). TopoTune enables running GCCNs on both an en-

semble of strictly augmented Hasse graphs (eq. 6) and an

augmented Hasse graph (eq. 5). While CCNN results re-

flect extensive hyperparameter tuning by Telyatnikov et al.

(2024) (see that work’s Appendix C.2 for details), we largely

fix GCCN training hyperparameters using the TopoBench

default configuration.

Datasets. We include a wide range of benchmark tasks

(see Appendix E.2). MUTAG, PROTEINS, NCI01, and

NCI09 (Morris et al., 2020) are graph-level classification

tasks about molecules or proteins. ZINC (Irwin et al., 2012)

(subset) is a graph-level regression task about solubility. At

the node level, the Cora, CiteSeer, and PubMed tasks (Yang

et al., 2016) involve classifying publications within citation

networks. We consider two topological domains: simplicial

and cellular complexes. We use TopoBench’s lifting pro-

cesses to infer higher-order relationships in these data. We

use node features to construct edge and face features.

6.2. Results and Discussion

GCCNs outperform CCNNs. Table 1 compares top-

performing CCNNs with our class of GCCNs. GCCNs out-

perform CCNNs across all datasets in the simplicial and cel-

lular domains and match hypergraph CCNNs—something

CCNNs fail to achieve in node-level tasks. Across 16 do-

main/dataset combinations, GCCNs exceed the best CCNN

by > 1Ã in 11 cases. In 2 combinations, GCCNs are out-

performed by the best GNN included in Telyatnikov et al.

(2024). Representing complexes as ensembles of augmented

Hasse graphs, rather than a single graph, improves results.

Generalizing existing CCNNs to GCCNs improves per-

formance. TopoTune makes it easy to iterate upon and

improve preexisting CCNNs by replicating their architecture

in a GCCN setting. For example, TopoTune can generate a

counterpart GCCN by replicating a CCNN’s neighborhood

structure, aggregation, and training scheme. We show in

Table 2 that counterpart GCCNs can achieve comparable or

better results than SCCN (Yang et al., 2022) and CWN (Bod-

nar et al., 2021a) just by sweeping over additional choices

of ÉN . In the single augmented Hasse graph regime, GCCN

models are consistently more lightweight, up to half their

size (see Table 5).

GCCNs perform competitively to CCNNs with fewer

parameters. GCCNs are often more parameter efficient

than existing CCNNs in simplicial and cellular domains,

and in some instances (MUTAG, NCI1, NCI09), even in

the hypergraph domain. We refer to Table 4. Even as

GCCNs become more parameter-intensive for large graphs

with high-dimensional embeddings—as seen in node-level

tasks—they remain competitive. (We refer to Appendix H.1

for additional results on larger node-level datasets.) For

instance, on the Citeseer dataset, a GCCN (ÉN = Graph-

SAGE) outperforms the best existing CCNN while being

28% smaller. Training times in Appendix G show GCCNs

train comparably on smaller datasets but slow down on

larger ones, likely due to TopoTune’s on-the-fly graph ex-

pansion. Preprocessing this expansion in future work could

mitigate the lag.

TopoTune finds parameter-efficient GCCNs. By easily

exploring a wide landscape of possible GCCNs for a given

task, TopoTune helps identify models that maximize per-

formance while minimizing model size. Fig. 5 illustrates

this trade-off by comparing the performance and size of

selected GCCNs (see Appendix I for more). On the PRO-

TEINS dataset, two GCCNs using per-rank neighborhood

structures (orange and black) achieve performance within

2% of the best result while requiring as little as 48% of the

parameters. This reduction is due to fewer neighborhoods

N , resulting in fewer ÉN blocks per GCCN layer. Similarly,

7

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Table 1. Cross-domain, cross-task, cross-expansion, and cross-ωN comparison of GCCN architectures with top-performing CCNNs

benchmarked on TopoBench (Telyatnikov et al., 2024). Best result is in bold and results within 1 standard deviation are highlighted

blue . Experiments are run with 5 seeds. We report accuracy for classification tasks and MAE for regression.

Graph-Level Tasks Node-Level Tasks

Model MUTAG (↑) PROTEINS (↑) NCI1 (↑) NCI109 (↑) ZINC (³) Cora (↑) Citeseer (↑) PubMed (↑)

Graph

GNN (Best Model on TopoBench) 79.57 ± 6.13 76.34 ± 1.66 75.00 ± 0.99 74.42 ± 0.70 0.57 ± 0.04 87.21 ± 1.89 75.53 ± 1.27 89.44 ± 0.24

Cellular

CCNN (Best Model on TopoBench) 80.43 ± 1.78 76.13 ± 2.70 76.67 ± 1.48 75.35 ± 1.50 0.34 ± 0.01 87.44 ± 1.28 75.63 ± 1.58 88.64 ± 0.36

GCCN ÉN = GAT 83.40 ± 4.85 74.05 ± 2.16 76.11 ± 1.69 75.62 ± 0.76 0.38 ± 0.03 88.39 ± 0.65 74.62 ± 1.95 87.68 ± 0.33

GCCN ÉN = GCN 85.11 ± 6.73 74.41 ± 1.77 76.42 ± 1.67 75.62 ± 0.94 0.36 ± 0.01 88.51 ± 0.70 75.41 ± 2.00 88.18 ± 0.26

GCCN ÉN = GIN 86.38 ± 6.49 72.54 ± 3.07 77.65 ± 1.11 77.19 ± 0.21 0.19 ± 0.00 87.42 ± 1.85 75.13 ± 1.17 88.47 ± 0.27

GCCN ÉN = GraphSAGE 85.53 ± 6.80 73.62 ± 2.72 78.23 ± 1.47 77.10 ± 0.83 0.24 ± 0.00 88.57 ± 0.58 75.89 ± 1.84 89.40 ± 0.57

GCCN ÉN = Transformer 83.83 ± 6.49 70.97 ± 4.06 73.00 ± 1.37 73.20 ± 1.05 0.45 ± 0.02 84.61 ± 1.32 75.05 ± 1.67 88.37 ± 0.22

GCCN ÉN = Best GNN, 1 Aug. Hasse graph 85.96 ± 7.15 73.73 ± 2.95 76.75 ± 1.63 76.94 ± 0.82 0.31 ± 0.01 87.24 ± 0.58 74.26 ± 1.47 88.65 ± 0.55

Simplicial

CCNN (Best Model on TopoBench) 76.17 ± 6.63 75.27 ± 2.14 76.60 ± 1.75 77.12 ± 1.07 0.36 ± 0.02 82.27 ± 1.34 71.24 ± 1.68 88.72 ± 0.50

GCCN ÉN = GAT 79.15 ± 4.09 74.62 ± 1.95 74.86 ± 1.42 74.81 ± 1.14 0.57 ± 0.03 88.33 ± 0.67 74.65 ± 1.93 87.72 ± 0.36

GCCN ÉN = GCN 74.04 ± 8.30 74.91 ± 2.51 74.20 ± 2.17 74.13 ± 0.53 0.53 ± 0.05 88.51 ± 0.70 75.41 ± 2.00 88.19 ± 0.24

GCCN ÉN = GIN 85.96 ± 4.66 72.83 ± 2.72 76.67 ± 1.62 75.76 ± 1.28 0.35 ± 0.01 87.27 ± 1.63 75.05 ± 1.27 88.54 ± 0.21

GCCN ÉN = GraphSAGE 75.74 ± 2.43 74.70 ± 3.10 76.85 ± 1.50 75.64 ± 1.94 0.50 ± 0.02 88.57 ± 0.59 75.92 ± 1.85 89.34 ± 0.39

GCCN ÉN = Transformer 74.04 ± 4.09 70.97 ± 4.06 70.39 ± 0.96 69.99 ± 1.13 0.64 ± 0.01 84.4 ± 1.16 74.6 ± 1.88 88.55 ± 0.39

GCCN ÉN = Best GNN, 1 Aug. Hasse graph 74.04 ± 5.51 74.48 ± 1.89 75.02 ± 2.24 73.91 ± 3.9 0.56 ± 0.02 87.56 ± 0.66 74.5 ± 1.61 88.61 ± 0.27

Hypergraph

CCNN (Best Model on TopoBench) 80.43 ± 4.09 76.63 ± 1.74 75.18 ± 1.24 74.93 ± 2.50 0.51 ± 0.01 88.92 ± 0.44 74.93 ± 1.39 89.62 ± 0.25

Table 2. We compare existing CCNNs with ωN -modified GCCN counterparts. We show the result for best choice of ωN . Experiments are

run with 5 seeds.

Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN (Yang et al., 2022)

Benchmark results (Telyatnikov et al., 2024) 70.64 ± 5.90 74.19 ± 2.86 76.60 ± 1.75 77.12 ± 1.07 82.19 ± 1.07 69.60 ± 1.83 88.18 ± 0.32

GCCN, on ensemble of strictly aug. Hasse graphs 82.13 ± 4.66 75.56 ± 2.48 75.6 ± 1.28 74.19 ± 1.44 88.06 ± 0.93 74.67 ± 1.24 87.70 ± 0.19

GCCN, on 1 aug. Hasse graph 69.79 ± 4.85 74.48 ± 2.67 74.63 ± 1.76 70.71 ± 5.50 87.62 ± 1.62 74.86 ± 1.7 87.80 ± 0.28

CWN (Bodnar et al., 2021a)

Benchmark results (Telyatnikov et al., 2024) 80.43 ± 1.78 76.13 ± 2.70 73.93 ± 1.87 73.80 ± 2.06 86.32 ± 1.38 75.20 ± 1.82 88.64 ± 0.36

GCCN, on ensemble of strictly aug. Hasse graphs 84.26 ± 8.19 75.91 ± 2.75 73.87 ± 1.10 73.75 ± 0.49 85.64 ± 1.38 74.89 ± 1.45 88.40 ± 0.46

GCCN, on 1 aug. Hasse graph 81.70 ± 5.34 75.05 ± 2.39 75.14 ± 0.76 75.39 ± 1.01 86.44 ± 1.33 74.45 ± 1.59 88.56 ± 0.55

on ZINC, lightweight neighborhood structures (orange and

dark green) are competitive with reduced parameter costs.

Node-level tasks, see less benefit, likely due to the larger

graph sizes and higher-dimensional input features.

Impactfulness of GNN choice is dataset specific. Fig.

5 also provides insights into the impact of neighborhood

message functions. On ZINC, GIN clearly outperforms

all other models, which do not even appear in the plot’s

range. In the less clear-cut cases of PROTEINS and Cite-

seer, we observe a trade-off between neighborhood structure

and message function complexity. We find that larger base

models (GIN, GraphSAGE) on lightweight neighborhood

structures perform comparably to simpler base models (GAT,

GCN) on larger neighborhood structures. This tradeoff war-

rants further research on the dataset-specific importance of

neighborhood choice, or lack thereof. We refer to Appendix

H.2 for additional experiments with more advanced GNNs,

8

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

PROTEINS CiteseerZINC

GIN
GraphSAGE

GAT
GCN per-rank

Figure 5. GCCN performance versus size. We compare various GCCNs across three datasets on the cellular domain, two graph-level

(left, middle) and one node-level (right). Each GCCN (point) has a different neighborhood structure NC , some of which can only be

represented as per-rank structures (□ in legend), and message function ωN . The amount of layers is kept constant according to the best

performing model. The axes are scaled relative to this model.

GATv2 (Brody et al., 2021) and PNA (Corso et al., 2020),

as choices of ÉN .

7. Conclusion

This work introduces a simple yet powerful graph-based

methodology for constructing Generalized Combinatorial

Complex Neural Networks (GCCNs), TDL architectures

that generalize and subsume standard CCNNs. Additionally,

we introduce TopoTune, the first lightweight software mod-

ule for systematically and easily implementing new TDL

architectures across topological domains. In doing so, we

have addressed, either in part or in full, 7 of the 11 open

problems of the field (Papamarkou et al., 2024). Future

work includes customizing GCCNs for application-specific

and potentially sparse or multimodal datasets, and leverag-

ing software from state-of-the-art GNNs. TopoTune will

also help bridge the gap with other fields such as attentional

learning and k-hop higher-order GNNs (Morris et al., 2019;

Maron et al., 2019).

Acknowledgements
M.P. acknowledges the support of National Science Founda-

tion (NSF) CAREER 2240158 and NSF Grant 2134241, as

well as from the National Science and Engineering Research

Council of Canada. G.B. acknowledges support from NSF

Grant 2134241. C.B. acknowledges support from the Na-

tional Institutes of Health Grant 1R01ES037156-01. N.M.

acknowledges support from NSF Grant 2313150.

Impact Statement
This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.

References

Agarwal, S., Branson, K., and Belongie, S. Higher order

learning with graphs. In Proceedings of the 23rd interna-

tional conference on Machine learning, pp. 17–24, 2006.

Antelmi, A., Cordasco, G., Polato, M., Scarano, V., Spag-

nuolo, C., and Yang, D. A survey on hypergraph rep-

resentation learning. ACM Comput. Surv., 56(1), aug

2023. ISSN 0360-0300. doi: 10.1145/3605776. URL

https://doi.org/10.1145/3605776.

Bandyopadhyay, S., Das, K., and Murty, M. N. Line hyper-

graph convolution network: Applying graph convolution

for hypergraphs. arXiv preprint arXiv:2002.03392, 2020.

Battiloro, C. Signal Processing and Learning over Topolog-

ical Spaces. PhD thesis, Sapienza Unviersity of Rome,

2024.

Battiloro, C., Testa, L., Giusti, L., Sardellitti, S., Di Lorenzo,

P., and Barbarossa, S. Generalized simplicial attention

neural networks. IEEE Transactions on Signal and Infor-

mation Processing over Networks, 2024.

Battiloro, C., Karaismailoğlu, E., Tec, M., Dasoulas, G.,

Audirac, M., and Dominici, F. E (n) equivariant topo-

logical neural networks. The Thirteenth International

Conference on Learning Representations (ICLR), 2025.

Bernárdez, G., Ferriol-Galmés, M., Güemes-Palau, C., Pa-

pillon, M., Barlet-Ros, P., Cabellos-Aparicio, A., and Mi-

olane, N. Ordered topological deep learning: a network

modeling case study. arXiv preprint arXiv:2503.16746,

2025.

Bernárdez, G., Telyatnikov, L., Montagna, M., Baccini, F.,

Papillon, M., Galmés, M. F., Hajij, M., Papamarkou, T.,

9

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Bucarelli, M. S., Zaghen, O., Mathe, J., Myers, A., Ma-

han, S., Lillemark, H., Vadgama, S. P., Bekkers, E. J.,

Doster, T., Emerson, T., Kvinge, H., Agate, K., Ahmed,

N. K., Bai, P., Banf, M., Battiloro, C., Beketov, M., Bog-

dan, P., Carrasco, M., Cavallo, A., Choi, Y. Y., Dasoulas,

G., Elphick, M., Escalona, G., Filipiak, D., Fritze, H.,

Gebhart, T., Gil-Sorribes, M., Goomanee, S., Guallar, V.,

Imasheva, L., Irimia, A., Jin, H., Johnson, G., Kanakaris,

N., Koloski, B., Kovac, V., Lecha, M., Lee, M., Leroy, P.,

Long, T., Magai, G., Martinez, A., Masden, M., Meznar,

S., Miquel-Oliver, B., Molina, A., Nikitin, A., Nurisso,

M., Piekenbrock, M., Qin, Y., Rygiel, P., Salatiello, A.,

Schattauer, M., Snopov, P., Suk, J., Sánchez, V., Tec,

M., Vaccarino, F., Verhellen, J., Wantiez, F., Weers, A.,

Zajec, P., Skrlj, B., and Miolane, N. Icml topological

deep learning challenge 2024: Beyond the graph do-

main. CoRR, abs/2409.05211, 2024. URL https:

//doi.org/10.48550/arXiv.2409.05211.

Bodnar, C. Topological Deep Learning: Graphs, Complexes,

Sheaves. PhD thesis, Cambridge University, 2023.

Bodnar, C., Frasca, F., Otter, N., Wang, Y., Lio, P., Montufar,

G. F., and Bronstein, M. Weisfeiler and Lehman Go

Cellular: CW Networks. Advances in Neural Information

Processing Systems, 34:2625–2640, 2021a.

Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montufar, G. F.,

Lio, P., and Bronstein, M. Weisfeiler and Lehman Go

Topological: Message Passing Simplicial Networks. In

International Conference on Machine Learning, pp. 1026–

1037. PMLR, 2021b.

Bolla, M. Spectra, euclidean representations and clusterings

of hypergraphs. Discrete Mathematics, 117(1-3):19–39,

1993.

Brody, S., Alon, U., and Yahav, E. How attentive are graph

attention networks? In International Conference on

Learning Representations, 2021.

Chen, C., Cheng, Z., Li, Z., and Wang, M. Hypergraph

attention networks. In 2020 IEEE 19th International

Conference on Trust, Security and Privacy in Computing

and Communications (TrustCom), pp. 1560–1565. IEEE,

2020a.

Chen, Y., Wu, L., and Zaki, M. Iterative deep graph

learning for graph neural networks: Better and ro-

bust node embeddings. In Larochelle, H., Ranzato,

M., Hadsell, R., Balcan, M., and Lin, H. (eds.),

Advances in Neural Information Processing Systems,

volume 33, pp. 19314–19326. Curran Associates,

Inc., 2020b. URL https://proceedings.

neurips.cc/paper/2020/file/

e05c7ba4e087beea9410929698dc41a6-Paper.

pdf.

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković,

P. Principal neighbourhood aggregation for graph nets.

In Advances in Neural Information Processing Systems,

2020.

Corso, G., Stark, H., Jegelka, S., Jaakkola, T., and Barzilay,

R. Graph neural networks. Nature Reviews Methods

Primers, 4(1):17, 2024.

Defferrard, M., Bresson, X., and Vandergheynst, P. Con-

volutional neural networks on graphs with fast localized

spectral filtering. Advances in neural information pro-

cessing systems, 29, 2016.

Ebli, S., Defferrard, M., and Spreemann, G. Simplicial

neural networks. In Advances in Neural Information Pro-

cessing Systems Workshop on Topological Data Analysis

and Beyond, 2020.

Eitan, Y., Gelberg, Y., Bar-Shalom, G., Frasca, F., Bronstein,

M., and Maron, H. Topological blind spots: Understand-

ing and extending topological deep learning through the

lens of expressivity. arXiv preprint arXiv:2408.05486,

2024.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. Hypergraph

neural networks. In Proceedings of the AAAI confer-

ence on artificial intelligence, volume 33, pp. 3558–3565,

2019.

Fey, M. and Lenssen, J. E. Fast graph representation learning

with PyTorch Geometric. In International Conference on

Learning Representations Workshop on Representation

Learning on Graphs and Manifolds, 2019.

Gibson, D., Kleinberg, J., and Raghavan, P. Clustering cate-

gorical data: An approach based on dynamical systems.

The VLDB Journal, 8:222–236, 2000.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and

Dahl, G. E. Neural message passing for quantum chem-

istry. In Proceedings of the 34th International Confer-

ence on Machine Learning - Volume 70, ICML’17, pp.

1263–1272. JMLR.org, 2017.

Giusti, L., Battiloro, C., Di Lorenzo, P., Sardellitti, S., and

Barbarossa, S. Simplicial attention networks. arXiv

preprint arXiv:2203.07485, 2022a.

Giusti, L., Battiloro, C., Testa, L., Di Lorenzo, P., Sardellitti,

S., and Barbarossa, S. Cell attention networks. arXiv

preprint arXiv:2209.08179, 2022b.

Grohe, M. Descriptive complexity, canonisation, and de-

finable graph structure theory, volume 47. Cambridge

University Press, 2017.

10

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Hajij, M., Istvan, K., and Zamzmi, G. Cell complex neural

networks. In Advances in Neural Information Processing

Systems Workshop on TDA & Beyond, 2020.

Hajij, M., Zamzmi, G., Papamarkou, T., Miolane, N.,

Guzmán-Sáenz, A., Ramamurthy, K. N., Birdal, T., Dey,

T., Mukherjee, S., Samaga, S., Livesay, N., Walters, R.,

Rosen, P., and Schaub, M. Topological deep learning: Go-

ing beyond graph data. arXiv preprint arXiv:1906.09068

(v3), 2023.

Hajij, M., Papamarkou, T., Zamzmi, G., Ramamurthy, K. N.,

Birdal, T., and Schaub, M. T. Topological Deep Learning:

Going Beyond Graph Data. Online, 2024a. URL http:

//tdlbook.org. Published online on August 6, 2024.

Hajij, M., Papillon, M., Frantzen, F., Agerberg, J., AlJabea,

I., Ballester, R., Battiloro, C., Bernárdez, G., Birdal, T.,

Brent, A., et al. Topox: a suite of python packages for

machine learning on topological domains. Journal of

Machine Learning Research, 25(374):1–8, 2024b.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive rep-

resentation learning on large graphs. In Proceedings of

the 31st International Conference on Neural Informa-

tion Processing Systems, NIPS’17, pp. 1025–1035, Red

Hook, NY, USA, 2017. Curran Associates Inc. ISBN

9781510860964.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S.,

and Coleman, R. G. ZINC: a free tool to discover chem-

istry for biology. Journal of Chemical Information and

Modeling, 52(7):1757–1768, 2012.

Jogl, F., Thiessen, M., and Gärtner, T. Reducing learning

on cell complexes to graphs. In ICLR 2022 Workshop on

Geometrical and Topological Representation Learning,

2022a.

Jogl, F., Thiessen, M., and Gärtner, T. Weisfeiler and leman

return with graph transformations. In 18th International

Workshop on Mining and Learning with Graphs, 2022b.

Jogl, F., Thiessen, M., and Gärtner, T. Expressivity-

preserving GNN simulation. In Thirty-seventh Con-

ference on Neural Information Processing Systems,

2023. URL https://openreview.net/forum?

id=ytTfonl9Wd.

Jogl, F., Thiessen, M., and Gärtner, T. Expressivity-

preserving gnn simulation. Advances in Neural Infor-

mation Processing Systems, 36, 2024.

Kiefer, S. Power and limits of the Weisfeiler-Leman algo-

rithm. PhD thesis, Dissertation, RWTH Aachen Univer-

sity, 2020, 2020.

Kipf, T. N. and Welling, M. Semi-supervised classifica-

tion with graph convolutional networks. In International

Conference on Learning Representations (ICLR), 2017.

Lambiotte, R., Rosvall, M., and Scholtes, I. From networks

to optimal higher-order models of complex systems. Na-

ture physics, 2019.

Lecha, M., Cavallo, A., Dominici, F., Isufi, E., and Battiloro,

C. Higher-order topological directionality and directed

simplicial neural networks. ICASSP 2025 - 2025 IEEE In-

ternational Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2025.

Maggs, K., Hacker, C., and Rieck, B. Simplicial represen-

tation learning with neural k-forms. In The Twelfth

International Conference on Learning Representations,

2024. URL https://openreview.net/forum?

id=Djw0XhjHZb.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.

Provably powerful graph networks. Advances in Neural

Information Processing Systems, 2019.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,

J. E., Rattan, G., and Grohe, M. Weisfeiler and leman

go neural: Higher-order graph neural networks. In Pro-

ceedings of the AAAI conference on artificial intelligence,

volume 33, pp. 4602–4609, 2019.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,

P., and Neumann, M. Tudataset: A collection of bench-

mark datasets for learning with graphs. arXiv preprint

arXiv:2007.08663, 2020.

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M.,

Grohe, M., Fey, M., and Borgwardt, K. Weisfeiler and

leman go machine learning: The story so far. The Jour-

nal of Machine Learning Research, 24(1):15865–15923,

2023.

Papamarkou, T., Birdal, T., Bronstein, M., Carlsson,

G., Curry, J., Gao, Y., Hajij, M., Kwitt, R., Liò, P.,

Di Lorenzo, P., et al. Position paper: Challenges and

opportunities in topological deep learning. arXiv preprint

arXiv:2402.08871, 2024.

Papillon, M., Sanborn, S., Hajij, M., and Miolane, N. Ar-

chitectures of topological deep learning: A survey on

topological neural networks, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,

M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,

Bai, J., and Chintala, S. Pytorch: An imperative style,

high-performance deep learning library. In Advances in

Neural Information Processing Systems. 2019.

11

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and

Prokhorenkova, L. A critical look at the evaluation of

gnns under heterophily: Are we really making progress?

In The Eleventh International Conference on Learning

Representations.

Roddenberry, T. M., Glaze, N., and Segarra, S. Principled

simplicial neural networks for trajectory prediction. In

International Conference on Machine Learning, pp. 9020–

9029. PMLR, 2021.

Rodrı́guez, J. A. On the laplacian eigenvalues and metric pa-

rameters of hypergraphs. Linear and Multilinear Algebra,

50(1):1–14, 2002.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and

Monfardini, G. The graph neural network model. IEEE

Transactions on Neural Networks, 2008.

Solé, P. et al. Spectra of regular graphs and hypergraphs and

orthogonal polynomials. European Journal of Combina-

torics, 17(5):461–477, 1996.

Telyatnikov, L., Bucarelli, M. S., Bernardez, G., Zaghen, O.,

Scardapane, S., and Lio, P. Hypergraph neural networks

through the lens of message passing: a common perspec-

tive to homophily and architecture design. arXiv preprint

arXiv:2310.07684, 2023.

Telyatnikov, L., Bernardez, G., Montagna, M., Vasylenko,

P., Zamzmi, G., Hajij, M., Schaub, M. T., Miolane, N.,

Scardapane, S., and Papamarkou, T. Topobench: A frame-

work for benchmarking topological deep learning. arXiv

preprint arXiv:2406.06642, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-

tion is all you need. In Advances in Neural Information

Processing Systems, 2017.

Veličković, P. Message passing all the way up. arXiv

preprint arXiv:2202.11097, 2022.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio,

P., Bengio, Y., et al. Graph attention networks. stat, 1050

(20):10–48550, 2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful

are graph neural networks? In International Conference

on Learning Representations, 2019a. URL https://

openreview.net/forum?id=ryGs6iA5Km.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful

are graph neural networks? In International Conference

on Learning Representations, 2019b.

Yadati, N. Neural message passing for multi-relational

ordered and recursive hypergraphs. Advances in Neural

Information Processing Systems, 33:3275–3289, 2020.

Yang, M. and Isufi, E. Convolutional learning on simplicial

complexes. arXiv preprint arXiv:2301.11163, 2023.

Yang, R., Sala, F., and Bogdan, P. Efficient repre-

sentation learning for higher-order data with simpli-

cial complexes. In Rieck, B. and Pascanu, R. (eds.),

Proceedings of the First Learning on Graphs Confer-

ence, volume 198 of Proceedings of Machine Learn-

ing Research, pp. 13:1–13:21. PMLR, 09–12 Dec

2022. URL https://proceedings.mlr.press/

v198/yang22a.html.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting

semi-supervised learning with graph embeddings. In

International conference on machine learning, pp. 40–48.

PMLR, 2016.

Zhang, M. and Chen, Y. Link prediction based on graph neu-

ral networks. Advances in Neural Information Processing

Systems, 2018.

Zhou, D., Huang, J., and Schölkopf, B. Learning with

hypergraphs: Clustering, classification, and embedding.

Advances in neural information processing systems, 19,

2006.

12

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Set Graph

���������������������������� ����������������������������
�������

Combinatorial
complex

Hypergraph
Simplicial
complex

Cellular
complex

is part of not necessarily part of

��������

��������

����	�����

��������

���	����

��������

��

�������

: Nodes : Edges

Figure 6. Topological Deep Learning Domains. Nodes in blue, (hyper)edges in pink, and faces in dark red. Figure adopted from Papillon

et al. (2023).

A. Domains of Topological Deep Learning

We summarize the different discrete domains leveraged within TDL and, in doing so, contextualize how combinatorial

complexes generalize all of them. To that end, we will closely follow the description of (Papillon et al., 2023), using as well

its very clarifying Figure 6. We recommend this survey for a high-level overview of TDL literature, and the more extensive

work of (Hajij et al., 2023) for a detailed formulation of the field. We also refer to Appendix C of Battiloro et al. (2025) for a

concise mathematical description of each domain. From left to right in Figure 6, the different domains in TDL are:

Traditional Discrete Domains

Set / Pointcloud. A collection of points called nodes without any additional structure.

Graph. A set of points (nodes) connected with edges that denote pairwise relationships.

Set + Part-Whole Relations

Simplicial Complex. A generalization of a graph that incorporates hierarchical part-whole relations through the multi-scale

construction of cells. Nodes are rank 0-cells that can be combined to form edges (rank 1 cells). Edges are, in turn, combined

to form faces (rank 2 cells), which are combined to form volumes (rank 3 cells), and so on. In particular, each cell Ã in a

simplicial complex must contain all lower dimensional cells Ä such that Ä ¦ Ã. Therefore, faces must be triangles, volumes

must be tetrahedrons, and so forth.

Cellular Complex. A generalization of an simplicial complex in which cells are not limited to simplexes, but may instead

take any shape: faces can involve more than three nodes, volumes more than four faces, and so on. This flexibility endows

CCs with greater expressivity than simplicial complexes (Bodnar et al., 2021a), but still edges only connect pairs of nodes.

Set + Set-Type Relations

Hypergraph: A generalization of a graph, in which higher-order edges called hyperedges can connect arbitrary sets of

two or more nodes. Connections in HGs represent set-type relationships, in which participation in an interaction is not

implied by any other relation in the system. This makes HGs an ideal choice for data with abstract and arbitrarily large

interactions of equal importance, such as semantic text and citation networks.

Set + Part-Whole and Set-Type Relations

Combinatorial Complex: A structure that combines features of hypergraphs and cellular complexes. Like a hypergraph,

edges may connect any number of nodes. Like a cellular complex, cells can be combined to form higher-ranked structures.

Hence, combinatorial complexes generalize all other topological domains.

13

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

B. Proofs

B.1. Proof of Generality

The proof is straightforward. It is sufficient to set ÉN (Hl
N ,GN) to {

⊕
y∈N (Ã) ÈN ,rk(Ã)

(
h
l
Ã,h

l
Ä

)
}Ã∈C in (8) as all y ∈ N (Ã)

are part of the node set CN of the strictly augmented Hasse graph of N by definition.

B.2. Proof of Equivariance

As for GNNs, an amenable property for GCCNNs is the awareness w.r.t. relabeling of the cells. In other words, given that

the order in which the cells are presented to the networks is arbitrary -because CCs, like (undirected) graphs, are purely

combinatorial objects-, one would expect that if the order changes, the output changes accordingly. To formalize this

concept, we need the following notions.

Matrix Representation of a Neighborhood. Assume again to have a combinatorial complex C containing C := |C| cells

and a neighborhood function N on it. Assume again to give an arbitrary labeling to the cells in the complex, and denote the

i-th cell with Ãi. The matrix representation of the neighborhood function is a matrix NN ∈ R
C×C such that Ni,j = 1 if the

Ãj ∈ N (Ãi) or zero otherwise. We notice that the submatrix ÑN ∈ R
|CN |×|CN | obtained by removing all the zero rows and

columns is the adjacency matrix of the strictly augmented Hasse graph GCN
induced by N .

Permutation Equivariance. Let C be combinatorial complex, NC a collection of neighborhoods on it, and N =
{NN }N∈NC

the set collecting the corresponding neighborhood matrices. Let P ∈ R
C×C be a permutation matrix. Finally,

denote by PH the permuted embeddings and by {PNNP
T }N∈NC

, the permuted neighborhood matrices. We say that a

function f :
(
H

l,B
)
7→ H

l+1 is cell permutation equivariant if f
(
PH

l, {PNNP
T }N∈NC

)
= Pf

(
H

l, {NN }N∈NC

)
for

any permutation matrix P. Intuitively, the permutation matrix changes the arbitrary labeling of the cells, and a permutation

equivariant function is a function that reflects the change in its output.

Proof of Proposition 4.2. We follow the approach from (Bodnar et al., 2021a). Given any permutation matrix P, for a cell

Ãi, let us denote its permutation as ÃP(i) with an abuse of notation. Let hl+1
Ãi

be the output embedding of cell Ãi for the

l-th layer of a GCCN taking (Hl, {NN }N∈NC
) as input, and h

l+1
ÃP(i)

be the output embedding of cell ÃP(i) for the same

GCCN layer taking
(
PH

l, {PNNP
T }N∈NC

)
as input. To prove the permutation equivariance, it is sufficient to show that

h
l+1
Ãi

= h
l+1
ÃP(i)

as the update function ϕ is row-wise, i.e., it independently acts on each cell. To do so, we show that the

(multi-)set of embeddings being passed to the neighborhood message function, aggregation, and update functions are the

same for the two cells Ãi and ÃP(i). The neighborhood message functions act on the strictly augmented Hasse graph of

GCN
of N , thus we work with the submatrix ÑN . The neighborhood message function is assumed to be node permutation

equivariant, i.e., denoting again the embeddings of the cells in GCN
with H

l
CN

∈ R
|CN |×F l

and identifying GCN
with ÑN , it

holds that ÉN (PCN
H

l
CN
,PCN

ÑNP
T
CN

) = PCN
ÉN (Hl

CN
, ÑN), where PCN

is the submatrix of P given by the rows and

the columns corresponding to the cells in GCN
. This assumption, together with the assumption that the inter-neighborhood

aggregation is assumed to be cell permutation invariant, i.e.
⊗

N∈NC
PCN

ÉN (Hl
CN
, ÑN) =

⊗
N∈NC

ÉN (Hl
CN
, ÑN),

trivially makes the overall composition of the neighborhood message function with the inter-neighborhood aggregation cell

permutation invariant. This fact, together with the fact that the (labels of) the neighbors of the cell Ãi in N are given by

the nonzero elements of the i-th row of NN , or the corresponding row of ÑN , and that the columns and rows of ÑN are

permuted in the same way the rows of the feature matrix H
l
CN

are permuted, implies

[ÑN]i,j = [PCN
ÑNP

T
CN

]PCN
(i),PCN

(j), (9)

thus that Ãi and ÃP(i) receive the same neighborhood message from the neighboring cells in N , for all N ∈ NC .

14

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

k-GNN HasseGNN Hasse

k-WL HasseWL Hasse

k-CCWLCCWL

k-CCNNCCNN GCCN

De�nition B.8De�nition B.6

Eq. 8Eq. 4 De�nition B.9, Eq. 11

<

<

<

<

Increasing expressive power

Proposition B.10

Proposition B.11 Proposition B.12

Propositions B.13-14 Propositions B.15-16

Proposition 3

Theorems 1-2

from Morris et al. 2019

Propositions 3, 4

from Morris et al. 2019

Grohe 2017

Figure 7. Graphical summary of the definitions and propositions related to the expressivity of CCNNs and GCCNs and of the different

WL tests. Neural networks expressivity is in red, and WL test expressivity is in blue.

B.3. Proof of Expressivity

We provide the theory required to prove Proposition 4.3, i.e., to prove that GCCNs are strictly more expressive than CCNNs.

The definitions and propositions from this subsection are summarized in Figure 7. This figure serves as a graphical reading

guide for the subsection.

B.3.1. HOMOMORPHISM AND ISOMORPHISM INDUCED BY NEIGHBORHOODS

We first recall the notion of homomorphism of a combinatorial complex (CC) from (Hajij et al., 2023) and generalize it to

the notions of homomorphism and isomorphism of CCs induced by a neighborhood N .

Definition B.1 (CC-Homomorphism (Hajij et al., 2023)). A homomorphism from a CC (V1, C1, rk1) to a CC (V2, C2, rk2),
also called a CC-homomorphism, is a function f : C1 → C2 that satisfies the following conditions:

1. If Ã, Ä ∈ C1 satisfy Ã ¦ Ä , then f(Ã) ¦ f(Ä).

2. If Ã ∈ C1, then rk1(Ã) g rk2(f(Ã)).

Definition B.1 proposes a CC-homomorphism that respects the incidence structures of the CCs, denoted by the symbol ¦ in

the definition above. We generalize Definition B.1 by allowing CC-homomorphisms to take into account a labeling of the

cells and to be defined in terms of general neighborhood structures beyond incidence. We first define a labeled combinatorial

complex.

Definition B.2 (Labeled Combinatorial Complex). A labeled combinatorial complex (C, ℓ) is a CC C equipped with a cell

coloring ℓ : C 7→ Σ with arbitrary codomain Σ. We say that ℓ(Ã) is a label or color of cell Ã ∈ C.

Next, we provide our definitions of homomorphisms.

Definition B.3 (CC-Homomorphism induced by (N1,N2)). A homomorphism from a CC (V1, C1, rk1) with neighborhood

N1 to a CC (V2, C2, rk2) with neighborhood N2, also called a CC-homomorphism induced by (N1,N2), is a function

f : C1 → C2 that satisfies: If Ã, Ä ∈ C1 are such that Ä ∈ N1(Ã), then f(Ä) ∈ N2(f(Ã)). A labeled CC-homomorphism

induced by (N1,N2) is a CC-homomorphism induced by (N1,N2) that additionally respects labeling of the cells, that is: if

Ã, Ä ∈ C1 have the same label, then f(Ã), f(Ä) ∈ C2 also have the same label.

15

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

We prove that a CC-homomorphism induced by (N1,N2) is equivalent to a homomorphism of the respective strictly

augmented Hasse graphs GN1 , GN2 .

Proposition B.4. For every CC-homomorphism f from C1 to C2 induced by (N1,N2), there exists a unique graph

homomorphism between their respective strictly augmented Hasse graphs GN1
and GN2

.

Proof. Consider f a CC-homomorphism from C1 to C2 induced by (N1,N2) as in Definition B.3. Define the function f̃

from nodes of GN1
to the nodes of GN2

corresponding to f , i.e., f̃ : CN1
7→ CN2

defined as f̃(Ã̃) = ˜f(Ã) where Ã̃ is the

node in GN1
corresponding to the cell Ã in C1, and ˜f(Ã) is the node in GN2

corresponding to the cell f(Ã) in C2. We show

that f̃ is a graph homomorphism from GN1 to GN2 , i.e., a function from the nodes of GN1 to the nodes of GN2 that preserves

edges.

By definition of the CC-homomorphism induced by (N1,N2), we have: if Ä ∈ N1(Ã) then f(Ä) ∈ N2(f(Ã)). Recognizing

that N1 defines edges of GN1 , and N2 defines edgess of GN2 , we have: if (Ã̃, Ä̃) is an edge in GN1 , then (f̃(Ã̃), f̃(Ä̃)) is an

edge in GN2
. Thus, a CC-homomorphism induced by (N1,N2) gives a homomorphism of the strictly augmented Hasse

graphs.

Conversely, if f̃ is a graph homomorphism from GN1 to GN2 , then we similarly construct a CC-homomorphism f between

C1 and C2. This concludes the proof.

Lastly, we can define a notion of CC-isomorphism induced by neighborhood structures.

Definition B.5 (CC-Isomorphism induced by (N1,N2)). A isomorphism from a CC (V1, C1, rk1) with neighborhood N1

to a CC (V2, C2, rk2) with neighborhood N2, also called a CC-isomorphism induced by (N1,N2), is an invertible CC-

homomorphism induced by (N1,N2) whose inverse is a CC-isomorphism induced by (N2,N1). A labeled CC-isomorphism

induced by (N1,N2) is a CC-isomorphism that additionally respects labels.

B.3.2. WEISFEILER-LEMAN (WL) TESTS ON COMBINATORIAL COMPLEXES

We propose two WL tests, called CCWL and (set-based) k-CCWL that generalize the WL and the (set-based) k-WL tests to

labeled combinatorial complexes. We start with the generalization of the WL test to labeled combinatorial complexes.

Definition B.6 (The CC Weisfeiler-Leman (CCWL) test on labeled combinatorial complexes). Let (C, ℓ) be a labeled

combinatorial complex. Let N be a neighborhood on C. The scheme proceeds as follows:

• Initialization: Cells Ã are initialized with the labels given by ℓ, i.e.: for all Ã ∈ C, we set: c0Ã,ℓ = ℓ(Ã).

• Refinement: Given colors of cells at iteration t, the refinement step computes the color of cell Ã at the next iteration ct+1
Ã,ℓ

using a perfect HASH function as follows:

ctN (Ã) =
{{
ctÃ′,ℓ | ∀Ã

′ ∈ N (Ã)
}}

,

ct+1
Ã,ℓ = HASH

(
ctÃ,ℓ, c

t
N (Ã)

)
.

• Termination: The algorithm stops when an iteration leaves the coloring unchanged.

Next, we generalize the set-based k-WL test to labeled combinatorial complexes, called the k-CCWL test. The set-based

k-WL test is employed in (Morris et al., 2019) where colors are defined on k-sets of nodes, as opposed to k-tuples of nodes

in the standard k-WL test. Specifically, we denote [C]k the set of k-sets formed with cells of C. We generalize the definition

of neighborhood of k-sets of vertices from (Morris et al., 2019) to neighborhood of k-sets of cells.

Definition B.7 (Neighborhood of k-sets of cells). Given a k-set of cells s = {Ã1, . . . , Ãk} in [C]k, we define its neighborhood

as the function Nk : [C]k 7→ P([C]k) defined as:

Nk(s) =
{
t ∈ [C]k | |s ∩ t| = k − 1

}
. (10)

Definition B.8 (The CC k-Weisfeiler-Leman (k-CCWL) test on combinatorial complexes). Let (C, ℓ) be a labeled combina-

torial complex. Let N be a neighborhood on C. The scheme proceeds as follows:

16

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

..
.

..
.

cells

k-sets

... ...

..
.

..
.

features on the k-set

that contains

features on other k-sets

that contains

Figure 8. Notations for Proposition B.10. Denote |C| the number of cells. The number of k-sets that contain a given cell σ is equal to
(

|C|−1

k−1

)

. The feature on one k-set that contains a given cell has dimension d. Thus, Hl ∈ R
|C|×F for F =

(

|C|−1

k−1

)

d. We note that the

k-sets for one row do not correspond to the k-sets of another row. However, for every row, there is the same number of k-sets that contain

the cell σ characteristic of that row.

• Initialization: Every k-set s in [C]k is initialized with a color that corresponds to the CC-isomorphism type of the sub-CC

defined by s = {Ã1, . . . , Ãk} induced by N|s where N|s is the neighborhood N restricted to s. This means that two

k-sets s and s′ get the same color if and only if there is a labeled CC-isomorphism (for labeling function ℓ) between the

sub-CCs corresponding to the cells in s and s′, respectively.

• Refinement: Given colors of k-sets at iteration t, the refinement step computes the color of the k-set s at the next iteration

ct+1
s,ℓ using a perfect HASH function, as follows:

ctNk(s),ℓ
=

{{
cts′,ℓ | ∀s

′ ∈ Nk(s)
}}

,

ct+1
s,ℓ = HASH

(
cts,ℓ, c

t
Nk(s),ℓ

)
.

• Termination: The algorithm stops when an iteration leaves the coloring unchanged.

Two combinatorial complexes are deemed non-isomorphic according to the CCWL and k-CCWL respectively, if their color

histograms differ upon termination of the scheme. If the histograms are the same, we cannot conclude.

B.3.3. DEFINITIONS OF k-GNNS AND k-CCNNS

We generalize the definition of k-GNNs by (Morris et al., 2019) into a definition of k-CCNNs.

Definition B.9 (k-CCNNs). Let (C, ℓ) be a labeled CC. In each k-CCNN layer t, the feature vector h
(t)
k (s) ∈ R

d for each

k-set s in [C]k is updated into h
(t+1)
k (s) as follows:

h
(t+1)
k (s) = U


h(t)k (s) ·W

(t)
1 +

∑

u∈Nk(s)

h
(t)
k (u) ·W

(t)
2


 ∈ R

d, (11)

where W
(t)
1 ,W

(t)
2 are matrices of parameters for layer t, Nk the neighborhood structure on k-sets, and U is an update

function.

Then, we show that k-CCNNs of Definition B.9 form a subclass of GCCNs.

Proposition B.10. GCCNs generalize and subsume k-CCNNs.

17

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Proof. Let be given a k-CCNN defined by (11). We show that we can recover (11) by an appropriate choice of feature

dimensionality F , update function ϕ and sub-module ÉN in (8) defining GCCNs, and thus that any k-CCNN can be

expressed as a GCCN.

For simplicity of notations, we assume that the layers of the k-CCNN have same feature dimensionality, denoted d. Given

that there are
(
|C|−1
k−1

)
k-sets containing a given cell Ã, we define F =

(
|C|−1
k−1

)
d to be the feature dimensionality of the layers

of a GCCN. Denote Hl(Ã) the row of Hl containing F -dimensional feature corresponding to cell Ã, as well as Hl(Ã, s) the

subrow containing the d-dimensional feature corresponding to one k-set s to which Ã belongs. Figure 8 illustrates these

notations. We then define:

H
l+1 = ϕ

(
H

l, É(Hl)
)

by defining ϕ and É on (Ã, s)-blocks of the matrix H
l. Specifically, we have:

H
l+1(Ã, s) = ϕ(Ã,s)

(
H

l(Ã, s), É(Ã,s)(H
l)
)

= U


H

l(Ã, s) ·W
(t)
1 +

∑

u∈Nk(s)

H
l(Ã, u) ·W

(t)
2


 ,

where:

É(Ã,s)(H
l) =

∑

u∈Nk(s)

H
l(Ã, u) ·W

(t)
2 , ϕ(Ã,s)(A,B) = U(A ·W

(1)
1 +B). (12)

In other words, we first use É defined as a sequence of É(Ã,s) to update each (Ã, s)-block of Hl into an auxiliary feature

B = H̃
l. Then, we use ϕ as a sequence of ϕ(Ã,s) to perform a block-wise operations. Thus, we have built a GCCN that

reproduces the computations of the k-CCNN. Therefore, GCCNs generalize and subsume k-CCNNs.

B.3.4. RELATIONSHIPS BETWEEN CCWL/GCWL TESTS AND CCNNS/GCCNS

We prove relationships between the expressivity of the WL tests and the expressivity of the corresponding neural networks.

We first recall results on WL tests on graphs and GNNs (Morris et al., 2019). In what follows, (G, ℓ) is a labeled graph,

and W (t) denote the parameters of a GNN up to layer t. We encode the initial labels ℓ(v), for a vertex v, by vectors

h(0)(v) ∈ R
1×d.

WL/GNNs and k-WL/k-GNNs Theorem 1 in (Morris et al., 2019) states that, for every encoding of the graph labels ℓ(v)
as d-vectors h(0)(v), and for every choice of parameters W (t), the coloring c(t)ℓ of the WL test always refines the coloring

h(t) induced by the GNN parameterized by W (t). Theorem 2 in (Morris et al., 2019) states that there exists parameter

matrices W (t) such that GNNs have exactly the same power as the WL test. Consequently, we say that GNNs have the same

expressivity as the WL test. Similarly, Propositions 3 and 4 from (Morris et al., 2019) show that k-GNNs have the same

expressivity as the k-WL test.

CCWL/CCNNs and k-CCWL/GCCNs We generalize the equivalence between WL tests and GNNs to the framework of

CCs. First, we prove two propositions establishing equivalence of WL tests between CCs and Hasse graphs.

Proposition B.11 (CCWL and WL on the Hasse graph). Let (C, ℓ) be a labeled CC. Let N be one neighborhood on this

CC and GN the associated strictly augmented Hasse graph. The CCWL test defined in Def. B.6 is equivalent to the WL test

defined on GN .

Proof. We prove the equivalence between the CCWL and the WL on GN .

Equivalence of initializations. The CCWL test initializes cell colors using the labels given by ℓ. The labeling function ℓ
labels cells of C and therefore its restriction to CN labels nodes of the associated Hasse graph GN . This turns GN into a

labeled graph (GN , ℓCN
). We initialize the WL test on GN with colors from ℓCN

.

Equivalence of refinements. By construction of the strictly augmented Hasse graph GN , nodes in GN are cells in CN and

edges in GN are neighbors in CN for the neighborhood N . Thus, the refinement equation of the CCWL test is equal to the

refinement equation of the WL test on GN . This proves that CCWL and the WL on GN are equivalent.

18

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Proposition B.12 (k-CCWL and k-WL on the Hasse graph). Let (C, ℓ) be a labeled CC. Let N be one neighborhood on

this CC and GN the associated strictly augmented Hasse graph. The k-CCWL defined in Def. B.8 is equivalent to the k-WL

test on GN .

Proof. We prove the equivalence between the k-CCWL and the k-WL on GN .

Equivalence of initializations. The k-CCWL test initializes colors of k-sets based on the CC-isomorphism class of every

sub-CC defined by every k-set. Using Proposition B.4, the CC-isomorphism class of a sub-CC s corresponds to the graph

isomorphism class on the associated subgraph in the strictly augmented Hasse graph. We initialize the k-WL test on GN

with colors on k-sets associated with this isomorphism class.

Equivalence of refinements. By construction of the strictly augmented Hasse graph GN , k-sets of nodes in GN are k-sets of

cells in CN , and the neighborhoods of k-sets of nodes defined in (Morris et al., 2019) are the neighborhoods of k-sets of

cells defined in Definition B.7. Thus, the refinement equation of the k-CCWL test is equal to the refinement equation of the

k-WL test on GN .

This proves that k-CCWL and the k-WL on GN are equivalent.

Given the equivalence between the computations in C and in GN provided by Proposition B.11, we can pull the results from

Theorems 1 and 2 from (Morris et al., 2019) and provide the following propositions.

Proposition B.13. Let (C, ℓ) be a labeled CC. Then for all t g 0 and for all choices of initial colorings h(0) consistent with

ℓ, and weights W(t), c
(t)
ℓ ³ h(t), i.e., the coloring c

(t)
l induced by the CCWL test refines the coloring induced by the CCNN

h(t).

Proposition B.14. Let (C, ℓ) be a labeled CC. Then for all t g 0 there exists a sequence of weights W(t), and a CCNN

architecture such that c
(t)
ℓ ≡ h(t)., i.e., the coloring of the CCWL and the CCNN are equivalent.

Consequently, CCNNs have the same power as the CCWL. Next, we measure the power of k-CCNNs using the k-CCWL.

Proposition B.15. Let (C, ℓ) be a labeled CC and let k g 2. Then, for all t g 0, for all choices of initial colorings h
(0)
k

consistent with ℓ and for all weights W(t), c
(t)
s,k,ℓ ³ h

(t)
k i.e., the coloring c

(t)
s,k,l induced by the k-CCWL test refines the

coloring induced by the k-CCNN h
(t)
k . .

Proposition B.16. Let (C, ℓ) be a labeled CC and let k g 2. Then, for all t g 0 there exists a sequence of weights W(t),

and a k-CCNN architecture such that c
(t)
s,k,ℓ ≡ h

(t)
k .

Propositions B.15 and B.16 are given by Proposition B.12 and Propositions 3 and 4 from Morris et al. (2019). They show

that k-CCNNs have the same power as the k-CCWL.

B.3.5. PROOF

We now provide the proof for Proposition 4.3 that states that GCCNs are strictly more expressive than CCNNs.

Proof. We prove that GCCNs are strictly more powerful than CCNNs in distinguishing non-isomorphic combinatorial

complexes. We leverage the propositions of this subsection summarized on Figure 7.

By Proposition B.10, GCCN have at least the same expressive power as k-CCNNs. By Propositions B.15-B.16, k-CCNNs

have the same expressive power as the k-CCWL. By Proposition B.12, the k-CCWL test is equivalent to the k-WL test on

the associated strictly augmented Hasse graph. It is known (e.g., (Grohe, 2017)) that the k-WL test on graph is strictly more

powerful than the WL test. Thus, the k-WL test on the strictly augmented Hasse graph is strictly more powerful than the

WL test on that same graph. By Proposition B.11, the WL test on the strictly augmented Hasse graph is equivalent to the

CCWL test on the corresponding CC. By Propositions B.13-B.14, the CCWL test on the CC has the same expressive power

as CCNNs.

Consequently, we have shown that GCCN are strictly more powerful than CCNNs in distinguishing nonisomorphic CCs.

Additionally, we construct two combinatorial complexes C1 and C2 that are indistinguishable by CCNNs but distinguishable

by GCCNs.

19

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Strictly augmented

Hasse graph for

Combinatorial

complex

��

��

Figure 9. a. Pair of combinatorial complexes: C1 is an icosahedron polygon, and C2 is five tetrahedrons. b. Strictly augmented Hasse

graphs corresponding to each combinatorial complex, given a choice of neighborhood N 2

A,↑.

Let C1 and C2 be two combinatorial complexes with a neighborhood structure NC = N 2
A,³ (down-adjacency of faces). These

complexes are illustrated in Figure 9a.

The corresponding strictly augmented Hasse graphs G1 and G2 (Fig. 9b) represent the 20 faces of each complex as nodes,

where each node has degree 3. Thus:

• Both G1 and G2 are 3-regular graphs.

• It is known that regular graphs of the same order are indistinguishable by the WL test (see, e.g., (Kiefer, 2020; Morris

et al., 2023)).

• Every pair of graphs with n nodes are distinguishable by the n-WL test (Morris et al., 2023).

Since CCWL is equivalent to WL on GN (Proposition B.11), the two complexes C1 and C2 are indistinguishable by CCWL.

Since CCWL has the same expressive power as CCNNs (Propositions B.13-B.14), the two complexes C1 and C2 are

indistinguishable by CCNNs.

Since k-CCWL is equivalent to k-WL on GN (Proposition B.12), the two complexes C1 and C2 are distinguishable by

k-CCWL. Since k-CCWL has the same expressive power as k-CCNNs (Propositions B.15-B.16), the two complexes C1 and

C2 are distinguishable by k-CCNNs. Since GCCNs generalize and subsume k-CCNNs (Proposition B.10), C1 and C2 are

distinguishable by GCCNs.

Thus, we have constructed two combinatorial complexes C1 and C2 that are indistinguishable by CCNNs, but are distinguish-

able by GCCNs.

20

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

C. Time Complexity

To analyze the time complexity (in terms of FLOPs) of the Generalized Combinatorial Complex Neural Network (GCCN),

we derive the complexity of its submodule ÉN and then compute the complexity of a GCCN layer. We then compare it with

GNN and CCNN complexity.

C.1. Key Definitions

• Message Complexity (M): The complexity of a single message computation along a route (e.g., node → node). For

example, in a Graph Convolutional Network (GCN), a single message is defined as:

mx→y = axyhyΘ,

where hy is a 1×F vector, Θ is an F×F weight matrix, and axy is a scalar. This involves a matrix-vector multiplication,

contributing a complexity of O(F 2) per message.

• Update Complexity (U): The complexity of the update function in the reference GNN. For simplicity, we assume the

update is an element-wise function, giving U = O(|N |), where |N | is the number of nodes.

C.2. Complexity of ÉN

Assuming each ÉN submodule is a single-layer GNN, the complexity of ÉN can be decomposed into three components:

message computation, aggregation, and update.

CÉN
= Cmessage + Caggregation + Cupdate

This breaks down as:

CÉN
= 2|E|M +

∑

n∈N

deg(n)A+ |N |U,

where:

• |E|: Number of edges in the graph,

• M : Complexity per message (O(F 2)),

• deg(n): Degree of node n,

• A: Complexity of aggregation (e.g., assuming sum/average, O(F)),

• U : Complexity of the update function (O(1) per node).

Substituting assumptions for convolutional message passing, summation aggregation, and constant node degree d:

CÉN
= 2|E|F 2 +

∑

n∈N

deg(n)F +O(|N |),

CÉN
= 2|E|F 2 + |N |dF +O(|N |),

CÉN
= O(|E|F 2 + |N |dF + |N |).

C.3. Complexity Using Combinatorial Complex Notations

Up until now, we have expressed CÉN
in terms of the nodes and edges making up the strictly expanded Hassse graph it

receives as input. To be able to write the complexity of a whole GCCN layer, we must express CÉN
in terms of the original

cells represented as nodes in the graph. Specifically, we will denote the source cells (cells sending messages) as cells of rank

r and the destination cells (cells receiving messages) as cells of rank r′. The relationships governing adjacency between the

nodes representing these cells will come from the neighborhood N to which the submodule ÉN is assigned.

Rewriting in terms of combinatorial complex notations, where:

21

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

• ∥N∥0: Total number of relationships in N (i.e. number of nonzero entries in matrix corresponding to N),

• nr′ : Number of r′-cells.

• dr′ : Assumed constant degree of r′-cells,

The complexity becomes:

CÉN
= O(∥N∥0F

2 + nrows(N)dr′F + nr′),

CÉN
= O(∥N∥0F

2 + nrows(N)dr′F + nrows(N)).

C.4. Complexity of a GCCN Layer

A GCCN layer is composed of a set of ÉN ’s, one for each N ∈ NC . The complexity of a GCCN layer is the sum of all

the complexities of its submodules, plus the complexity of the module responsible for aggregating the outputs of each

neighborhood, i.e. the inter-neighborhood aggregation. We assume this inter-aggregation to be a sum. The layer complexity

is:

CGCCN =
∑

N∈NC

CÉN
+ Cinter-agg,

where:

Cinter-agg =
∑

r′∈[0,R′]

nr′nN
r′
F,

and nN
r′

is the number of neighborhoods sending messages to r′-cells.

C.5. Takeaways

• GNN Comparison: GCCNs increase complexity compared to traditional GNNs due to :

– the introduction of multiple neighborhoods. A GCCN considers many N ∈ NC , going beyond the simple

node-level adjacency NC = A0 of a GNN. This is what allows TDL models (GCCNs and CCNNs) to operate on a

richer topological space than GNNs.

– inter-neighborhood aggregation.

• CCNN Comparison: Unlike traditional CCNNs, GCCNs allow per-rank neighborhoods, enabling many smaller

possible sets of neighborhoods NC . This more selective inclusion of neighborhoods reduces redundancy. Concretely,

this means the sum
∑

N∈NC
CÉN

can be smaller.

• Tradeoff: GCCNs’ time complexity are a compromise between GNNs and CCNNs. While they do introduce Cinter-agg

(like CCNNs) and additional elements to the sum
∑

N∈NC
CÉN

, they can introduce less elements to this sum than

CCNNs.

22

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

D. Software

Algorithm 1 shows how the TopoTune module instantiates a GCCN by taking a choice of model ÉN and neighborhoods NC

as input. Given an input complex x, TopoTune first expands it into an ensemble of strictly augmented Hasse graphs that are

then passed to their respective ÉN models within each GCCN layer.

Remark. We decided to design the software module of TopoTune, i.e., how to implement GCCNs, as we did for mainly

two reasons: (i) the full compatibility with TopoBench (implying consistency of the combinatorial complex instantiations

and the benchmarking pipeline), and (ii) the possibility of using GNNs as neighborhood message functions that are not

necessarily implemented with a specific library. However, if the practitioner is interested in entirely wrapping the GCCN

implementation into Pytorch Geometric or DGL, they can do it by noticing that a GCCN is equivalent to a heterogeneous

GNN where the heterogeneous graph the whole augmented Hasse graph, with node types given by the rank of the cell (e.g.

0-cells, 1-cells, and 2-cells) while the edge type is given by the per-rank neighborhood function (e.g. ”0-cells to 1-cells” or

”2-cells to 1-cells” for N 0
I,↑ and N 2

I,³, respectively).

23

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

E. Additional details on experiments

In this section, we delve into the details of the datasets, hyperparameter search methodology, and computational resources

utilized for conducting the experiments.

E.1. Neighborhood Structures

In order to build a broad class of GCCNs, we consider X different neighborhood structures on which we perform graph

expansion. Importantly, three of these structures are lightweight, per-rank neighborhood structures, as proposed in Section 4.

The neighborhood structures are:

{
N 0

A,↑,N
1
A,↑

} {
N 0

A,↑,N
2
I,³

}
{NA,↑,NI,↑} {NA,↑,NA,³,NI,³} {NA,↑}{

NA,↑,N
1
A,³

}
{NA,↑,NA,³} {NA,↑,NI,³} {NA,↑,NA,³,NI,↑} {NA,↑,NA,³,NI,³,NI,↑}

E.2. Datasets

Dataset statistics

Table 3 provides the statistics for each dataset lifted to three topological domains: simplicial complex, cellular complex, and

hypergraph. The table shows the number of 0-cells (nodes), 1-cells (edges), and 2-cells (faces) of each dataset after the

topology lifting procedure. We recall that:

• the simplicial clique complex lifting is applied to lift the graph to a simplicial domain, with a maximum complex

dimension equal to 2;

• the cellular cycle-based lifting is employed to lift the graph into the cellular domain, with maximum complex dimension

set to 2 as well.

Table 3. Descriptive summaries of the datasets used in the experiments.

Dataset Domain # 0-cell # 1-cell # 2-cell

Cora
Cellular 2,708 5,278 2,648

Simplicial 2,708 5,278 1,630

Citeseer
Cellular 3,327 4,552 1,663

Simplicial 3,327 4,552 1,167

PubMed
Cellular 19,717 44,324 23,605

Simplicial 19,717 44,324 12,520

MUTAG
Cellular 3,371 3,721 538

Simplicial 3,371 3,721 0

NCI1
Cellular 122,747 132,753 14,885

Simplicial 122,747 132,753 186

NCI109
Cellular 122,494 132,604 15,042

Simplicial 122,494 132,604 183

PROTEINS
Cellular 43,471 81,044 38,773

Simplicial 43,471 81,044 30,501

ZINC (subset)
Cellular 277,864 298,985 33,121

Simplicial 277,864 298,985 769

24

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

Dataset selection and limitations

The datasets employed in this work and other TDL studies are predominantly adapted from the GNN literature. Among

these, molecular datasets stand out due to the inherent importance of cycles and hyperedges, which effectively capture

chemical rings and functional groups. These are structures that are naturally represented in topological domains.

While TDL methods are not intrinsically constrained to these datasets, the lifting procedures used to construct higher-

order cells introduce computational bottlenecks, particularly in memory usage. For instance, operations such as cycle

detection and clique enumeration, required for constructing cellular complexes or simplicial complexes, respectively, become

computationally prohibitive for large or densely connected graphs.

To address these limitations, ongoing research is focused on developing scalable lifting procedures that can extend TDL

methods to broader datasets, including those with more complex structures or larger scales. For example, Bernárdez et al.

(2024) propose innovative topological liftings, paving the way for more scalable and applicable datasets in TDL.

E.3. Hyperparameter search

Five splits are generated for each dataset to ensure a fair evaluation of the models across domains. Each split comprises 50%

training data, 25% validation data, and 25% test data. An exception is made for the ZINC dataset, where predefined splits

are used (Irwin et al., 2012).

To avoid the combinatorial explosion of possible hyperparameter sets, we fix the values of all hyperparameters beyond

GCCNs: hence, to name a few relevant parameters, we set the learning rate to 0.01, the batch size to the default value of

TopoBench for each dataset, and the cell hidden state dimension to 32. Regarding the internal GCCN hyperparameters, a

grid-search strategy is employed to find the optimal set for each model and dataset. Specifically, we consider 10 different

neighborhood structures (see Section E.1), and the number of GCCN layers is varied over {2, 4, 8}. For GNN-based

neighborhood message functions, we vary over {GCN,GAT,GIN,GraphSage} models from PyTorch Geometric, and for each

of them consider either 1 or 2 number of layers. For the Transformer-based neighborhood message function (Transformer

Encoder model from PyTorch), we vary the number of heads over {2, 4}, and the feed-forward neural network dimension

over {64, 128}.

For node-level task datasets, validation is conducted after each training epoch, continuing until either the maximum number

of epochs is reached or the optimization metric fails to improve for 50 consecutive validation epochs. The minimum number

of epochs is set to 50. Conversely, for graph-level tasks, validation is performed every 5 training epochs, with training

halting if the performance metric does not improve on the validation set for the last 10 validation epochs. To optimize

the models, torch.optim.Adam is combined with torch.optim.lr scheduler.StepLR wherein the step size

was set to 50 and the gamma value to 0.5. The optimal hyperparameter set is generally selected based on the best average

performance over five validation splits. For the ZINC dataset, five different initialization seeds are used to obtain the average

performance.

E.4. Hardware

The hyperparameter search is executed on a Linux machine with 256 cores, 1TB of system memory, and 8 NVIDIA A100

GPUs, each with 80GB of GPU memory.

25

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

F. Model Size

We provide details on model size for reported results in Section 6.

Table 4. Model size corresponding to results reported in Table 1.

Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 ZINC Cora Citeseer PubMed

Cellular

CCNN (Best Model on TopoBench) 334.72K 101.12K 63.87K 17.67K 88.06K 451.85K 1032.84K 163.72K

GCCN ÉN = GAT 15.11K 46.27K 68.99K 49.63K 39.78K 341.54K 1677.32K 344.83K

GCCN ÉN = GCN 45.44K 45.25K 65.92K 30.69K 29.54K 801.16K 1507.59K 443.91K

GCCN ÉN = GIN 63.62K 23.49K 49.03K 66.79K 64.35K 669.58K 1674.25K 211.97K

GCCN ÉN = GraphSAGE 44.42K 76.99K 47.49K 115.17K 79.71K 1195.14K 741.5K 640.51K

GCCN ÉN = Transformer 112.26K 78.79K 82.05K 115.43K 317.02K 249.51K 468.29K 331.59K

GCCN ÉN = Best GNN, 1 Hasse graph 14.98K 18.88K 18.05K 15.91K 20.83K 150.12K 367.88K 66.50K

Simplicial

CCNN (Best Model on TopoBench) 398.85K 10.24K 131.84K 135.75K 617.86K 144.62K 737.29K 134.40K

GCCN ÉN = GAT 15.11K 46.27K 68.99K 49.63K 67.42K 341.45K 1677.32K 344.83K

GCCN ÉN = GCN 45.44K 45.25K 65.92K 30.69K 64.35K 801.16K 1507.59K 443.91K

GCCN ÉN = GIN 63.62K 23.49K 49.03K 66.79K 118.11K 669.58K 1674.25K 211.97K

GCCN ÉN = GraphSAGE 44.42K 76.99K 47.49K 115.17K 147.30K 1195.14K 741.51K 640.51K

GCCN ÉN = Transformer 113.15K 213.70K 82.05K 166.24K 148.83K 284.58K 468.29K 331.59K

GCCN ÉN = Best GNN, 1 Hasse graph 19.07K 14.66K 31.11K 15.91K 29.54K 150.12K 367.88K 66.50K

Hypergraph

CCNN (Best Model on TopoBench) 84.10K 14.34K 88.19K 88.32K 22.53K 60.26K 258.50K 280.83K

Table 5. Model sizes corresponding to results in Table 2.

Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN

TopoBench 398.85K 397.31K 131.84K 135.75K 155.88K 782.34K 457.99K

1 Hasse graph / N , ÉN = Best(GNN) 852.74K 851.97K 248.58K 291.39K 159.46K 791.56K 510.47K

1 Hasse graph for {N}, ÉN = Best(GNN) 104.32K 153.09K 71.17K 54.85K 143.66K 741.51K 376.58K

CWN

TopoBench 334.72K 101.12K 124.10K 412.29K 343.11K 1754.50K 163.72K

1 Hasse graph / N , ÉN = Best(GNN) 350.46K 353.54K 95.75K 465.28K 900.23K 177.10K 159.56K

1 Hasse graph for {N}, ÉN = Best(GNN) 219.65K 283.91K 78.85K 264.45K 138.95K 163.94K 138.95K

26

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

G. Model Training Time

We provide training times for all experiments reported on in Section 6. We measure these training times by running each

experiment on a single A30 NVIDIA GPU. We note that these times include the on-the-fly graph expansion method, which

slows down the model forward proportionally to dataset size. We plan on moving this process into data preprocessing in the

future.

Table 6. Model training time (seconds) corresponding to results reported in Table 1.

Graph-Level Tasks Node-Level Tasks

Model MUTAG (↑) PROTEINS (↑) NCI1 (↑) NCI109 (↑) ZINC (³) Cora (↑) Citeseer (↑) PubMed (↑)

Cellular

CCNN (Best Model on TopoBench) 100 ± 23 132 ± 19 238 ± 89 254 ± 39 228 ± 44 75 ± 15 57 ± 4.4 128 ± 50

GCCN ÉN = GAT 80 ± 11 64 ± 10 778 ± 118 486 ± 75 3173 ± 954 46 ± 3 63 ± 1 202 ± 22

GCCN ÉN = GCN 43 ± 7 67 ± 16 544 ± 40 495 ± 108 4013 ± 620 46 ± 4 65 ± 3 149 ± 12

GCCN ÉN = GIN 61 ± 18 59 ± 18 523 ± 119 386 ± 76 3301 ± 440 64 ± 8 77 ± 2 207 ± 33

GCCN ÉN = GraphSAGE 43 ± 12 43 ± 3 691 ± 80 364 ± 102 2863 ± 262 49 ± 2 60 ± 3 211 ± 25

GCCN ÉN = Transformer 50 ± 19 786 ± 147 1005 ± 27 1484 ± 181 15320 ± 5386 121 ± 20 94 ± 20 5459 ± 1374

GCCN ÉN = Best GNN, 1 Aug. Hasse graph 33 ± 7 70 ± 24 451 ± 123 441 ± 130 3162 ± 340 47 ± 5 72 ± 6 194 ± 35

Simplicial

CCNN (Best Model on TopoBench) 123 ± 57 104 ± 28 172 ± 50 183 ± 62 178 ± 86 143 ± 16 75 ± 23 114 ± 18

GCCN ÉN = GAT 25 ± 5 70 ± 17 755 ± 158 794 ± 151 2242 ± 275 49 ± 3 68 ± 2 192 ± 38

GCCN ÉN = GCN 40 ± 7 138 ± 26 548 ± 185 603 ± 181 2428 ± 833 49 ± 5 67 ± 2 167 ± 22

GCCN ÉN = GIN 61 ± 7 66 ± 21 904 ± 180 538 ± 39 3603 ± 475 71 ± 6 77 ± 8 210 ± 42

GCCN ÉN = GraphSAGE 31 ± 3 61 ± 27 572 ± 124 511 ± 74 1721 ± 201 51 ± 3 74 ± 8 221 ± 37

GCCN ÉN = Transformer 35 ± 5 947 ± 333 1386 ± 404 1360 ± 410 7979 ± 1373 146 ± 58 77 ± 2 5281 ± 827

GCCN ÉN = Best GNN, 1 Aug. Hasse graph 25 ± 2 78 ± 27 598 ± 31 312 ± 7 2681 ± 910 52 ± 4 72 ± 8 156 ± 16

Hypergraph

CCNN (Best Model on TopoBench) 127 ± 48 96 ± 20 220 ± 74 128 ± 49 387 ± 105 121 ± 38 48 ± 1 177 ± 71

Table 7. Model training times (seconds) corresponding to results in Table 2.

Graph-Level Tasks Node-Level Tasks

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN (Yang et al., 2022)

Benchmark results (Telyatnikov et al., 2024) 11 ± 2 60 ± 18 247 ± 65 311 ± 83 102 ± 39 101 ± 41 143 ± 35

GCCN, on ensemble of strictly aug. Hasse graphs *2, dig 14 ± 1 75 ± 8 413 ± 120 298 ± 15 121 ± 2 172 ± 6 285 ± 20

GCCN, on 1 aug. Hasse graph *2, dig 5 ± 1 59 ± 10 283 ± 90 217 ± 100 110 ± 3 166 ± 10 376 ± 27

CWN (Bodnar et al., 2021a)

Benchmark results (Telyatnikov et al., 2024) 11 ± 2 43 ± 5 240 ± 50 252 ± 92 54 ± 25 52 ± 5 119 ± 14

GCCN, on ensemble of strictly aug. Hasse graphs *2, dig 12 ± 1 73 ± 10 536 ± 38 426 ± 90 91 ± 17 49 ± 1 125 ± 19

GCCN, on 1 aug. Hasse graph *2, dig 11 ± 1 62 ± 11 573 ± 107 410 ± 64 96 ± 2 46 ± 1 130 ± 20

27

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

H. Additional experiments

H.1. Larger node-level datasets

Table 8 additionally presents the experimental results on 4 heterophilic datasets introduced in (Platonov et al.) (Amazon

Ratings, Roman Empire, Minesweeper, and Questions). These represent larger node-level classification tasks than those

shown in the main Table 1, with up to 48,921 nodes and 153,540 edges in the case of the Questions graph. Except on this

precise dataset, which was not considered in previous TDL literature, we compare the results against CCNNs and hypergraph

models from Telyatnikov et al. (2024). We observe that overall GCCNs achieve similar performance than regular CCNNs,

and they outperform them by a significant margin on Minesweeper.

Amazon Ratings Roman Empire Minesweeper Questions

Best GCCN Cell 50.17 ± 0.71 84.48 ± 0.29 94.02 ± 0.28 78.04 ± 1.34

Best CCNN Cell 51.90 ± 0.15 82.14 ± 0.00 89.42 ± 0.00 -

Best GCCN Simplicial 50.53 ± 0.64 88.24 ± 0.51 94.06 ± 0.32 77.43 ± 1.33

Best CCNN Simplicial OOM 89.15 ± 0.32 90.32 ± 0.11 -

Best Hypergraph Model 50.50 ± 0.27 81.01 ± 0.24 84.52 ± 0.05 -

Table 8. Results on larger node level datasets, each experiment run with 5 seeds. We report accuracy for Amazon Ratings and Roman

Empire, and AUC-ROC for Minesweeper and Questions. The values for the best CCNNs and hypergraph models are extracted from

TopoBench (Telyatnikov et al., 2024).

H.2. More advanced GNNs

We include a subset of experiments with the same protocol as in Table 1 using GATv2 (Brody et al., 2021) and PNA (Corso

et al., 2020) in the cellular domain. Results show how the GCCNs built with these models perform consistently well across

node-level and graph-level tasks on the cell domain, often < 1Ã of the best (standard-GNN) GCCN as reported in Table 1,

but only outperform them on MUTAG.

Table 9. Cross-domain, cross-task, cross-expansion, and cross-ωN comparison of GCCN architectures built with GATv2 (Brody et al.,

2021) and PNA (Corso et al., 2020) with top-performing GCCNs from Table 1 and benchmarked on TopoBench (Telyatnikov et al.,

2024). Best result is in bold and results within 1 standard deviation are highlighted blue . Experiments are run with 5 seeds. We report

accuracy for classification tasks and MAE for regression.

Graph-Level Tasks Node-Level Tasks

Model MUTAG (↑) PROTEINS (↑) NCI1 (↑) NCI109 (↑) Cora (↑) Citeseer (↑) PubMed (↑)

Cellular

CCNN (Best Model on TopoBench) 80.43 ± 1.78 76.13 ± 2.70 76.67 ± 1.48 75.35 ± 1.50 87.44 ± 1.28 75.63 ± 1.58 88.64 ± 0.36

GCCN ÉN = Best Standard GNN 86.38 ± 6.49 74.41 ± 1.77 78.23 ± 1.47 77.10 ± 0.83 88.57 ± 0.58 75.89 ± 1.84 89.40 ± 0.57

GCCN ÉN = PNA 83.83 ± 6.31 73.91 ± 2.63 77.24 ± 1.72 76.5 ± 0.88 87.27 ± 0.64 74.63 ± 1.32 86.34 ± 0.38

GCCN ÉN = GATv2 86.38 ± 4.15 72.54 ± 3.3 77.78 ± 0.94 77.04 ± 0.63 85.11 ± 0.46 72.03 ± 2.54 88.32 ± 0.38

I. Performance versus Size Complexity

In, Fig. 10, we extend Fig. 5 to all benchmark datasets. As before, we keep GCCN layers and GNN sublayers in each

subplot constant, matching those of the best model of that dataset.

28

TopoTune: A Framework for Generalized Combinatorial Complex Neural Networks

GNN used as
Neighborhoods

Figure 10. Performance versus size, scaled to best model. We consider models within 10% of the best performance on each dataset.

29

