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Abstract. We present a method for computing an approximate Rieman-
nian barycenter of a collection of points lying on a Riemannian mani-
fold. Our approach relies on the use of theoretically proven under- and
over-approximations of the Riemannian distance function. We compare
it to Riemannian steepest descent on the exact objective function of the
Riemannian barycenter and to an approach that approximates the Rie-
mannian logarithm using lifting maps. Experiments are conducted on
the Stiefel manifold.
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1 Introduction

Computing the Riemannian barycenter of a dataset lying on a Riemannian man-
ifold is a fundamental problem in statistics on manifolds. See, e.g., [14] and
references therein for applications. We outline the key aspects of this problem.

Let M be a complete manifold equipped with a Riemannian metric g and
dg : M2 → R be the distance function induced by the Riemannian metric; see
section 2 for details. Given a collection of points {xi}Ni=1 ¢ M and a parameter
ν g 1, let

fν : M → R : x 7→
(

N∑

i=1

dg(x, xi)
ν

) 1

ν

and x∗ ∈ argmin
x∈M

fν(x). (1)

Conditions regarding the existence and uniqueness of x∗ can be found, e.g., in [3].
The point x∗ is called a Riemannian lν-barycenter of {xi}Ni=1. Classical choices
for ν are ν = 1, 2, or ν → ∞ (minimax problem). For ν = 2, x∗ generalizes the
notion of Euclidean mean on Riemannian manifolds; it is then often referred to
as a Fréchet mean or a Karcher mean [11]. For ν = 1, x∗ generalizes the median.

Solving (1) usually relies on gradient-based optimization algorithms, which
require the computation of Riemannian logarithms at each iteration [4]. How-
ever, there are important manifolds lacking tractable algorithms that are guar-
anteed to compute the Riemannian logarithm within prescribed accuracy, e.g.,



2 Simon Mataigne, P.-A. Absil and Nina Miolane

the Stiefel manifold of orthonormal p-frames in R
n, n > p, defined by

St(n, p) := {X ∈ R
n×p | X¦X = Ip},

where Ip is the p × p identity matrix. See [1,7,8] and related works for appli-
cations of the Stiefel manifold. To tackle this computational bottleneck of (1),
an approach, described in section 4, approximates the Riemannian logarithm by
lifting maps [10,6].

Our approach replaces the exact objective function fν in (1) by an approx-
imate objective function hν that is based on theoretically guaranteed under-
and over-approximations of fν . The estimated Riemannian lν-barycenter is then
obtained by computing

x̂∗ ∈ argmin
x∈M

hν(x). (2)

For hν well chosen, x̂∗ can be obtained at significantly lower computational

cost than x∗. A computable bound on fν(x̂
∗)−fν(x

∗)
fν(x∗) is given in Theorem 1 and

numerical comparisons are conducted in section 5.

2 Preliminaries on manifolds

We briefly introduce essential notions of Riemannian geometry. Details can be
found, e.g., in [1,15]. A Riemannian metric g, metric for short, is a family {gx :
TxM×TxM → R}x∈M of symmetric positive definite bilinear forms that depend
smoothly on the location x. For all ξ ∈ TxM, the norm induced by the metric
is ∥ξ∥g :=

√
gx(ξ, ξ) and the length lg(γ) of every continuously differentiable

curve γ : [0, 1] → M is given by lg(γ) =
∫ 1

0

∥∥ d
dtγ(t)

∥∥
g
dt. If M is a complete

Riemannian manifold, it follows from the Hopf-Rinow theorem [15, Chap. III,
Thm. 1.1] that the distance function induced by g satisfies

dg(x, x̃) = min{lg(γ) | γ : [0, 1] → M, γ(0) = x, γ(1) = x̃}.

A geodesic γg : R → M is a locally minimizing curve with constant speed v > 0,
i.e., for all t ∈ R, there is ε > 0 such that for all s ∈ R, if |t − s| < ε, then
dg(γg(t), γg(s)) = |t− s|v.

The Riemannian exponential at x ∈ M is the function Expx : TxM → M
mapping ξ to the point reached at unit time by the geodesic with starting point x
and initial velocity ξ, see, e.g., [15, Chap. II, Sec. 2]. The Riemannian logarithm
is defined in [12,13]:

Definition 1. Let x, x̃ ∈ M where M is a complete Riemannian manifold en-

dowed with a metric g. The Riemannian logarithm Logx(x̃) is a set-valued func-

tion returning all ξ ∈ TxM such that

Expx(ξ) = x̃ and ∥ξ∥g = dg(x, x̃). (3)

The curves [0, 1] ∋ t 7→ Expx(tξ) are then called minimal geodesics.
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It is known that the subset of M where Logx is not a singleton is included
in the cut locus Cx and is a zero measure set of M [15, Chap. III, Lem. 4.4].
In numerical algorithms, it is thus harmless to consider that Logx returns a
singleton. The Riemannian logarithm is key to the Riemannian lν-barycenter
because, if x /∈ ∪N

i=1Cxi
(and x /∈ {xi}Ni=1 if ν < 2), then gradx (dg(x, xi)

ν) =
−νdg(x, xi)

ν−2Logx(xi) [4, Eq. 2.8], where gradx denotes the Riemannian gra-
dient. If ν g 2 and if x∗ /∈ ∪N

i=1Cxi
, it can be deduced that gradx(fν(x

∗)ν) = 0
if and only if [4, Sec. 2.1.5]

N∑

i=1

dg(x
∗, xi)

ν−2Logx∗(xi) = 0x. (4)

The stationarity condition (4) is illustrated in Figure 1.

M

TxM

0x∗

x
∗

x1

x2

x3

Log
x
(x1)

Log
x
(x2)

Log
x
(x3)

Fig. 1. An artist view of the Riemannian lν-barycenter. The figure represents a collec-
tion of points {xi}

3
i=1 ⊂ M and their Riemannian lν-barycenter x∗. If ν ≥ 2, x∗ must

be a first-order stationary point of (1), i.e., satisfies (4).

3 Minorizing and majorizing the objective function

Assume one knows two functions m̂g, M̂g : M2 → R such that for all pairs
x, x̃ ∈ M, we have

m̂g(x, x̃) f dg(x, x̃) f M̂g(x, x̃). (5)

If M is embedded in the Euclidean space R
M , then m̂g and M̂g can often be

chosen as functions of the Euclidean distance ∥x−x̃∥E. We give explicit examples
of such functions on the Stiefel manifold St(n, p), n g 2p, endowed with the so-
called β-metric [12, Eq. 2.1] in [12, Thm. 7.1]:

m̂β(X, X̃) = min{1,
√

β}2√p arcsin

(
∥X − X̃∥E

2
√
p

)
,

and M̂β(X, X̃) = max{1,
√

β}
{
2 arcsin

(
∥X−X̃∥E

2

)
if ∥X − X̃∥E f 2,

π
2 ∥X − X̃∥E otherwise.
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Let us define under- and over-approximations of fν from (1) by

f̂ν(x) :=

(
N∑

i=1

m̂g(x, xi)
ν

) 1

ν

and F̂ν(x) :=

(
N∑

i=1

M̂g(x, xi)
ν

) 1

ν

.

It is clear by (5) that for all x ∈ M, we have f̂ν(x) f fν(x) f F̂ν(x).
A choice for hν in (2) that offers theoretical guarantees is the minimization

of f̂ν . Indeed, by setting hν := f̂ν , it follows by the optimality properties of a
Riemannian lν-barycenter x∗ and its approximation x̂∗ ∈ argminx∈M f̂ν(x) that
the following sequence of inequalities holds:

f̂ν(x̂
∗) f f̂ν(x

∗) f fν(x
∗) f fν(x̂

∗) f F̂ν(x̂
∗). (6)

By (6), we can bound from above the functional relative error between fν(x
∗)

and fν(x̂
∗). This is shown in Theorem 1.

Theorem 1. Let {xi}Ni=1 ¢ M, fν and x∗ be defined as in (1). Moreover, let

x̂∗ ∈ argminx∈M f̂ν(x), then

fν(x̂
∗)− fν(x

∗)

fν(x∗)
f F̂ν(x̂

∗)− f̂ν(x̂
∗)

f̂ν(x̂∗)
. (7)

Proof. By (6), we have fν(x̂
∗) − fν(x

∗) f F̂ν(x̂
∗) − f̂ν(x̂

∗). Moreover, it also

holds that f̂ν(x̂
∗) f fν(x

∗). This concludes the proof.

The upper bound from Theorem 1 only depends on f̂ν , F̂ν and x̂∗, which can all
be computed at low computational cost. Moreover, the upper bound (7) can be
small in practice, as exemplified in section 5.

For any function hν in (2), the distance dg(x
∗, x̂∗) between a barycenter x∗

and its approximation x̂∗ can be bounded from above by the computable quantity
N− 1

ν 2F̂ν(x̂
∗), as shown in Theorem 2.

Theorem 2. Let {xi}Ni=1 ¢ M, fν and x∗ be defined as in (1). Then, for all

x ∈ M, we have dg(x
∗, x) f N− 1

ν 2fν(x) f N− 1

ν 2F̂ν(x).

Proof. By the triangle inequality, for i = 1, ..., N , we have dg(x
∗, x) f dg(x

∗, xi)+
dg(xi, x). Therefore, by usual ν-norm inequalities in vector spaces, it follows that

dg(x
∗, x) f 1

N

(
N∑

i=1

dg(x
∗, xi) +

N∑

i=1

dg(xi, x)

)

f 1

N


N1− 1

ν

(
N∑

i=1

dg(x
∗, xi)

ν

) 1

ν

+N1− 1

ν

(
N∑

i=1

dg(x, xi)
ν

) 1

ν




= N− 1

ν (fν(x
∗) + fν(x)) f N− 1

ν 2fν(x).

To conclude, it is enough to acknowledge that fν(x) f F̂ν(x).



On the approximation of the Riemannian barycenter 5

In particular, Theorem 2 yields dg(x
∗, x̂∗) f N− 1

ν 2F̂ν(x̂
∗). Therefore, setting

hν = F̂ν in (2) and thus x̂∗ ∈ argminx∈M F̂ν(x) minimizes the upper bound on
dg(x

∗, x̂∗) from Theorem 2.

Similarly, the quantity dg(x
∗, x̂∗) can be bounded from below. However, in

comparison with Theorem 2, the lower bound from Theorem 3 can not be ob-
tained without knowing x∗.

Theorem 3. Let {xi}Ni=1 ¢ M, fν and x∗ be defined as in (1). Then, for all

x ∈ M, we have dg(x
∗, x) g N−1(fν(x)− fν(x

∗)).

Proof. By the reverse triangle inequality, for i = 1, ..., N , we have dg(x
∗, x) g

|dg(x∗, xi)− dg(xi, x)|. Therefore, it follows that

dg(x
∗, x) g 1

N

N∑

i=1

|dg(xi, x)− dg(x
∗, xi)| g

1

N

(
N∑

i=1

|dg(xi, x)− dg(x
∗, xi)|ν

) 1

ν

g 1

N



(

N∑

i=1

|dg(x, xi)|ν
) 1

ν

−
(

N∑

i=1

|dg(x∗, xi)|ν
) 1

ν


 (8)

= N−1(fν(x)− fν(x
∗)),

where (8) holds by the reverse triangle inequality.

In view of Theorem 3, we have dg(x
∗, x̂∗) g N−1(fν(x̂

∗)− fν(x
∗)).

To conclude this section, we briefly discuss the case of linear bounds m̂g

and M̂g in terms of the Euclidean distance, i.e., there are lM g lm > 0 such

that m̂g(x, x̃) = lm∥x − x̃∥E and M̂g(x, x̃) = lM∥x − x̃∥E. Then, by choosing

x̂∗ ∈ argminx∈M f̂ν(x), Theorem 1 yields

fν(x̂
∗)− fν(x

∗)

fν(x∗)
f lM − lm

lm
=

lM
lm

− 1.

For example, on the Stiefel manifold St(n, p), n g 2p, we have lm = min{1,
√
β}

and lM = max{1,
√
β}π

2 [12, Cor. 7.2]. Moreover, if ν = 2, it is easily shown that

x̂∗ is a projection of x = 1
N

∑N

i=1 xi on M. Indeed, we have

x̂∗ ∈ argmin
x∈M

N∑

i=1

∥x− xi∥2E = argmin
x∈M

∥x− x∥2E =: ProjM(x).

Finally, ProjM(x) can be efficiently computed on many manifolds such as the
Grassmann manifold, the Stiefel manifold and the manifold of fixed-rank ma-
trices. On the Stiefel manifold, it is given by the orthogonal factor of the polar
decomposition. However, nonlinear bounds in (5) usually offer better approxi-
mations of the true Riemannian lν barycenter x∗.
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4 Lifting maps as approximations of the Riemannian

logarithm

Retractions offer a framework in Riemannian optimization to approximate the
Riemannian exponential at low computational cost [1]. A retraction R is a
smooth family of mappings {Rx : TxM → M}x∈M such that for all x ∈ M, ξ ∈
TxM, t g 0, the retraction approximates the Riemannnian exponential at first
order: Rx(tξ) = Expx(tξ) + o(t).

Similarly, lifting maps, also called tangent-bundle maps, approximate the
Riemannian logarithm [9,16,5]. A lifting map L is a smooth family of mappings
{Lx : M → TxM}x∈M such that for all x ∈ M, ξ ∈ TxM and t g 0 small
enough, Lx(Expx(tξ)) = tξ + o(t). As a result,

dg(x,Expx(tξ)) = ∥Lx(Expx(tξ))∥g + o(t). (9)

In a neighborhood V ¢ M of x, a lifting map can be obtained by taking the
inverse of a retraction, i.e., Lx := R−1

x . An example of such a lifting map is given
by the orthogonal projection on the tangent space TxM: Lx(x̃) := ProjTxM(x̃−
x). This map is locally the inverse of the so-called orthographic retraction [10].

To approximate the Riemannian lν-barycenter, the approach from [10,9,6] is
to consider the limit of the fixed-point iteration

xk+1 = Rxk

(
N∑

i=1

ν∥Lxk(xi)∥ν−2
g Lxk(xi)

)
for k = 0, 1, 2...., (10)

which approximates the stationarity condition (4). However, for dg(x, x̃) large
enough, Lx(x̃) can be a very poor approximation of Logx(x̃), as illustrated in
Figure 2. An additional caveat is the difficulty to define the mapping Lx(x̃) for all
x̃ ∈ M. For example, on the Stiefel manifold, the inverses of the polar retraction,
the QR retraction and the Cayley retraction have guaranteed existence only in
a neighborhood of x [10].

Log
x
(x2)

Log
x
(x1)

Proj
TxM

(x2 − x) Proj
TxM

(x1 − x)

M

x

0x TxM

x1

x2

Fig. 2. While the lifting map approximates well the Riemannian logarithm for points
x and x1 that are close enough, they can differ significantly if the distance between the
points x and x2 is large.
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5 Numerical experiments on the Stiefel manifold

We conduct numerical experiments on the Stiefel manifold St(n, p) endowed
with the β-metric [12] for different values of N, ν, n, p and β. The code to
reproduce these experiments is available at https://github.com/smataigne/

Approximate_barycenter.jl.
We compare three algorithms: (A1) is the Riemannian gradient descent (RGD)

on (fν)
ν , (A2) is the RGD on (f̂ν)

ν and (A3) is the fixed point iteration from (10)
with RX being the popular QR retraction and LX being the orthogonal projec-
tion on TXSt(n, p). The Riemannian logarithms in (A1) are numerically esti-
mated using [17, Alg. 2 and 4]. The sequences generated by (A1), (A2) and (A3)
are respectively denoted by {Xk}∗k=1, {Y k}∗k=1 and {Zk}∗k=1 with X0 = Y 0 =
Z0.

The stopping criterion is as follows: (A1) runs until |fν(X∗)ν−fν(X
∗−1)ν | f

εfν(X
0)ν , (A2) runs until |f̂ν(Y ∗)ν − f̂ν(Y

∗−1)ν | f εf̂ν(Y
0)ν and (A3) runs

until |gν(Z∗)ν − gν(Z
∗−1)ν | f εgν(Z

0)ν where we define the function gν(Z)ν :=∑N

i=1 ∥ProjTZSt(n,p)(Xi − Z)∥νβ . We choose ε = 10−6.

We consider spread and clustered datasets {Xi}Ni=1: spread matrices are sam-
pled with uniform distribution on St(n, p) while clustered matrices are sampled
such that their pairwise distances do not exceed the known (when β = 1 [18])
or suspected (when β = 1

2 [2]) value of the injectivity radius.
The results of the experiments are given in Table 1, where they are com-

pared with the bounds of Theorem 1 and Theorem 2. In these experiments, we
can observe that (i) both (A2) and (A3) provide quantitatively accurate approx-
imations of the barycenter computed by (A1), (ii) the bounds are satisfied and
(iii) the bounds give a better estimate of the error measures when the dataset is
clustered.

fν(X
∗) fν(Y

∗) fν(Z
∗) fν(X∗)−fν(Y ∗)

fν(X∗)
≤ F̂ν(Y ∗)−f̂ν(Y ∗)

f̂ν(Y ∗)
dg(X

∗, Y ∗) ≤ N−
1

ν 2F̂ν(Y
∗)

Clustered dataset, (N,n, p, β, ν) = (5, 50, 20, 1, 1)

4.384 4.384 4.384 1.114e−6 ≤ 0.03344 0.001613 ≤ 1.811

Spread dataset, (N,n, p, β, ν) = (5, 50, 20, 1, 2)

11.59 11.66 11.66 0.005723 ≤ 0.4886 0.7046 ≤ 15.03

Clustered dataset, (N,n, p, β, ν) = (10, 100, 40, 0.5, 1)

8.426 8.427 8.427 9.751e−5 ≤ 0.4707 0.01176 ≤ 1.953

Spread dataset, (N,n, p, β, ν) = (10, 100, 40, 0.5, 2)

23.50 24.23 24.23 0.03116 ≤ 1.076 3.274 ≤ 23.52

Table 1. Average results over 10 runs of the performances of algorithms (A1), (A2)
and (A3) for the computation of an approximate Riemannian lν-barycenter.

In Figure 3, we show convergence curves of algorithms (A1), (A2) and (A3) for
(N,n, p, β, ν) = (5, 100, 40, 1

2 , 2) on a spread dataset. We also show the evolution
of the running times as the size p of St(140, p) increases. We can observe that
the computational costs of (A2) and (A3) are significantly smaller than the
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cost of (A1) (by a factor larger than 100) and that (A2) and (A3) have similar
computational costs. For large values of N,n and p, (A1) is not tractable.

In conclusion, both (A2) and (A3) are computationally efficient approaches
providing accurate approximations of the Riemannian lν-barycenter. They are
thus worthwhile alternatives to (A1). Moreover, (A2) benefits from theoretical
guarantees (Theorem 1) for spread datasets where the behavior of (A3) is not
known in general.

Fig. 3. At the top: convergence curves of algorithms (A1), (A2) and (A3) to obtain
the results of Table 1. For each algorithm, the evolution of fν is represented with solid
lines. The dashed line represents, for {Y k}∗k=1, the evolution of the optimized objective

function f̂ν . At the bottom: a comparison of the evolution of the running time of the
three algorithms as the size p of St(140, p) increases using BenchmarkTools.jl.
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