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Abstract—Brain network analysis is vital for understanding
the neural interactions regarding brain structures and functions,
and identifying potential biomarkers for clinical phenotypes.
However, widely used brain signals such as Blood Oxygen Level
Dependent (BOLD) time series generated from functional Mag-
netic Resonance Imaging (fMRI) often manifest three challenges:
(1) missing values, (2) irregular samples, and (3) sampling
misalignment, due to instrumental limitations, impacting down-
stream brain network analysis and clinical outcome predictions.
In this work, we propose a novel model called BrainODE to
achieve continuous modeling of dynamic brain signals using
Ordinary Differential Equations (ODE). By learning latent initial
values and neural ODE functions from irregular time series,
BrainODE effectively reconstructs brain signals at any time
point, mitigating the aforementioned three data challenges of
brain signals altogether. Comprehensive experimental results
on real-world neuroimaging datasets demonstrate the superior
performance of BrainODE and its capability to address the three
data challenges.

Index Terms—Neural ODEs, Brain signal analysis, Graph
neural networks
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I. INTRODUCTION

Recent advancements in neuroimaging techniques, such as

the prominent development of functional Magnetic Resonance

Imaging (fMRI), have greatly propelled neuroscience research

and brain connectome analysis. Specifically, the utilization

of fMRI scans has enabled the creation of functional brain

networks, where nodes are composed of anatomical regions

of interest (ROIs), and links are derived from the correlations

among the Blood Oxygen Level Dependent (BOLD) time

series associated with the ROIs. By effectively modeling such

functional correlations among the BOLD signals, researchers

gain deeper understandings of the functions and organizations

of complex neural systems within the human brain, which

can help derive valuable clinical insights for diagnosis of

neurological disorders [1]–[3].

Brain network analysis typically relies on a tedious pipeline

for brain imaging preprocessing and ROI signal extraction [4].

For functional brain networks, the pipeline is mainly focused

on the processing of fMRI into BOLD signals associated with

ROIs, while the subsequent construction of functional brain

networks often simply uses the direct computation of Pearson

correlations based on the raw BOLD signals, largely over-

looking the dynamic nature of BOLD signals as well as their

limited data quality [5], [6]. This can further lead to inaccurate

network modeling and misleading downstream predictions,

carrying significant ramifications for the comprehension of



brain networks and their potential clinical applications [7], [8].

In this work, we model brain signals as dynamic time series

and identify three commonly encountered data challenges that

should warrant particular attention (as illustrated on the left

side of Figure 1). (1) Missing values. The neuroimaging

collection might be missing at certain time points due to abrupt

fluctuations and mechanical noises. (2) Irregular samples. The

machine may not collect the data precisely at the desired time

points. For example, the machine is expected to sample at time

point 1s, but the actual sample is collected at time point 1.2s

due to instrumental errors. (3) Sampling misalignment. Dif-

ferent samples may be collected under different frequencies.

For example, a machine collects the data every second while

another collects it every two seconds.

There exist simple interpolation methods such as those

based on mean values or polynomial regression to partially

address the data challenges [9]. However, they are not ideal

for capturing the complex dynamics of ROIs in brain networks

[10]. In recent years, Neural Ordinary Differential Equations

(ODEs) have emerged as a powerful framework for irregularly-

sampled data and dynamic systems, which has proven im-

mense successes in applications to physical system simulation

and disease spread modeling [11], [12]. However, existing

Neural ODE methods do not consider implicit interactions

among brain signals, which is essential in brain imaging

analysis [4].

Inspired by neural ODE, we propose to conquer the three

data challenges for brain signal analysis collectively with a

unified re-processing procedure for dynamic brain signals, by

learning a continuous model of interconnected signals over

time, which can regulate and reconstruct the signals at any

particular time point. Specifically, we develop a novel model

called BRAINODE to learn the latent initial states and neural

ODE functions automatically from the partially available dy-

namic brain signals, which can continuously reconstruct the

brain signals at any given time point. In addition, to estimate

the most informative latent initial states of ROIs, we propose

to construct two graphs to capture the two most important

types of ROI relations in brain networks– structural (spatial)

and functional (temporal). We apply graph convolutional net-

works (GCNs) on the two graphs and leverage the combined

representations to enhance the learning of initial states for

effective ODE inference. These two graphs not only utilize

common wisdom about brain connectivities in neuroscience

research, but also provide potential opportunities for deriving

clinically actionable discoveries. By mitigating the impact

of low data quality, BRAINODE enhances the usability of

dynamic brain signals in clinical predictions with improved

performance for various downstream brain network analysis

models. In summary, our key contributions are as follows.

• We are the first to recognize the importance of re-

processing dynamic signals in brain network analysis

and identify three major data challenges. We provide

a unified framework to address the challenges through

continuously modeling the interactive brain signals.

• Inspired by the recent success of neural ODE, we propose

BRAINODE as the unified solution. We utilize spatial

and temporal graphs to capture the complex interactions

among ROIs, thereby facilitating continuous Neural ODE

learning and inference.

• We conduct experiments on two real-world datasets to

verify the effectiveness of the proposed model. The AUC

performance of classification increases avg. 15.6% in

ABIDE and avg. 27.4% in ABCD. Additionally, we

conduct further experiments to demonstrate the model’s

efficacy in individually solving the three aforementioned

data challenges with superior performance.

Our work can be used for brain analysis and potentially

be employed to search for associations between brain signals

and clinical outcomes such as mental disorders. To safeguard

against any misuse or unauthorized exploitation, we advocate

for the responsible and cautious use of our findings. We

emphasize that the utilization of our work should be limited

exclusively to ethical and peer-reviewed academic research.

II. BACKGROUNDS AND RELATED WORKS

1) GNNs for Brain Network Analysis: Graph Neural Net-

works (GNNs) have garnered significant interest for their

effectiveness in analyzing graph-structured data [13]–[17],

which stimulates studies of their application in brain con-

nectome analysis [4], [8], [18]–[21]. While showing great

promises of GNNs in enhancing the performance of brain con-

nectome based clinical outcome predictions, the current data-

driven studies for neuroimaging and brain network analysis

are mostly based on pre-constructed brain networks, which

lacks adequate focus on data pre-processing and its influence

on downstream performance.

2) ODE for Multi-Agent Dynamical Systems: A multi-

agent dynamical system can be captured and reconstructed

continuously by a series of first-order Ordinary Differential

Equations (ODEs), which describes the continuous evolution

of N dependent variables in the time window [0, T ] [11].

For each object i in time t, its state can be uniquely deter-

mined by zti and each object has the corresponding ODE:

żti :=
dzt

i

dt
= g(zt1, z

t
2, . . . , z

t
N ). Given the latent initial states

for every object, we can use a numerical ODE solver such as

Runge-Kutta to get the state at any given time point [22].

Recently, abundant studies have advocated the learning of

ODE functions gi using neural networks [23], [24]. As closest

to us, [12], [25] propose GraphODE to jointly model the

evolution of entities and their connections by combining GNNs

and neural ODE. However, GraphODE needs the given integral

dynamic graph structure to utilize the relation of agents, so

it cannot be directly applied to brain signal analysis due to

the lack of ground-truth dynamic graph structure to facilitate

model learning. Also, the existing ODE methods are unable

to handle multiple types of entity interactions, such as brain

function network and brain structure work. Capturing the

complex relationships among ROIs and integrating them with

neural ODE remain a challenging task.
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Fig. 1: Overview of BRAINODE. The left panel demonstrates the raw dynamic brain signal from the fMRI sequence where ROI#1 shows
an ideal signal and ROI#2-4 illustrate the “missing value”, “irregular sample”, and “sampling misalignment” challenges, respectively. The
middle panel describes the BRAINODE framework which leverages Short-Term and Long-Term Time Encoders to learn a latent embedding
for each input ROI signal. The embeddings are then refined through two distinct GCN layers, which learn the spatial and temporal relations
among ROI channels, aiding in the derivation of initial states for ODE inference. An ODE solver and decoder, shown on the right panel,
are utilized to obtain the brain signals at desired regular time steps, which can lead to enhanced performance in subject classification.

III. METHOD

A. Problem Definition

We focus on the problem of continuously modeling the

dynamic brain signals (e.g., BOLD time series). We consider

a dataset consisting of S samples (subjects) with each rep-

resenting a distinct brain network neuroimage. Each subject

can be parcellated into N ROIs, each corresponding to a time

series of signals with a length of T . Therefore, a dataset can

be represented by a tensor of signals X ∈ R
S×N×T , and its

associated time coordinates Ts ∈ R
S×N×T . BRAINODE re-

processes the input data X to address the problems of missing

values, irregular samples, and sampling misalignment. The

outcome is a desired set of signals XR ∈ R
S×N×T ′

along

with their respective time coordinates TR ∈ R
S×N×T ′

, where

T ′ denotes the desired length of the signals. XR can be used in

the same way as X for brain network analysis and downstream

predictions, potentially with improved accuracy due to the

enhanced quality of dynamic brain signals. In this work, we

follow the standard practice for brain network construction by

computing Pearson correlations between the dynamic brain

signals [6], and train existing brain network classification

models towards given subject labels Y ∈ R
N×|C|, with C

denoting the class set and |C| being the number of classes.

B. Methodology Overview

We propose BRAINODE, a novel approach for continuous

modeling of dynamic brain signals. The framework comprises

three key components: Brain Latent State Learning, Brain

Temporal Relation and Spatial Relation Incorporation, and

Autoencoder-based End-to-End Training. The first two mod-

ules are designed for inferring the initial states of neural ODE

and serve as the starting point for predicting the trajectories

in the latent space. In particular, the latent state learning

leverages a Convolutional Neural Network (CNN) to capture

the brain activity, and a self-attention mechanism to model

the long-range temporal dependencies of brain signals. We

then construct temporal and spatial graphs to represent the

multi-facet relations among ROIs and use GCNs to encode

the signals, under the aid of graph structures, for enhanced

latent initial state learning. Finally, a generative model based

on ODEs generates continuous representations of the time

series data inferred from the learned initial states, which is

also end-to-end trainable through an autoencoder framework.

C. Brain Latent State Learning

Dynamic brain signals in the form of time series data convey

rich information regarding the functional relations among

ROIs [26], [27]. Recent research leverages the Pearson corre-

lation measures to identify groups of ROIs that exhibit similar

dynamics to help discover underlying neural patterns [28],

[29]. However, similarity measures based on global time series

tend to overlook the neural activation patterns in shorter time

frames, which undermines the expressiveness in representing

the dynamical changes in brains. Therefore, to encode a set of

dynamic-aware temporal features, we propose a CNN-based

encoder to capture brain activity, and a self-attention module

to model the long-term (global) dependencies.

1) Brain Activity Modeling: CNNs have demonstrated re-

markable capabilities in capturing intricate features from grid-

like data and it is also widely used in analyzing sequential data

via dilated convolution [30]. For each ROI signal, the feature

map of a convolutional layer can be formulated as follows:

f
j
i = Ã

(

F
∑

k=1

(Convk ∗RFj(xi)) + ´

)

, (1)

where xi represents the initial signals of the i-th ROI, Convk
represents the convolution filter at the k-th layer, RFj(·) is the

Receptive Field of j-th time step where j ∈ [1, T ], Ã is the



activation function that introduces non-linearity to the output,

and ´ represents an additive bias.

2) Brain Signal Long-term Dependency Modeling: To pre-

pare the initial values of the observed dynamic signals on

ROIs for subsequent ODE inference, we devise a self-attention

mechanism to capture the long-term dependencies among dy-

namic signals after the short-term temporal representations are

learned. In particular, self-attention demonstrates impressive

efficacy in simultaneously capturing sequential relations and

mitigating catastrophic forgetting of long-range information

[31]. For dynamic signals, the attention mechanism can be

adapted to capture dependencies and relationships between

entries across a wide interval of time steps.

After the convolution layer, we have the temporal rep-

resentations for the i-th ROI, fi ∈ R
T×F , that contains

a set of F dimensional encoding for every time step in a

total of T steps. We also leverage positional encoders [32],

[33] to differentiate time steps and capture their sequential

information. PE(pos,2l) = sin
(

pos

100002l/dmodel

)

, PE(pos,2l+1) =

cos
(

pos

100002l/dmodel

)

, where pos is the position of the time step,

l is the dimension of the positional encoding, dmodel is the

dimensionality of the embedding size.

For applying self-attention, the input representation fi is

transformed into three matrices: Query Q, Key K, and Value

V , each of which is a linear projection of the original data:

Q = fiWQ,K = fiWK , V = fiWV , where WQ, WK , and

WV are learnable weight matrices used to project the input

time series into query, key, and value spaces, respectively. The

self-attention mechanism computes a similarity score between

each query-key pair. This is typically achieved by using the

dot product. At last, the initial value of every ROI is computed

by the attention scores and the V matrix:

hi = Softmax

(

QK¦

√
dk

)

V, (2)

where dk is the dimension of the key space. The division by√
dk is used to stabilize the gradients during training.

D. Brain Temporal Relation and Spatial Relation Incorpora-

tion

Neuroscience research suggests that there are close connec-

tions between different regions of the brain manifested through

both functional correlations and structural proximities [34].

Along this line, previous studies of brain network analysis

have confirmed the necessity of simultaneously capturing the

instantaneous excitation and inhibition of temporarily related

ROIs as well as the anatomic structures of spatially neighbor-

ing ROIs [4], [20]. Therefore, we propose to explicitly model

the temporal and spatial relations among ROIs by constructing

two graphs that share the same set of nodes as ROIs (or

equivalently one graph with two types of links), and use them

to enhance the learning of our neural ODE model through

additional encodings of the learned initial values.

1) Temporal Graph Construction: We aim to construct a

temporal graph that captures the correlations among dynamic

brain signals to aid the learning of BRAINODE. We learn

the graph ODE functions based on it, which captures the

variability across subjects and makes the framework more

generalizable. However, the original dynamic brain signals can

be irregular To this end, we propose to define the temporal

structure based on the initial values of the ROIs. We note that,

due to the joint, end-to-end learning of the temporal graph and

the ODE function (the next component), our temporal graph

encodes functional connectivity as defined in neurosience liter-

ature, but it is fundamentally different from existing functional

brain networks which rely on high-quality brain signals at first.

Specifically, given N ROIs with their respective initial val-

ues h = {h1, h2, . . . , hN}, we calculate the cosine similarity

between every pair and construct an adjacency matrix ATem

for the temporal graph as ATem
ij =

hi·hj

∥hi∥·∥hj∥
, where ATem

ij

represents the cosine similarity between the initial values of

the i-th and the j-th ROI, and ∥ · ∥ denotes the ℓ2 norm.

2) Spatial Graph Construction: We leverage the 3D coordi-

nates of ROI centers given by their corresponding parcellation

templates to construct the spatial graph that encodes the

structural connectivity of ROIs.

Given a set of N ROIs and their 3D coordinates set:

{(x1,1, x1,2, x1,3), (x2,1, x2,2, x2,3), . . . , (xN,1, xN,2, xN,3)},

for each pair of ROI coordinate (xi, xj), we calculate

the Euclidean distance between them as follows:

Distanceij =
√

∑3
d=1(xi,d − xj,d)2. Next, we construct an

adjacency matrix AS based on the Euclidean distances. The

adjacency matrix indicates the existence of edges between

ROIs based on a distance threshold r. r is obtained through

grid search. If the Euclidean distance between two ROIs is

below the threshold, we consider them to be connected, and

the corresponding entry in the adjacency matrix is set to 1.

Otherwise, the entry is set to 0. Leveraging the fixed distance

threshold r as a sparsification mechanism, AS is computed

as: A
Spa
ij =

{

1, Distanceij f r,

0, Distanceij > r.

3) Relation-Aided Dynamic Brain Signal Modeling: We

adopt the graph message passing design proposed in GCN [17]

to perform information aggregation based on the neighborhood

structures defined by the temporal graph ATem and the spatial

graph ASpa. Given the set of latent initial values H as the

ROI-wise feature set, the GCN convolution at layer l can be

formulated as

H(l+1) = Ã
(

D̂− 1

2 ÂD̂− 1

2H(l)W (l)
)

, (3)

where H(l) represents the node embeddings at layer l (initially,

H(0) = H), W (l) is the learnable weight for layer l, Â =
A+IN is the adjacency matrix. A is to be instantiated asATem

for temporal graphs and ASpa for spatial graphs, and a GCN

model is learned on each graph. D̂ is the degree matrix of the

adjacency, where D̂ii =
∑

j Âij (summing over the ith row

of Â). Ã is the ReLU activation function.



Lastly, we use a linear transformation to combine the two

sets of representations into ui for every ROI.

E. Autoencoder-based End-to-End Training

With the representation of each ROI, we estimate the ap-

proximated posterior distribution where Tr is a neural network

translating the representation into mean and variance of z0i and

µz0

i
, Ãz0

i
= Tr(ui):

qφ(z
0
i |x1, x2, . . . , xn) = N(µz0

i
, Ãz0

i
). (4)

A generative model defined by an ODE is used to get

the latent state at every time step with latent initial state

z0i sampled from the approximated posterior distribution

qφ(z
0
i |x1, x2, . . . , xn) from the encoder:

z0i ∼ p(z0i ) ≈ qφ(z
0
i |x1, x2, ..., xn). (5)

A neural network is employed as the ODE function gi to

model the continuous change of signals on each ROI:

z0i , ..., z
T
i = ODESolve

(

gi, [z
0
1 , ..., z

0
n], (t0, ..., tT )

)

. (6)

A decoder is then utilized to reconstruct the dynamic

signals from the decoding probability p(oti|zti) according to

the formula oti ∼ p(oti|zti).
We connect the encoder, generative model, and decoder in

an autoencoder-based framework and jointly train them in an

end-to-end fashion w.r.t. the MSE loss. A KL divergence is

added to normalize the initial states. The MSE loss ensures

that the model accurately reproduces the input time series,

while the KL divergence term regularizes the initial states

and stabilizes the training process [11]. The overall training

process is performed end-to-end, allowing all components

to be optimized together. This joint training ensures that

the entire model is well-integrated and capable of efficiently

capturing the underlying continuity and complex relationships

of dynamic brain signals.

F. Time Complexity Analysis

For BRAINODE, the time complexities of the short-term

time encoder and long-term time encoder are O(TF ) and

O(T 2F ), respectively, where T is the length of time series and

F is the filter number of convolution. In spatial relation and

temporal relation incorporation, the time complexities of graph

construction and GNN are O(N2) and O(NF ), respectively,

due to the sparse relations of ROIs [4]. The time complexity of

the ODEsolver and decoder is O(T ′) where T ′ is the desired

time length.

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of the proposed

model BRAINODE through extensive experiments. We aim to

answer the following important research questions:

RQ1: How does BRAINODE contribute to performance im-

provements across various base models compared to compet-

ing approaches?

RQ2: How does BRAINODE perform in addressing missing

values, irregular samples, and sampling misalignment?

RQ3: What is the fundamental functionality and impact of the

individual components of BRAINODE?

RQ4: What is the impact hyperparameters?

RQ5: How does the efficiency of BRAINODE compare to

those of its opponents?

A. 4.1 Experiment Settings

1) Datasets and Prediction Tasks: We conduct main ex-

periments on two real-world fMRI datasets. (a) Autism

Brain Imaging Data Exchange (ABIDE): This dataset collects

resting-state functional magnetic resonance imaging (rs-fMRI)

data from 17 international sites, and all data are anony-

mous [35]. The dataset contains 1,009 subjects, with 516

(51.14%) being Autism spectrum disorder (ASD) patients. The

ROI definition is based on Craddock 200 atlas [36]. ABIDE

supplies generated brain networks that can be downloaded

directly without permission request. However, multi-site data

are collected from different scanners and non-neural inter-

site variability may mask inter-group differences. We follow

a train-test data split strategy proposed in [20] to alleviate

this issue. (b) Adolescent Brain Cognitive Development Study

(ABCD): ABCD supplies the largest publicly available fMRI

dataset with restricted access [37]. The data we use in the

experiments are fully anonymized brain networks with only

biological gender labels. The dataset includes 7,901 subjects

with 3,961 (50.1%) among them being female. The ROI

definition is based on the HCP atlas [38]. To analyze the

capability of BRAINODE in addressing irregular samples

and sampling misalignment, We use randomly trigonometric

functions to simulate brain signals at arbitrary times due to

the lack of real continuous brain signals [39].

2) Opponent Models and Base Models: We compare

BRAINODE with three opponent models: (a) Polynomial

interpolation (denoted as Poly) is a method widely used in time

series preprocessing. It fits a polynomial function with partial

time series to obtain the values at arbitrary times. (b) Recurrent

Neural Network (denoted as RNN) is a neural network de-

signed for processing sequential data by maintaining a hidden

state that retains information from inputs [40]. (c) TSTPlus

(denoted as TSTP) is the state-of-the-art (SOTA) method for

multi-variable time series processing based on the Transformer

architecture and self-supervised learning [41]. In RQ2.2, since

RNN and TSTP cannot recover time series with arbitrary

offsets and frequencies, different interpolation methods are

used, which are exponential function fitting (denoted as Exp)

and logarithmic function fitting (denoted as Log).

To validate that BRAINODE can enhance the performance

of different models after re-processing the brain signals, we

run four representative base models on the functional brain

networks constructed from the original and re-processed brain

signals. They respectively represent the SOTA models in fixed

network, learnable network, graph transformer, and orthonor-

mal clustering (a) BrainNetCNN is a neural network model for

connectome-based subject classification [18]. (b) FBNetGNN

is the SOTA model for end-to-end functional brain network

generation and subject classification based on dynamic brain



TABLE I: The performance of different base models (first column) across different dynamic data processing methods (second colum). For
each dataset, ROC and ACC before and after data re-processing are calculated as well as the development rates.

Base
Model

Processing
Method

Dataset:ABIDE Dataset:ABCD
Before After Develop Before After Develop

AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

BrainNet
CNN

Poly

67.4±2.6 65.2±0.7

51.7±4.5 51.0±3.8 -23.3 -21.8

81.5±0.2 74.2±0.1

77.7±1.2 70.4±0.7 -4.7 -5.1
RNN 52.0±3.7 49.0±3.5 -22.9 -24.9 89.0±0.5 80.6±0.2 2.9 9.1
TSTP 58.2±3.3 55.4±2.5 -13.8 -15.0 89.7±0.5 81.6±0.3 10.0 10.0
Ours 67.7±2.7 66.8±2.5 0.3 2.4 91.1±0.5 84.5±0.7 11.7 13.9

FBNET
GNN

Poly

63.3±2.2 61.6±2.4

58.0±2.8 55.6±1.7 -8.4 -9.7

89.1±0.2 81.4±0.4

90.4±0.2 82.4±0.7 1.4 1.2
RNN 56.6±3.0 54.2±3.1 -10.6 -12.0 91.1±0.6 83.5±1.2 2.8 2.5
TSTP 64.5±3.6 60.2±1.7 1.9 -2.3 91.0±0.5 82.5±0.7 2.1 1.3
Ours 71.5±2.5 67.0±3.7 13.0 8.7 89.9±0.4 82.3±0.5 0.9 1.1

Vanilla
Transformer

Poly

70.3±0.4 65.2±1.5

55.2±3.6 51.6±1.4 -21.5 -20.9

90.1±0.4 81.8±0.2

81.1±0.6 72.5±0.8 -10.0 -11.3
RNN 56.6±3.4 59.0±3.7 -19.5 -9.5 86.5±0.6 77.5±1.1 -4.1 -5.1
TSTP 63.5±2.3 58.0±2.5 -9.7 -11.0 82.7±2.7 73.0±2.6 -8.3 -10.8
Ours 71.3±1.0 65.4±1.2 1.5 0.3 90.3±0.1 82.4±0.6 0.2 0.7

BrainNet
Transformer

Poly

52.8±0.3 53.0±2.8

60.6±3.2 56.6±2.9 14.9 6.7

58.4±3.0 49.1±0.4

87.3±0.8 79.1±0.3 49.6 61.0
RNN 50.8±2.5 51.6±2.8 -3.7 -2.6 59.5±1.2 53.0±1.4 1.9 7.7
TSTP 58.4±1.5 54.0± 3.2 1.9 -2.2 62.8±3.3 49.6±0.9 7.6 8.3
Ours 72.6±3.4 65.4±1.0 37.7 23.4 93.6±0.3 85.7±0.6 60.3 74.4

signals. It applies GNNs on a learnable graph generated from

an RNN-based signal encoder and a similarity-based graph

generator [42]. (c) VanillaTransformer is a simple graph trans-

former based on multi-head self-attention introduced in [43].

(d) BrainNetTransformer is the SOTA model for connectome-

based subject classification with an orthonormal clustering

readout. [20].

3) Metrics: The diagnosis of ASD and prediction of bio-

logical gender are commonly evaluated tasks on ABIDE and

ABCD, respectively. Because both prediction tasks are binary

classification problems and both datasets are rather balanced,

AUROC is a proper performance metric adopted for fair

comparisons, and accuracy is applied to reflect the prediction

performance when the cutoff is 0.5. In the in-depth analysis,

the Root Mean Squared Error (RMSE) between reconstructed

and real values is measured as we expect the reconstructed

values to be as close as possible to the ground truth.. All

reported performances are the average of 5 random runs on

the test set with the standard deviation.

4) Implementation Details: We split 60% of the data for

training, and 20% for validation and testing separately. In the

training process of BRAINODE, Adam optimizer is used with

a learning rate of 10−3. All hyperparameters are tuned using

grid search. The base models are all implemented with the

authors’ released code with the default settings. Please refer

to the Appendix for more details.

B. Overall Performance Analysis (RQ1)

For RQ1, we hide 20% of the raw data to simulate missing

values and sample 20% of the data with different frequencies

to simulate sampling misalignment. We also assume the data

already suffer from slightly irregular samples due to inherent

instrumental errors. The raw data are re-processed by BRAIN-

ODE the and opponent models.

The results in Table I reveal that all the base models perform

poorly on the raw data without any preprocessing method. This

underscores the vital role of re-processing brain signals. Due

to the differences in model architectures, their performances

also vary. Due to the higher quality of ABCD compared to

the ABIDE, the performances of various base models are

notably better on the former. After re-processing the raw data,

most base models report the best performance under the re-

processing of BRAINODE. On the ABIDE, the average AUC

improves by 27.4%, along with a 16.9% increase in ACC. On

the ABCD, the average AUC sees a boost of 15.6%, with an

8.0% increase in AUC. The base model performances with

Poly are mostly the worst as it fails to capture the intricate

patterns in brain signals, introducing additional noise. RNN

and TSTP lead to generally better performance than Poly due

to their stronger modeling of complex data, but they also add

misleading information in some cases. Clearly, they lack the

ability to address irregular and misaligned samples, leading to

suboptimal results compared with BRAINODE. Finally, the

performances of base models vary significantly, likely due

to their different sensitivity to missing and misaligned data.

For instance, BrainNetTransformer is relatively sensitive to

missing data but more robust to noisy data, so it often performs

better even against applying some of the underperforming

preprocessing like Poly, where the other base models would

suffer.

C. In-Depth Analysis on Addressing the Data Challenges

(RQ2)

1) Addressing Missing Values: To evaluate the effectiveness

of BRAINODE in addressing missing values in brain signals,

we compare BRAINODE with its opponents in both interpo-

lation and extrapolation settings. The two settings correspond

to two types of missing values. Interpolation means the time

points of the missing value are between known data while

extrapolation means the missing time points are out of the

range of known data. The results with 3 and 5 missing time

steps are presented in the upper half of Table II. The perfor-

mance of Poly is the worst again due to its poor capability of

modeling complex brain signals. BRAINODE performs best

due to its strong expressiveness and capability of modeling

ROI relations. Specifically, BRAINODE has the lowest RMSE,

with avg. 74.1% drop compared with Poly, avg. 16.3% drop



compared with RNN, and avg. 74.1% drop compared with

TSTP.

TABLE II: Effectiveness in addressing missing values. Results in the
upper half table are analyzed in RQ2, while those in the lower half
table are analyzed in RQ3. Average RMSEs are presented (the lower
the better).

Method
ABIDE ABCD

Interpolation Extrapolation Interpolation Extrapolation
3 step 5 step 3 step 5 step 3 step 5 step 3 step 5 step

Poly 0.8750 2.025 0.5798 1.281 0.3573 1.0216 0.2745 0.6888
RNN 0.1927 0.2001 0.1940 0.1983 0.1972 0.1992 0.1525 0.2006
TSTP 0.1630 0.1648 0.1903 0.2006 0.1640 0.1599 0.1606 0.1606
Ours 0.1593 0.1606 0.1594 0.1600 0.1585 0.1587 0.1589 0.1592

Ours-p 0.1811 0.1921 0.1811 0.1970 0.1748 0.1849 Unstable Unstable
Ours-t 0.1915 0.1990 0.1895 0.1958 0.1589 0.1597 0.1600 0.1601
Ours-s 0.1597 0.1610 0.1595 0.1601 0.1577 0.1583 0.1590 0.1594

2) Addressing Irregular Samples and Sampling Misalign-

ment: We compare the performance of BRAINODE and its

opponents on generating data across different time offsets and

frequencies. Due to the lack of real continuous brain signals,

we use trigonometric functions to simulate brain signals [39].

Specifically, we generate training data with regular offsets (1

point per second). Then for irregular samples, we generate

testing data with irregular offsets for each sample (offsets

of 0.1, 0.2 and 0.3 seconds); for sampling misalignment, we

generate testing data with different frequencies (2/3, 1/2 and

1/3 seconds). The experimental results are shown in Figure

2. As offsets and frequencies grow, the performances of all

methods drop. BRAINODE overperforms all other methods

consistently across both settings.

Fig. 2: Effectiveness in addressing irregular samples and sampling
misalignment. Performances are grouped by offsets in the left figure
and grouped by frequencies in the right figure.

D. Ablation Study (RQ3)

To gain a deeper understanding of the contributions of the

components in BRAINODE, we conduct an ablation study.

We systematically evaluate the impact of removing specific

components while keeping others constant. We remove the

position encoder in self-attention, temporal graph, and spatial

graph individually. The results are summarized in the lower

half of Table 2. After removing the position encoder (denoted

as ours-p), the RMSE increases avg. 16.9%, which shows the

position encoder’s importance in implying the relative time

information. Without the temporal graph (denoted as ours-t),

BRAINODE loses the ability to capture the temporal relation

among ROIs, which causes avg. 10.9% increase of RMSE.

As for the spatial graph, the removal (denoted as ours-s)

causes avg. 0.1% increase of RMSE in ABIDE and some

fluctuations in ABCD. The construction of a spatial graph

utilized the 3D position of ROIs in the brain instead of actual

structural connectivity, potentially resulting in this constrained

advantage. The consideration of spatial graphs, however,

makes the framework flexible enough to incorporate other

types of structural connectivities such as based on structural

MRI and DTI.

E. Hyperparameter Analysis (RQ4)

We conduct a hyperparameter analysis focusing on the latent

embedding size and kernel size. Our results are presented in

Figure 3. As the latent embedding size increases, the RMSE

rapidly decreases, indicating an improvement in the model’s

performance. When the latent embedding size increases fur-

ther, the model’s performance remains relatively stable. With

the increase in kernel size, the model’s RMSE decreases and

then stabilizes at a certain point. The model performs well in

relatively wide ranges for both hyperparameters, and too large

values for both are not necessary.

Fig. 3: Hyperparameter analysis.

F. Real Runtime Analysis (RQ5)

To verify the practicality of our approach, we conduct

experiments to record the runtime of different methods to

process the same amount of data. The experimental results

are shown in Table III. As Poly requires interpolation for

each data segment, it has the longest processing time. The

parameter number of RNN is significantly lower than that of

TSTP, resulting in an average runtime of around 10.4%. The

runtime of BRAINODE is at the same scale as TSTP, achieving

a reasonable trade-off between effectiveness and efficiency.

TABLE III: Real runtime of different models on two datasets.

Dataset BrainODE Poly RNN TSTP

ABIDE 11.0±0.51 161.2±0.21 0.26±0.02 2.47±0.25
ABCD 489.87±24.22 3220.92±3.69 11.35±1.23 109.53±11.97

V. CONCLUSION AND FUTURE WORK

In this study, we propose BRAINODE to solve the data

challenges inherent in dynamic brain signals to enhance brain

network analysis and downstream predictions. Leveraging a

novel graph-aided neural ODE framework, our approach works

by re-processing the irregular dynamic brain signals and

continuously reconstructing them at any given regular time

points. Through extensive experiments, we have demonstrated

the efficacy of BRAINODE. The framework could be used in

continuously modeling the dynamic brain signals and it could

be adapted to other brain signals, such as EEG and MEG,

which will be explored in future works.
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