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Abstract

Dense linear layers are the dominant computational bottleneck in large neural
networks, presenting a critical need for more efficient alternatives. Previous efforts
focused on a small number of hand-crafted structured matrices and neglected to
investigate whether these structures can surpass dense layers in terms of compute-
optimal scaling laws when both the model size and training examples are optimally
allocated. In this work, we present a unifying framework that enables searching
among all linear operators expressible via an Einstein summation. This framework
encompasses many previously proposed structures, such as low-rank, Kronecker,
Tensor-Train, Block Tensor-Train (BTT), and Monarch, along with many novel
structures. To analyze the framework, we develop a taxonomy of all such operators
based on their computational and algebraic properties and show that differences
in the compute-optimal scaling laws are mostly governed by a small number
of variables that we introduce. Namely, a small É (which measures parameter
sharing) and large È (which measures the rank) reliably led to better scaling laws.
Guided by the insight that full-rank structures that maximize parameters per unit
of compute perform the best, we propose BTT-MoE, a novel Mixture-of-Experts
(MoE) architecture obtained by sparsifying computation in the BTT structure.
In contrast to the standard sparse MoE for each entire feed-forward network,
BTT-MoE learns an MoE in every single linear layer of the model, including
the projection matrices in the attention blocks. We find BTT-MoE provides a
substantial compute-efficiency gain over dense layers and standard MoE.

1 Introduction

Neural networks primarily consist of interleaved linear layers and simple non-linearities. In large
foundation models such as GPT-3 [4], these linear layers consume the vast majority of the parameters
and computation [13], and are commonly represented by dense matrices. Substituting these dense
matrices with structured matrices with fast matrix-vector multiplies (MVMs) has the potential to
significantly improve the computational efficiency of these models.

Recent work by Dao et al. [6], Fu et al. [8], and Qiu et al. [19] demonstrated that incorporating
certain structured matrices into neural network architectures, including transformers, can improve
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Figure 1: We use Einsums to parameterize a wide range of structured matrices and search for
the most efficient structure for compute-optimal training. Left: A diagrammatic representation
of a general two-factor Einsum. We parameterize the space of Einsums through a real-valued vector
θ = (¹³, ¹´ , ¹µ , ¹¶, ¹ϵ, ¹ϕ, ¹Ä) ∈ [0, 1]7. This space captures many well-known structures through
specific values of θ. Middle: Example of well-known structures with their θ values. Any omitted
line implies the value of the entry in the vector is 0. Right: Compute-optimal scaling laws of example
structures for GPT-2 on OpenWebText when substituting its dense layers (see details in Section 4).

performance over dense models of the same size trained for equal number of epochs on problems
such as ImageNet classification. However, these success cases do not reflect the current paradigm
of large-scale training, where the models 1) are typically not trained for multiple epochs, making
the expressiveness of dense matrices particularly appealing since the generalization gap vanishes,
and 2) are heavily bottlenecked by compute cost, making it infeasible to train the models until
convergence [13, 11], unlike in image classification. These attributes of large-scale training make the
compute-optimal scaling rather than scaling in model size alone more relevant.

In this work, we investigate how different structures perform in a compute-optimal setting, which
characterizes performance as a function of training compute when allocated optimally between using
larger models versus training on more data [13]. In language modeling and many other tasks, the
compute-optimal scaling law has been shown to take the form L = L∞ + bC−a as a function
of training compute C, where L∞ is the minimal achievable loss [13, 11, 10]. Quantifying the
compute-optimal scaling laws of various structures is essential for understanding their practical value
for training large-scale neural networks.

In addition to investigating the scaling laws of existing structures, we expand the set of matrix
structures beyond what has been previously considered. We do so by introducing a continuous
parameterization of the space of all possible structures whose matrix-vector-multiplication (MVM)
can be expressed as an Einstein summation (Einsum).2 This space contains many known structures
such as low-rank, Tensor-Train [17], Kronecker product [21, 25, 9], Monarch [6] and Block Tensor-
Train [19], but also includes many novel hardware-efficient structures. Indeed, all structures in this
space are hardware-efficient in the sense that they are computed through a series of batch matrix
multiplication primitives, which we implement through the Linear Operator abstractions available
in CoLA [18]. Moreover, this space lends itself to an intuitive exploration as we can analyze how
different parameters of the Einsum affect a structure’s performance and scaling laws. We make our
code available here.

We summarize our main contributions as follows:

• We introduce a continuous parameterization of the space of structured matrices whose
matrix-vector-multiplication can be implemented via an Einstein summation (Einsum). This
parameterization allows us to search a wide range of hardware-efficient structured linear
layers for neural network architectures beyond a handful of well-known cases identified in
prior work [6, 8, 19].

• We develop a taxonomy of the space of Einsums based on its computational and algebraic
properties. We identify three key scalar quantities that characterize this space (É, È, ¿). (1)
É g 0, which reflects the extent of parameter sharing in a matrix. (2) È ∈ [0, 1], which
characterizes to the rank of the structure (È = 1 meaning full-rank). (3) ¿ ∈ [0, 1), which

2Technically, we consider everything that can be expressed via torch.einsum, which is slightly more
general than the Einstein summation, which allows an index to appear at most twice.
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relates to compute per dimension in an MVM, where the upper-bound ¿ = 1 is achieved by
dense matrices. Intuitively, ¿ measures how much a structure resembles dense.

• We investigate the scaling laws of different Einsums on language modeling, autoregressive
image generation, and a synthetic regression task. We find that the best-performing structures
are the ones that do not share parameters (É = 0), are full-rank (È = 1), while ¿ can be
varied with often negligible impact to their scaling laws. In contrast to previous findings, we
demonstrate that structures shown in prior work [6, 8, 19] to outperform dense matrices in
non-compute-optimal settings can yield similar but not significantly better compute-optimal
scaling laws on these tasks.

• Building on prior work in structure-aware learning rates [19], we show how to properly
initialize generic Einsum layers and transfer learning rates from the original dense layers
and across model sizes, leveraging insights from µP [29, 26] and manifold optimization [3].

• Based on the observed relation between the taxonomy variables and the scaling laws, we
propose a new structured Mixture of Experts (MoE) architecture implementing a sparse
mixture of multiple structure matrices. This block tensor-train (BTT) MoE provides a
sparse MoE in every single layer of each feedforward network (FFN) and attention project
matrices, compared to standard MoE which operates over entire FFNs. We show BTT-MoE
is significantly more compute-efficient than dense matrices and standard MoE for training
GPT-2 language models.

2 Parameterizing the Space of Einsums

We now present a unifying framework that parameterizes all linear operators W ∈ R
dout×din whose

matrix-vector-multiply y = Wx can be expressed as an Einsum over the tensors x,A,B, . . . ,
where A,B, . . . defines the operator W and contains all its learnable parameters. To simplify the
presentation, throughout this paper we assume W is defined using only two factors A,B, but we
show generalization to more than two factors is straightforward in Appendix E.

We consider the following general expression of such an Einsum

Y¶ϵϕ =
∑

³´µÄ

B´µϵϕÄA³µ¶ϕÄX³´µ , (1)

where the vectors x and y are written as tensors with multiple indexes to allow them to interact
differently with each other, and the factors A,B. Each index x ∈ {³, ´, µ, ¶, ϵ, ϕ, Ä} ranges from
1 to dx. Given this general expression, we obtain different structures via different factorizations of
din into d³d´dµ , and dout into d¶dϵdϕ, and separately a choice of dÄ. For example, for a low-rank
matrix, we have d³ = din, d´ = dµ = 1, dϵ = dout, d¶ = dϕ = 1 and dÄ = r. For a Kronecker

product, we have d³ = d´ =
√
din, d¶ = dϵ =

√
dout and dµ = dϕ = dÄ = 1. We provide an

extended list of examples in Appendix A.

The general expression and the above two examples can be more conveniently and intuitively
represented as a diagram shown in Figure 1 (left), where each index ³, ´, µ, . . . corresponds to
a (hyper)edge among the input, output, and weight factors: ³ ´ {X,A}, ´ ´ {X,B}, µ ´
{X,A,B}, ¶ ´ {Y,A}, ϵ ´ {Y,B}, ϕ ´ {Y,A,B} and Ä ´ {A,B}. This set of edges
can be written succinctly as E = {S ¦ {X,A,B,Y} : |S| g 2 and {X,Y} ̸¦ S}. We exclude
subsets that contain X and Y simultaneously, as adding them simply produces an already included
structure but repeated multiple times along one of the input and output axes. The structure of a
particular Einsum is fully specified by the the vector (dXA, dXB, dXAB, dYA, dYB, dYAB, dAB),
which specifies the range of the indices ³, ´, µ, ¶, ϵ, ϕ, Ä. When the range of an index is of size 1, the
corresponding edge effectively disappears from the diagram and the expression simplfies.

As we will build models of varying sizes, it is more natural to think about how these entries

scale with din and dout. We therefore assign a real-valued vector θ ∈ [0, 1]
7

to each structure

indicating that di = d¹i
in

for i ∈ {XA,XB,XAB}, dj = d
¹j
out

for j ∈ {YA,YB,YAB}, and

dAB = min(din, dout)
¹AB ,with the restriction that ¹XA+¹XB+¹XAB = ¹YA+¹YB+¹YAB = 1.

For example, a low-rank matrix whose rank scales as the dimension it operates on to the 1/2-th
power is represented as θ = (1, 0, 0, 0, 1, 0, 1/2), and a Kronecker product of two factors of equal
sizes is represented as θ = (1/2, 1/2, 0, 1/2, 1/2, 0, 0). We round all di to its nearest integer when

3
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Figure 2: Illustrating the Einsum taxonomy. The 3D graph represents relevant quantities of the
Einsum structure such as the amount of parameter sharing É (x-axis), its rank È (y-axis), and its
compute intensity ¿ (z-axis). The structures on the left of the figure appear as dots on the graph based
on their coordinates θ. We highlight two key subspaces. (a) The BTT subspace, characterized by no
parameter sharing É = 0, learning the maximum number of parameters per FLOP. (b) The full-rank
BTT subspace where É = 0 and È = 1. In Section 4 we show that the full-rank BTT subspace
contains the most performant structures across multiple tasks.

instantiating the Einsum. Note this rounding only quantizes the the values of di, but leaves the space
of meaningfully different θs continuous as we consider arbitrarily large matrices.

3 A Taxonomy of the Space of Einsum Linear Structures

The space of all Einsums is a high-dimensional space containing a wide range of possible structures.
A priori, it is difficult to reason about the properties of a particular point in this space given its
coordinates θ ∈ [0, 1]7. In this section, we develop a taxonomy of the space of Einsums based on
their computational and algebraic properties. We introduce three key scalar quantities that characterize
this space: (1) È ∈ [0, 1], which is related to the rank of the structure, (2) ¿ ∈ [0, 1], which is related
to the compute intensity of the structure, i.e. FLOPs per MVM divided by the dimension, and (3)
É g 0, which is related to the number of learnable parameters divided by the FLOPs per MVM. Each
of these three quantities can be expressed in terms of the entries of θ, which we derive in Appendix B.
To simplify the presentation, we assume din = dout = d in the rest of the section. Without loss
of generality, we assume min(¹XA, ¹YB) g min(¹YA, ¹BX), so that it is more efficient to first
multiply by A instead of B.
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Figure 3: Compute-optimal frontier (highlighted points) of
various Einsums follows power law scaling. As a result, Einsums
can be scaled to reach arbitrarily low reducible loss, each with a
different rate that can be estimated from small-scale experiments.

Rank Exponent, È. For a given
θ, we have that rank(W) = Θ

(

dÈ
)

where È = min(1, 2+ ¹AB− ¹XA−
¹YB). Thus, È = 1 implies full-
rank and decreasing values of È im-
ply lower ranks until the limit of 0. In
other words, the rank decreases when
an Einsum increasingly allocates part
of the input and output to factors that
are only connected the input or out-
put. The limit being a low-rank struc-
ture as seen in Figure 2 where ¹XA =
1 = ¹YB and which creates a bottle-
neck on {A,B}. The opposite trend
is exhibited by dense, which allocates
the full dimension of the input and
output to both factors as seen in Fig-
ure 2. Nonetheless, it is still possible
to achieve a full-rank when allocating
dimension to only single factors as long as those values do not constitute most of the allocation,
meaning 0 < ¹XA f 1/2 and 0 < ¹YB f 1/2, as seen in Monarch, Tensor-Train, and Kronecker
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but not for the particular Block Tensor-Train (BTT) structure [19] in Figure 2. In Section 4 we show
that structures with È = 1 perform best when training neural networks.

Compute Intensity Exponent, ¿. Let F denote the FLOPs required to perform a MVM and define
the compute intensity as F/d = Θ(d¿). The upper bound is achieved by dense, which requires
quadratic compute for an MVM and thus ¿ = 1. In general, we have ¿ = 1+¹AB−min(¹XA, ¹YB).
Thus, in order to achieve lower compute intensity than dense, a structure has to allocate dimensionality
to factors that only connect to the input and output. As seen in Figure 2, the BTT example is able to
achieve the lowest compute intensity by allocating a substantial part of the input dimension to the first
factor and a substantial part of the output dimension to the second factor. È and ¿ are not completely
independent, e.g. È = ¿ for low-rank matrices Wij =

∑r
k=1

BikAkj , though exceptions exist such
as for the Kronecker product where ¿ can be arbitrarily low while maintaining È = 1. In Section 4,
we show there exists a wide range of structures with varying ¿ that perform as well as dense matrices.

Parameters-Sharing Exponent, É. Let N denote the number of parameters in the structure then
N/F = Θ(dÉ). Clearly, É = 1 for dense matrices where each parameter is used exactly once in
an MVM. In general, we can show that É = min(¹XA + ¹YA, ¹XB + ¹YB) − min(¹XA, ¹YB).
In Section 4 we find that structures that share parameters, that is É > 0, have worse scaling laws
that structures that do not (É = 0). To achieve É = 0, we have to avoid introducing edges that skip
some factors, that is ¹XB = ¹YA = 0. Structures that skip factors in Figure 2 are Tensor-Train
and Kronecker where there exists an edge that connects X to B while skipping A. In contrast, in
Monarch and BTT, the edge connecting X with B also touches A.

4 Scaling Laws of Einsums

While prior works have shown that certain structured matrices such as Monarch and BTT have
better scaling laws than dense matrices as a function of model size on datasets such as CIFAR-
10, CIFAR-100, and ImageNet [6, 19], their experimental setups do not reflect today’s large-scale
training, where the models 1) typically do not train for multiple epochs on the training set, and 2)
are heavily compute-bottlenecked such that we care primarily about performance as a function of
training compute rather than model size (omitting the cost of training). These attributes of large-scale
training make the compute-optimal scaling rather than scaling in model size alone more relevant.

In this section, we investigate the compute-optimal scaling laws of a wide range of Einsums — how
their performance scales as a function of training compute. We will show that we can understand the
systematic differences in the scaling laws of various Einsums by leveraging the taxonomy we have
developed. While we do not find a structure that achieves noticeably better scaling laws compared to
dense matrices, we identify the set of common properties shared across a wide range of structures
that match the performance of dense matrices, based on which we will propose a significantly more
efficient alternative to dense layers in Section 5.

4.1 Main Experimental Setup

We train GPT-2 [20] language models on the OpenWebText dataset. To make our measurement of
the scaling laws more robust and our experiments more affordable, we reduce the vocabulary of the
original GPT-2 to 96 commonly used alphanumeric symbols. Using a small vocabulary limits the
compute and parameters consumed by the language modeling head, which would otherwise obscure
the scaling laws measured at small scales [13]. We train models of varying sizes from 120k to 76M
parameters, with model dimension d ∈ [256, 4096] and number of transformer blocks L ∈ {3, 6}.
Each model is trained for 100k steps with a batch size of 65536 tokens and a sequence length of 128.
All linear layers except the language modeling head are replaced with Einsums. We use the Adam
optimizer with a base learning rate of 0.003 for a L = 3, d = 256 dense model, and scale it using
µP [27] and structure-aware learning rates [19] to larger models and models using Einsums in place
of dense layers. We discuss learning rate scaling in detail in Section 6, showing it is crucial for the
performance of Einsums. We use weight normalization to stabilize the training of Einsums following
Qiu et al. [19].

In Appendix Appendix D, we show our main conclusions derived from this simplified setup translate
to the more standard GPT-2 evaluation with a longer sequence length of 512 and its original vocabulary
of 50,257 tokens.
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Figure 4: The taxonomy parameters (É, È) explain differences in the scaling laws. (Left):
parameter sharing (É > 0) leads to worse scaling. (Middle): among structures without parameter
sharing (É = 0), full-rank structures (È = 1) scale better than low-rank structures (È < 1). (Right):
in the (É = 0, È = 1) subspace, various structures have nearly indistinguishable scaling laws
compared to dense matrices, suggesting that not implementing parameter sharing and being full-rank
are the necessary and sufficient conditions for a compute-efficient linear layer for GPT-2.

4.2 Analyzing the Compute-Optimal Scaling Laws

Einsum Performance Obeys Power Law Scaling. When replacing the standard dense layers
with Einsums, we find the resulting model’s loss continues to follow the usual L = L∞ + bC−a

compute-optimal scaling laws except with possibly different constants a, b. In Figure 3, we visualize
the compute-optimal scaling laws of various Einsums on our language modeling task, including those
corresponding to previously proposed structures such as TT [17], Low-rank and BTT [19], as well as
a generic Einsum with all entries of θ strictly positive. We report the reducible loss with an estimated
L∞ = 0.75 subtracted. This finding suggests that all Einsums can be scaled to reach arbitrarily low
reducible loss, each with a different rate that can be estimated from small-scale experiments.

Parameter Sharing Leads to Worse Scaling. As discussed in Section 3, the vast majority of
Einsums implement some kind of parameter sharing, where the number of parameters N in the
Einsum relates to its MVM FLOPs F via N/F = Θ(d−É), for some É > 0. In Figure 4 (left), we
show the scaling laws of a wide range of Einsums (only including points on the compute-optimal
frontier) colored by É. We find larger values of É lead to significantly worse scaling laws. To search
for compute-efficient structures, we should therefore focus on the subspace with É = 0.

Full-Rank Performs Best. Within the É = 0 subspace, we find that È becomes the next most
important parameter. Recall È ∈ [0, 1] is defined such that the rank of the Einsum scales as Θ(dÈ).
Einsums with È < 1 introduce information bottlenecks in the model by preventing the linear layers
from accessing information from all the feature dimensions. The smaller È is, the more severe this
effect. In Figure 4 (middle), we show that small values of È indeed lead to worse scaling laws. This
observation further narrows down our search to the subspace with É = 0 and È = 1, i.e. the space of
full-rank BTT matrices.

Any Full-Rank BTT Scales Similarly as Dense. The É = 0 and È = 1 subspace contains the
Monarch matrices and its generalization BTT matrices3. From a computational perspective, a primary
distinguishing factor among these structures is how close they resemble a dense matrix, which we
characterize by their compute intensity ¿ ∈ [0, 1) defined so that F/d = Θ(d¿). ¿ is large whenever
their exists large values (close to 1) in the remaining allowed entries (¹AX, ¹ABX, ¹YB, ¹YAB, ¹AB).
In Figure 4 (right), we show that, somewhat surprisingly, ¿ has minimal effect on the scaling laws of
these structures. Structures with different ¿ have almost indistinguishable scaling laws compared to
each other and dense matrices, which has ¿ = 1. This result shows that while dense matrices perform
well compared to the vast majority of possible Einsums, their good performance does not arise from
being dense, but rather from not sharing parameters and being full-rank.

Reconciling with Results from Prior Work. Our findings do not mean that structured matrices
cannot outperform dense in other settings. Rather, it highlights that the relative performance between
structures depends on what resource is controlled, as prior work has shown that low rank, Tensor-

3In the 2-factor case, this space corresponds to all Block Low-Rank [1] matrices that are full-rank.
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Figure 5: Our findings about the effect of (É, È, ¿) on the scaling laws generalize to other
settings. (Top row) Transformers trained with cross-entropy for autoregressive pixel generation on
CIFAR-5M. (Bottom row) MLP trained with mean-squared-error loss on synthetic data generated by
a large and randomly initialized MLP.

Train, Monarch, and BTT can significantly outperform dense in other settings such as controlling
for memory, model size, or inference compute [5, 6, 30, 17, 19, 15], rather than training compute.
For example, when training dataset size instead of training compute is the primary bottleneck, such
as on conventional vision datasets like CIFAR-10 and ImageNet, structured matrices have shown
considerable advantage over dense as a function of model size and inference compute [6, 19, 14].
In those settings, Qiu et al. [19] observe the benefits of structure likely arise through enabling
computationally efficient wider layers.

4.3 Our Findings Generalize to Other Settings

We now test if our findings derived from the GPT-2 experiments can generalize to other settings.
We evaluate on the following two additional tasks where there is sufficient data to measure the
compute-optimal scaling laws without repeating training data. We provide additional experiment
details in Appendix D.

Autoregressive Pixel Modeling on CIFAR-5M. We train transformers to autoregressively predict
the RGB pixel values of images in the CIFAR-5M dataset [16], downsampled to 8× 8× 3 resolution.
Figure 5 (top row) shows qualitatively the same results as our GPT-2 experiments, where É and È
have the most significant impact on the scaling laws, while varying ¿ yield only slight variations.

In this particular case, having ¿ = 0.75 (BTT with BTT-rank scaling as d1/4) is better than having
¿ = 0.5 (Monarch matrices). One notable trend in this setup is that most Einsums, regardless of É or
È, outperform dense at small scales. We hypothesize this improved performance is due to Einsums
having larger embedding dimensions than dense layers for a fixed parameter budget and can thus
preserve more information about the input pixels at smaller model sizes.

MLP Regression on Synthetic Data. We train MLPs on a synthetic regression dataset where
the target is a scalar-valued function defined by a large randomly initialized MLP, similar to the
student-teacher setting in [2]. In Figure 5 (bottom row), we observe qualitatively the same results as
in the GPT-2 experiments.

Together, these additional results suggest there is some degree of universality associated with our
findings on the effect of É, È, and ¿ on the compute-optimal scaling laws of neural networks that use
Einsums in place of dense matrices.
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Figure 6: BTT Mixture-of-Experts has significantly better compute-optimal scaling laws than
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compute observations for 8 and 16 experts.

5 Structured Mixture of Experts

In Section 4, we identified that Einsums with É = 0 and È = 1 perform the best, and É > 0 or
È < 1 lead to worse-than-dense performance. The most impactful parameter on the scaling laws
is É, which measures how many parameters an Einsum has compared to the FLOPs for an MVM.
Einsums that learn one parameter per FLOP perform significantly better than those that learn less
than one parameter per FLOP. Therefore, a natural question arises: can we design structures that
learn more than one parameter per FLOP, which we might expect will have even better scaling
laws? Doing so requires that not all parameters are used in an MVM, which necessitates a sparse
Mixture-of-Experts (MoE) like architecture [22, 7, 12]. Furthermore, we would like the structure
to be full-rank, i.e. È = 1. In the following section, we introduce such a structure and demonstrate
significant improvement over dense layers and the standard MoE architecture for training GPT-2.

5.1 More Parameters than FLOPs via Mixture of Experts

One natural candidate for constructing such a layer via an Einsum is to turn a BTT with BTT-rank E,
which involves a sum over the rank index Ä = 1, . . . , E :

Yϵϕ =
∑

³µÄ

BµϵϕÄA³µϕÄX³µ (2)

into a k-sparse sum:

Yϵϕ =
∑

Ä

gÄ
∑

³µ

BµϵϕÄA³µϕÄX³µ

︸ ︷︷ ︸

output of Ä-th expert

, (3)

where g ∈ R
E is a k-sparse vector so that only k out of E terms need to be computed. We

interpret k as the number of active experts and E as the total number of experts. We compute g
via a softmax over the top-k entries of the logits e produced by a (dense) linear gating function
e = Linear(X) ∈ R

E . There is no need to make this gating function structured because its cost is
negligible. We choose ¹AX = ¹ABX = ¹YB = ¹YAB = 1/2 so that each expert is full-rank. We
follow the common practice of using k = 2. The resulting BTT-MoE layer is a BTT with BTT-rank 2
(sum of two Monarch matrices) with input-dependent parameters. It is similarly straightforward to
construct structured MoE from other structures by sparsifying the sum over Ä with a gate. We use the
load-balancing loss to encourage equal utilization of all experts [22, 7, 23].

In contrast to the standard MoE architecture used in transformer language models, which uses a
sparse MoE for each entire feed-forward network (FFN) [22, 7, 12]:

Y =

E∑

i=1

giW
↓
iReLU(W↑

iX)
︸ ︷︷ ︸

output of i-th FFN expert

, (4)
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BTT-MoE learns an MoE in every single linear layer of the model (except the language modeling head)
and treats them equally, including the projection matrices WQ,WK,WV,WO in the attention

blocks [24]. It learns more fine-grained routing decisions among the experts, with
(
1
2E(E − 1)

)6M

possible combinations of the experts in a transformer with M blocks, compared to
(
1
2E(E − 1)

)M

for the standard MoE architecture.

5.2 Compute Efficiency Gains

In Figure 6, we show GPT-2 with BTT-MoE achieves better compute-optimal scaling laws compared
to the dense model as well as the standard MoE, with k = 2 and E ∈ {8, 16}. BTT-MoE consistently
outperforms the standard MoE and the dense model. We quantify and compare the compute efficiency
gains of BTT-MoE and standard MoE over dense models via the compute multiplier. A model with a
compute multiplier of ¼ means with C training FLOPs it achieves the same loss as a dense model
with ¼C training FLOPs. In Figure 6, we show BTT-MoE is significantly more compute-efficient
than the standard MoE for both E = 8 and E = 16. In particular, with E = 16 experts, BTT-MoE
achieves a compute multiplier of ¼ = 5.3±0.3, compared to ¼ = 4.1±0.3 for a standard MoE.

5.3 Effect of Structures
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Figure 7: Mean and std dev
of compute multipliers for
structured MoE. BTT is bet-
ter than low rank or dense.

In Figure 7 we show that replacing BTT-MoE with a sparse (k = 2)
sum of low-rank matrices (low-rank-MoE) or dense matrices (dense-
MoE) also yields a nontrivial compute multiplier (∼ 2×) over the
dense model, but is significantly less effective than BTT-MoE or even
the standard MoE.

While the poor relative performance of low-rank-MoE is expected,
this result shows that in addition to É = 0 and È = 1, ¿ < 1 is a
desirable property for the base structure in a structured MoE. Using a
dense structure with ¿ = 1 means the experts are not complementary
to each other since each one is able to represent the entire space of
dense matrices.

6 Scaling Optimization for Einsums

As prior work [19] has shown, the optimal initialization scales and learning rate depend heavily on the
structure of the linear layers and are critical for successfully training models with structured layers.
Fortunately, the theory of the Maximal Update Parameterization (µP) [26–28] and its application
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Figure 8: Einsums trained with µP achieve lower error and share an optimal base learning rate.
We plot test error of 4 layered MLP models on CIFAR-10, where the hidden layers are Einsums. We
vary the model widths in 64, 256, 1024 and 4096. The naive approach uses a global learning rate
independent of width or structure and initializes the Einsums parameters with unit variance.
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to various structured matrices in Qiu et al. [19] provides a template on how to reason about the
appropriate initialization and learning rate scales for all Einsums.

In short, µP states that for a dense matrix W ∈ R
din×dout , the optimal initialization standard

deviation scales as Ã = Θ(
√

min(din, dout)/d2in) and its learning rate as ¸ = Θ(1/din) if using
Adam. Furthermore, Qiu et al. [19] shows we can apply µP to structured matrices as long as we can
cast the MVM as a series of batched matrix multiplications (BMM). As shown in Appendix C, we
can indeed cast any Einsum as a series of BMMs and show that dAin = dXA, d

A
out = dYAdYABdAB,

dBin = dXBdXABdAB and dBout = dYB. As a result, we can compute the optimal scaling of

ÃA, ÃB, ¸
A, and ¸B. In particular, for Adam we have ¸A = Θ( 1

dXA

) and ¸B = Θ( 1
dXBdXABdAB

).
Figure 8 shows using µP leads to a stable optimal learning rate and better performance compared to
naively using a constant global learning rate and unit initialization variance. This property allows
us to transfer the learning rate between structures and model sizes, saving substantial compute for
hyperparameter tuning. For µP, the learning rate refers to that used by a dense model with width
64, which we transfer to the Einsum models of different widths and structures via the scaling rule
identified earlier (see details in Appendix C).

Finally, we discuss in Appendix C an alternative way to reason about the optimal learning rates
of Einsums via Riemannian SGD (RSGD) [3]. We analyze the effective learning rate prescribed
by RSGD at initialization for asymptotically large Einsums and find it often agrees with the µP
prescription derived above.

7 Conclusion

Going beyond prior works that study hand-crafted structured matrices on a case-by-case basis, we
introduce a continuous parameterization over the space of all structured matrices expressible as
Einsums. Using this parameterization, we measure and compare the compute-optimal scaling laws of
a wide range of known and novel structures, with the following key takeaways:

• Compute-optimal scaling laws of Einsums are primarily governed by the parameter-sharing
exponent É and the rank exponent È. Across tasks, we find all full-rank Einsums without
parameter sharing (i.e. full-rank BTTs) scale similar to dense, while the remaining vast
majority of Einsums consistently underperform dense as É increases or È decreases.

• Existing structured matrices do not significantly outperform dense in the compute-optimal
setting. While low rank, Tensor-Train, Monarch, and BTT have shown advantages over
dense in other settings, such as controlling for memory or model size, they generally perform
worse or similar to dense when controlling for training compute. However, there are also
instances in the compute-optimal regime where a full-rank structured representation with no
parameter sharing can outperform dense layers. This advantage is most likely due to the
ability to make wider structured layers for the same computational budget as narrower dense
layers, which can particularly benefit smaller vision models, as we show on CIFAR-5M.

• µP prescribes effective initialization and learning rate scaling for Einsums. Breaking an
Einsum down to a sequence of batched matrix multiplications, we extend prior work on
structure-aware initialization and learning rate based on µP to arbitrary Einsums.

• MoE over structured matrices is more efficient than standard MoE over entire FFNs. By
replacing every single dense linear layer with a sparse sum of structured matrices like BTT,
compared to standard MoE which operates over entire FFNs, we create a more efficient
MoE architecture, achieving over 5× savings in compute on language modeling relative
to dense. Scaling and improving the proposed structured MoE architecture are exciting
directions for future work.
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2118310, BigHat Biosciences, Capital One, and an Amazon Research Award.

10



References

[1] Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves l’Excellent, and
Clément Weisbecker. Improving multifrontal methods by means of block low-rank representa-
tions. SIAM Journal on Scientific Computing, 37(3):A1451–A1474, 2015.

[2] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining
neural scaling laws. arXiv preprint arXiv:2102.06701, 2021.

[3] Silvere Bonnabel. Stochastic gradient descent on Riemannian manifolds. arXiv 1111.5280,
2011.

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[5] Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning Fast
Algorithms for Linear Transforms Using Butterfly Factorizations. International Conference on
Machine Learning (ICML), 2019.

[6] Tri Dao, Beidi Chen, Nimit Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive Structured Matrices for
Efficient and Accurate Training. International Conference on Machine Learning (ICML), 2022.

[7] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research, 23
(120):1–39, 2022.

[8] Daniel Y. Fu, Simran Arora, Jessica Grogan, Isys Johnson, Sabri Eyuboglu, Armin W. Thomas,
Benjamin Spector, Michael Poli, Atri Rudra, and Christopher Ré. Monarch Mixer: A Simple
Sub-Quadratic GEMM-Based Architecture. Advances in Neural Information Processing Systems
(NeurIPS), 2023.

[9] Roger Grosse and James Martens. A Kronecker-Factored Approximate Fisher Matrix for
Convolution Layers. arXiv 1602.01407, 2016.

[10] Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson,
Heewoo Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive
generative modeling. arXiv preprint arXiv:2010.14701, 2020.

[11] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

[12] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

[13] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[14] Changwoo Lee and Hun-Seok Kim. Differentiable learning of generalized structured matrices
for efficient deep neural networks. arXiv preprint arXiv:2310.18882, 2023.

[15] Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In Workshop on Advancing Neural Network Training:
Computational Efficiency, Scalability, and Resource Optimization (WANT@ NeurIPS 2023),
2023.

[16] Preetum Nakkiran, Behnam Neyshabur, and Hanie Sedghi. The deep bootstrap framework:
Good online learners are good offline generalizers. arXiv preprint arXiv:2010.08127, 2020.

[17] I. V. Oseledets. Tensor-Train Decomposition. SIAM Journal on Scientific Computing, 2011.

11



[18] Andres Potapczynski, Marc Finzi, Geoff Pleiss, and Andrew Gordon Wilson. CoLA: Exploiting
Compositional Structure for Automatic and Efficient Numerical Linear Algebra. Advances in
Neural Information Processing Systems (NeurIPS), 2023.

[19] Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, and Andrew Gordon Wil-
son. Compute better spent: Replacing dense layers with structured matrices. International
Conference on Machine Learning (ICML), 2024.

[20] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language Models are Unsupervised Multitask Learners. OpenAI, 2019.

[21] Yunus Saatçi. Scalable inference for structured Gaussian process models. PhD thesis, Citeseer,
2012.

[22] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[23] Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. Jetmoe: Reaching llama2 performance
with 0.1 m dollars. arXiv preprint arXiv:2404.07413, 2024.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[25] Andrew Gordon Wilson, Elad Gilboa, Arye Nehorai, and John P. Cunningham. Fast Ker-
nel Learning for Multidimensional Pattern Extrapolation. Advances in Neural Information
Processing Systems (NeurIPS), 2014.

[26] Greg Yang and Edward J. Hu. Feature Learning in Infinite-Width Neural Networks. International
Conference on Machine Learning (ICML), 2021.

[27] Greg Yang and Etai Littwin. Tensor Programs IVb: Adaptive Optimization in the Infinite-Width
Limit. International Conference on Learning Representations (ICLR), 2023.

[28] Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor Programs V: Tuning Large
Neural Networks via Zero-Shot Hyperparameter Transfer. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[29] Greg Yang, James B. Simon, and Jeremy Bernstein. A Spectral Condition for Feature Learning.
Preprint arXiv:2310.17813, 2023.

[30] Qibin Zhao, Guoxu Zhou, Shengli Xie, Liqing Zhang, and Andrzej Cichocki. Tensor ring
decomposition. arXiv preprint arXiv:1606.05535, 2016.

12



Appendix Outline

• Appendix A shows specific examples of Einsums and their MVM computations.

• Appendix B shows the derivation for the taxonomy variables É, È and ¿.

• Appendix C discusses learning rate scaling details and connections between µP and Rie-
mannian SGD.

• Appendix D provides extended experiment results and experiment details.

• Appendix E discusses the generalization of our parameterization to Einsums of more than
two factors.

• Appendix F shows how to further improve performance by structuring the Einsum axes to
be compatible with the attention head structure in transformers.

• Appendix G comments on the hardware used in our experiments.

A Examples of Einsums

We explicitly show the expression for some common structures expressed as Einsums. Any index not
appearing in the expression has a size of 1 and is thus omitted.

Dense A one-factor Einsum would have been enough to represent dense, though one way to
represent it within a two-factor Einsum is as:

Yϕ =
∑

µϕ

BµϕAµϕXµ , (5)

which is an over-parameterization due to the Hadamard product BµϕAµϕ.

Low Rank

Yϵ =
∑

³ϕ

BϵÄAÄ³X³, (6)

Kronecker Product

Y¶ϵ =
∑

³´

B´ϵA³¶X³´ , (7)

Tensor-Train

Y¶ϵ =
∑

³´Ä

B´ϵÄA³¶ÄX³´ , (8)

Monarch
Yϵϕ =

∑

³µ

BµϵϕA³µϕX³µ (9)

Block Tensor-Train
Yϵϕ =

∑

³µÄ

BµϵϕÄA³µϕÄX³µ (10)

B Taxonomy Derivation

Here we present the derivation for the taxonomy variables (É, È, ¿). It is helpful to first reason
about the amount of compute required for calculating an Einsum, which will allow us to exclude
some uninteresting Einsums from consideration and thereby simplify our analysis. We only consider
two-factor Einsums representing a square matrix, but generalization to more factors and non-square
matrices is straightforward.

For reference, we show the general expression again:

Y¶ϵϕ =
∑

³´µÄ

B´µϵϕÄA³µ¶ϕÄX³´µ (11)
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Computational Complexity. There are three possible ways to compute Equation (11), depend-
ing on whether the first contraction happens between {A,B}, {A,X}, or {B,X}. The required

FLOPs † are Θ
(
d2+¹Ä

)
,Θ
(
d2+¹Ä−min(¹³,¹ϵ)

)
, and Θ

(
d2+¹Ä−min(¹´ ,¹¶)

)
respectively. The opti-

mal computational path depends on the entries of θ, and the optimal FLOPs F required is given by

F = Θ
(
d2+¹Ä−max {min(¹³,¹ϵ),min(¹´ ,¹¶)}

)
.

Removing the Exchange Redundancy. The factors A and B play an equivalent role in the Einsum
expression, so each distinct structure is represented by two vectors that correspond to relabelling A
and B to each other. To remove this redundancy, we can require that first summing with A is more
computationally efficient. Thus, we require

min(¹³, ¹ϵ) g min(¹´ , ¹¶), (12)

which also simplifies the FLOPs to F = Θ
(
d2+¹Ä−min(¹³,¹ϵ)

)
. To be more exact, we have F =

Äd2
(

1
d³

+ 1
dϵ

)

.

Degenerate Einsums. Since the overall Einsum is a linear operator on R
d, any Einsum that requires

more than Θ
(
d2
)

FLOPs to compute is degenerate in the sense that unnecessary computations are

performed. For example, one such Einsum could correspond to a factorization UV⊺,U ∈ R
d×r,V ∈

R
r×d where r k d. For convenience, we will also define an Einsum whose cost is equal to Θ

(
d2
)

as degenerate since it is no more efficient than a dense matrix. Given the expression for FLOPs, we
conclude that non-degenerate Einsum are those where

¹Ä < min(¹³, ¹ϵ). (13)

Intuitively, this requirement means that the rank dimension dÄ, i.e. the range of the index Ä connecting
A and B, cannot be set too high, since after some point it becomes more efficient to simply use a
dense matrix in place of the Einsum. In particular, we must have d³ > 1 and dϵ > 1 (except when
d = 1).

Compute Intensity Exponent, ¿. One defining characteristic of structured matrices is that the
FLOPs F for performing matrix-vector-multiplication (MVM) is sub-quadratic in d. Equivalently,
the compute intensity F/d, i.e. FLOPs for an MVM normalized by the dimension, is sublinear. In
our case, all non-degenerate Einsum have sublinear compute intensity. More precisely, we have
F/d = Θ(d¿), where ¿ = 1 + ¹Ä −min(¹³, ¹ϵ) takes value in [0, 1) assuming non-degeneracy. The
closer ¿ is to 1, the more a Einsum resembles a dense matrix and vice versa. ¿ = 0 corresponds to
low rank matrices with Θ(1) rank.

Rank Exponent, È. As we show in Appendix C.1, the Einsum can be computed via two batched
matrix multiplications where A acts as a matrix consisting of d´dµ blocks of d³ × d¶dϕdÄ matrices.

Thus, rank(A) = min(d, d´dµd¶dϕdÄ) = dmin(1,¹´+¹µ+¹¶+¹ϕ+¹Ä) as d³d´dµ = d. Similarly, we
have that B acting as a matrix consisting of d¶dϕ blocks of d´dµdÄ × dϵ matrices. Therefore we

have that rank(B) = dmin(1,¹´+¹µ+¹¶+¹ϕ+¹Ä). Since W is the product of A,B, and some reshape

operations (which are full-rank), rank(W) = dÈ is the minimum of rank(A) and rank(B) :

È = min(1, ¹´ + ¹µ + ¹¶ + ¹ϕ + ¹Ä)

= min(1, 2 + ¹Ä − ¹³ − ¹ϵ, ).

Note that, technically, when we write rank(M),M ∈ {A,B,W}, we mean the maximum pos-
sible rank of M when its parameters are learned. Otherwise the equalities will become upper-
bounds. For low-rank we have θ = (1, 0, 0, 0, 1, 0, ¹Ä) and hence È = ¹Ä. For dense we have
θ = (0, 0, 1, 0, 0, 1, 0) and hence È = 1. For Kronecker we have θ = (1/2, 1/2, 0, 1/2, 1/2, 0, 0)
and hence È = 1. For BTT we have È = min(1, ¹µ + ¹ϕ + ¹Ä).

†We use the more familiar term FLOPs as a stand-in for MACs (Multiply-Accumulate), even though 1 MAC
is technically 2 FLOPs.
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Parameter Sharing Exponent É. The number of learnable parameters N in a Einsum is simply

the sum of the elements in A and B, which works out to be N = dÄd
2
(

1
d³d¶

+ 1
d´dϵ

)

. Since the

FLOPs is F = dÄd
2
(

1
d³

+ 1
dϵ

)

, only Einsums with d¶ = d´ = 1, or equivalently ¹¶ = ¹´ = 0,

have parameters matching FLOPs. In general, the number of parameters per FLOP N/F = Θ(d−É)
with É = min(¹³ + ¹¶, ¹´ + ¹ϵ)−min(¹³, ¹ϵ) g 0.

The É = 0 subspace is of particular interest because any Einsum outside of this subspace has an
artificially limited expressivity per FLOP because it reuses each parameter multiple times. In this
sense, the É = 0 subspace is the space of maximally expressive Einsums that maximizes expressivity
per FLOP. We note that this subspace precisely corresponds to the Block Tensor-Train (BTT) structure
proposed in Qiu et al. [19], provided we allow a minor generalization of the original BTT structure so
that an axis connects the first factor back to the last factor when there are more than 2 factors, exactly
analogous to the generalization of the Tensor-Train structure to the Tensor Ring [30] structure.

C Scaling Optimization for Einsums

C.1 Learning Rate Scaling

In Section 6, we claimed that the Adam learning rates should be scaled as ¸A = Θ( 1
dXA

) and

¸B = Θ( 1
dXBdXABdAB

). Arriving at these scaling rules requires (1) expressing an Einsum as a

sequence of batched matrix multiplies (BMMs) and showing dAin = dXA, d
A
out = dYAdYABdAB,

dBin = dXBdXABdAB and dBout = dYB, and (2) applying results from Qiu et al. [19] on learning rate
scaling for structured matrices expressible in terms of BMMs. We now justify (1).

The general 2-factor Einsum

Y¶ϵϕ =
∑

³´µÄ

B´µϵϕÄA³µ¶ϕÄX³´µ (14)

can be computed in two steps. In step 1,

Z´µ¶ϕÄ =
∑

³

A³µ¶ϕÄX³´µ , (15)

which is a BMM with ´µ acting as batch dimensions, ³ the input dimension, and ¶ϕÄ the output
dimensions. So dAin = dXA, d

A
out = dYAdYABdAB. In step 2,

Y¶ϵϕ =
∑

´µÄ

B´µϵϕÄZ´µ¶ϕÄ, (16)

which is a BMM with ¶ϕ acting batch dimensions, ´µÄ input dimensions, and ϵ the output dimension.
So dBin = dXBdXABdAB and dBout = dYB, as wanted.

In our experiments, we apply the above scaling rule to transfer from a learning rate ¸ used by a dense
matrix with width d0 to learning rates for A,B as

¸A =
d0

2dXA

¸, ¸B =
d0

2dXBdXABdAB

¸, (17)

where the additional factor of two is to account for both A and B contributing updates to the output
of each layer, following Qiu et al. [19].

C.2 Connections between µP and Riemannian SGD

Riemannian SGD (RSGD) is an optimization technique that allows us to perform the equivalent of
SGD on a Riemannian manifold consisting of points {q} with a metric gq [3]. The updates of RSGD

is almost identical to SGD: q(t+1) = q(t) − ¸q g
−1
q(t)∇qL(q

(t)), except that the gradient is multiplied

by the inverse of the metric gq. In our case, we want to mimic training the Einsum parameters A and
B as if we were training W with SGD directly, even though we will never represent W explicitly.
Thus, we identify (flattened) (A,B) with q and specify its metric as the pull-back metric of the
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Euclidean metric gW = I on W, which is given by gq = J(q)⊺J(q) where J(q) = ∂W
∂q . The RSGD

updates to q is therefore

q(t+1) = q(t) − ¸q

(

J(q(t))⊺J(q(t))
)−1

∇qL(q
(t)).

Exactly computing the inverse metric would requireO(P 3) time, where P is the number of parameters
in A,B. It is, therefore, too expensive to run RSGD during training. However, we can efficiently
approximate the inverse metric at initialization in a way that is exact for asymptotically large matrices.
We compute J⊺J through three blocks J

⊺

AJA, J
⊺

BJB, and J
⊺

AJB and note that for a fixed θ as we

increase both din and dout, we have that J
⊺

AJA ≈ d´dϵÃ
2
BI, J

⊺

BJB ≈ d³d¶Ã
2
AI, and J

⊺

AJB ≈ 0
where ÃA and ÃB denote the initialization scales of A and B. Therefore we have

(J⊺J)−1 ≈

(
I/(d´dϵÃ

2
B) 0

0 I/(d³d¶Ã
2
A)

)

.

We can now identify Θ
(
1/(d´dϵÃ

2
B)
)

as ¸A and Θ
(
1/(d³d¶Ã

2
A)
)

as ¸B. If we further use the
initialization scales prescribed by µP as given in Section 6, we have

¸ARSGD = Θ

(

1

d´dϵ

d2´d
2
µd

2
Ä

min(dϵ, d´dµdÄ)

)

and ¸BRSGD = Θ

(
1

d³d¶

d2³
min(d³, d¶dϕdÄ)

)

.

It is now interesting to compare these scalings to the prescriptions of µP SGD. For SGD, µP proposes
to scale the learning rate as Θ(dout/din) [29] for dense matrices. Unlike in Adam, to extend µP to
Einsums, we need not only to replace din, dout with dAin , d

A
out, or dBin and dBout, but also scale down the

learning rate as Θ(1/d´) for A and Θ(1/d¶) for B. The final µP learning rates have two possibilities
depending on whether we consider A or B as the first layer. If we consider A as the first layer, then

¸AµP = Θ

(
1

d´

d´dµdÄ
d³

)

and ¸BµP = Θ

(
1

d¶

dϵ
d¶dϕdÄ

)

.

Evidently, the two approaches don’t always agree. However, they are identical when d³ =
dϵ, d´dµdÄ f dϵ, and d¶dϕdÄ f d³. In fact, many structures satisfy this condition. If we as-
sume the structure is symmetric, meaning its transpose can be represented with the same θ, i.e.

d³ = dϵ, d´ = d¶ , and dµ = dϕ, then the remaining conditions simplify to only dÄ f
d2³
d . Therefore,

any symmetric Einsum with ¹³ g 1/2 and ¹Ä f 2¹³ − 1 satisfy these conditions. Thus, for these
structures, µP SGD can be viewed as an approximation to RSGD that is valid at initialization in the
infinite-width limit. While we cannot establish a direct connection between RSGD and µP Adam,
which is what we use in our experiments and broadly in large-scale training, µP Adam is similar to
µP SGD in that it maximizes feature learning per layer [27]. The connection between µP SGD and
RSGD therefore indirectly provides an alternative justification for µP Adam.

D Experiments

D.1 GPT-2 with Original Vocabulary and Longer Context

In Figure 9, we show our findings in Section 4 translate to the more standard GPT-2 evaluation with a
longer sequence length of 512 and its original vocabulary of 50,257 tokens. We train models with
L = 12 layers up to the GPT-2 Small [20] size by increasing width d. We use Adam with a base
learning rate of 0.002 for a L = 3, d = 256 dense model, which is scaled to other models via µP.
Since the language modeling head contains a significant fraction of the parameters for models of this
scale, we replace all layers, including the head, with Einsums.

Qualitatively, Figure 9 differs from Figure 4 in two ways: 1) the scaling laws are less power law like
and show some curvature on a log-log scale, and 2) BTT with ¿ > 0 seems to perform better than
¿ = 0. We believe 1) is due to the increased context length and vocabulary size, making the loss
no longer follow a clean power law at the small scales we tested [13, 10]. This was an important
motivation for performing experiments with a smaller vocabulary size and context length in Section 4.
Similarly, we believe the increased vocabulary size and context length contributed to 2), as a larger
¿ implies at small scales a higher fraction of compute are in the transformer blocks rather than the
language modeling head, which likely improves performance. By contrast, in our setup in Section 4,
the model dimension d dominates the vocabulary size and context length, leading to less significant
finite-size effects.

16



1016 1017 1018

Compute (FLOPs)

3.0

4.0

5.0

Lo
ss

Full Space

Dense
0.0

0.5

1016 1017 1018

Compute (FLOPs)

3.0

4.0

5.0

Lo
ss

= 0

Dense
0.5

1.0

1016 1017 1018

Compute (FLOPs)

3.0

4.0

5.0

Lo
ss

= 0, = 1

Dense
0.5

0.8

Figure 9: The taxonomy parameters (É, È) explain differences in the Einsum scaling laws for
12-layer GPT-2 models with standard vocabulary (50,257 tokens) and a context length of 512.
Small É (no parameter sharing) and large È (full-rank) are necessary for a structure to perform well,
while variation in ¿ has a much smaller impact on performance.

D.2 Autoregressive Pixel Modeling on CIFAR-5M

We train 2 and 3 layer transformers with Adam using a base learning rate of 3e-3 for a width 64
dense model. The width ranges from 32 to 512 for dense and 32 to 1024 for Einsums. All models are
trained for 2 epochs with a batch size of 64. We subtract an estimated irreducible loss of 3.25 before
reporting the loss in Figure 5 (top row).

D.3 MLP Regression on Synthetic Data.

We train 3-layer MLP models with width d ∈ [64, 4096] for a maximum of 106 steps and a batch size
of 4096 on an effectively infinite synthetic dataset. The synthetic dataset is obtained by querying
a scalar-valued target function on R

8 with inputs drawn from a Gaussian distribution. The target
function is a randomly initialized target MLP with 6 layers and a hidden dimension of 1024. We
minimize the Mean-Squared-Error (MSE) loss. We train with Adam using a base learning rate of
1e-3 for a width 64 dense model. We report the raw MSE loss in Figure 5 (bottom row).

E Generalization to More than Two Factors

The generalization to more factors is easy to understand if we consider the set of edges that define
the Einsum E = {S ¦ {X,A,B,Y} : |S| g 2 and {X,Y} ̸¦ S}. For example, for three
factors, the edges that connect to X are {X,A} ´ i1, {X,B} ´ i2, {X,C} ´ i3, {X,A,B} ´
i4, {X,B,C} ´ i5 {X,A,C} ´ i6 and {X,A,B,C} ´ i7. The edges that connect to Y are
{Y,A} ´ j1, {Y,B} ´ j2, {Y,C} ´ j3, {Y,A,B} ´ j4, {Y,B,C} ´ j5 {Y,A,C} ´ j6
and {Y,A,B,C} ´ j7. The edges between the factors are {A,B} ´ r1, {A,C} ´ r2 and
{A,B,C} ´ r3. The expression for a three factor would be

Yj =
∑

i,r

Ai1i4i6i7j1j4j6j7r1r3Bi2i4i5i7j2j4j5j7r1r3Ci3i5i6i7j3j5j6j7r2r3Xi.

For more factors we follow the combinatorial procedure of listing the sets and adding an index based
on each edge in E .

F Exploiting the Attention Structure
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Figure 10: Exploiting attention
head structure improves compute-
efficiency by an average of 17%.

In self-attention, given an embedding vector x ∈ R
d, we

compute q = WQx, v = WVx and k = WKx. Af-
ter computing each of the q,k,v ∈ R

d vectors, they are
reshaped to produce one smaller vector per attention head:
qi → qhj , ki → khj , vi → vhj where h is an axis of size H,
the number of attention heads, and j is an axis of size d/H.

When replacing WQ,WK,WV with BTTs, it is therefore
more natural to have the BTT output axes ϵϕ coincide with hj
so the MVM is aware of the attention head structure rather than
potentially mixing different heads. Similarly, when replacing

WO with a BTT, it is most natural to have the BTT input axes
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³µ coincide with hj. In Figure 10, we show doing so slightly
improves compute efficiency by an average of 17% over naively
replacing all attention and FFN matrices with BTT, which cor-
responds to θ = (1/2, 0, 1/2, 0, 1/2, 1/2, 0) in Section 4.

G Hardware specifications

Our experiments in Section 4 are run on on A100 and H100 GPUs. The CIFAR-10 experiments in
Section 6 were run on RTX2080 Ti and RTX Titan GPUs.
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