
Proceedings of Machine Learning Research vol 247:1–70, 2024 37th Annual Conference on Learning Theory

Gap-Free Clustering: Sensitivity and Robustness of SDP

Matthew Zurek MATTHEW.ZUREK@WISC.EDU and Yudong Chen YUDONG.CHEN@WISC.EDU

Department of Computer Sciences, University of Wisconsin-Madison

Editors: Shipra Agrawal and Aaron Roth

Abstract
We study graph clustering in the Stochastic Block Model (SBM) in the presence of both large
clusters and small, unrecoverable clusters. Previous convex relaxation approaches achieving exact
recovery do not allow any small clusters of size o(

→
n), or require a size gap between the small-

est recovered cluster and the largest non-recovered cluster. We provide an algorithm based on
semidefinite programming (SDP) which removes these requirements and provably recovers large
clusters regardless of the remaining cluster sizes. Mid-sized clusters pose unique challenges to
the analysis, since their proximity to the recovery threshold makes them highly sensitive to small
noise perturbations and precludes a closed-form candidate solution. We develop novel techniques,
including a leave-one-out-style argument which controls the correlation between SDP solutions and
noise vectors even when the removal of one row of noise can drastically change the SDP solution.
We also develop improved eigenvalue perturbation bounds of potential independent interest. Our
results are robust to certain semirandom settings that are challenging for alternative algorithms.
Using our gap-free clustering procedure, we obtain efficient algorithms for the problem of clustering
with a faulty oracle with superior query complexities, notably achieving o(n2) sample complexity
even in the presence of a large number of small clusters. Our gap-free clustering procedure also
leads to improved algorithms for recursive clustering.
Keywords: stochastic block model, semi-random models, clustering with a faulty oracle, semidefi-
nite programming, sensitivity analysis, leave-one-out

1. Introduction

Graph clustering is a fundamental problem with various applications to the study of diverse real-
world networks, such as social, biological, and information networks. A standard approach for
benchmarking clustering algorithms is to consider probabilistic models for generating a graph
with a planted set of unknown, ground-truth clusters. Beyond their modeling power of practical
networks, the study of such models over the past decades has led to notable theoretical advancement
in the interface of combinatorial optimization, statistical learning, information theory and applied
probability, greatly enriching our understanding of computational and statistical tradeoffs. For a
survey of the algorithmic and theoretical work in this area, see Abbe (2018).

In this paper, we consider the canonical model called Stochastic Block Model (SBM), also known
as the Planted Partition Model (Holland et al., 1983; Condon and Karp, 2001). We focus on the
unbalanced clusters setting, formally defined below, where the planted clusters have different sizes.

As we discuss in greater details below, most existing results, with a few notable exceptions,
require all clusters to be sufficiently large or the existence of a gap between the large and small
clusters. The goal of this paper is to eliminate such assumptions.

© 2024 M. Zurek & Y. Chen.

ZUREK CHEN

2. Problem Setup and Prior Art

Let [n] := {1, . . . , n} be a set of n vertices partitioned into K unknown clusters V1, . . . , VK . We
observe a random graph on these vertices with adjacency matrix A ↑ {0, 1}n→n, where for two
numbers 1 ↓ p > q ↓ 0, and independently across all i ↔ j,

Aij ↗

{
Bernoulli(p), if i, j belong to the same cluster,
Bernoulli(q), if i, j do not belong to the same cluster.

and Aij = Aji for all i > j. In other words, p is the intra-cluster edge probability and q is the
inter-cluster edge probability. Note that p, q and K are allow to depend on n.

We let (s1, . . . , sK) = (|V1|, . . . , |VK |) be the cluster sizes, where the sizes are ordered as
s1 ↓ s2 ↓ . . . sK . Since all our algorithms and analysis do not rely on the ordering of the vertices,
we further assume, without loss of generality and for notational convenience, that the vertices are
ordered by their cluster membership, so that V1 = {1, . . . , s1}, V2 = {s1 + 1, . . . , s1 + s2}, and so
on. We encode the ground truth clustering using a matrix Y ↑

↑ {0, 1}n→n, defined by setting Y ↑
ij = 1

if and only if i and j belong to the same cluster. By our ordering assumption Y ↑ is block-diagonal
and has the form Y ↑ = diag (Js1→s1 , . . . , JsK→sK), where Jm→r denotes an all-ones matrix of size
m ↘ r. Note that the cluster sizes {si} correspond to the eigenvalues of the Y ↑. We assume that
p ↓ log n/n, a common assumption in the literature and known to be necessary for exact recovery.

2.1. Algorithms and Prior Results for Unbalanced SBM

A plethora of algorithms have been developed for graph clustering, and many of them enjoy rigorous
performance guarantees; see, for instance, McSherry (2001); Bollobás and Scott (2004); Chen et al.
(2012); Chaudhuri et al. (2012); Vu (2018); Abbe (2018), and the references therein. Nearly all
theoretical guarantees for the problem of exact recovery in the SBM require all clusters to be “large”,
typically of size !̃(

→
n). Under such an assumption, these algorithms recover all clusters. From

theoretical and practical standpoints, it is desirable to have algorithms which, despite the presence of
“small” clusters below this threshold, provably recover all sufficiently large clusters. While this is a
natural goal, establishing such a result is surprisingly nontrivial. Only a few existing results allow
the presence of small clusters, Ailon et al. (2013, 2015), Mukherjee et al. (2022), and Mukherjee and
Zhang (2022). Postponing the discussion of the spectral-based methods Mukherjee et al. (2022) and
Mukherjee and Zhang (2022) to after presenting our main theorem (in Section 3), we first discuss the
limitations of all existing convex-relaxation-based approaches which permit small clusters, including
Ailon et al. (2013, 2015).

For simplicity of presentation, in order to illustrate the limitations of all existing convex-
relaxation-based approaches, we present only the guarantees of own “warm-up” result which is of a
very similar (but slightly improved and much simpler) form to Ailon et al. (2013, 2015), and defer
discussion of the finer details of Ailon et al. (2013, 2015) to Section B.1. All our results are based on
solving the following trace-regularized semi-definite program (SDP):

Ŷ = argmax
Y ↓Rn→n

〈
Y,A≃

p+ q

2
Jn→n

〉
≃ ωTr(Y) (1a)

s.t. Y ↭ 0, 0 ↔ Yij ↔ 1, ⇐i ↑ [n], j ↑ [n] (1b)

where ω is a regularization parameter which will be specified later. We refer to (1) as the recovery
SDP. We note that this SDP and its variants, usually without the trace regularizer, are considered in

2

GAP-FREE CLUSTERING

many prior works; we refer to the survey Li et al. (2021) and the references therein, as well as Ames
(2014), Chen and Xu (2014), Cai and Li (2015), and Amini and Levina (2018).

Using this SDP, we can obtain the following recovery guarantee. In the sequel, we write an ↫ bn
or an = O(bn) if an ↔ Cbn, ⇐n for a universal numerical constant C > 0.

Theorem 1 (Informal version of Theorem 9) If two consecutive cluster sizes s > s satisfying

(1≃ s/s)2 (p≃ q)2s2/pn ↬ log n (2)

then with high probability the solution to the recovery SDP (1) with a suitable ω is of the form

Ŷ = diag
(
Js1→s1 , . . . , Js→s, 0s→s, . . . , 0sK→sK

)
. (3)

That is, all big clusters are exactly recovered and all small clusters are completely ignored.

Like Ailon et al. (2013, 2015), this result allows for small clusters, but additionally assumes there
exists a constant multiplicative gap between the sizes of large and small clusters.

We believe the essential limitation of both Theorem 1 and Ailon et al. (2013, 2015) that neces-
sitates a gap assumption is not fundamentally algorithmic, but rather the form of their guarantees.
Without assuming a gap in cluster sizes, there may exist clusters on the boundary of recoverability.
In different typical samples from the same SBM instance, the recovery SDP (1) solution may or
may not recover such clusters. Furthermore, the corresponding block of the SDP solution may not
be all-one nor all-zero, making it impossible to guarantee an SDP solution of the form (3). This is
demonstrated experimentally in Figure 1(b), where the largest cluster is recovered with all entries
equal to 1, the middle cluster is recovered but with a block which has entries between zero and one,
and the smaller clusters are ignored. Nonetheless, such a block-diagonal solution, albeit having some
non-binary values, suffices to recover the large and middle clusters. In our experiments, the SDP
solution always has this block-diagonal form regardless of the values of the cluster sizes. One might
then hope to rigorously prove this property, which is left as an open question in Ailon et al. (2015).

3. Our Contributions

We completely resolve the above question by showing the recovery SDP (1) returns a desired block-
diagonal matrix regardless of the distribution of cluster sizes. Our result completely eliminates the
gap assumption, guaranteeing recovery of large clusters in the presence of arbitrary middle and small
clusters. The middle, critically sized clusters greatly complicate the proof of this result. Not only
do we no longer have a simple closed-form candidate solution for which we can verify optimality,
but more significantly, threshold-sized clusters cause the SDP solution Ŷ to be extremely sensitive
to noise and thus unstable. In particular, as is seen both numerically and from our analysis, a small
perturbation to the graph or cluster sizes may cause a zero block in Ŷ to become near all-one, and
vice versa. We overcome these challenges to give a very detailed description of the SDP solution.
We believe our most important contributions are the ideas behind this analysis.

Algorithmically, the trace penalty term, which is ignored in most prior work, plays an important
role in the recovery SDP (1). This term is not needed when all clusters are large, in which case
the hard, entrywise constraint in (1b) is sufficient for controlling the diagional entries of Ŷ . In the
presence of small clusters, however, the trace penalty is essential for ensuring that the SDP solution
only captures clusters with sufficient signal and ignores noise, thus yielding a block-diagonal solution.

3

ZUREK CHEN

(a) Ground truth Y ↑ (b) Ŷ with sufficient ω (c) Ŷ with zero or small ω

Figure 1: SDP solutions and effects of regularization ω. (a): Ground truth clusters of sizes 300, 150,
and 50 (↘5). (b)&(c): Solutions to SDP (1) with different ω. Nonzero off-block-diagonal
entries are highlighted in pink; other entries shown in grayscale (white = 0, black = 1).

Figure 1 provides an experimental demonstration: Figure 1(c) uses an overly small ω and leads to
a solution with nonzero entries in the off-block-diagonals shown in pink, making the two largest
clusters nontrivial to recover. In contrast, Figure 1(b) shows a solution found with ω set sufficiently
large so that all off-block-diagonal entries are zero.

We now formally present our main result, which characterizes the solution to the recovery
SDP (1) in terms of the solutions to the following oracle SDPs, which are K smaller SDPs of the
same form as the recovery SDP except that the full adjacency matrix is replaced by each of the K
submatrices corresponding to only the within-cluster edges of each cluster: for k = 1, . . . ,K, let
A(k) = (Aij)i,j↓Vk ↑ Rsk→sk and define the kth oracle SDP:

Ŷ k = argmax
Y ↓Rsk→sk
Y ↭0,0↔Y↔1

〈
Y,A(k)

≃
p+ q

2
Jsk→sk

〉
≃ ωTr(Y). (4)

Of course the formation of the oracle SDPs requires knowledge of the ground-truth clustering
Y ↑, so they are only usable for analysis. Now we can state our main theorem.

Theorem 2 The following holds for some absolute constants B,B,B > 2: Fix m such that
m ↓ n and p ↓

logm
n . Set the regularization parameter ω = ε

→
pn logm + ϑ for ε ↓ B and

ϑ ↗ Uniform[0, 0.1]. With probability 1≃O(m↗3), the unique solution Ŷ to recovery SDP (1) is

Ŷ = diag
(
Ŷ 1, . . . , Ŷ K

)
,

where Ŷ 1, . . . , Ŷ K are the unique solutions to the K oracle SDPs (4). Furthermore, for each
k ↑ {1, . . . ,K}, we have rank Ŷ k

↑ {0, 1}, and

1. if p↗q
2 sk ↓

(
1 + 1

B

)
ε
→
pn logm, then Ŷ k = Jsk→sk = 11↘,

2. if p↗q
2 sk ↔

(
1≃ 1

B

)
ε
→
pn logm, then Ŷ k = 0sk→sk = 00↘,

3. if
(
1≃ 1

B

)
ε
→
pn logm < p↗q

2 sk <
(
1+ 1

B

)
ε
→
pn logm, then either Ŷ k = 0 or Ŷ k = ykyk↘

where yk ↓
1
2 entrywise.

4

GAP-FREE CLUSTERING

Theorem 2 states that the recovery SDP solution is block-diagonal, and the blocks matches the
oracle SDP solutions. We also precisely characterize the oracle SDP solutions, which all have rank
zero or one, and furthermore are guaranteed to be all-one if the cluster size sk satisfies

(p≃ q)sk ↬ ε
√
pn logm or equivalently (p≃ q)2s2k/pn ↬ logm. (5)

Comparing to the gap-dependent condition (2), there is no relative size gap term. With respect to
the critically-sized clusters, those satisfying case 3, their oracle solution may be zero, in which case
they are not recovered, but if the oracle solution is non-zero, it is all-positive, hence recoverable.
Even when the nodes are not ordered, one can easily postprocess the SDP solution Ŷ to recover the
nonzero diagonal blocks promised by the theorem as the off-diagonal blocks are all zero.

Remark 3 A few technical points about Theorem 2: Up to log factors and assuming p/q = O(1),
condition (5) is needed in all known polynomial-time algorithms even when all clusters have the
same size (Abbe, 2018; Li et al., 2021). We include an extra parameter m for the failure probability
to facilitate repeated application of the algorithm for recursive clustering and adaptive sampling.
The random perturbation ϑ is not practically necessary, but simplifies the theorem conclusions by
ensuring the oracle and recovery SDPs have unique solutions; it avoids the boundary situation that
ω1

(⇒⇑
A (k)

)
= ω lies exactly on the recovery threshold. The number (p+ q)/2 used in SDP (1) can

be replaced by other values in the interval (q, p) and thus be treated as a tuning parameter along
with ω; similar observations were in prior work (e.g., Chen et al., 2018; Amini and Levina, 2018).

We believe our most significant contributions are the ideas behind the proof of Theorem 2. With
a more extensive discussion given in the proof sketch in Section 4, here we briefly highlight some
key steps. The challenges are mainly associated with the analysis of the oracle SDPs for clusters near
the threshold of recovery (case 3 of Theorem 2). The crucial step is to show that the oracle SDP has
a rank-one solution, which is the case as long as the non-negativity constraints in (4) are non-binding.
Defining a relaxed oracle SDP by removing these constraints, we reduce the problem to showing that
the relaxed oracle SDP solutions are weakly correlated with individual rows of the random noise,
suggesting a leave-one-out-style (LOO) argument. However, the naive application of LOO ideas
does not work due to the instability of clusters near the recovery threshold—the removal of one row
of noise can drastically change the corresponding SDP solution. To overcome this challenge we
define modified LOO versions of the oracle SDPs, using an improved eigenvalue perturbation bound
which may be of independent interest. We hope that some proof techniques may be useful in more
generality for problems featuring mixtures of strong and weak signals without a gap between them.

Now we discuss Mukherjee et al. (2022) and Mukherjee and Zhang (2022), two recent works
which also allows the presence of small clusters. Their algorithms, based on spectral clustering, also
succeed without the assumption of a gap and recover clusters meeting similar to (5). In both cases,
their algorithms and analysis are completely different to our SDP relaxation approach, making our
work the first among a long line of convex-relaxation-based clustering methods to break the gap
assumption. Beyond providing a different and arguably conceptually simpler clustering technique,
our method inherits robustness properties generally unique to convex relaxation algorithms. We
elaborate on this point in the following section.

3.1. Semirandom Robustness

To the best of our knowledge, no prior work has considered the semirandom model (Feige and Kilian,
2001) in the presence of small clusters, but by virtue of our convex relaxation approach, we can

5

ZUREK CHEN

tackle this challenging setting. We first define a semirandom model for the small cluster regime. We
generate an adjacency matrix A≃ as before, but now allow a semirandom adversary to construct the
observed adjacency matrix A ↑ {0, 1}n→n by changing A≃ arbitrarily but restricted such that:

1. For any i, j ↑ [n] such that i, j are in different clusters, Aij ↔ A≃
ij .

2. For any i, j ↑ [n] such that i, j are in the same cluster k, if p↗q
2 sk ↓

3
2B

→
pn log n then

Aij ↓ A≃
ij , otherwise Aij = A≃

ij .

Note B is the constant appearing in Theorem 2. Thus the semirandom adversary is allowed to
arbitrarily delete edges between vertices of different clusters, and allowed to arbitrarily add edges
within large clusters. We refer to this setting as the large cluster semirandom model.

The above model includes a still challenging heterogeneous setting as a special case: Suppose
that for each i, j ↑ [n] such that i and j are members of distinct clusters, there exist numbers qij = qji
such that 1 ↓ p > q ↓ qij ↓ 0, and that A is sampled such that independently across all i ↔ j,

Aij ↗

{
Bernoulli(p), if i, j belong to the same cluster,
Bernoulli(qij), if i, j do not belong to the same cluster.

By a coupling argument, there exists an adversary under which A has this distribution (Chen et al.,
2014).

Despite seemingly easing the clustering task, the semirandom model disrupts many local struc-
tures of the SBM, foiling algorithms dependent on such structures. For instance, under the standard
SBM, the expected degree of a node i in cluster k would satisfy the identity

∑
j↓[n] EAij =

psk + q(n ≃ sk), in which case the observed degree of node i can be used to estimate the cluster
size sk. Mukherjee et al. (2022) use such a subroutine for estimating the largest cluster size (and
the algorithm of Mukherjee and Zhang (2022) also requires knowledge of the largest cluster size
but they do not discuss its estimation). Under the large cluster semirandom SBM, such procedures
would not directly work. In contrast, the SDP (1) and our same Theorem 2 continue to work:

Theorem 4 Under the large cluster semirandom SBM, Theorem 2 holds with ε = B and m = n.

We prove Theorem 4 in Section F, but it follows easily from the observation that the semirandom
adversary cannot change the optimal solution of the SDP (1). Similar phenomena, that proofs for
the SDP relaxation approach generalize (often automatically) to heterogeneous or semi-random
generative models, have been observed in the literature and recognized as a testament of the robustness
of the SDP approach; see Moitra et al. (2016); Amini and Levina (2018) and the references therein.
Although the above large cluster semirandom model excludes perturbations to small clusters, all
prior work on the semirandom model excluded the presence of small clusters whatsoever. Thus the
large cluster semirandom adversary strictly generalizes previous work, and so we believe Theorem 4
is an important step in developing robust algorithms for unbalanced community detection.

3.2. Recursive Clustering

Theorem 2 demonstrates that we can recover sufficiently large clusters even in the presence of
arbitrarily-sized smaller clusters. As first recognized in Ailon et al. (2015), this allows for the use of a
recursive clustering procedure: whenever we recover some clusters, we can remove the corresponding
nodes from the graph, thereby eliminating some noisy entries and lowering the detection threshold

6

GAP-FREE CLUSTERING

for another application of the recovery procedure. Specifically in our case, recovering more nodes
enables us to lower the regularization parameter ω. We can thus repeatedly apply our clustering
algorithm to uncover smaller and smaller clusters, until no more can be found. We emphasize that
this recursive clustering procedure operates using only one sample A from the SBM.

Here we informally discuss our recursive clustering results, and defer detailed presentation and
comparison with Ailon et al. (2015) to Subsection B.3. Ailon et al. (2015) consider a setting where
n ⇑ ⇓ and p, q are constant. They recover all but o(n) nodes via a recursive clustering procedure,
but since their clustering subroutine requires a multiplicative gap between cluster sizes, they can only
accommodate a total number of clusters K ↫ log n to ensure that a sufficient gap remains after each
round. By contrast, our gap free result recovers n≃ o(n) nodes even if K is polynomially large in n:

Theorem 5 (Informal version of Theorem 10) Suppose that K ↫ n0.5↑ω
⇐
logn

for some ϖ < 0.5. Then
with high probability, our Algorithm 1 recovers all but O(n1↗2ω) nodes.

3.3. Clustering With a Faulty Oracle

The problem of clustering with a faulty oracle was introduced by Mazumdar and Saha (2017) and
has since received significant attention. It can be viewed as an adaptive sampling version of the
SBM, where we try to recover clusters by querying o(n2) individual entries of the adjacency matrix.
Formally, we assume there exist n vertices partitioned into K unknown clusters V1, . . . , VK of
different sizes. For some bias parameter ϑ > 0, we assume there exists a faulty clustering oracle O

which, upon being queried with a pair of vertices (i, j), returns an answer distributed as

O(i, j) ↗

{
Bernoulli(1/2 + ϑ/2), if i, j belong to the same cluster,
Bernoulli(1/2≃ ϑ/2), if i, j do not belong to the same cluster.

Answers are independent for different pairs, and repeating the same query produces the same answer.
Clustering with a faulty oracle has several important applications, such as crowdsourced entity
resolution and edge prediction in social networks. We refer to Mazumdar and Saha (2017) for more
discussion, and refer to Peng and Zhang (2021) and Mukherjee et al. (2022) for more in-depth
comparison of prior work. We summarize existing algorithms which are computationally efficient
and work for general K in Table 1, and defer more comments to Subsection B.4.

As identified by Mukherjee et al. (2022), all prior algorithms (except that of Mukherjee et al.
(2022)) fail when the number of clusters K is large. In particular, K = !(n1/4) causes all algorithms
in the first 5 rows of Table 1 to have sample complexity !(n2) and a recovery threshold size of !(n),
with smaller K still presenting issues for some algorithms. With a gap-free clustering subroutine, we
provide an algorithm with a different type of guarantee which circumvents the above issues under
large K. Letting s be an input parameter, our Algorithm 2 can recover all clusters of size at least s,
and for an appropriate choice of s this leads to an o(n2) sample complexity:

Theorem 6 There exist absolute constants C1, C2 such that for any parameter s ↓ C2

⇐
n logn
ε , by

setting ϱ = C2
n logn
s2ε2 , with probability at least 1≃O(n↗3), Algorithm 2 recovers all clusters of size

at least s with query complexity O
(
n2

s
logn
ε2 + n4

s4
log2 n
ε4

)
.

We formally define Algorithm 2 and give further discussion in Section B.4. All proofs for this section
are provided in Section E. Note the constant C1 is used within the algorithm. Algorithm 2 requires a

7

ZUREK CHEN

Query Complexity Threshold Reference
O
(
nK logn

ε2 +nK2 logn
ε4 ⇔

K5 log2 n
ε8

)
!
(
K4 logn

ε2

)
Mazumdar and Saha (2017)

O
(
nK logn

ε2 + K4 log2 n
ε4

)
!
(
n
K

)
Peng and Zhang (2021)

O
(
nK logn

ε2 + K10 log2 n
ε4

)
!
(
K4 logn

ε2

)
Peng and Zhang (2021)

O
(
n(K+logn)

ε2 + K8 log3 n
ε4

)
!
(
K4 logn

ε2

)
Xia and Huang (2022)

O
(
nK logn

ε2 +K9 logK log2 n
ε12

)
!
(
K4 logn

ε6

)
Pia et al. (2022)

O
(
nK logn

ε2 + K5 log2 n
ε4

)
!
(
K2 logn

ε2

)
Our Thm. 8

O
(
n
s
n logn
ε2 + n4

s4
log2 n
ε4

)
1 s Mukherjee et al. (2022), Our Thm. 6

Table 1: Comparison of algorithms for clustering with a faulty oracle which are computationally
efficient and work for general K.

user-specified target cluster size s, but by using an adaptive resampling procedure, we can obtain the
following instance-dependent query complexity without any prior knowledge of cluster sizes. Recall
that s1 is the largest cluster size.

Theorem 7 There exist absolute constants C1, C2, C3 such that as long as s1 ↓ C2

⇐
n logn
ε , with

probability at least 1 ≃ O(n↗2), Algorithm 3 recovers a cluster of size at least s1
C3

with sample

complexity O
(
n logn

ε2 + n4

s41

log2 n
ε4

)
.

We present Algorithm 3 in Section B.4. The strategy of obtaining instance-dependent query
complexity using adadptive sampling has a crucial reliance on the gap-free recovery guarantee of
Theorem 2, since our objective is to sample minimally so that only the largest cluster is recoverable,
meaning the recovery procedure must not be sensitive to the presence of slightly smaller but still
large clusters. We therefore hope that Theorem 2 lays the foundation for future instance-dependent
algorithms for clustering with a faulty oracle, particularly in unbalanced cluster size settings.

Even if the number of clusters K is small, by using our Theorem 2 instead of gap-requiring clus-
tering subroutines, we obtain the following result which improves previous query complexities and
recovery thresholds, while also having a substantially simpler algorithm and proof. The Algorithm 4,
along with further discussion of this result, is presented in Section B.4.

Theorem 8 With probability at least 1≃O(n↗2), Algorithm 4 recovers all clusters of size at least
!
(
K2 logn

ε2

)
with query complexity O

(
nK logn

ε2 + K5 log2 n
ε4

)
.

3.4. Eigenvalue Perturbation Bounds

As elaborated in the proof sketch in Section 4, to overcome the instability of threshold-size cluster or-
acle SDP solutions, we modify standard leave-one-out techniques by also changing the regularization
strength. This requires eigenvalue perturbation bounds which improve upon existing results and may
be of independent interest. Here we compare our results to existing work Eldridge et al. (2018) in a
simplified setting, and present the full versions, along with more background and detailed comparison

8

GAP-FREE CLUSTERING

in our clustering context, in Section B.5. Let M,H ↑ Rn→n be symmetric matrices, viewing H
as a perturbation, and let v1 be a top eigenvector of M . The classical Weyl’s inequality gives that
|ω1(M +H)≃ ω1(M)| ↔ ↖H↖op . As argued by Eldridge et al. (2018), one can sometimes obtain a
bound of |v↘1 Hv1|, which can be significantly smaller than ↖H↖op when H is a random perturbation.
Assuming an eigengap ω1(M)≃ ω2(M) ↓ 2 ↖H↖op, Eldridge et al. (2018) show

ω1(M +H) ↔ ω1(M) + v↘1 Hv1 +
2 ↖H↖

2
op

ω1(M)≃ ω2(M)
(6)

Under this same assumption, our Theorem 12 improves this to

ω1(M +H) ↔ ω1(M) + v↘1 Hv1 +
2 ↖Hv1↖

2
2

ω1(M)≃ ω2(M)
. (7)

When H is random, we often have ↖Hv1↖2 ↙ ↖H↖op, making (7) a substantial improvement.

Notation For an n ↘ n matrix M , M (ij) is the si ↘ sj submatrix obtained by deleting all rows
and columns not associated with cluster i and all columns not associated with cluster j. Let
M (i) = M (ii). For a vector v ↑ Rn, v(i) ↑ Rsi is obtained by deleting all entries not associated with
cluster i. We use Mij and vi to denote the entries of M and v. The convention is that v(i)j = (v(i))j .
For two matrices X and Y , ∝X,Y ′ :=

∑
ij XijYij denotes their inner product and X ∞ Y their

element-wise product. ↖X↖op is the largest singular value of X; ↖X↖⇒ := maxi,j |Xij |. Denote
by diag (M1, . . . ,Mm) a block-diagonal matrix with diagonal blocks M1, . . . ,Mm. We use 1m to
denote a length-m vector of all ones, occasionally dropping subscripts.

4. Proof Outline of Main Theorem

In this section, we sketch proof of Theorem 2. The general strategy is a primal-dual witness approach:
we construct a candidate primal solution to the recovery SDP (1) as well as dual variables which
certify its optimality. The construction relies on showing that the oracle SDPs (4) have rank-one
and “well-spread” solutions, which is most challenging for the mid-size oracle blocks. As detailed
below, we start by observing the rank-one property holds if the lower-bound constraints Ŷ k

↓ 0 are
non-binding, which is in turn closely related to controlling the correlation between the oracle SDP
solution and each row of the oracle noise matrix W (k). This suggests a leave-one-out-style argument,
where the correlation strength is quantified by the change of the solution when a row of W (k) is left
out. However, due to the arbitrary proximity of the mid-size clusters to the recovery boundary, the
standard argument of zeroing one row of noise (see, e.g., Zhong and Boumal (2018)) may have a
drastically different solution. To remedy this issue, we also modify the regularization strength, and
the correct modification requires improved eigenvalue perturbation bounds in order to ensure that the
leave-one-out solution and the oracle SDP solution are suitably close.

In this sketch we simply set m = n. Our regularization parameter ω will be at least ε
→
pn log n

for some ε which is a fixed absolute constant which we can make arbitrarily large. We will write ς in
place of terms which are ∈

1
ϑ , which may be multiple (unequal) terms in the same expression.

Setting up primal-dual witness argument We seek to show the solution is block-diagonal with
support contained within that of the ground truth Y ↑, but we do not have closed forms for each block.

9

ZUREK CHEN

This motivates us to consider the K oracle SDPs (4) associated with each cluster and combine their
respective solutions Ŷ 1, . . . , Ŷ K to form our candidate solution Ŷ = diag(Ŷ 1, . . . , Ŷ K).

To show optimality of Ŷ to the recovery SDP, it suffices to find nonnegative dual variables
U,L ↑ Rn→n satisfying the KKT conditions:

U ∞
(
Ŷ ≃ Jn→n

)
= L ∞ Ŷ = 0,

⇒⇑
A ≃ ωI ≃ U + L ⊜ 0,

(⇒⇑
A ≃ ωI ≃ U + L

)
Ŷ = 0. (8)

On the other hand, each oracle SDP solution Ŷ k must satisfy its own similar KKT conditions:
there exist nonnegative dual variables Uk, Lk

↑ Rsk→sk which, together with the oracle block
⇒⇑
A (k), satisfy similar equations as (8). To find a solution for the recovery conditions (8), we can
set U = diag(U1, . . . , Uk), and it remains to choose the non-block-diagonal entries of L. This
choice cannot be made without first gaining more detailed information about the oracle solutions Ŷ k,
particularly that they are rank-one and “well-spread.” The reasons will be made more clear once we
fully construct L, but for now we can motivate these requirements with the following observations:
Suppose for simplicity that K = 2. The second equation in the oracle SDP version of (8) guarantees
that each unit norm eigenvector v ↑ Rs1 of Ŷ 1 will satisfy (

⇒⇑
A (1)

≃ U1 + L1)v = ωv. Now letting
v ↑ Rn be a zero-padded version of v such that v(1) = v, we will have

(
⇒⇑
A ≃ U + L

)
v =

[
⇒⇑
A (1)

≃ U1 + L1 ⇒⇑
A (12) + L(12)

⇒⇑
A (21) + L(21) ⇒⇑

A (2)
≃ U2 + L2

] [
v
0

]
=

[
ωv(⇒⇑

A (21) + L(21)
)
v

]
. (9)

The right hand side has norm at least ω, so the only way to satisfy the last equation in (8) is for(⇒⇑
A (21) + L(21)

)
v = 0. Therefore, each eigenvector (corresponding to a nonzero eigenvalue) of Ŷ 1

constrains L(21), and in order for the entries of
⇒⇑
A (21)v =

(
≃

p↗q
2 Js2→s1 +W (21)

)
v to concentrate

around ≃
p↗q
2 so that we may choose L(21)

↓ 0, we will need ↖v↖⇒ to be sufficiently small.

Analyzing oracle SDPs Now we can discuss how to establish these facts about the oracle SDPs.
Fix a cluster k. If the signal p↗q

2 sk is sufficiently small or large, everything is relatively simple. If
p↗q
2 sk ↔ (1≃ ς)ω, the top eigenvalue of

⇒⇑
A ≃ ωI will be negative, so Ŷ k will be zero. If p↗q

2 sk ↓

(1+ ς)ω, we can apply the gap-dependent recovery Theorem 9 to guarantee that Ŷ k = Jsk→sk (since,
with only one cluster, we need not worry about smaller clusters being sufficiently small). This leaves
the most interesting mid-size case, where p↗q

2 sk is within a small multiple of ω.

Showing relaxed oracle SDP has rank-one solution In this case, there is no closed-form candidate
for Ŷ k independent of the realization of A; entries may be neither 0 nor 1. Experimentally, when ω is
sufficiently large, the oracle solutions have no zero entries (unless the entire block is zero), meaning
the non-negativity constraints are non-binding. We consider the oracle SDP (4) with these constraints
removed, and refer to the resulting program the Relaxed Oracle SDP. A key simplification in the
relaxed oracle SDP is that the last two conditions in the oracle SDP version of (8) become

⇒⇑
A (k)

≃ ωI ≃ diag(uk) ⊜ 0sk→sk ,
(⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
Y

k
= 0sk→sk . (10)

Since
⇒⇑
A (k) = p↗q

2 J + W (k), that is a noisy perturbation of a rank-one matrix, and also since
diag(uk) ↭ 0, if ω >

W (k)


op then we will be guaranteed that
⇒⇑
A (k)

≃ ωI ≃ diag(uk) has all
eigenvalues strictly negative except for at most one (which by first equation in (10) must then be
equal to zero). Thus we can combine this with the fact that Y k ↭ 0sk→sk and second equation in (10)

10

GAP-FREE CLUSTERING

to conclude that Y k must have rank zero or one. Thus we can write Y
k
= yy↘ (choosing the sign

of y so that 1↘y ↓ 0). We note that this step is somewhat related to Sagnol (2011) which shows a
similarly structured SDP has low-rank solution, but Sagnol (2011) assumes that the objective matrix
is low-rank, while we instead use the fact that it has a low number of positive eigenvalues.

Setting up leave-one-out technique to control noise correlation To justify using the relaxed
oracle SDP, we must show that Y k or equivalently y are elementwise-non-negative, in which case
the relaxed oracle SDP solution will also be feasible for the oracle SDP, and therefore the optimal
solution for the oracle SDP will be Y

k
= yy↘. This is easy to check when ω1(

⇒⇑
A (k)) < ω, since

then Y
k
= 0sk→sk , so we can focus on the case where ω1(

⇒⇑
A (k)) > ω and Y

k is nonzero. Now we
argue why this reduces to bounding the correlation between y and the rows of the noise matrix W (k).

Since the argument is identical for all entries, we focus on showing that y1 ↓ 0. If y1 = 1
then we are done, and otherwise either y1 ↑ (≃1, 1) so uk1 = 0, or y1 = ≃1 and then ≃uk1y1 ↓ 0.
By using the fact that Y k is rank-one and rearranging the optimality condition (10), we obtain
y1 ↓

1
ϖ

(p↗q
2 1↘y + w↘y

)
, where w↘ is the first row of W (k). Since in a mid-size cluster (1≃ς)ω ↔

p↗q
2 sk ↔ (1+ς)ω, and it is straightforward to show 1↘y ↓ s(1≃ς), the first term on the RHS is close

to one. Therefore it suffices to show that w and y are uncorrelated, specifically that
w↘y

 ↫ ςω.
The entries of w are bounded by 1 and each have variance ↔ p, while y has ↖y↖2 ↔

→
sk

and ↖y↖⇒ ↔ 1, so if they were independent we could apply Bernstein’s inequality to concludew↘y
 ↫ →

psk log n ↔ ςω. The challenge is that they are not independent. Furthermore, naively
bounding

w↘y
 ↔ ↖w↖2 ↖y↖2 ↫ (

→
psk)(

→
sk) does not work, because this bound can be much

larger than ω = ε
→
pn log n. Still, the guiding intuition is that since y needs to depend on all rows

of W (k), it should not be strongly correlated with any single row. This is the standard motivation
for the leave-one-out technique: to formalize this intuition, we can form a LOO relaxed oracle SDP
where we set the noise in the first row and column of

⇒⇑
A (k) to zero, and let its solution (which is also

rank-one) be ỹỹ↘. Then ỹ will be independent of w, but we might hope it will also be very close to
y, two facts which we could combine to show |w↘y| ∋ |w↘ỹ| ↫ →

psk log n.
Due to the extreme noise sensitivity inherent to the mid-size clusters, this strategy will not work:

after leaving out noise to get Ã, we may have ω1(Ã) < ω (even though ω1(
⇒⇑
A (k)) > ω), which

means we will have solution ỹỹ↘ = 0sk→sk for the LOO relaxed oracle SDP. In simpler terms, the
usual LOO solution ỹ might be very different from y. To overcome this issue, we will slightly
reduce the regularization parameter ω for the LOO problem, so that ω1(Ã) > ω̃. Of course, if ω̃ is
too small then ỹ might be significantly different from y. Existing eigenvalue perturbation bounds
from (Eldridge et al., 2018, Theorem 6) are too large to use in our remaining arguments, but our
Theorem 12 gives a much smaller bound which ensures ω̃ is sufficiently close to ω. For the concrete
comparison between these two bounds in our setting, see Section B.5.

Showing leave-one-out solution is close to relaxed oracle SDP solution With this resolved, we
write y = ϖỹ + φt where t is a unit vector orthogonal to ỹ. It is easy to show |ϖ ≃ 1| ↫ ς. We
use this decomposition is because there is a natural method to bound the norm of the rejection
φ =

y ≃ projỹ y

2
. One interpretation of Lagrangian relaxation is that the optimal dual variables

provide “bonuses” subtracted from the objective values of points which satisfy constraints, while
preserving the optimal solution and the optimal value. Forming the Lagrangian for the LOO
relaxed oracle SDP (after converting to a minimization problem for consistency with optimization
conventions), the objective becomes L

(
Y, ũ, P̃

)
= ≃


Ã(k)

≃ω̃I, Y

+∝diag(ũ), Y ≃ I′+


≃P̃ , Y


,

11

ZUREK CHEN

where P̃ = ≃(Ã≃ ω̃I ≃ diag(ũ)) is the dual variable satisfying the KKT conditions corresponding
to the PSD constraint Y ↭ 0 (which does not appear in other arguments because we eliminate it
using the stationarity condition).

Now using optimality of ỹỹ↘ and feasibility of yy↘, we can derive ∝P̃ , yy↘′ ↔ ≃∝Ã≃ω̃I, yy↘≃

ỹỹ↘′. Similar to our earlier arguments, we can show that P̃ ỹ = 0, while all other eigenvalues of P̃
are positive and at least (1≃ ς)ω. Thus the bonus term directly measures y ≃ projỹ y and is at least
(1≃ ς)ωφ2. We would like the RHS to involve the difference between Ã and

⇒⇑
A (k) (which we know

is small), so we can add the term ≃∝
⇒⇑
A (k)

≃ ωI, ỹỹ↘ ≃ yy↘′ which is non-negative because it is the
suboptimality of ỹỹ↘ for the relaxed oracle SDP. This yields the final perturbation bound


P̃ , yy↘


↔

(
Ã≃ ω̃I

)
≃
(⇒⇑
A (k)

≃ ωI
)
, ỹỹ↘ ≃ yy↘


. (11)

By bounding the RHS of (11) in terms of φ and combining with our earlier arguments, we obtain
a relationship which implies that φ ↫ ς. We note that this step is the key location where we must
use the improved eigenvalue perturbation bound on |ω≃ ω̃|. Because this perturbation bound (11) is
essential for controlling the difference between y and ỹ, we hope that our explanation of the simple
underlying principles could be useful for other settings involving leave-one-out analysis.

Wrapping up, while we could use our bounds on ϖ and φ to show |w↘y| ↫ ςω, we simply use the
fact ỹ1 ↓ 1≃ς since there is no noise in the first row, so y1 ↓ ϖỹ1≃|φt1| ↓ (1≃ς)(1≃ς)≃ς ↓ 1≃ς.
This proves that the oracle SDP solution Ŷ k is rank-one (when nonzero) for mid-size clusters.

Constructing dual variables to complete primal-dual witness argument Now we can complete
the proof by constructing L which satisfies the KKT conditions of the recovery SDP (8) as outlined
in the beginning of this proof sketch. We discuss one final technical consideration. Consider
again for simplicity the case that there are K = 2 clusters. Above, we argued using (9) why
it was essential for the non-block-diagonal entries of L to be set in such a way that whenever
yy↘ is a non-zero solution for the first oracle SDP, then the zero-padded vector y/ ↖y↖2 ↑ Rn

(satisfying y(k) = y) is an eigenvector of
⇒⇑
A + L ≃ U . Even when the first oracle SDP is zero

and we have U1 = L1 = 0, if the first cluster is near the recovery threshold, it is possible to have
ω1

(⇒⇑
A (k)

)
= (1 ≃ ς)ω. Now letting v ↑ Rs1 be the top eigenvector of

⇒⇑
A (1)

≃ U1 + L1 =
⇒⇑
A (1)

(and v ↑ Rn its zero-padded version), we have a nearly identical situation to that in (9) because
(⇒⇑
A ≃U+L

)
v =


(1≃ ς)ωv

(⇒⇑
A (21) + L(21)

)
v
↘

. The vector on the right hand side has norm at

least close to ω, which again places a constraint on our choice of L(21) as we will need to ensure that
↖(
⇒⇑
A (21)+L(21))v↖2 is very small. For this reason, we will treat clusters which are slightly below the

recovery threshold identically to how we treat clusters which have nonzero oracle solutions (and thus
are recovered), except we must use the top eigenvector of

⇒⇑
A (k) instead of the y from the kth oracle

solution yy↘ (which, by the oracle SDP version of (8), is a top eigenvector of
⇒⇑
A (k)

≃ Uk + Lk).

Acknowledgments

Y. Chen and M. Zurek were supported in part by National Science Foundation grants CCF-2233152
and DMS-2023239. We thank Lijun Ding and Yiqiao Zhong for inspiring discussion.

12

GAP-FREE CLUSTERING

References

Emmanuel Abbe. Community Detection and Stochastic Block Models: Recent Developments. Jour-
nal of Machine Learning Research, 18(177):1–86, 2018. URL http://jmlr.org/papers/
v18/16-s480.html.

Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:
Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pages 670–688. IEEE, 2015.

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block
model. IEEE Transactions on information theory, 62(1):471–487, 2015.

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector analysis
of random matrices with low expected rank. arXiv preprint arXiv:1709.09565, 2017.

Emmanuel Abbe, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. Entrywise eigenvector analysis
of random matrices with low expected rank. The Annals of Statistics, 48(3):1452–1474, June 2020.
ISSN 0090-5364, 2168-8966. doi: 10.1214/19-sAOS1854. Publisher: Institute of Mathematical
Statistics.

Naman Agarwal, Afonso S Bandeira, Konstantinos Koiliaris, and Alexandra Kolla. Multisection
in the stochastic block model using semidefinite programming. In Compressed Sensing and its
Applications: Second International MATHEON Conference 2015, pages 125–162. Springer, 2017.

Nir Ailon, Yudong Chen, and Huan Xu. Breaking the small cluster barrier of graph clustering. In
International Conference on Machine Learning, pages 995–1003, 2013.

Nir Ailon, Yudong Chen, and Huan Xu. Iterative and active graph clustering using trace norm
minimization without cluster size constraints. The Journal of Machine Learning Research, 16(1):
455–490, 2015.

Brendan P. Ames. Guaranteed clustering and biclustering via semidefinite programming.
Mathematical Programming: Series A and B, 147(1-2):429–465, October 2014. ISSN
0025-5610. doi: 10.1007/s10107-s013-s0729-sx. URL https://doi.org/10.1007/
s10107-s013-s0729-sx.

Arash A. Amini and Elizaveta Levina. On semidefinite relaxations for the block model. The
Annals of Statistics, 46(1):149–179, February 2018. ISSN 0090-5364, 2168-8966. doi: 10.1214/
17-sAOS1545. Publisher: Institute of Mathematical Statistics.

Afonso S Bandeira and Ramon Van Handel. Sharp nonasymptotic bounds on the norm of random
matrices with independent entries. 2016.

B. Bollobás and A. D. Scott. Max Cut for Random Graphs with a Planted Partition. Combi-
natorics, Probability and Computing, 13(4-5):451–474, July 2004. ISSN 0963-5483, 1469-
2163. doi: 10.1017/S0963548304006303. URL http://www.journals.cambridge.
org/abstract_S0963548304006303.

13

http://jmlr.org/papers/v18/16-480.html
http://jmlr.org/papers/v18/16-480.html
https://doi.org/10.1007/s10107-013-0729-x
https://doi.org/10.1007/s10107-013-0729-x
http://www.journals.cambridge.org/abstract_S0963548304006303
http://www.journals.cambridge.org/abstract_S0963548304006303

ZUREK CHEN

Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spectrum of random
graphs: community detection and non-regular ramanujan graphs. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 1347–1357. IEEE, 2015.

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,
Cambridge, UK ; New York, 2004. ISBN 978-0-521-83378-3.

T. Tony Cai and Xiaodong Li. Robust and Computationally Feasible Community Detection in the
Presence of Arbitrary Outlier Nodes. The Annals of Statistics, 43(3):1027–1059, 2015. ISSN
0090-5364. URL https://www.jstor.org/stable/43556546. Publisher: Institute of
Mathematical Statistics.

Francesco Caltagirone, Marc Lelarge, and Léo Miolane. Recovering asymmetric communities in the
stochastic block model. IEEE Transactions on Network Science and Engineering, 5(3):237–246,
2017.

Ted Carson and Russell Impagliazzo. Hill-climbing finds random planted bisections. In Proceedings
of the 12th Annual SIAM Symposium on Discrete Algorithms. Citeseer, 2001.

Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral Clustering of Graphs with General
Degrees in the Extended Planted Partition Model. In Proceedings of the 25th Annual Conference
on Learning Theory, pages 35.1–35.23. JMLR Workshop and Conference Proceedings, June
2012. URL https://proceedings.mlr.press/v23/chaudhuri12.html. ISSN:
1938-7228.

Yudong Chen and Jiaming Xu. Statistical-computational phase transitions in planted models: the
high-dimensional setting. In Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ICML’14, pages II–244–II–252, Beijing, China,
June 2014. JMLR.org.

Yudong Chen, Sujay Sanghavi, and Huan Xu. Clustering Sparse Graphs. In Ad-
vances in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. URL https://papers.nips.cc/paper_files/paper/2012/hash/
1e6e0a04d20f50967c64dac2d639a577-sAbstract.html.

Yudong Chen, Sujay Sanghavi, and Huan Xu. Improved graph clustering. IEEE Transactions on
Information Theory, 60(10):6440–6455, 2014.

Yudong Chen, Xiaodong Li, and Jiaming Xu. Convexified Modularity Maximization for Degree-
Corrected Stochastic Block Models. Annals of Statistics, 46(4):1573–1602, 2018.

Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, et al. Spectral methods for data science: A statistical
perspective. Foundations and Trends® in Machine Learning, 14(5):566–806, 2021.

Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-theoretic
thresholds from the cavity method. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 146–157, 2017.

Anne Condon and Richard M. Karp. Algorithms for graph partitioning on the planted partition model.
Random Structures and Algorithms, 18(2):116–140, 2001.

14

https://www.jstor.org/stable/43556546
https://proceedings.mlr.press/v23/chaudhuri12.html
https://papers.nips.cc/paper_files/paper/2012/hash/1e6e0a04d20f50967c64dac2d639a577-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/1e6e0a04d20f50967c64dac2d639a577-Abstract.html

GAP-FREE CLUSTERING

Lijun Ding and Yudong Chen. Leave-one-out approach for matrix completion: Primal and dual
analysis. IEEE Transactions on Information Theory, 66(11):7274 – 7301, 2020.

Justin Eldridge, Mikhail Belkin, and Yusu Wang. Unperturbed: spectral analysis beyond davis-kahan.
In Algorithmic Learning Theory, pages 321–358. PMLR, 2018.

Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of Computer and
System Sciences, 63(4):639–671, 2001.

Kasper Green Larsen, Michael Mitzenmacher, and Charalampos Tsourakakis. Clustering with a faulty
oracle. In Proceedings of The Web Conference 2020, WWW ’20, pages 2831–2834, New York,
NY, USA, April 2020. Association for Computing Machinery. ISBN 978-1-4503-7023-3. doi:
10.1145/3366423.3380045. URL https://doi.org/10.1145/3366423.3380045.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pages 409–426, 1994.

Paul W. Holland, Kathryn B. Laskey, and Samuel Leinhardt. Stochastic blockmodels: Some first
steps. Social Networks, 5:109–137, 1983.

Mark Jerrum and Gregory B Sorkin. The metropolis algorithm for graph bisection. Discrete Applied
Mathematics, 82(1-3):155–175, 1998.

Varun Jog and Po-Ling Loh. Information-theoretic bounds for exact recovery in weighted stochastic
block models using the renyi divergence. arXiv preprint arXiv:1509.06418, 2015.

Michael Krivelevich and Dan Vilenchik. Semirandom models as benchmarks for coloring algorithms.
In Third Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages 211–221, 2006.

Marc Lelarge, Laurent Massoulié, and Jiaming Xu. Reconstruction in the labelled stochastic block
model. IEEE Transactions on Network Science and Engineering, 2(4):152–163, 2015.

Xiaodong Li, Yudong Chen, and Jiaming Xu. Convex relaxation methods for community detection.
Statistical Science, 36(1):2–15, 2021.

Yu Lu and Harrison H. Zhou. Statistical and computational guarantees of Lloyd’s algorithm and its
variants. arXiv preprint arXiv:1612.02099, 2016.

Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of majorization and its
applications. 1979.

Laurent Massoulié. Community detection thresholds and the weak ramanujan property. In Pro-
ceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 694–703,
2014.

Arya Mazumdar and Barna Saha. Clustering with Noisy Queries. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/db5cea26ca37aa09e5365f3e7f5dd9eb-sPaper.pdf.

15

https://doi.org/10.1145/3366423.3380045
https://proceedings.neurips.cc/paper_files/paper/2017/file/db5cea26ca37aa09e5365f3e7f5dd9eb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/db5cea26ca37aa09e5365f3e7f5dd9eb-Paper.pdf

ZUREK CHEN

F. McSherry. Spectral partitioning of random graphs. In Proceedings 42nd IEEE Symposium on
Foundations of Computer Science, pages 529–537, October 2001. doi: 10.1109/SFCS.2001.959929.
ISSN: 1552-5244.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, Cambridge, 2005. doi:
10.1017/CBO9780511813603. URL https://www.cambridge.org/core/books/
probability-sand-scomputing/3A5B47DB315FC64B9256C5C8131C5EFA.

Ankur Moitra, William Perry, and Alexander S. Wein. How robust are reconstruction thresholds for
community detection? In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, pages 828–841. ACM, 2016.

Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random graphs and their
application to community detection. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pages 814–827, 2016.

Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted bisection
model. In Proceedings of the forty-seventh annual ACM symposium on Theory of computing,
pages 69–75, 2015a.

Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted partition
model. Probability Theory and Related Fields, 162:431–461, 2015b.

Chandra Sekhar Mukherjee and Jiapeng Zhang. Detecting Hidden Communities by Power Iterations
with Connections to Vanilla Spectral Algorithms, November 2022. URL http://arxiv.org/
abs/2211.03939. arXiv:2211.03939 [math] version: 1.

Chandra Sekhar Mukherjee, Pan Peng, and Jiapeng Zhang. Recovering unbalanced communities
in the stochastic block model with application to clustering with a faulty oracle. arXiv preprint
arXiv:2202.08522, 2022.

Pan Peng and Jiapeng Zhang. Towards a query-optimal and time-efficient algorithm for clustering
with a faulty oracle. In Mikhail Belkin and Samory Kpotufe, editors, Proceedings of Thirty Fourth
Conference on Learning Theory, volume 134 of Proceedings of Machine Learning Research, pages
3662–3680. PMLR, 15–19 Aug 2021. URL https://proceedings.mlr.press/v134/
peng21a.html.

Amelia Perry and Alexander S Wein. A semidefinite program for unbalanced multisection in the
stochastic block model. In 2017 International Conference on Sampling Theory and Applications
(SampTA), pages 64–67. IEEE, 2017.

Alberto Del Pia, Mingchen Ma, and Christos Tzamos. Clustering with Queries under Semi-Random
Noise. In Proceedings of Thirty Fifth Conference on Learning Theory, pages 5278–5313. PMLR,
June 2022. URL https://proceedings.mlr.press/v178/pia22a.html. ISSN:
2640-3498.

Guillaume Sagnol. A class of semidefinite programs with rank-one solutions. Linear Algebra and
its Applications, 435(6):1446–1463, September 2011. ISSN 0024-3795. doi: 10.1016/j.laa.

16

https://www.cambridge.org/core/books/probability-and-computing/3A5B47DB315FC64B9256C5C8131C5EFA
https://www.cambridge.org/core/books/probability-and-computing/3A5B47DB315FC64B9256C5C8131C5EFA
http://arxiv.org/abs/2211.03939
http://arxiv.org/abs/2211.03939
https://proceedings.mlr.press/v134/peng21a.html
https://proceedings.mlr.press/v134/peng21a.html
https://proceedings.mlr.press/v178/pia22a.html

GAP-FREE CLUSTERING

2011.03.027. URL https://www.sciencedirect.com/science/article/pii/
S0024379511002515.

Tom AB Snijders and Krzysztof Nowicki. Estimation and prediction for stochastic blockmodels for
graphs with latent block structure. Journal of classification, 14(1):75–100, 1997.

Roman Vershynin. High-Dimensional Probability: An Introduction with Applica-
tions in Data Science. Cambridge Series in Statistical and Probabilistic Mathe-
matics. Cambridge University Press, Cambridge, 2018. ISBN 978-1-108-41519-4.
doi: 10.1017/9781108231596. URL https://www.cambridge.org/core/books/
highdimensional-sprobability/797C466DA29743D2C8213493BD2D2102.

Van Vu. A Simple SVD Algorithm for Finding Hidden Partitions. Combinatorics, Prob-
ability and Computing, 27(1):124–140, January 2018. ISSN 0963-5483, 1469-2163.
doi: 10.1017/S0963548317000463. URL https://www.cambridge.org/core/
journals/combinatorics-sprobability-sand-scomputing/article/
abs/simple-ssvd-salgorithm-sfor-sfinding-shidden-spartitions/
3691FFE262617493CEC469769154EA19. Publisher: Cambridge University Press.

Jinghui Xia and Zengfeng Huang. Optimal Clustering with Noisy Queries via Multi-Armed Bandit,
July 2022. URL http://arxiv.org/abs/2207.05376. arXiv:2207.05376 [cs].

Yiqiao Zhong and Nicolas Boumal. Near-Optimal Bounds for Phase Synchronization. SIAM Journal
on Optimization, 28(2):989–1016, January 2018. ISSN 1052-6234. doi: 10.1137/17M1122025.
URL https://epubs.siam.org/doi/10.1137/17M1122025. Publisher: Society for
Industrial and Applied Mathematics.

17

https://www.sciencedirect.com/science/article/pii/S0024379511002515
https://www.sciencedirect.com/science/article/pii/S0024379511002515
https://www.cambridge.org/core/books/highdimensional-probability/797C466DA29743D2C8213493BD2D2102
https://www.cambridge.org/core/books/highdimensional-probability/797C466DA29743D2C8213493BD2D2102
https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/abs/simple-svd-algorithm-for-finding-hidden-partitions/3691FFE262617493CEC469769154EA19
https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/abs/simple-svd-algorithm-for-finding-hidden-partitions/3691FFE262617493CEC469769154EA19
https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/abs/simple-svd-algorithm-for-finding-hidden-partitions/3691FFE262617493CEC469769154EA19
https://www.cambridge.org/core/journals/combinatorics-probability-and-computing/article/abs/simple-svd-algorithm-for-finding-hidden-partitions/3691FFE262617493CEC469769154EA19
http://arxiv.org/abs/2207.05376
https://epubs.siam.org/doi/10.1137/17M1122025

ZUREK CHEN

Appendix A. Additional Notation

We introduce some additional notation used in the rest of the paper. For a matrix X , ↖X↖nuc is
its nuclera norm (the sum of singular values), ↖X↖1 :=

∑
i,j |Xij | is its entrywise ↼1 norm, and

supp(X) := {(i, j) : Xij △= 0} is its support. We define e = 1/ ↖1↖2 and we let ej denote a standard
basis vector with entry j, both of which are only used when their size is clear from context. For any
event E we define Ec to be its complement. For any natural number h we define [h] = {1, . . . , h}.

Appendix B. Additional Discussion of Results and Related Work

B.1. Further Details of Ailon et al. and Gap-Dependent Clustering

Ailon et al. (2013, 2015) consider a convex relaxation approach based on semidefinite programming.
As discussed in the introduction, their results allow for small clusters, but additionally assume there
exists a constant multiplicative gap between the sizes of large and small clusters. Again, letting
s > s be two consecutive cluster sizes (i.e., there are no clusters with sizes in (s, s)), they guarantee
exact recovery of all clusters with sizes at least s as long as the following conditions are satisfied:

(p≃ q)2s2

pn
↬ log n and s/s ↬ 1. (12)

Under the above condition and after reordering nodes by cluster identity, their optimization program
returns a block-diagonal solution of the form

Ŷ = diag
(
Js1→s1 , . . . , Js→s, 0s→s, . . . , 0sK→sK

)
. (13)

Now we present the formal version of our gap-dependent recovery result in Theorem 1. While
inferior to our main Theorem 2, this result has a simpler proof and is in fact used as a subroutine in
the proof of Theorem 2.

Theorem 9 There exists an absolute constant C such that the following holds: If there exists some
k ↑ {1, . . . ,K} such that

p≃ q

2
(sk ≃ sk+1) ↓ ε

√
pn log n or equivalently

(p≃ q)2 (sk ≃ sk+1)
2

pn
↓ 4ε2 log n (14)

and ε ↓ C, then if we set ω = ε
→
pn log n+ p↗q

2 sk+1 in (1a), with probability at least 1≃O(n↗3),

Ŷ = diag
(
Js1→s1 , . . . , Jsk→sk , 0sk+1→sk+1 , . . . , 0sK→sK

)

is the unique optimal solution to the recovery SDP (1).

This theorem improves upon the result in (12) because instead of requiring the size ratio s/s between
large and small clusters to be a large constant, it allows for the ratio to approach 1 so long as the
signal-to-noise ratio, (p↗q)2s2

pn is proportionally larger.
Note that Theorem 9 also utilizes a value of ω which depends on the size of the largest small

cluster sk+1, which may not be straightforward to find, while Theorem 2 can be set without this
information.

18

GAP-FREE CLUSTERING

Now we provide a simple instance where no gap-dependent algorithm can recover any cluster.
Suppose p = 1, q = 1/2, there are n nodes, and K = ”(n1/3) clusters with sizes 1, 22, 32, . . . ,K2.
(Note n =

∑K
k=1 k

2 = ”(K3).) All known efficient algorithms have recovery thresholds requiring
cluster sizes to be at least ”(

→
n) = ”(K1.5). To recover any cluster, a gap dependent algorithm

will require at least a constant multiplicative gap between some cluster of size at least ”(
→
n) and

the next largest cluster. As K and n get large, the ratios between the sizes of all pairs of such
consecutive clusters approaches 1, hence the requisite gap does not exist. On the other hand, our
gap-free algorithm can recover all clusters larger than ”(K1.5 logK). This example can be easily
generalized to cluster sizes growing like (kω)k for any ϖ > 1, as well as to other settings of p and q.

B.2. Additional Related Work

In proceeding sections we have provided references to SBM algorithms focusing on SDP relaxation
and spectral clustering methods. There are many other approaches, such as the EM algorithm
(Snijders and Nowicki, 1997) and local search methods (Carson and Impagliazzo, 2001; Jerrum and
Sorkin, 1998), many of which may be coupled with an SDP-based or spectral algorithm with the
latter serving as an initialization procedure (Lu and Zhou, 2016; Vu, 2018; Abbe, 2018).

Many works have considered the setting that all clusters are sufficiently large to be exactly
recovered, leading to precise computational and information-theoretic thresholds in the case of two
balanced clusters (Abbe et al., 2015; Mossel et al., 2015a). Much subsequent work has endeavored
to obtain similar characterizations in more general settings, for instance in Abbe and Sandon (2015),
Abbe et al. (2017), Perry and Wein (2017), Agarwal et al. (2017), and Jog and Loh (2015), where
typical recovery conditions have the form (p↗q)2

pn sK ↬ log n assuming p, q ∈
logn
n , where sK is the

size of the smallest cluster. There is also a complementary weak or approximate recovery setting,
where the objective is to achieve strictly better classification error than random guess, usually under
the constant degree regime p, q ∈

1
n . Again precise phase transitions have been established for

the two-balanced-clusters case (Massoulié, 2014; Lelarge et al., 2015; Mossel et al., 2015b), and
generalizations to larger K or unbalanced settings, such as Bordenave et al. (2015), Coja-Oghlan
et al. (2017), Caltagirone et al. (2017), and Montanari and Sen (2016), develop recovery conditions of
the form (p↗q)2

pn sK ↬ 1. While the focus of the current paper is mostly orthogonal to the above work,
our result, when specialized to the setting where all clusters are large, recovers the the condition
(p↗q)2

pn sK ↬ log n typical in existing work.
The semi-random SBM has been considered in many works without small clusters (Moitra et al.,

2016; Krivelevich and Vilenchik, 2006; Feige and Kilian, 2001). The observation that any recovery
result for semi-random SBM implies a result for SBM with heterogeneous edge probabilities is a
standard reduction (Chen et al., 2014). For more on the leave-one-out approach applied to clustering
and related matrix estimation problems, see Zhong and Boumal (2018); Abbe et al. (2020); Ding and
Chen (2020), as well as the survey in Chen et al. (2021). The work Green Larsen et al. (2020) studies
faulty oracle clustering in the setting of K = 2 clusters.

B.3. Discussion and Comparison of Recursive Clustering Results

To analyze the performance of recursive clustering procedures, we follow (Ailon et al., 2015,
Theorems 6 and 7) and consider the following setting: p, q are considered fixed and independent
of n, and C(p, q) is used to denote constants which depend on p, q but not n. (Generalization to

19

ZUREK CHEN

other settings of p, q is straightforward.) We examine what assumptions on the number of clusters K
suffice to ensure that the recursive clustering procedure recovers all but a vanishing fraction of nodes.

Ailon et al. (2015, Theorem 7) roughly states there exists some C(p, q) such that if K ↔

φC(p, q) log n for some φ ↔ 1, then a recursive clustering procedure will recover clusters containing
all but O(nϱ) + O(1) nodes. Since, as discussed in Subsection 2.1, their core recovery algorithm
requires a certain-sized gap, they require the bound on K to grow at most logarithmically to ensure
that a sufficient gap remains after each round.

If we instead apply our gap-free clustering guarantee from Theorem 2, we obtain a significant
improvement, allowing K to be polynomially large. In particular, when specialized to the setting
above, Theorem 2 guarantees that there exists some C ≃(p, q) such that (with probability 1≃O(m↗3))
all clusters k satisfying sk ↓ C ≃(p, q)

→
n logm will be recovered. Using this improved guarantee,

we follow the aforementioned recursive clustering strategy to define Algorithm 1. For a square matrix
X , we use XI to denote the principal submatrix of X indexed by I . When the SDP solution Ŷ has
the form stated in Theorem 2, each cluster Vk corresponding an all-positive block ŶVk is said to be
recovered.

Algorithm 1 Recursive clustering using Theorem 2
Input: n↘ n adjacency matrix A sampled from unbalanced SBM

1: Set n1 = n, I1 = {1, . . . , n}, round counter ↼ = 1
2: repeat
3: Recover clusters by applying the SDP (1) to AIε , where ω is set per Theorem 2 with m = n
4: Remove all recovered clusters of size ↓ C ≃(p, q)

→
nς log n from Iς to obtain Iς+1

5: Set nς+1 = |Iς+1|; increase ↼ by 1
6: until no clusters are removed

We can prove the following guarantees:

Theorem 10 Under the above setting, suppose the number of clusters K satisfies K ↔
n

1
2↑ω

C↓(p,q)
⇐
logn

for some 0 < ϖ < 1
2 . Then with probability at least 1≃O(n↗2):

1. The algorithm terminates after at most K rounds.

2. Whenever the algorithm terminates, there is at most n1↗2ω unrecovered nodes remaining.

3. After ↼ rounds, there is at most n1↗ω
∑ε↑1

i=0 2↑i unrecovered nodes remaining.

Note that we interpret an empty summation as zero, that is,
∑↗1

ς=0 2
↗ς = 0. The algorithm will

run for at most K rounds, but it could also be terminated early to save on computation, as part 3 of
Theorem 10 guarantees that a large number of nodes will be recovered after only a few rounds. The
proof of Theorem 10 is given in Section D.

B.4. Discussion and Comparison of Faulty Oracle Clustering Results

First we make some comments regarding the algorithms in Table 1. The listed algorithm of Peng and
Zhang (2021) assumes that all clusters are “nearly balanced”: they have size at least n

bK for some
known constant b > 1; the algorithm recovers all clusters under this assumption. The algorithm of
Pia et al. (2022) is robust to a semirandom version of the faulty oracle clustering model (and we refer

20

GAP-FREE CLUSTERING

to their paper for its definition). Additionally, we note that the listed algorithm of Mukherjee et al.
(2022) actually obtains a sample complexity of O

(
n
s
n log2 n

ε2 + n4

s4
log2 n
ε4

)
, which is slightly worse by

a log factor in one term compared to our Theorem 6.
Now we formally define the Algorithm 2 behind our Theorem 6 and provide further discussion

of Theorem 6.

Algorithm 2 Clustering with a faulty oracle using Theorem 2
Input: Faulty clustering oracle O, parameter ϱ ↑ (0, 1)

1: Choose set T ▽ [n] by including vertex i in T with probability ϱ (independently)
2: Query (u, v) for all pairs u, v ↑ T to form adjacency matrix A ↑ {0, 1}|T |→|T |

3: Recover clusters from A using the recovery SDP (1), where ω is set per Theorem 2 with m = n
4: for each recovered cluster S ▽ T such that |S| ↓ C1 logn

ε2 do
5: Choose S≃

▽ S with |S≃
| = C1 logn

ε2

↽ Recover remainder of cluster in [n] \ T by majority voting using S≃ as voters:
6: for each vertex i ↑ [n] \ T do
7: Query (i, v) for all v ↑ S≃ and add i to S if 1

|S↓|
∑

v↓S↓ O(i, v) ↓ 1
2

8: end for
9: end for

We prove Theorem 6 in Section E. We also note that by setting s = n
K in this result, we recover

identical query complexity and cluster recovery threshold to the algorithm of Peng and Zhang (2021)
for the nearly-balanced setting listed in Table 1, except our algorithm has no restrictions on cluster
sizes as opposed to requiring them to be nearly balanced. Peng and Zhang (2021) conjecture that this
sample complexity is optimal among efficient algorithms (up to log factors) for recovery of clusters
of size !

(
n
K

)
, based on statistical physics arguments.

Our Algorithm 2 used in Theorem 6 follows a common template for algorithms in the faulty
oracle clustering problem:

1. Choose a subset T of the nodes and query all pairs between them.
2. Apply a clustering algorithm on the fully observed subgraph consisting of the nodes T and the

edges between them to recover subclusters.
3. Take a subset S≃ from each recovered subcluster of minimal size such that it can be used to test

all remaining nodes i ↑ [n] \ T for membership in the cluster, by querying (i, v) for all v ↑ S≃

and using majority voting.
These essential steps are used in all algorithms in Table 1, with one key difference being the clustering
algorithm used in step 2 (for which we use our recovery SDP and Theorem 2). Mukherjee et al.
(2022) utilize their (gap-free) spectral clustering procedure and thus obtain a nearly identical result.
This template also explains why all the sample complexities (for efficient algorithms) consist of two
terms, with the first term roughly corresponding to the majority voting procedure and the second
term roughly corresponding to the subsample of size O(|T |2), with possible additional steps for
some algorithms. Notably, Xia and Huang (2022) improve upon the majority voting procedure by
making a connection to best arm identification, obtaining a first term of n(K+logn)

ε2 which they show
is optimal.

Algorithm 2 requires a user-specified target cluster size s, which in turn determines the input
parameter ϱ, as does (Mukherjee et al., 2022, Algorithm 5). By growing the subsample T geometri-

21

ZUREK CHEN

cally over several rounds, stopping when we first recover a (sub)cluster, we can obtain our Theorem
7 which obtains an instance-dependent query complexity.

Algorithm 3 Instance-adaptive clustering with a faulty oracle
Input: Faulty clustering oracle O

1: Set round counter r = 1
2: repeat
3: Set ŝr = n

2r↑1

4: Set ϱr = C2
n logn
ŝ2rε

2

5: Choose set Tr ▽ [n] by including vertex i in Tr with probability ϱr (independently)
6: Query (u, v) for all pairs u, v ↑ Tr to form adjacency matrix Ar ↑ {0, 1}|Tr|→|Tr|

7: Attempt to recover subclusters from Ar using the recovery SDP (1) (with m = n)
8: until at least one subcluster is recovered
9: Let S be an arbitrary recovered subcluster of size at least C1 logn

ε2

10: Choose S≃
▽ S with |S≃

| = C1 logn
ε2

↽ Recover remainder of cluster in [n] \ Tr by majority voting using S≃ as voters:
11: for each vertex i ↑ [n] \ Tr do
12: Query (i, v) for all v ↑ S≃ and add i to S if the majority of queries are 1
13: end for

Finally we discuss our algorithm for the setting with a small number of clusters K which was the
subject of our Theorem 8.

Algorithm 4 Clustering with a faulty oracle for small K
Input: Faulty clustering oracle O

1: Set round counter r = 1
2: Set n1 = n, K1 = K

3: while nr ↓ C2
K2

r logn
ε2 do

4: Set ϱr = C2
K2

r logn
nrε2

5: Choose set Tr ▽ [n] by including vertex i in Tr with probability ϱr (independently)
6: Query (u, v) for all pairs u, v ↑ Tr to form adjacency matrix Ar ↑ {0, 1}|Tr|→|Tr|

7: Attempt to recover subclusters from Ar using the recovery SDP (1) (with m = n)
8: for each recovered cluster S ▽ T such that |S| ↓ C1 logn

ε2 do
9: Choose S≃

▽ S with |S≃
| = C1 logn

ε2

10: Recover remainder of cluster in [n] \ Tr by majority voting using S≃ as voters:
11: for each vertex i ↑ [n] \ Tr do
12: Query (i, v) for all v ↑ S≃ and add i to S if the majority of queries are 1
13: end for
14: end for
15: Increase r by 1
16: Decrease Kr by the number of clusters recovered in the previous round
17: Remove all nodes from clusters recovered in the previous round
18: Set nr to the remaining number of nodes
19: end while

22

GAP-FREE CLUSTERING

The Algorithm 4 is nearly identical to Algorithm 2 except we use a different subsampling ratio ϱ
and repeat in at most K rounds (choosing a new subsample T each round). This use of K rounds is
the reason that the second term in the query complexity is K5 log2 n

ε4 rather than the K4 log2 n
ε4 , which

Peng and Zhang (2021) conjecture is optimal for the nearly balanced setting. In the setting that all
clusters are !

(
n
K

)
, only one round of choosing T ▽ [n] and querying all pairs u, v ↑ T would be

needed to recover a subcluster from each of the K clusters, while in general settings more rounds
have the potential benefit of recovering smaller clusters after larger clusters are removed. (In fact, our
Algorithm 4 would match this conjectured-optimal sample complexity in the nearly-balanced setting
as it would terminate after a constant number of rounds.) In summary, our algorithm recovers smaller
clusters and improves upon the second term in the sample complexity compared to all previous
algorithms which work for the case of general size clusters. We also believe that the first term
could be improved to n(K+logn)

ε2 using ideas from Xia and Huang (2022), but our focus was on the
improvement available by using a gap-free clustering subroutine.

B.5. Discussion of Eigenvalue Perturbation Bounds

As discussed in Subsection 3.4, our analysis of the SDP solutions in the presence of mid-size
clusters requires sharp eigenvalue perturbation bounds which improve upon existing results. We
expand on our discussion in Subsection 3.4 and provide some brief background on related eigenvalue
perturbation results. We refer to Eldridge et al. (2018) for more details. Again, let M,H ↑ Rn→n be
symmetric matrices, viewing H as a perturbation, and let v1 be a top eigenvector of M . If we would
like to bound |ω1(M +H)≃ ω1(M)|, the classical Weyl’s inequality gives that

|ω1(M +H)≃ ω1(M)| ↔ ↖H↖op .

As argued in Eldridge et al. (2018), this bound can be overly pessimistic, especially when H is a
random perturbation whose projection onto v1 is small relative to the eigengap ω1(M)≃ ω2(M). In
such a situation, intuitively the large eigengap should ensure that the new top eigenvector of M +H
is close to v1, in which case the top eigenvalue of M +H will be approximately v↘1 (M +H) v1 =
ω1(M) + v↘1 Hv1, and then since H is random,

v↘1 Hv1
 should be much smaller than ↖H↖op. The

idea that |ω1(M +H)≃ ω1(M)| ∋
v↘1 Hv1

 is stated as an informal guiding principle in Eldridge
et al. (2018), and they confirm the above intuition with both experiments and theoretical results. Let
ColQ denotes the span of the columns of a matrix Q. They prove the following upper bound:

Theorem 11 (Eldridge et al. (2018), Theorem 6) Let T ↑ [n] and h be such that |x↘Hx| ↔ h for
all x ↑ Col(U1:T) with ↖x↖2 = 1, where U1:T are the top T eigenvectors of M . Then for t ↔ T , if
ωt ≃ ωT+1 > 2 ↖H↖op ≃ h,

ωt(M +H) ↔ ωt(M) + h+
↖H↖

2
op

ωt(M)≃ ωT+1(M) + h≃ ↖H↖op
.

We modify their argument to prove the following improvement:

Theorem 12 Let T ↑ [n] and h be such that |x↘Hx| ↔ h for all x ↑ Col(Ut:T) with ↖x↖2 = 1,
where Ut:T are eigenvectors t through T of M . Then for t ↔ T , if ωt ≃ ωT+1 > ↖H↖op ≃ h ≃

23

ZUREK CHEN

2 ↖HUt:T ↖op,

ωt(M +H) ↔ ωt(M) + h+
↖HUt:T ↖

2
op

ωt(M)≃ ωT+1(M)≃ ↖H↖op + h+ 2 ↖HUt:T ↖op
.

We prove Theorem 12 in Section G. Notice that compared to Theorem 11, Theorem 12 has
slightly weakened assumptions, and always provides a better bound since ↖HUt:T ↖op ↔ ↖H↖op.
Especially when H is random and T is small, Col(Ut:T) is a small subspace and so we might hope
that ↖HUt:T ↖op ↙ ↖H↖op.

Now we compare these results within the context of the proof of Theorem 2, and show that the
improvement from our Theorem 12 is indeed substantial. In this subsection we also write an ∈ bn if
an ↫ bn and bn ↫ an. Fix a cluster k so that p↗q

2 sk ∈ ε
→
pn log n. Let w↘ be the first row of W (k)

except with its first entry halved. This is chosen so that by defining H = e1w↘ + we↘1 , H contains
the noise from the first row and column of W (k). Now let M =

⇒⇑
A (k)

≃H (so M +H =
⇒⇑
A (k)).

Our objective will be to bound
ω1

(
⇒⇑
A (k)

)
≃ ω1

(
⇒⇑
A (k)

≃H
). By the assumption on the size of

the cluster k, there is sufficient signal so that the top eigenvector v1 of M satisfies ↖v1↖⇒ ↫ 1⇐
sk

(by
applying an ⇓-norm eigenvector perturbation bound (Chen et al., 2021)). Then

v↘1 Hv1
 = 2|v↘1 e1||w

↘v1| ↫
1

→
sk

√
p log n

where the bound |w↘v1| ↫
→
p log n holds with high probability using the fact that w is independent

from v1 (since v1 is the top eigenvector of a matrix where the first row and column of noise have
been set to 0). The informal guiding principle from Eldridge et al. (2018) would then give us
hope that

ω1
(⇒⇑
A (k)

)
≃ ω1

(
⇒⇑
A (k)

≃H
) ↫

⇐
p logn⇐
sk

, which is the order needed within our proof of
Theorem 2. Unfortunately, Theorem 11 only yields that

ω1

(
⇒⇑
A (k)

)
≃ω1

(
⇒⇑
A (k)

≃H
)
↫

→
p log n
→
sk

+
↖H↖

2
op

ε
→
pn log n≃ ↖H↖op

↫
(→

psk
)2

ε
→
pn log n

↫
→
psk

ε
→
n log n

since ↖H↖op ∈ ↖w↖2 ∈
→
psk. However, since

↖Hv1↖op =
we↘1 v1 + e1w

↘v1

2
↔ ↖w↖2

e↘1 v1
+

w↘v1
 ↫ →

psk
1

→
sk

+
√
p log n ↫

√
p log n

our Theorem 12 gives that

ω1

(
⇒⇑
A (k)

)
≃ ω1

(
⇒⇑
A (k)

≃H
)
↫

→
p log n
→
sk

+

(→
p log n

)2

ε
→
pn log n

↫
→
p log n
→
sk

+

→
p log n

ε
→
n

↫
→
p log n
→
sk

.

Appendix C. Proof of Main Theorem

Our main Theorem 2 can be decomposed into two parts: first, that the oracle SDPs (4) have solutions
which are either zero or rank-one and all-positive, and second, that the recovery SDP solution (1) has
a block-diagonal form where the blocks are the solutions to the oracle SDPs. Thus, we prove the first
part in Subsection C.1 and the second part in Subsection C.2. The standalone result on clustering

24

GAP-FREE CLUSTERING

with a gap, Theorem 9, is proved in Subsection C.3. So as not to interrupt the flow of the proofs, we
place most concentration inequalities or their proofs within Subsection C.4.

We define the shifted adjacency matrix
⇒⇑
A := A ≃

p+q
2 J . We also define the noise matrix

W := A≃ EA.
The following proofs make use of dual variables for the optimization problems (1) and (4), so we

stop to introduce the KKT conditions for these problems.

Lemma 13 Ŷ is an optimal solution of the recovery SDP (1) if and only if there exist U,L ↑ Rn→n

such that

0 ↔ Ŷ ↔ 1, Ŷ ↭ 0 (15a)
⇒⇑
A ≃ ωI ≃ U + L ⊜ 0, L ↓ 0, U ↓ 0 (15b)

Lij Ŷij = 0, Uij(Ŷij ≃ 1) = 0 ⇐i, j ↑ [n] (15c)
(
⇒⇑
A ≃ ωI ≃ U + L

)
Ŷ = 0n→n. (15d)

Likewise, for any k ↑ {1, . . . ,K}, Ŷ k is an optimal solution of the kth oracle SDP (4) if and
only if there exist Uk, Lk

↑ Rsk→sk such that

0 ↔ Ŷ k
↔ 1, Ŷ k ↭ 0 (16a)

⇒⇑
A (k)

≃ ωI ≃ Uk + Lk ⊜ 0, Lk
↓ 0, Uk

↓ 0 (16b)

Lk
ij Ŷ

k
ij = 0, Uk

ij(Ŷ
k
ij ≃ 1) = 0 ⇐i, j ↑ [sk] (16c)

(
⇒⇑
A (k)

≃ ωI ≃ Uk + Lk
)
Ŷ k = 0sk→sk (16d)

Proof First we consider the recovery SDP (1). First, we note that the feasible set is compact since
{Y ↑ Rn→n : 0 ↔ Y ↔ 1} is compact, {Y : Y ↭ 0} is closed, and the feasible set is the intersection
of these two sets. Therefore there exists an optimal solution Ŷ . By the generalized Slater’s condition
within (Boyd and Vandenberghe, 2004, Section 5.9.1), since the SDP (1) is convex and the feasible
point 1

2Jn→n satisfies 0 < 1
2Jn→n < 1 and 1

2Jn→n ̸ 0, strong duality holds and thus from (Boyd
and Vandenberghe, 2004, Section 5.9.2) the following KKT conditions are necessary and sufficient
for Ŷ to be an optimal solution:

0 ↔ Ŷ ↔ 1, Ŷ ↭ 0
⇒⇑
A ≃ ωI ≃ U + L ⊜ 0, L ↓ 0, U ↓ 0, P ↭ 0

Lij Ŷij = 0, Uij(Ŷij ≃ 1) = 0 ⇐i, j ↑ [n]

PŶ = 0n→n

≃
⇒⇑
A + ωI + U ≃ L+ P = 0 (17)

where U,L, P ↑ Rn→n. Now by eliminating P using (17), we obtain the desired recovery SDP KKT
conditions (15). An identical argument suffices for the oracle SDP KKT conditions (16).

Lastly, we set the regularization parameter ω which appears in both SDPs (1) and (4) as ω =
ε
→
pn logm + ϑ for ε which is a constant which we will choose later and ϑ ↗ Uniform[0, 0.1].

25

ZUREK CHEN

Conceptually, we can make ε arbitrarily large, and throughout the proofs we imagine any constant
multiple of 1/ε as arbitrarily small. We do not use any particular properties of ϑ except that almost
surely we will have ε

→
pn logm ↔ ω ↔ (ε+ 1)

→
pn logm and ω1

(
⇒⇑
A (k)

)
△= ω (for all k ↑ [K]).

C.1. Oracle SDP Solutions

This subsection is devoted to the proof of the following lemma:

Lemma 14 There exist constants B,B,B > 2 such that if ε ↓ B, with probability at least
1≃O(m↗3), for each cluster k, the kth oracle SDP (4) has a unique solution Ŷ k, and there exist
dual variables Uk, Lk which satisfy the oracle KKT equations (16) such that Lk = 0 and Uk ↭ 0.
Furthermore,

1. if p↗q
2 sk ↓

(
1 + 1

B

)
ε
→
pn logm, then Ŷ k = Jsk→sk = 11↘,

2. if p↗q
2 sk ↔

(
1≃ 1

B

)
ε
→
pn logm, then Ŷ k = 0sk→sk = 00↘,

3. if
(
1≃ 1

B

)
ε
→
pn logm < p↗q

2 sk <
(
1 + 1

B

)
ε
→
pn logm, then either Ŷ k = 0 or Ŷ k =

ykyk↘ where yk ↓
1
2 entrywise.

First we establish an event upon which we will condition the rest of the proof, which will be the
intersection of the events described in the following Lemmas 15, 16, 17, and 18.

Lemma 15 With probability at least 1≃O(m↗3), there exists an absolute constant B1 such that:

1. For all clusters k such that p↗q
2 sk ↓

→
pn logm,

W (k)


op
↔ B1

→
psk. (18)

2. For all clusters k such that p↗q
2 sk ↓

→
pn logm, for all columns (W (k)

:,j)skj=1,
W (k)

:,j


2
↔ B1

→
psk. (19)

3. For all clusters k,
W (k)


op

↔ B1
→
pn. (20)

Lemma 15 is proven in Subsection C.4.
Recall that for any n↘ n matrix M and any k ↑ [K], we define M (k) to be the sk ↘ sk principal

submatrix of M corresponding to the rows and columns associated with cluster Vk. We later make
use of leave-one-out (LOO) versions of the noise for analysis so we define them now: For each
k ↑ [K] and each j ↑ [sk], let wk,j be equal to W (k)

:,j (the jth column of W (k)) but with the jth

entry divided by two (so that we do not subtract W (k)
jj twice). Now define the jth LOO noise matrix

W k,j := W (k)
≃ ejwk,j↘

≃ wk,je↘j and the jth LOO adjacency matrix

Ak,j := A(k)
≃ ejw

k,j↘
≃ wk,je↘j = EA(k) +W k,j .

26

GAP-FREE CLUSTERING

We also define the jth LOO shifted adjacency matrix
⇒⇑
A k,j := Ak,j

≃
p+q
2 Jsk→sk .

Let vk be the top eigenvector of
⇒⇑
A (k) and let vk,j be the top eigenvector of

⇒⇑
A k,j (by top, we

mean corresponding to the largest eigenvalue). Of course these eigenvectors are only defined up to a
global rotation, but the following lemma resolves this ambiguity and also establishes a key property
of vk and vk,j .

Lemma 16 There exist absolute constants B2, B3 such that with probability at least 1≃O(m↗3),
for all clusters k such that p↗q

2 sk ↓ B3
→
pn logm, there exists a top eigenvector vk of

⇒⇑
A (k) such

that
v

k
≃

1
→
sk

1


⇒

↔ 2B2

→
p logm

(p≃ q)sk
, (21)

and for each j ↑ [sk], there exists a top eigenvector vk,j of
⇒⇑
A k,j such that

v
k,j

≃
1

→
sk

1


⇒

↔ 2B2

→
p logm

(p≃ q)sk
. (22)

The proof of Lemma 16 is in Subsection C.4, as are the proofs of the following Lemmas 17
and 18.

Lemma 17 There exist an absolute constants B4, B5 such that with probability at least 1≃O(m↗3),
for every cluster k such that p↗q

2 sk ↓ B4
→
pn logm, for each j ↑ [sk],

vk,j

⇒

↔
2

→
sk

(23)

and
∝wk,j , vk,j′

 ↔ B5

√
p logm. (24)

Lemma 18 With probability at least 1≃O(m↗3), for all clusters k such that p↗q
2 sk ↓ B4

→
pn logm,

W
(k) 1

→
sk

1sk


⇒

↔ B5

√
p logm.

Define E1 to be the intersection of the events in Lemmas 15, 16, 17, and 18. By the union bound
P(E1) ↓ 1≃O(m↗3). For most of the rest of the proof we condition on the event E1 or supersets
of E1. Also we assume that ε > B1, which implies ω >

W (k)


op for each k ↑ [K].
We split the proof into three cases related to the size of sk corresponding to those in Lemma 14.

Before considering each case, we remind the reader that we avoid the situation that ω1

(
⇒⇑
A (k)

)
= ω

with probability one by our addition of the small random continuous perturbation to ω.

27

ZUREK CHEN

C.1.1. ALL-ZERO SOLUTION

First we handle the easiest case where ω1

(
⇒⇑
A (k)

)
< ω, which will cause the oracle solution to be

zero.

Lemma 19 On the event E1 ∩


ω1

(
⇒⇑
A (k)

)
< ω


, we have that Ŷ k = 0sk→sk is the unique

solution of the oracle SDP (4), and furthermore by setting Lk = 0sk→sk and Uk = 0sk→sk , then
Ŷ k, Lk, Uk satisfy the oracle SDP KKT conditions (16). Also, for any cluster k such that p↗q

2 sk ↔
(
1≃ B1

ϑ

)
ε
→
pn logm, E1 = E1 ∩


ω1

(
⇒⇑
A (k)

)
< ω


.

Proof First we check Ŷ k = 0 is the unique solution of the oracle SDP (4) when ω1

(
⇒⇑
A (k)

)
< ω.

The oracle SDP objective (4) is


Y,A(k)

≃
p+ q

2
Jsk→sk


≃ ωTr(Y) =

〈
Y,

⇒⇑
A (k)

≃ ωI
〉

↔

sk

i=1

ωi (Y)ωi

(
⇒⇑
A (k)

≃ ωI
)

↔ ω1 (Y)ω1

(
⇒⇑
A (k)

≃ ωI
)

(25)

where we obtain the first inequality using a Hermitian trace inequality (Marshall et al., 1979, Theorem
9.H.1.g and the discussion thereafter). We obtain the second inequality from the fact that all terms
are non-positive since ωi

(
⇒⇑
A (k)

≃ ωI
)
↔ ω1

(
⇒⇑
A (k)

)
≃ ω < 0 and ωi(Y) ↓ 0 since Y ↭ 0 by

feasibility to the oracle SDP (4). Now expression (25) is strictly less than zero unless we have
ω1 (Y) = 0, and again since Y ↭ 0 this implies that Y = 0. Therefore Ŷ k = 0 is the unique solution
of the oracle SDP.

Next we check that Lk = 0 and Uk = 0 satisfy the oracle SDP KKT conditions (16). We note
that

⇒⇑
A (k)

≃ ωI ≃ Uk + Lk =
⇒⇑
A (k)

≃ ωI ⊜ 0

where the PSD inequality follows from the assumption that we are in the event

ω1

(
⇒⇑
A (k)

)
< ω


,

satisfying the first part of (16b). All other conditions are trivial to check.
Finally, note that the event E1 contains the conclusions of Lemma 15, so by (20) we have for any

cluster k that

ω1

(
W (k)

)
↔

W (k)


op
↔ B1

→
pn ↔

B1

ε
ε
√
pn logm.

Therefore if p↗q
2 sk ↔

(
1≃ B1

ϑ

)
ε
→
pn logm, then by Weyl’s inequality

ω1

(
⇒⇑
A (k)

)
↔ ω1


p≃ q

2
Jsk→sk


+ ω1

(
W (k)

)
↔

p≃ q

2
sk +

B1

ε
ε
√
pn logm < ω.

28

GAP-FREE CLUSTERING

C.1.2. ALL-ONE SOLUTION

We also provide the following lemma summarizing the case that p↗q
2 sk is large-enough for the oracle

solution to be all-ones.

Lemma 20 On the event E1, for all clusters k such that p↗q
2 sk ↓

(
1 + B6

ϑ

)
ε
→
pn logm, we have

that Ŷ k = Jsk→sk is the unique solution of the oracle SDP (4), and furthermore there exist some
Uk, Lk such that Ŷ k, Lk, Uk satisfy the oracle SDP KKT conditions (16), Lk = 0, and Uk ↭ 0.

Since this essentially follows as a special case of Theorem 9 (but with a larger ω), we prove Lemma
20 in Subsection C.3.

C.1.3. NONZERO CRITICAL SIZE SOLUTION

Finally we consider the most challenging case, where

1≃

B1

ε


ε
√

pn logm <
p≃ q

2
sk <


1 +

B6

ε


ε
√
pn logm (26)

and ω1

(
⇒⇑
A (k)

)
> ω. (27)

To analyze the oracle SDP in this case, we consider a new relaxed oracle SDP where all lower-bound
constraints are removed, which enables us to prove that its unique solution has rank 1. Then we will
analyze the relaxed oracle SDP and show that its solution is non-negative, which then implies that its
solution is also the solution of the corresponding oracle SDP, and therefore the original oracle SDP
has a unique solution with rank ↔ 1. First we define the kth relaxed oracle SDP:

Y
k
= argmax

Y ↓Rsk→sk


Y,A(k)

≃
p+ q

2
Jsk→sk


≃ ωTr(Y) (28a)

s.t. Y ↭ 0, (28b)
Yii ↔ 1, ⇐i ↑ [si]. (28c)

Beyond removing the lower bound constraints, the relaxed oracle SDP also has fewer upper bound
constraints (28c), which when combined with the PSD constraint (28b) are equivalent to upper-
bounding each entry of the solution, but having the reduced constraints are useful for showing that
the relaxed oracle SDP solution Y

k must have rank 1.
To show that Y k is entrywise positive despite the removal of the lower bound constraints, we

make use of sk leave-one-out (LOO) relaxed oracle SDPs wherein one row and column of the noise
are zeroed out. The key property of the LOO relaxed oracle SDPs is that we will be able to show that
(for each k, j) their solutions have low correlation with the corresponding left-out noise vectors wk,j ,
due to their independence. We would like to define a second high-probability event E2 under which
this occurs, but we cannot simply work under the event E1 to establish that E2 has high probability,
since E1 is not independent of the left-out noise. To remedy this we define new high-probability
events.

For each cluster k such that p↗q
2 sk ↓ B4

→
pn logm, for each j ↑ [sk], define the event

Ek,j
1 =






W k,j


op
↔ B1

→
psk

v
k,j

≃
1

→
sk

1


⇒

↔ 2B2

→
p logm

(p≃ q)sk





.

29

ZUREK CHEN

These conditions are (18) and (22) which are both included in E1, so we have that Ek,j
1 ∀ E1. Also

none of these conditions involve the (k, j)th left-out noise vector wk,j , so event Ek,j
1 is independent

of wk,j .
Before defining the LOO relaxed oracle SDP, a second issue is that even when ω1

(
⇒⇑
A (k)

)
> ω,

we may have ω1

(
⇒⇑
A k,j

)
< ω after removing noise, in which case if we used the same regularization

parameter ω in the LOO relaxed oracle SDP, it would have a zero solution which would not be
useful. To resolve this issue, we will later show that under the event E1, for all clusters k such
that p↗q

2 sk ↓ B4
→
pn logm (which includes all clusters in the critical regime (26) assuming ε is

sufficiently large), ω1

(
⇒⇑
A k,j

)
is very close to ω1

(
⇒⇑
A (k)

)
. This bound is of course dependent on the

left-out noise wk,j so we state it later, but for now we mention this consideration in order to motivate
our choice to define the LOO relaxed oracle SDPs with reduced regularization parameters ωk.

For each k such that p↗q
2 sk ↓ B4

→
pn logm, we define the modified regularization parameter

ωk := ω ≃
B8

⇐
p logm⇐
sk

. Also we add the requirement that ε is large enough so that under Ek,j
1 we

are ensured ωk >
W k,j


op. Finally we can define the leave-one-out SDPs. For all k such that

p↗q
2 sk ↓ B4

→
pn logm and each j ↑ [sk], we define the (k, j)th LOO relaxed oracle SDP

Y
k,j

= argmax
Y ↓Rsk→sk


Y,Ak,j

≃
p+ q

2
Jsk→sk


≃ ωk Tr(Y) (29a)

s.t. Y ↭ 0, (29b)
Yii ↔ 1, ⇐i ↑ [sk]. (29c)

Now we are prepared to show that the relaxed oracle SDPs (28) and the LOO relaxed oracle
SDPs (29) have rank-one solutions.

Lemma 21 Under the event E1∩


ω1

(
⇒⇑
A (k)

)
> ω


, the kth relaxed oracle SDP (28) has rank-one

solution Y
k
= ykyk

↘ where 1↘yk ↓ 0, and there exists uk ↑ Rsk such that:

≃1 ↔ yk ↔ 1 (30a)
⇒⇑
A (k)

≃ ωI ≃ diag(uk) ⊜ 0, uk ↓ 0 (30b)
(

yki

)2
≃ 1


uki = 0 ⇐i ↑ [sk] (30c)

(
⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
yk = 0. (30d)

Also, for each k such that p↗q
2 sk ↓ B4

→
pn logm, for each j ↑ [sk], under the event Ek,j

1 ∩
ω1

(
⇒⇑
A k,j

)
> ωk


, the (k, j)th LOO relaxed oracle SDP (29) has rank-one solution Y

k,j
=

30

GAP-FREE CLUSTERING

yk,jyk,j
↘ where 1↘yk,j ↓ 0, and there exists uk,j ↑ Rsk such that

≃1 ↔ yk,j ↔ 1 (31a)
⇒⇑
A k,j

≃ ωI ≃ diag(uk,j) ⊜ 0, uk,j ↓ 0 (31b)
(

yk,ji

)2
≃ 1


uk,ji = 0 ⇐i ↑ [sk] (31c)

(
⇒⇑
A k,j

≃ ωI ≃ diag(uk,j)
)
yk,j = 0. (31d)

Proof We start by writing the KKT conditions for the relaxed oracle SDP (28). By a nearly identical
argument as in Lemma 13, for Y i to be optimal there must exist uk ↑ Rsk such that

Y
k ↭ 0, Y

k
ii ↔ 1 ⇐i ↑ [sk] (32a)

uk ↓ 0,
⇒⇑
A (k)

≃ ωI ≃ diag(uk) ⊜ 0 (32b)

((Y
k
)ii ≃ 1)uki = 0 ⇐i ↑ [sk] (32c)

(
⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
Y

k
= 0sk→sk . (32d)

Note diag(uk) ↭ 0 since uk ↓ 0. Recall that we are working under an event where ω1

(
⇒⇑
A (k)

)
>

ω. Notice
⇒⇑
A (k)

≃ ωI ≃ diag(uk) =
p≃ q

2
Jsk→sk +W (k)

≃ ωI ≃ diag(uk),

and p↗q
2 Jsk→sk is rank 1. Therefore by Weyl’s inequality we have for any i ↑ [sk] that

ωi

(
⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
= ωi


p≃ q

2
Jsk→sk +W (k)

≃ ωI ≃ diag(uk)



↔ ωi


p≃ q

2
Jsk→sk


+ ω1

(
W (k)

≃ ωI ≃ diag(uk)
)

< ωi


p≃ q

2
Jsk→sk



because W (k)
∃ ωI . Since ωi

(p↗q
2 Jsk→sk

)
= 0 for i ↓ 2, we have that ωi

(
⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
<

0 for i ↓ 2. Now applying a Hermitian version of von Neumann’s trace inequality (Marshall et al.,
1979, Theorem 9.H.1.g and the discussion thereafter), we have

Tr
(
⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
Y

k
↔

sk

i=1

ωi

(
⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
ωi(Y

k
)

↔

sk

i=2

ωi

(
⇒⇑
A (k)

≃ ωI ≃ diag(uk
)
ωi(Y

k
) (33)

where in the second line we use the fact that ω1

(
⇒⇑
A (k)

≃ ωI ≃ diag(uk)
)
↔ 0 and ω1(Y

k
) ↓ 0.

Now the only way for (33) to be 0 and not < 0 is if ωi(Y
k
) = 0 for all i ↓ 2. Therefore Y k has rank

31

ZUREK CHEN

at most 1 in this case. But also Y
k cannot be 0, since 0 has a lower objective value than vkvk

↘ (the
top eigenvector of

⇒⇑
A (k)) since
〈
vkvk

↘
,
⇒⇑
A (k)

〉
≃ ωTr(vkvk

↘
) = vk

↘⇒⇑
A (k)vk ≃ ω > 0.

Thus Y k must be rank 1.
Now letting Y

k
= ykyk

↘, to resolve the sign ambiguity of yk we define 1↘yk ↓ 0. Finally we
establish the optimality conditions (30). (32a) follows from (32a) once we note that Y k

ii =
(
yki
)2.

Similarly (30c) follows from (32c). (30d) follows from (32d) by right-multiplying by yk and noting
that

yk

2
△= 0 since yk △= 0.

A completely analogous argument suffices to prove the analogous statements about the LOO
relaxed oracle SDP solutions.

Next we are able to show that the LOO relaxed oracle SDP solutions yk,j have low correlation
with the corresponding left-out noise vectors wk,j .

Lemma 22 With probability at least 1≃O(m↗3), for all clusters k satisfying p↗q
2 sk ↓ B4

→
pn logm,

for each j ↑ [sk],
∝wk,j , yk,j′

 ↔ B5

√
psk logm.

We define the event in Lemma 22 to be E2. We let E3 = E1 ∩ E2, and note by the union bound
that P(E3) ↓ 1≃ O(m↗3). From here on the proof will be deterministic. First we check that the
LOO relaxed oracle problems have nonzero solutions when the corresponding relaxed oracle problem
has a nonzero solution.

Lemma 23 Under the event E1, for all clusters k such that p↗q
2 sk ↓ B4

→
pn logm, for each

j ↑ [sk], ω1

(
⇒⇑
A (k)

)
≃ ω1

(
⇒⇑
A k,j

) ↔
B8

→
p logm
→
sk

,

and therefore by the choice of ωk, for any k such that ω1

(
⇒⇑
A (k)

)
> ω, we have ω1

(
⇒⇑
A k,j

)
> ωk

for all j ↑ [sk].

Proof Fix a cluster k such that p↗q
2 sk ↓ B4

→
pn logm. We can show the desired bound for

arbitrary j. Let w̃ = wk,j , ṽ = vk,j , and W̃ = W k,j . Note
W̃


op

↔
W (k)


op ↔ B1

→
psk. Let

= w̃e↘j + ejw̃↘ and Ã =
⇒⇑
A k,j =

⇒⇑
A (k)

≃#. First we bound |ṽ↘#ṽ| and ↖#ṽ↖2.
Using Lemma 17,

ṽ↘#ṽ
 = 2|w̃↘ṽ||ṽj | ↔

2B5
→
p logm

→
sk

.

Next, again using Lemma 17,

↖#ṽ↖2 =
w̃ṽj + ejw̃

↘ṽ

2
↔ ↖w̃↖2 ↖ṽ↖⇒ + |w̃↘ṽ| ↔ B1

→
psk

2
→
sk

+B5

√
p logm ↔ B7

√
p logm.

32

GAP-FREE CLUSTERING

Now we can use these bounds in the eigenvalue perturbation inequalities. By Theorem 12 we have

ω1

(
⇒⇑
A (k)

)
= ω1

(
Ã+#

)

↔ ω1

(
Ã
)
+ |ṽ↘#ṽ|+

↖#ṽ↖22

ω1

(
Ã
)
≃ ω2

(
Ã
)
≃ ↖#↖op

↔ ω1

(
Ã
)
+

2B5
→
p logm

→
sk

+
B2

7p logm
p↗q
2 sk ≃ 4B1

→
psk

↔ ω1

(
Ã
)
+

2B5
→
p logm

→
sk

+
B2

7p logm

(ε≃B1)
→
pn logm≃ 5B1

→
psk

↔ ω1

(
Ã
)
+

2B5
→
p logm

→
sk

+
B2

7p logm

(ε≃ 6B1)
→
pn logm

↔ ω1

(
Ã
)
+

2B5
→
p logm

→
sk

+
B2

7p logm
→
pn logm

↔ ω1

(
Ã
)
+

B8
→
p logm
→
sk

.

In the second inequality we used our bounds for |ṽ↘#ṽ| and ↖#ṽ↖2, as well as the facts that
↖#↖op ↔ 2 ↖w̃↖2 ↔ 2B1

→
psk, ω1

(
Ã
)
↓

p↗q
2 sk ≃

W̃


op
↓

p↗q
2 sk ≃ B1

→
psk, and ω2

(
Ã
)
↔

W̃


op
↔ B1

→
psk. In the third inequality we use the fact that p↗q

2 sk >
(
1≃ B1

ϑ

)
ε
→
pn logm =

(ε≃B1)
→
pn logm from (26). Finally we assume ε is large enough so that ε > 6B1 in the fourth

inequality.
For the other direction, we can simply use (Eldridge et al., 2018, Theorem 5) and our bound on

|ṽ↘#ṽ| to conclude

ω1

(
⇒⇑
A (k)

)
= ω1

(
Ã+#

)
↓ ω1

(
Ã
)
≃ |ṽ↘#ṽ| ↓ ω1

(
Ã
)
≃

2B5
→
p logm

→
sk

↓ ω1

(
Ã
)
≃

B8
→
p logm
→
sk

.

Now we prove two preliminary facts about the relaxed oracle SDP and the LOO relaxed oracle
SDPs. Note that Lemma 23 states that the event E1 ∩


ω1

(
⇒⇑
A (k)

)
> ω


implies the event Ek,j

1 ∩

ω1

(
⇒⇑
A k,j

)
> ωk


, which could slightly simplify the statements of Lemmas 24 and 25 below.

Lemma 24 Suppose k satisfies the condition (26). Under the event E1 ∩


ω1

(
⇒⇑
A (k)

)
> ω


, we

have
yk


2
↓

→
sk


1≃

B2

ε≃B1


.

Also, under the event Ek,j
1 ∩


ω1

(
⇒⇑
A k,j

)
> ωk


, we have

yk,j

2
↓

→
sk


1≃

B2

ε≃B1


.

33

ZUREK CHEN

Proof Recalling vk as the top eigenvector of
⇒⇑
A (k), vk

↖vk↖↔
is feasible as all its entries are in [≃1, 1].

Furthermore, for rank-one solutions xx↘, setting x = vk

↖vk↖↔
is optimal among all vectors x with

norm ↔
1

↖vk↖↔
(even comparing to x with ↖x↖⇒ > 1) since vk

↖vk↖↔
is a rescaled top eigenvector of

⇒⇑
A (k) and

〈
⇒⇑
A (k), xx↘

〉
= x↘

⇒⇑
A (k)x. So we must have

yk

2
↓

1
↖vk↖↔

, as the optimal solution

must have larger 2-norm than vk

↖vk↖↔
. Now we use Lemma 16 to upper-bound

vk

⇒.

By (21) we have

1

↖vk↖⇒
↓

1
1⇐
sk

+ 2B2

⇐
p logm

(p↗q)sk

↓

→
sk

1 + 2B2

⇐
psk logm
(p↗q)sk

↓
→
sk


1≃ 2B2

→
psk logm

(p≃ q)sk



↓
→
sk


1≃

B2

ε≃B1



where we used the fact that 1
1+x ↓ 1≃ x and then that


1≃

B1

ε


ε
√
psk logm ↔


1≃

B1

ε


ε
√
pn logm <

p≃ q

2
sk

using (26), which implies

2
→
psk logm

(p≃ q)sk
↔

1(
1≃ B1

ϑ

)
ε
=

1

ε≃B1
.

Therefore
yk


2
↓

→
sk


1≃

B2

ε≃B1


.

By simply starting with (22), which is part of Ek,j
1 , instead of (21), we have the same bound for

yk,j .

Lemma 25 Suppose k satisfies the condition (26). Under the event E1 ∩


ω1

(
⇒⇑
A (k)

)
> ω


, we

have

e↘yk ↓
→
sk


1≃

B9

ε≃B1


.

Also, under the event Ek,j
1 ∩


ω1

(
⇒⇑
A k,j

)
> ωk


, we have

e↘yk,j ↓
→
sk


1≃

B9

ε≃B1


.

34

GAP-FREE CLUSTERING

Proof For convenience we abbreviate y := yk. Since ω1

(
⇒⇑
A (k)

≃ ωI
)
> 0,

y↘
(
⇒⇑
A (k)

≃ ωI
)
y =

p≃ q

2
(1↘y)2 + y↘Wy ≃ ω ↖y↖22 ↓ 0

so starting by rearranging this inequality, we have

p≃ q

2
(1↘y)2 ↓ ω ↖y↖22 ≃ y↘W (k)y

↓ ω ↖y↖22 ≃
W (k)


op
↖y↖22

↓ ε
√
pn logm ↖y↖22 ≃B1

→
psk ↖y↖

2
2

=


1≃

B1
→
psk

ε
→
pn logm


ε
√

pn logm ↖y↖22

↓


1≃

B1

ε


ε
√

pn logm ↖y↖22

↓


1≃

B1

ε


1≃

B6

ε


p≃ q

2
sk ↖y↖

2
2

↓


1≃

B1 +B6

ε


p≃ q

2
sk ↖y↖

2
2

where we used the fact that under E1 we have
W (k)


op ↔ B1

→
psk, and then finally that

ε
√

pn logm ↓
p≃ q

2
sk


1 +

B6

ε

↗1

↓
p≃ q

2
sk


1≃

B6

ε



which follows from condition (26) and the fact that 1
1+x ↓ 1 ≃ x. Dividing both sides by p↗q

2 sk,
noting e = 1/

→
sk, and using Lemma 24 we have

(e↘y)2 ↓


1≃

B1 +B6

ε


↖y↖22

↓


1≃

B1 +B6

ε


→
sk


1≃

B2

ε≃B1

2

↓ sk


1≃

B1 +B6 + 2B2

ε≃B1


.

Taking square roots and using the fact that
→
1≃ x ↓ 1≃x we obtain e↘y ↓

→
sk

(
1≃ B1+B6+2B2

ϑ↗B1

)
.

A nearly identical argument works for
yk,j


2

(note
W k,j


op ↔ B1

→
psk is guaranteed under

Ek,j
1) except that ωk is slightly smaller than ω. Here we can simply bound very loosely

ωk = ω≃
B8

→
p logm
→
sk

↓ ε
√
pn logm≃B8

√
pn logm =


1≃

B8

ε


ε
√
pn logm,

which will simply add a term of B8 to the numerator above, leading to the bound

e↘yk,j ↓
→
sk


1≃

B8 +B1 +B6 + 2B2

ε≃B1


.

35

ZUREK CHEN

Lastly we set B9 = B8 +B1 +B6 + 2B2.

Finally we are able to show that the relaxed oracle SDP solution (28) is all-positive, and thus it is
also a solution of the (un-relaxed) oracle SDP (4). For notational convenience, we will only show
that the first entry of yk is positive, since the same argument applies to all other entries. Thus we will
abbreviate the rank-one relaxed oracle SDP solution by y := yk and the rank-one 1st LOO relaxed
oracle solution by ỹ := yk,1, and similarly we let Y := Y

k, Ỹ := Y
k,1

, u := uk, and ũ := uk,j . We
also let ω̃ = ωk, W̃ := W k,1, and w̃ := wk,1. Since we are working with a fixed k we will also
abbreviate s := sk.

Now we can show one of the key properties of the LOO relaxed oracle solution, which is that ỹ1
is close to 1.

Lemma 26 Supposing cluster k satisfies the condition (26), under the event E3∩


ω1

(
⇒⇑
A (k)

)
> ω


,

ỹ1 ↓ 1≃B10
1

ε≃ 1
.

Proof By the complementary slackness conditions (31d) for the LOO relaxed oracle SDP,

0 = ũ ∞ ỹ ≃
p≃ q

2
11↘ỹ ≃ W̃ ỹ + ω̃ỹ

so

ỹ1 =
1

ω̃


p≃ q

2
1↘ỹ + e↘1 W̃ ỹ ≃ ũ1ỹ1



=
1

ω̃


p≃ q

2
1↘ỹ ≃ ũ1ỹ1


.

Now either ỹ1 = 1 and we are done, or otherwise ũ1ỹ1 ↔ 0 by complementary slackness, in which
case we have

ỹ1 ↓
1

ω̃

p≃ q

2
1↘ỹ

=
1

ω̃

p≃ q

2

→
se↘ỹ

↓
1

ε
→
pn logm

p≃ q

2

→
s
→
s


1≃

B9

ε≃B1



↓


1≃

B1

ε


1≃

B9

ε≃B1



↓ 1≃
B1 +B9

ε≃B1

where we used Lemma 25, the fact that 1
ϖ̃
↓

1
(ϑ+1)

⇐
pn logm

since ω̃ ↔ ω, and then the fact that
(
1≃ B1

ϑ

)
ε
→
pn logm < p↗q

2 s from condition (26).

Now let y = ϖỹ + φt, where t is a unit vector orthogonal to ỹ. Also we may assume for
convenience that φ ↓ 0 by possibly scaling t by ≃1. If we can show that ϖ is close to 1 and φ is
small, then in light of Lemma 26, we will succeed in showing that y1 is also close to 1 and thus
positive. First we show ϖ is close to 1.

36

GAP-FREE CLUSTERING

Lemma 27 Supposing cluster k satisfies the condition (26), under the event E3∩


ω1

(
⇒⇑
A (k)

)
> ω


,

1≃
B11

ε≃B1
↔ ϖ ↔ 1 +

B11

ε≃B1
.

Proof By orthogonality of t and ỹ we have

ϖ =
∝ỹ, y′

↖ỹ↖22
.

Now we give upper and lower bounds on ϖ. First we prove the upper bound. Note ∝y, ỹ′ ↔ s since
each coordinate is bounded by 1, and using Lemma 24, we have

ϖ =
∝ỹ, y′

↖ỹ↖22
↔

s

s
(
1≃ B2

ϑ↗B1

)2 ↔
1

1≃ 2B2
ϑ↗B1

↔ 1 +
4B2

ε≃B1

where we use the fact that 1
1↗a ↔ 1 + 2a for a ↑ [0, 0.5], and assume ε≃B1 ↓ 4B2.

For the lower bound, write ∝ỹ, y′ = 1
2

(
↖ỹ↖22 + ↖y↖22 ≃ ↖y ≃ ỹ↖22

)
. For the terms ↖ỹ↖22 and ↖y↖22

we have lower bounds from Lemma 24. Now we need to upper bound ↖y ≃ ỹ↖2, which we do by
showing that both y and ỹ are close to 1 in 2-norm and then using the triangle inequality. Using the
Law of Cosines again we have

↖y ≃ 1↖22 = ↖y↖22 + ↖1↖22 ≃ 2∝y,1′

↔ 2s≃ 2∝y,1′

= 2s≃ 2
→
se↘y

↔ 2s≃ 2s


1≃

B9

ε≃B1



= 2s
B9

ε≃B1

where the inequality steps came from the fact that ↖y↖⇒ ↔ 1 and Lemma 25. The same argument
also shows that ↖ỹ ≃ 1↖22 ↔ 2s B9

ϑ↗B1
. Then using the triangle inequality and AM-GM we have

↖y ≃ ỹ↖22 ↔ 2
(
↖y ≃ 1↖22 + ↖ỹ ≃ 1↖22

)

↔ 8s
B9

ε≃B1
.

Combining with the above arguments we have that

∝ỹ, y′ =
1

2

(
↖ỹ↖22 + ↖y↖22 ≃ ↖y ≃ ỹ↖22

)

↓
1

2

(
s


1≃

B2

ε≃B1

2

+ s


1≃

B2

ε≃B1

2

≃ 8s
B9

ε≃B1

)

↓
1

2


s


1≃

2B2

ε≃B1


+ s


1≃

2B2

ε≃B1


≃ 8s

B9

ε≃B1



s


1≃

2B2 + 4B9

ε≃B1


.

37

ZUREK CHEN

Now using the bound ↖ỹ↖22 ↔ s, we have

ϖ =
∝ỹ, y′

↖ỹ↖22

↓ 1≃
2B2 + 4B9

ε≃B1
.

Now we derive a perturbation bound which will be key in showing that φ is small.

Lemma 28 We have
〈
diag(ũ)≃

(
Ã≃ ω̃I

)
, Y

〉
↔

〈(
Ã≃ ω̃I

)
≃

(
⇒⇑
A (k)

≃ ωI
)
, Ỹ ≃ Y

〉
. (34)

Proof This essentially follows from the LOO relaxed oracle KKT conditions (31). Condition (31d)
gives

(
diag(ũ)≃

(
Ã≃ ω̃I

))
Ỹ = 0 (since Ỹ = yy↘). Also by condition (31c) and since ũ ↓ 0

from (31b),
〈
diag(ũ), Y ≃ Ỹ

〉
= ∝diag(ũ), Y ≃ I′ =

s

i=1

ũi (Yii ≃ 1) ↔ 0.

Using these two facts we have
〈
diag(ũ)≃

(
Ã≃ ω̃I

)
, Y

〉
=

〈
diag(ũ)≃

(
Ã≃ ω̃I

)
, Y ≃ Ỹ

〉

=
〈
Ã≃ ω̃I, Ỹ ≃ Y

〉
+
〈
diag(ũ), Y ≃ Ỹ

〉

↔

〈
Ã≃ ω̃I, Ỹ ≃ Y

〉
. (35)

Now since Ỹ is feasible for the relaxed oracle SDP (28) and Y is optimal, we have
〈
⇒⇑
A (k)

≃ ωI, Ỹ ≃ Y
〉
↔ 0 =¬

〈
≃

(
⇒⇑
A (k)

≃ ωI
)
, Ỹ ≃ Y

〉
↓ 0.

Adding this to (35), we obtain (34).

Lemma 29 Supposing cluster k satisfies the condition (26), under the event E3∩


ω1

(
⇒⇑
A (k)

)
> ω


,

φ ↔
B14

ε≃B15

Proof First we relate the LHS of (34) to φ. The event E3 ∩


ω1

(
⇒⇑
A (k)

)
> ω


implies the event

Ek,j
1 ∩


ω1

(
⇒⇑
A k,j

)
> ωk


by Lemma 23, so we may use (31d) which states

(
ω̃I + diag(ũ)≃ Ã

)
ỹ =

0. Since ỹ is nonzero this implies that ỹ is an eigenvector with eigenvalue 0.

38

GAP-FREE CLUSTERING

Also we use a similar calculation to that within the proof of Lemma 21 to lower bound the
remaining eigenvalues of ω̃I + diag(ũ)≃ Ã. By Weyl’s inequality for any i ↑ [sk] with i < sk we
have

ωi

(
ω̃I + diag(ũ)≃ Ã

)
= ωi


ω̃I + diag(ũ)≃ W̃ ≃

p≃ q

2
Jsk→sk



↓ ωi


≃
p≃ q

2
Jsk→sk


+ ωsk

(
ω̃I + diag(ũ)≃ W̃

)

= ωsk

(
ω̃I + diag(ũ)≃ W̃

)

↓ ωsk

(
ω̃I ≃ W̃

)

↓ ω̃≃

W̃


op

↓ ε
√
pn logm≃

B8
→
p logm
→
sk

≃B1
→
psk

↓ (ε≃B8 ≃B1)
√
pn logm

where we use the fact that ωi
(
≃

p↗q
2 Jsk→sk

)
= 0 for i < sk.

Therefore using y = ϖỹ + φt in the LHS of (34) we obtain

〈
diag(ũ)≃

(
Ã≃ ω̃I

)
, Y

〉
= y↘

(
ω̃I + diag(ũ)≃ Ã

)
y

= φ2t↘
(
ω̃I + diag(ũ)≃ Ã

)
t

↓ φ2 (ε≃B8 ≃B1)
√
pn logm (36)

using that t is a unit vector orthogonal to ỹ as well as the above facts.
Next expanding the RHS of (34) we have

〈(
Ã≃ ω̃I

)
≃

(
⇒⇑
A (k)

≃ ωI
)
, Ỹ ≃ Y

〉
=

〈
≃w̃e↘1 ≃ e1w̃

↘ + (ω̃≃ ω)I, ỹỹ↘ ≃ yy↘
〉

= 2y1w̃
↘y ≃ 2ỹ1w̃

↘ỹ +
〈
(ω̃≃ ω)I, ỹỹ↘ ≃ yy↘

〉

↔ 2y1w̃
↘y + 2 |ỹ1|

w̃↘ỹ
+

ω̃≃ ω


s

j=1

y2j ≃ ỹ2j


↔ 2y1w̃
↘y + 2

w̃↘ỹ
+ s

ω̃≃ ω


↔ 2y1w̃
↘y + 2B5

√
ps logm+ s

B8
→
p logm
→
s

= 2y1w̃
↘y + (2B5 +B8)

√
ps logm

using Lemma 22 to bound
w̃↘ỹ

 and Lemma 23 to bound
ω̃≃ ω

.

39

ZUREK CHEN

Now we bound the final term 2y1w̃↘y. Using y = ϖỹ + φt we split

2y1w̃
↘y = 2∝w̃e↘1 , yy

↘
′

= 2∝w̃e↘1 , (ϖỹ + φt)(ϖỹ + φt)↘′

= 2ϖ2ỹ1w̃
↘ỹ︸ ︷︷ ︸

T1

+2ϖφt1w̃
↘ỹ︸ ︷︷ ︸

T2

+2ϖφỹ1w̃
↘t︸ ︷︷ ︸

T3

+2φ2t1w̃
↘t︸ ︷︷ ︸

T4

.

Now we bound each term. Note that from Lemma 27 we have that |ϖ| ↔ 2 for sufficiently large ε.
Also φt = y ≃ ϖỹ and ↖y↖⇒ ↔ 1, ↖ϖỹ↖⇒ ↔ |ϖ| ↖ỹ↖⇒ ↔ 2, so ↖φt↖⇒ ↔ 3. Using these as well as
the aforementioned bounds on

w̃↘ỹ
 and the fact that ↖t↖⇒ ↔ 1 because it is a unit vector, we have

T1 ↔ 2(2)2(1)B5

√
psk logm ↔ 8B5

√
psk logm

T2 ↔ 2(2)(3)B5

√
psk logm ↔ 12B5

√
psk logm

T3 ↔ 2|φ|(1) ↖w̃↖2 ↔ 2B1|φ|
→
ps

T4 ↔ 2|φ| ↖φt↖⇒ ↖w̃↖2 ↔ 6B1|φ|
→
ps.

Therefore
2y1w̃

↘y ↔ 20B5

√
ps logm+ 8B1|φ|

→
ps

and so combining with the earlier bound we have
〈(

Ã≃ ω̃I
)
≃

(
⇒⇑
A (k)

≃ ωI
)
, Ỹ ≃ Y

〉
↔ (22B5 +B8)

√
ps logm+ 8B1|φ|

→
ps.

Combining this with (34) and (36) we have

φ2 (ε≃B8 ≃B1)
√
pn logm ↔

〈
diag(ũ)≃

(
Ã≃ ω̃I

)
, Y

〉

↔

〈(
Ã≃ ω̃I

)
≃

(
⇒⇑
A (k)

≃ ωI
)
, Ỹ ≃ Y

〉

↔ (22B5 +B8)
√
ps logm+ 8B1|φ|

→
ps

↔ (22B5 +B8 + 8B1|φ|)
√
pn logm

= (B12 +B13|φ|)
√
pn logm

which implies after rearranging and dividing by
→
pn logm that

φ2 (ε≃B8 ≃B1)≃
B13

ε
|φ|+

B12

ε
↔ 0.

By solving for the positive root in this quadratic of |φ| we obtain that

|φ| ↔
B13
ϑ +

√(
B13
ϑ

)2
+ 4B12

ϑ (ε≃B8 ≃B1)

2 (ε≃B8 ≃B1)

↔

B13
ϑ + B13

ϑ +
√

4B12
ϑ (ε≃B8 ≃B1)

2 (ε≃B8 ≃B1)

↔

2B13
ϑ +

√
4B12
ϑ ε

2 (ε≃B8 ≃B1)

↔
B13 +B12

ε≃B8 ≃B1

40

GAP-FREE CLUSTERING

as desired.

Now combining Lemma 26 (which guaranteed ỹ1 is close to 1), Lemma 27 which bounded ϖ,
and the above Lemma 29 which bounds φ, we have

y1 = ϖỹ1 + φt1

↓


1≃

B11

ε≃B1


1≃

B10

ε≃ 1


≃

B14

ε≃B15

↓ 1≃
B11

ε≃B1
≃

B10

ε≃ 1
≃

B14

ε≃B15

where for the second line we used the triangle inequality, the fact that φ is defined to be positive, and
the fact that t is a unit vector so |t1| ↔ 1. Now by choosing ε sufficiently large, we are guaranteed
that y1 ↓

1
2 . Again, since the identical argument works for all entries of y, we conclude y ↓

1
2

elementwise.
Now that we have shown the kth relaxed oracle SDP (28) has rank one and nonnegative solution

ykyk
↘, we can easily obtain the desired conclusions about the kth oracle SDP (4). First, since all

feasible points for the kth oracle SDP are also feasible for the kth relaxed oracle SDP, and also we
have shown that the kth relaxed oracle SDP has an optimal solution ykyk

↘ which is feasible for the
kth oracle SDP, we have that ykyk↘ must also be optimal for the kth oracle SDP. Furthermore, we
will now show that ykyk↘ is the unique optimal solution of the kth relaxed oracle SDP, which by
this same reasoning implies it must be the unique optimal solution of the kth oracle SDP.

We know from Lemma 21 that any optimal solution to the relaxed oracle SDP (28) must be
rank-one, so let one be y≃y≃↘. Now by repeating the proof of the perturbation bound Lemma 28
up until (35), but replacing the LOO quantities ũ, ω̃, Ã, Ỹ with uk,ω,

⇒⇑
A (k), Ŷ k (which satisfy the

analogous conditions (30)), and setting Y = y≃y≃↘, we obtain
〈
diag(uk)≃

(
⇒⇑
A (k)

≃ ωI
)
, y≃y≃↘

〉
↔

〈
⇒⇑
A (k)

≃ ωI, Ŷ k
≃ y≃y≃↘

〉
.

Since y≃y≃↘ is optimal, we have
〈
⇒⇑
A (k)

≃ ωI, Ŷ k
≃ y≃y≃↘

〉
= 0. Now write y≃ = ϱy+z, where z is

orthogonal to y. Combining the previous display with the fact that
(
ωI + diag(u)≃

⇒⇑
A (k)

)
y = 0

from (31d), we have that

z↘
(
ωI + diag(u)≃

⇒⇑
A (k)

)
z ↔ 0

but we already know from the proof of Lemma 21 that ωi

(
ωI + diag(u)≃

⇒⇑
A (k)

)
> 0 for all i < sk

and that the smallest eigenvalue has eigenvector y, so we must have z = 0. Thus y≃ = ϱyk, and
|ϱ| > 1 would cause y≃y≃↘ to be infeasible while |ϱ| < 1 would cause y≃y≃↘ to be suboptimal (since
ω1

(
⇒⇑
A (k)

≃ ωI
)
> 0), so we must have ϱ ↑ {≃1, 1} and thus y≃y≃↘ = Ŷ k. Thus Ŷ k = ykyk

↘ is
the unique optimal solution to the kth relaxed oracle SDP, and thus by the reasoning in the previous
paragraph it is also the unique optimal solution to the kth oracle SDP.

Finally, we set Lk = 0sk→sk and Uk = diag(uk). We have Uk ↭ 0 as desired since uk ↓ 0
from (30b), and from the conditions (30) as well as the fact that yk ↓ 0 elementwise, we immediately
have that these choices of Lk, Uk (and Ŷ k = ykyk

↘) satisfy the oracle SDP KKT conditions (16).

41

ZUREK CHEN

In summary, all conclusions of all cases of Lemma 14 hold under the event E3 (which is contained
in the event E1 which sufficed for the non-mid-size cases as shown in Lemmas 19 and 20), and we
checked that P(E3) ↓ 1≃O(m↗3) as desired. To complete our proof of Lemma 14, note we can
ensure that the constants B,B can be taken to be > 2 by requiring ε sufficiently large.

C.2. Recovery SDP Solution

Now we complete the proof of the main Theorem 2. First we assume we are in the event E3 defined
in the previous subsection, under which the main Lemma 14 from the previous subsection holds.
Now we define a further subset of this event, E4, which will be the intersection of E3 with the events
described in the following lemmas.

For each cluster k such that p↗q
2 sk ↓ B4

→
pn logm if the kth oracle solution Ŷ k = ykyk

↘ is
nonzero we define xk = yk

↖yk↖
2

, and otherwise if yk = 0 we define xk = vk (a top eigenvector of
⇒⇑
A (k), with properties described in Lemma 16). Our event E4 will involve these xk so we establish a
basic fact about them.

Lemma 30 Under the event E3, for all clusters k such that p↗q
2 sk ↓ B4

→
pn logm, we have

xk

⇒

↔
2

→
sk

.

Proof The case that yk = 0 and xk = vk is established by Lemma 17. By Lemma 24 if p↗q
2 sk <(

1 + B6
ϑ

)
ε
→
pn logm then we will have

yk

2
↓

→
sk


1≃

B2

ε≃B1


↓

→
sk
2

(by our assumptions on the size of ε) and otherwise when p↗q
2 sk ↓

(
1 + B6

ϑ

)
ε
→
pn logm by

Lemma 20 we have yk = 1 so xk = 1⇐
sk
1 which clearly satisfies the conclusion.

Lemma 31 With probability at least 1≃O(m↗3), for all clusters k such that p↗q
2 sk ↓ B4

→
pn logm,

for all clusters j △= k, we have
W (jk)xk


⇒

↔ B5

√
p logm. (37)

Lemma 32 With probability at least 1≃O(m↗3),

↖W↖op ↔ B1
→
pn. (38)

Lemmas 31 and 32 are proven in Subsection C.4.
We let the event E4 be the intersection of the event E3 (under which Lemma 14 on the oracle

SDP solutions holds) and the events described in Lemmas 31 and 32. By the union bound (recalling
from the previous subsection that E3 holds with probability at least 1 ≃ O(m↗3)) we have that
P(E4) ↓ 1≃O(m↗3). Now we will construct a solution to the KKT equations (15) of the recovery
SDP (1). The rest of the proof will be deterministic, assuming the event E4 holds.

42

GAP-FREE CLUSTERING

We define

Ŷ = diag
(
y1y1

↘
, . . . , yKyK

↘
)

U = diag
(
U1, . . . , UK

)
.

Note that it is immediate that Ŷ satisfies the conditions in (15a), since each block yiyi
↘ is feasible

for the oracle SDP (4) and thus satisfies 0 ↔ yiyi
↘

↔ 1 and yiyi
↘ ↭ 0, and a block-diagonal

matrix of PSD blocks is PSD. Also from the oracle KKT conditions (16) we have that U i
↓ 0 and

(U i
jk ≃ 1)Ŷ i

jk = 0 ⇐j, k ↑ [n], which ensure U ↓ 0 and the condition (Ujk ≃ 1)Ŷjk = 0 ⇐j, k ↑ [n]
from (15b) and (15c).

Finally we describe our choice of L. First we set the diagonal blocks L(i) = Li = 0 for all
i. This guarantees that the condition LjkŶjk = 0 ⇐j, k ↑ [n] from line (15c) is satisfied, since the
diagonal blocks of L are 0 and the off-diagonal blocks of Ŷ are 0.

Now we describe the off-diagonal blocks L(ij), which have different forms depending on the
sizes of si and sj , so we split into 3 cases. We only describe the cases where i > j, because we set
L(ji) = L(ij)↘. We assume that ε ↓ 2B4, so that the conclusions of Lemma 31 hold for clusters k
such that p↗q

2 sk ↓
ϑ
2

→
pn logm.

C.2.1. BOTH CLUSTERS LARGE

If si, sj ↓
(p↗q

2

)↗1 ϑ
⇐
pn logm
2 , we use

L(ij) = ≃E⇒⇑A (ij)
≃ xix

↘
i W

(ij)
≃W (ij)xjx

↘
j + xix

↘
i W

(ij)xjx
↘
j

This is chosen so that we have
⇒⇑
A (ij) + L(ij) = W (ij) + E⇒⇑A (ij) + L(ij)

= W (ij)
≃ xix

↘
i W

(ij)
≃W (ij)xjx

↘
j + xix

↘
i W

(ij)xj

= (I ≃ xix
↘
i)W

(ij)(I ≃ xjx
↘
j).

Now we check non-negativity of this choice of L(ij). Since ↖xi↖⇒ ↔
2⇐
si

and ↖xj↖⇒ ↔
2⇐
sj

by

Lemma 30, and since
W (ji)xi


⇒ ,

W (ij)xj

⇒ ↔ B5

→
p logm by Lemma 31, we can verify

≃xix
↘
i W

(ij)
≃W (ij)xjx

↘
j + xix

↘
i W

(ij)xjx
↘
j


⇒

↔

xix↘i W (ij)

⇒

+
W (ij)xjx

↘
j


⇒

+
xix↘i W (ij)xjx

↘
j


⇒

↔ ↖xi↖⇒

W (ji)xi

⇒

+
W (ij)xj


⇒
↖xj↖⇒ + ↖xi↖⇒ ↖xj↖⇒

x↘i W (ij)xj


↔
2

→
si
B5

√
p logm+

2
→
sj
B5

√
p logm+ ↖xi↖⇒ ↖xj↖⇒ ↖xi↖1

W (ij)xj

⇒

↔
2

→
si
B5

√
p logm+

2
→
sj
B5

√
p logm+ si ↖xi↖

2
⇒ ↖xj↖⇒

W (ij)xj

⇒

↔
2

→
si
B5

√
p logm+

2
→
sj
B5

√
p logm+ si

4

si

2
→
sj
B5

√
p logm

↔


2

→
si

+
10
→
sj


B5

√
p logm

43

ZUREK CHEN

which is ↔ p↗q
2 as long as ε is sufficiently large, since by assumption si, sj are each sufficiently

large so that

p≃ q

2
si ↓

ε
→
pn logm

2
=¬

p≃ q

2
↓

ε
→
pn logm

2si
=

ε

2

→
p logm
→
si

→
n

→
si

↓
ε

2

→
p logm
→
si

and likewise for sj . Now noting that ≃E⇒⇑A (ij) = p↗q
2 Jsi→sj , we have that all entries of L(ij) are

positive.

C.2.2. ONE CLUSTER LARGE, ONE CLUSTER SMALL

When p↗q
2 si ↓

ϑ
⇐
pn logm
2 > p↗q

2 sj , we use

L(ij) = ≃E⇒⇑A (ij)
≃ xix

↘
i W

(ij)

which ensures that

⇒⇑
A (ij) + L(ij) = W (ij) + E⇒⇑A (ij) + L(ij)

= (I ≃ xix
↘
i)W

(ij).

Now we check non-negativity of this choice of L(ij). Again using the facts that ↖xi↖⇒ ↔
2⇐
si

and
W (ji)xi


⇒ ↔ B5

→
p logm, we have

xix↘i W (ij)

⇒

↔ ↖xi↖⇒

x↘i W (ij)

⇒

↔
2

→
si
B5

√
p log n

which identically to the previous case is ↔ p↗q
2 for sufficiently large ε due to the assumption on the

size of si.

C.2.3. BOTH CLUSTERS SMALL

This is the simplest case. If si, sj <
(p↗q

2

)↗1 ϖ
2 , we set L(ij) = ≃E⇒⇑A (ij) = p↗q

2 Jsi→sj which is
obviously all non-negative. Note in this case we have

⇒⇑
A (ij) + L(ij) = E⇒⇑A (ij) +W (ij)

≃ E⇒⇑A (ij) = W (ij).

C.2.4. CHECKING KKT CONDITIONS

It remains to check that
⇒⇑
A ≃ ωI ≃ U + L ⊜ 0 and

(
⇒⇑
A ≃ ωI ≃ U + L

)
Ŷ = 0n→n.

First we check that
(
⇒⇑
A ≃ ωI ≃ U + L

)
Ŷ = 0n→n using blockwise matrix multiplication. We

have

((
⇒⇑
A ≃ ωI ≃ U + L

)
Ŷ
)(ij)

=
K

k=1

(
⇒⇑
A ≃ ωI ≃ U + L

)(ik)
Ŷ (kj)

=
(
⇒⇑
A ≃ ωI ≃ U + L

)(ij)
Ŷ (jj)

44

GAP-FREE CLUSTERING

using the fact that Ŷ (kj) = 0 for k △= j.

If i △= j, then
(
⇒⇑
A ≃ ωI ≃ U + L

)(ij)
=

⇒⇑
A (ij) + L(ij). If p↗q

2 sj < ϑ
⇐
pn logm
2 , then since

ϑ
⇐
pn logm
2 ↔

(
1≃ B1

ϑ

)
ε
→
pn logm, by Lemma 14 Ŷ (jj) = Ŷ j = 0 so

(
⇒⇑
A ≃ ωI ≃ U + L

)(ij)
Ŷ (jj) =

0 as desired. If p↗q
2 sj ↓

ϑ
⇐
pn logm
2 , if still Ŷ (jj) = 0 then again we are done, and otherwise in this

case by construction of L(ij) we have
⇒⇑
A (ij) + L(ij) = M(I ≃ xjxj

↘
) for some M , so then

(
⇒⇑
A (ij) + L(ij)

)
Ŷ (jj) = M(I ≃ xjxj

↘
)yjyj

↘
= M(yjyj

↘
≃ yjyj

↘
) = 0.

Next if i = j, we have
(
⇒⇑
A ≃ ωI ≃ U + L

)(ij)
=

(
⇒⇑
A (i)

≃ ωI ≃ U i + Li
)

. Again if Ŷ (jj) =

Ŷ j = 0 then we have
(
⇒⇑
A ≃ ωI ≃ U + L

)(ij)
Ŷ (jj) = 0 as desired. If Ŷ j

△= 0, by the KKT

conditions for the oracle SDP (16d) we have
(
⇒⇑
A (i)

≃ ωI ≃ U i + Li
)
Ŷ i = 0 so

(
⇒⇑
A ≃ ωI ≃ U + L

)(ij)
Ŷ (jj) =

(
⇒⇑
A (i)

≃ ωI ≃ U i + Li
)
Ŷ j = 0

as desired.
Finally we verify that

⇒⇑
A ≃ωI ≃U +L ⊜ 0. Equivalently we check that

⇒⇑
A ≃U +L ⊜ ωI . Let

xi be a zero-padded version of xi so that xi
(i)

= xi (recall that for z ↑ Rn, z(i) ↑ Rsi extracts the
entries corresponding to cluster i). Let Q ↑ Rn→r be a matrix with (orthonormal) columns equal to
the x1, . . . , xr corresponding to the clusters large enough so that s1, . . . , sr ↓

(p↗q
2

)↗1 ϑ
⇐
pn logm
2 .

Let P = QQ↘ = diag
(
x1x1

↘
, . . . , xrxr↘, 0sr+1→sr+1 , . . . , 0sK→sK

)
.

Lemma 33 For each i = 1, . . . , r, we have
(
⇒⇑
A ≃ U + L

)
xi = ϖixi

for some ϖi
↔ ω.

Proof First, by the zero-padding of xi, we have

((
⇒⇑
A ≃ U + L

)
xi
)(j)

=
K

k=1

(
⇒⇑
A ≃ U + L

)(jk)
xi

(k)

=
(
⇒⇑
A ≃ U + L

)(ji)
xi

(i)

=
(
⇒⇑
A (ji)

≃ U (ji) + L(ji)
)
xi

so it remains to show that the above is equal to ϖixi for some ϖi
↔ ω. If i △= j then U (ji) = 0 and

⇒⇑
A (ji)+L(ji) has the form

⇒⇑
A (ji)+L(ji) = M(I≃xixi

↘
), so in this case

(
⇒⇑
A (ji)

≃ U (ji) + L(ji)
)
xi =

0. If i = j, then we have to consider the cases that yi = 0 and yi △= 0 separately.
When yi = 0 we define xi as a top eigenvector vi of

⇒⇑
A (i) =

⇒⇑
A (i)

≃ U i + Li (where we are
using the fact from Lemma 14 that U i = Li = 0 in this case). Thus there exists some ϖi such that

45

ZUREK CHEN

(
⇒⇑
A (i)

≃ U i + Li
)
xi = ϖixi, and furthermore by condition (16b) from the KKT conditions for the

oracle SDP we have that ϖi
↔ ω.

When yi △= 0, then by combining the condition (16d) from the oracle SDP KKT conditions with
the fact that Ŷ i = yiyi

↘, we obtain (by right-multiplying by yi and dividing by
yi

2
2
△= 0) that

(
⇒⇑
A (i)

≃ ωI ≃ U i + Li
)
yi = 0,

so now dividing by
yi


2

and finally recall that in this case we have defined xi = yi

⇑yi⇑2
.

Lemma 34 We have

(I ≃ P)
(
⇒⇑
A ≃ U + L

)
P = 0,

P
(
⇒⇑
A ≃ U + L

)
P ⊜ ωI.

Proof Immediate from the form of P and Lemma 33.

Lemma 35 We have
(I ≃ P)

(
⇒⇑
A ≃ U + L

)
(I ≃ P) ⊜ ωI.

Proof Let D = diag(
⇒⇑
A (1)

≃ U (1), . . . ,
⇒⇑
A (r)

≃ U (r), p↗q
2 Jsr+1 , . . . ,

p↗q
2 JsK). First we check that

(I ≃ P)D(I ≃ P) ⊜ ϖ
2 . Notice that (I ≃ P)D(I ≃ P) is also block-diagonal, with

((I ≃ P)D(I ≃ P))(i) =

{
(I ≃ xixi

↘
)
(
⇒⇑
A (i)

≃ U (i)
)
(I ≃ xixi

↘
) i ↔ r

p↗q
2 Jsi→si i > r

so ω1 ((I ≃ P)D(I ≃ P)) is bounded by the maximum eigenvalue of the blocks. We have chosen r
so that for all i > r,

ω1


p≃ q

2
Jsi→si


=

p≃ q

2
si ↔

ε
→
pn logm

2
↔

ω

2
.

For all i ↔ r, we know xi is an eigenvector of
⇒⇑
A (i)

≃U (i)+L(i) =
⇒⇑
A (i)

≃U (i) with eigenvalue
ω from the proof of Lemma 33. By Weyl’s inequality we have for all j > 1 that

ωj

(
⇒⇑
A (i)

≃ U (i)
)
= ωj


p≃ q

2
Jsi→si +W (i)

≃ U (i)



↔ ωj


p≃ q

2
Jsi→si


+ ω1

(
W (i)

≃ U (i)
)

↔ 0 +
W (i)


op

↔ B1

√
pn logm

↔
ε
→
pn logm

2
< ω

46

GAP-FREE CLUSTERING

where we use the facts that ωj
(p↗q

2 Jsi→si

)
= 0 for j > 1, that U (i) = U i ↭ 0 from Lemma 14, and

assume ε ↓ 2B1. Therefore xi is a top eigenvector of
⇒⇑
A (i)

≃ U (i) and all other eigenvalues are
↔

ϑ
⇐
pn logm
2 . Now we can calculate that

ω1

(
(I ≃ xixi

↘
)
(
⇒⇑
A (i)

≃ U (i)
)
(I ≃ xixi

↘
)
)
= sup

z:⇑z⇑2↔1
z↘

(
(I ≃ xixi

↘
)
(
⇒⇑
A (i)

≃ U (i)
)
(I ≃ xixi

↘
)
)
z

= sup
z:⇑z⇑2↔1,z⇓xi

z↘
(
⇒⇑
A (i)

≃ U (i)
)
z

= ω2

(
⇒⇑
A (i)

≃ U (i)
)

↔
ε
→
pn logm

2

as desired, where we used the fact that (I ≃ xixi
↘
)z is perpendicular to xi for any z and also

always has norm ↔ ↖z↖2 since it is an orthogonal projection. Therefore we have checked that
(I ≃ P)D(I ≃ P) ⊜ ϖ

2 .
Now we check that by our construction of L we have

(I ≃ P)
(
⇒⇑
A + L≃ U ≃D

)
(I ≃ P)

= (I ≃ P)
(
W ≃ diag

(
W (1), . . . ,W (r), 0sr→sr , . . . , 0sK→sK

))
(I ≃ P)

⊜ 2 ↖W↖op I

⊜ 2B1
→
pnI

⊜ ε
→
pn logm

2
I.

This completes the proof of the lemma.

Now we combine the results of Lemmas 34 and 35 with the conjugation rule and the fact that P
is an orthogonal projection to obtain that

P
(
⇒⇑
A ≃ U + L

)
P = P 2

(
⇒⇑
A ≃ U + L

)
P 2 ⊜ ωP 2 = ωP

(I ≃ P)
(
⇒⇑
A ≃ U + L

)
(I ≃ P) = (I ≃ P)2

(
⇒⇑
A ≃ U + L

)
(I ≃ P)2 ⊜ ω(I ≃ P)2 = ω(I ≃ P).

Finally we add these two inequalities and use the fact that (I ≃ P)
(
⇒⇑
A ≃ U + L

)
P = 0 from

Lemma 34 to obtain that
⇒⇑
A ≃ U + L ⊜ ωI as desired.

Thus we have checked all KKT conditions (15) so we conclude that Ŷ is a solution to the
recovery SDP (1). Finally we need to show that Ŷ is the unique solution. We use an argument similar
to the uniqueness proof for the mid-size oracle SDP solutions. We start with bound similar to the
perturbation bound Lemma 28.

Lemma 36 Suppose that Y ≃ is feasible for the recovery SDP (1) and
〈
⇒⇑
A ≃ ωI, Y ≃

≃ Y
〉
= 0.

Then

L, Y ≃ = 0. (39)

47

ZUREK CHEN

Proof The key ingredients will be the recovery SDP KKT conditions (15). From (15c), we have the
complementarity condition

〈
L, Ŷ

〉
= 0. Also from (15d) we have

(
⇒⇑
A ≃ ωI ≃ U + L

)
Ŷ = 0n→n,

from (15b) we have
⇒⇑
A ≃ ωI ≃ U + L ⊜ 0, and since Y ≃ is feasible we have Y ≃ ↭ 0, so combining

these we have
〈
⇒⇑
A ≃ ωI ≃ U + L, Y ≃

≃ Ŷ
〉
=

〈
⇒⇑
A ≃ ωI ≃ U + L, Y ≃

〉
↔ 0.

Finally, from (15d) we have
〈
U, Ŷ

〉
=

〈
U, Ŷ

〉
and we know U ↓ 0 (from (15b)) and that Y ≃

↔ 1

since it is feasible, so 〈
U, Y ≃

≃ Ŷ
〉
=


U, Y ≃

≃ J

↔ 0.

Now combining all these facts, we can obtain that


L, Y ≃ =

〈
L, Y ≃

≃ Ŷ
〉

=
〈
⇒⇑
A ≃ ωI ≃ U + L, Y ≃

≃ Ŷ
〉
+
〈
U, Y ≃

≃ Ŷ
〉
≃

〈
⇒⇑
A ≃ ωI, Y ≃

≃ Y
〉

↔ ≃

〈
⇒⇑
A ≃ ωI, Y ≃

≃ Y
〉

= 0.

Now since Y ≃
↓ 0 by feasibility and L ↓ 0 from (15b), ∝L, Y ≃

′ ↓ 0, so we must have ∝L, Y ≃
′ = 0.

From the construction for L given in this subsection, all non-block-diagonal entries of L are
strictly positive. Therefore if Y ≃ is optimal for the recovery SDP, since it must have Y ≃

↓ 0, we
can apply Lemma 36 to immediately obtain that Y ≃ is zero for all non-diagonal blocks (that is,
Y ≃(ij) = 0si→sj whenever i △= j). Now since Lemma 14 states that the oracle diagonal blocks have
unique solutions, we must have Y ≃ = Ŷ , and thus Ŷ is the unique solution to the recovery SDP. This
completes the proof of Theorem 2.

C.3. Clustering With a Gap Proofs

In this subsection we prove our gap-dependent clustering result Theorem 9, and we reuse the ideas
to prove Lemma 20 which handles the case that the oracle SDP will have an all-one solution.
Specifically, we first prove Lemmas 37, 38, and 39, which can then be applied to easily prove
Theorem 9 and Lemma 20.

Before beginning, we introduce some notation used in this subsection. We let s > s be
consecutive cluster sizes, that is there exists some r such that s = sr, s = sr+1). s will be the
smallest cluster recovered in Theorem 9. We define Y

↑ to be a version of the ground truth Y ↑ which
only contains clusters at least the size of s, that is,

Y
↑
= diag

(
Js1→s1 , . . . , Js→s, 0s→s, . . . , 0sK→sK

)
.

We also define a version for only clusters at most the size of s,

Y ↑ = Y ↑
≃ Y

↑
= diag

(
0s1→s1 , . . . , 0s→s, Js→s, . . . , JsK→sK

)
.

48

GAP-FREE CLUSTERING

Letting m =
∑r

k=1 sk be the number of nodes in the “big” clusters (at least size s), we define
J = diag(0m→m, J(n↗m)→(n↗m)) and J = Jn→n ≃ J , that is,

J =

[
Jm→m Jm→(n↗m)

J(n↗m)→m 0(n↗m)→(n↗m)

]
, J =

[
0m→m 0m→(n↗m)

0(n↗m)→m J(n↗m)→(n↗m)

]
.

We let Q ↑ Rn→r be a matrix whose (orthonormal) columns are the r singular vectors of Y
↑.

Then QQ↘ = diag
(

1
s1
Js1→s1 , . . . ,

1
sJs→s, 0s→s, . . . , 0sK→sK

)
. Finally we define the projection

P⇑ : Rn→n
⇑ Rn→n and its complement P⇓ by

P⇑(M) = QQ↘M +MQQ↘
≃QQ↘MQQ↘,

P⇓(M) = M ≃ P⇑(M) = (I ≃QQ↘)M(I ≃QQ↘).

Lemma 37 For any Y which is feasible to the recovery SDP (1),
P⇓(Y ≃ Y

↑
)


nuc
↔ Tr(Y ≃ Y

↑
) +

1

s

J ∞ (Y ≃ Y
↑
)

1

or equivalently ≃ Tr(Y
↑
≃ Y) ↓

P⇓(Y ≃ Y
↑
)


nuc
≃

1

s

J ∞ (Y ≃ Y
↑
)

1
.

Proof Let D := Y ≃ Y
↑. We have the following chain of inequalities:

↖P⇓D↖nuc = Tr(P⇓D) P⇓(Y ≃ Y
↑
) = P⇓(Y) = (I ≃QQ↘)Y (I ≃QQ↘) is psd

= Tr
(
(I ≃QQ↘)D(I ≃QQ↘)

)

= Tr
(
(I ≃QQ↘)D

)
cyclic property of trace; (I ≃QQ↘)2 = I ≃QQ↘

= Tr(D)≃ Tr(QQ↘D)

= Tr(D)≃
〈
QQ↘, D

〉

= Tr(D)≃
〈
QQ↘, JD

〉

↔ Tr(D) +
QQ↘


⇒

JD

1

↔ Tr(D) + (1/s)
JD


1
.

Lemma 38 For any Y which is feasible to the recovery SDP (1),

Y

↑
≃ Y,EA≃

p+ q

2
J


↓

p≃ q

2

J ∞ (Y ≃ Y
↑
)

1
≃

p≃ q

2
s
P⇓(Y ≃ Y

↑
)


nuc
.

Proof Let Y be an arbitrary feasible solution of (1). Let us write

Y

↑
≃ Y,EA≃

p+ q

2
J


=


(P⇑ + P⇓)(Y

↑
≃ Y),EA≃

p+ q

2
J



=


Y

↑
≃ Y,P⇑


EA≃

p+ q

2
J



︸ ︷︷ ︸
F1

+


P⇓(Y

↑
≃ Y),P⇓


EA≃

p+ q

2
J



︸ ︷︷ ︸
F2

.

49

ZUREK CHEN

We calculate that

P⇑J = QQ↘J + JQQ↘
≃QQ↘JQQ↘

=

[
Jm→m Jm→(n↗m)

0(n↗m)→m 0(n↗m)→(n↗m)

]
+

[
Jm→m 0m→(n↗m)

J(n↗m)→m 0(n↗m)→(n↗m)

]
≃

[
Jm→m 0m→(n↗m)

0(n↗m)→m 0(n↗m)→(n↗m)

]

= J.

It follows that P⇓J = J ≃ P⇑J = J . Also note that EA = (p≃ q)Y ↑ + qJ . Hence

P⇑


EA≃

p+ q

2
J


= P⇑


(p≃ q)Y ↑

≃
p≃ q

2
J


= (p≃ q)Y

↑
≃

p≃ q

2
J. (40)

and

P⇓


EA≃

p+ q

2
J


= P⇓


(p≃ q)Y ↑

≃
p≃ q

2
J


= (p≃ q)Y ↑

≃
p≃ q

2
J. (41)

Using (40), the F1 term can be written explicitly as

F1 =


Y

↑
≃ Y, (p≃ q)Y

↑
≃

p≃ q

2
J



=


i,j

(
Y

↑
ij ≃ Yij

)
(p≃ q)Y

↑
ij ≃

p≃ q

2
J ij


.

For each (i, j) ↑ [n]↘ [n], observe that

• If Y ↑
ij = 1, then Y

↑
ij ≃Yij ↓ 0 since Yij ↔ 1, and J ij = 1. Moreover, (p≃ q)Y

↑
ij ≃

p↗q
2 J ij =

(p≃ q)≃ p↗q
2 = p↗q

2 J ij . It follows that

(
Y

↑
ij ≃ Yij

)
(p≃ q)Y

↑
ij ≃

p≃ q

2
J ij


=

p≃ q

2
J ij

Y ↑
ij ≃ Yij

 .

• If Y ↑
ij = 0, then Y

↑
ij ≃ Yij ↔ 0 since Yij ↓ 0. Moreover, (p≃ q)Y

↑
ij ≃

p↗q
2 J ij = ≃

p↗q
2 J ij .

It follows that

(
Y

↑
ij ≃ Yij

)
EAij ≃

p+ q

2


=

p≃ q

2
J ij

Y ↑
ij ≃ Yij

 .

Combining, we see that

F1 =
p≃ q

2



i,j

Y ↑
ij ≃ Yij

 · J ij =
p≃ q

2

J ∞ (Y
↑
≃ Y)


1
.

50

GAP-FREE CLUSTERING

Turning to the F2 term, we note that P⇓
(
EA≃

p+q
2 J

)
is supported on supp(J) thanks to (41),

and P⇓ (J ∞B) = J ∞B for any matrix B. Hence

F2 =


Y

↑
≃ Y,P⇓


EA≃

p+ q

2
J



=


Y

↑
≃ Y, J ∞ P⇓


EA≃

p+ q

2
J



=


J ∞ (Y

↑
≃ Y),P⇓


EA≃

p+ q

2
J



=


P⇓

(
J ∞ (Y

↑
≃ Y)

)
,EA≃

p+ q

2
J



=


J ∞ (Y

↑
≃ Y),EA≃

p+ q

2
J



=


J ∞ (Y

↑
≃ Ŷ), (p≃ q)Y ↑

≃
p≃ q

2
J


,

where the last step follows from (41). Further observe that J ∞ (Y
↑
≃ Y) is non-positive on all

entries, and (p ≃ q)Y ↑
≃

p↗q
2 J is positive on supp(Y ↑) and non-positive elsewhere. Ignoring the

non-negative contribution from outside supp(Y ↑), we obtain that

F2 ↓


J ∞ (Y

↑
≃ Y), Y ↑

∞


(p≃ q)Y ↑

≃
p≃ q

2
J



=


Y

↑
≃ Y, Y ↑

∞


(p≃ q)Y ↑

≃
p≃ q

2
J



=


Y

↑
≃ Y,

p≃ q

2
Y ↑



=


Y

↑
≃ Y,P⇓


p≃ q

2
Y ↑



=


P⇓(Y

↑
≃ Y),

p≃ q

2
Y ↑



↓ ≃

P⇓(Y
↑
≃ Y)


nuc


p≃ q

2
Y ↑


op

= ≃

P⇓(Y
↑
≃ Y)


nuc

p≃ q

2
s.

Combining our calculations for the F1 and F2 terms completes the proof.

Lemma 39 For all Y feasible to the recovery SDP (1),


〈
Y

↑
≃ Y,W

〉 ↔
P⇑W


⇒

J ∞ (Y ≃ Y
↑
)

1
+ ↖W↖op

P⇓(Y ≃ Y
↑
)


nuc
.

51

ZUREK CHEN

Proof Let D := Y ≃ Y ↑. Since P⇑W is supported on supp(J), we have

P⇑D,W


=


D,P⇑W



=

D, J ∞

(
P⇑W

)

=

J ∞D,P⇑W


,

hence

|∝Y ≃ Y ↑,W ′| =
P⇑D,W


+ ∝P⇓D,W ′



↔
J ∞D


1

P⇑W

⇒ + ↖P⇓D↖nuc ↖W↖op , (42)

where the last step follows from the generalized Holder’s inequality since ↖·↖1 (↖·↖nuc, resp.) is the
dual norm of ↖·↖⇒ (↖·↖op, resp.).

Proof of Theorem 9 First we bound ↖W↖op and
P⇑W


⇒. By Lemma 32 we have that ↖W↖op ↔

B1
→
pn with probability at least 1≃O(n↗3).

For
P⇑W


⇒, first fix j and i and let w be the ith row of W . First note by definition of Q that if

j ↑ Vς for some ↼ such that sς < s, then
(
WQQ↘)

ij
= 0. Otherwise, letting j ↑ Vς where sς ↓ s,

(
WQQ↘

)

ij
=


w(ς),

1

sς
1sε


=

1
→
sς


w(ς),

1
→
sς
1sε


.

By Bernstein’s inequality, since all entries of w have variance ↔ p, mean zero, and are bounded in
magnitude by 1, we have

P



w(ς),

1
→
sς
1sε

 ↓ t


↔ 2 exp



≃
t2/2

p
 1⇐

sε
1sε


2

2
+ t

3

 1⇐
sε
1sε


⇒





↔ 2 exp

(
≃

t2/2

p+ t
3
⇐
sε

)

= 2 exp



≃
pB2

5(log n)/2

p+ B5
⇐
p logn

3
⇐
sε



 (43)

where in the last line we choose t = B5
→
p log n (similarly to the proof of Lemma 17). We have

sς ↓ s, and by assumption we have p↗q
2 (s≃ s) ↓

→
pn log n, which implies that

psς ↓ ps ↓
p≃ q

2
(s≃ s) ↓

√
pn log n ↓

√
psς log n =¬

→
p log n
→
sς

↔ p

so the leading term of the denominator is p, and therefore by taking B5 large enough (the same value
as in Lemma 17) we have that the expression (43) is O(n↗5). Now taking a union bound over all i
and j (O(n2) pairs), we have that

WQQ↘

⇒

↔ sup
sε⇔s

1
→
sς
B5

√
p log n ↔ B5

√
p log n

s

52

GAP-FREE CLUSTERING

with probability at least 1≃O(n↗3).
Notice that

QQ↘WQQ↘
⇒ ↔

WQQ↘
⇒ since

QQ↘ = diag


1

s1
Js1→s1 , . . . ,

1

s
Js→s, 0s→s, . . . , 0sK→sK



which implies that (QQ↘WQQ↘)ij is an average of some entries from column j of WQQ↘ (or 0).
Using triangle inequality and then this fact, we have

P⇑W

⇒ ↔

WQQ↘

⇒
+
QQ↘W


⇒
+
QQ↘WQQ↘


⇒

↔ 3
WQQ↘


⇒

↔ 3B5

√
p log n

s
.

We now assume that we are in the event that the bounds ↖W↖op ↔ B1
→
pn and

P⇑W

⇒ ↔

3B5

√
p logn

s , which by the union bound occurs with probability at least 1≃O(n↗3).

Starting by using the optimality of the SDP solution Ŷ , we have

0 ↓


Y

↑
≃ Ŷ , A≃

p+ q

2
J


≃ ωTr

(
Y

↑
≃ Ŷ

)
(44)

=


Y

↑
≃ Ŷ ,EA≃

p+ q

2
J


+
〈
Y

↑
≃ Ŷ ,W

〉
≃ ωTr(Y

↑
≃ Ŷ) (45)

where recall we define W = A≃ EA. Our first objective will be to lower bound the final expression
by a multiple of

J ∞ (Ŷ ≃ Y
↑
)

1
, which will then imply that

J ∞ (Ŷ ≃ Y
↑
)

1
= 0 and thus

J ∞ Ŷ = Y
↑. We accomplish this by using Lemmas 37, 38, and 39. Using their bounds in (45) and

combining terms we have

0 ↓


Y

↑
≃ Ŷ ,EA≃

p+ q

2
J


+
〈
Y

↑
≃ Ŷ ,W

〉
≃ ωTr(Y

↑
≃ Ŷ)

↓


p≃ q

2
≃
P⇑W


⇒ ≃

ω

s

J ∞ (Ŷ ≃ Y
↑
)

1
+


ω≃ ↖W↖op ≃

p≃ q

2
s

P⇓(Ŷ ≃ Y
↑
)


nuc

↓

(
p≃ q

2
≃ 3B5

√
p log n

s
≃

ω

s

)J ∞ (Ŷ ≃ Y
↑
)

1

using the fact that ω = B1
→
pn+ p↗q

2 s > ↖W↖op +
p↗q
2 s. Therefore if p↗q

2 s > 3B5
→
ps log n+ ω

we can conclude that J ∞ Ŷ = Y
↑.

Now we show that also J ∞ Ŷ = 0 or equivalently that Ŷ = Y
↑. Since we know J ∞ Ŷ = Y

↑,
it suffices to show that for any feasible Y with J ∞ Y = Y

↑, we have
〈
Y ≃ Y

↑
, A≃

p+q
2 J

〉
≃

53

ZUREK CHEN

ωTr(Y ≃ Y
↑
) ↔ 0. Starting with the fact that J ∞ Y = Y

↑,

Y ≃ Y

↑
, A≃

p+ q

2
J


≃ ωTr(Y ≃ Y

↑
) =


J ∞ Y, J ∞


A≃

p+ q

2
J


≃ ωTr(J ∞ Y)

=


J ∞ Y, J ∞

p≃ q

2
J


+ ∝J ∞ Y, J ∞W ′ ≃ ωTr(J ∞ Y)

↔ ↖J ∞ Y ↖nuc


p≃ q

2
J


op
+ ↖J ∞ Y ↖nuc ↖W↖op ≃ ωTr(J ∞ Y)

=

(
p≃ q

2
J


op
+ ↖W↖op ≃ ω

)
Tr(J ∞ Y)

=


p≃ q

2
s+ ↖W↖op ≃ ω


Tr(J ∞ Y) (46)

where we then used the generalized Holder’s inequality and then fact that ↖J ∞ Y ↖nuc = Tr(J ∞ Y)
since J ∞ Y ↭ 0, which follows from Schur’s Lemma since Y, J ↭ 0. Because ω > ↖W↖op ≃

p↗q
2 s,

(46) establishes that
〈
Y ≃ Y

↑
, A≃

p+q
2 J

〉
≃ωTr(Y ≃Y

↑
) ↔ 0, and furthermore if J ∞ Ŷ △= 0 then

we will have
〈
Y ≃ Y

↑
, A≃

p+q
2 J

〉
≃ωTr(Y ≃Y

↑
) < 0 (since then Tr(J ∞Y) = ↖J ∞ Y ↖nuc > 0),

establishing uniqueness.
Finally we establish the claimed recovery condition by noting that if p↗q

2 (s≃ s) ↓ (3B5 +
B1)

→
pn log n, then we will have

p≃ q

2
s ↓

p≃ q

2
s+ (3B5 +B1)

√
pn log n > 3B5

√
ps log n+ ω

which was shown above to be sufficient.

Proof of Lemma 20 Lemma 20 is essentially a special case of Theorem 9, but since we have a
slightly different choice of ω, we must repeat the proof.

Fix a cluster k such that p↗q
2 s ↓

(
1 + B6

ϑ

)
ε
→
pn logm, where we set B6 = 2 + 3B5. Since we

treat A(k) as the entire adjacency matrix for the purposes of this proof, the conclusions of Lemmas
37, 38, and 39 become that for all Y feasible to the kth oracle SDP (4), we have

≃Tr(Jsk→sk ≃ Y) ↓ ↖P⇓ (Y ≃ Jsk→sk)↖nuc ≃
1

sk
↖Y ≃ Jsk→sk↖1 (47)


Jsk→sk ≃ Y,EA(k)

≃
p+ q

2
Jsk→sk


↓

p≃ q

2
↖Y ≃ Jsk→sk↖1 (48)


〈
Jsk→sk ≃ Y,W (k)

〉 ↔
P⇑W

(k)

⇒
↖Y ≃ Jsk→sk↖1 +

W (k)


op
↖P⇓ (Y ≃ Jsk→sk)↖nuc (49)

because now Y
↑
= J = Jsk→sk , s = sk, and there are no other clusters (so s = 0).

Since we still assume we are in the event E1, we have
W (k)


op ↔ B1

→
psk ↔ ω (we assume

ε ↓ 1 which ensures that sk meets the condition in (18), and also that ε ↓ B1). We also have by
Lemma 18 that

W (k) 1⇐
sk
1sk


⇒

↔ B5
→
p logm (since we also assume ε ↓ B4). Then since

W (k)V V ↘ = W (k) 1

sk
Jsk→sk =

1
→
sk

W (k) 1
→
sk

1sk1
↘
sk

54

GAP-FREE CLUSTERING

we have
W (k) 1

sk
Jsk→sk


⇒

↔
B5

⇐
p logm⇐
sk

. Identically to the proof of 9 we have
V V ↘W (k)V V ↘

⇒ ↔
W (k)V V ↘

⇒, so we conclude that
P⇑W

(k)

⇒

↔ 3

W
(k) 1

sk
Jsk→sk


⇒

↔
3B5

→
p logm

→
sk

.

Now like in the proof of Theorem 9, using the optimality of the kth oracle SDP solution Ŷ k and
then plugging in the bounds (47), (48), and (49), we have

0 ↓


Jsk→sk ≃ Ŷ k, A(k)

≃
p+ q

2
Jsk→sk


≃ ωTr

(
Jsk→sk ≃ Ŷ k

)

=


Jsk→sk ≃ Ŷ k,EA(k)

≃
p+ q

2
Jsk→sk


+
〈
Jsk→sk ≃ Ŷ k,W (k)

〉
≃ ωTr(Jsk→sk ≃ Ŷ k)

↓


ω≃

W (k)


op

P⇓

(
Ŷ k

≃ Jsk→sk

)
nuc

+


p+ q

2
≃

P⇑W
(k)


⇒

≃
ω

sk

Ŷ k
≃ Jsk→sk


1

↓


p+ q

2
≃

3B5
→
p logm

→
sk

≃
ω

sk

Ŷ k
≃ Jsk→sk


1

(50)

using the fact that ω ↓
W (k)


op. Now since p+q

2 sk ↓
(
1 + B6

ϑ

)
ε
→
pn logm = ε

→
pn logm +

(2+ 3B5)
→
pn logm, using the fact that we assumed ω ↔ (ε+1)

→
pn logm almost surely, we have

p≃ q

2
sk ↓ (ε+ 1)

√
pn logm+ 3B5

√
pn logm+

√
pn logm

> ω+ 3B5

√
psk logm

and plugging this back in to (50) implies that we must have
Ŷ k

≃ Jsk→sk


1
= 0 and thus Ŷ k =

Jsk→sk .
The fact that there exist some Uk, Lk which satisfy the oracle SDP KKT conditions (16) follows

from Lemma 13 (as a solution of the oracle SDP KKT conditions (16) is necessary for the optimality
of Ŷ k). From the complementary slackness conditions (16c) and the fact that Ŷ k

ij = 1 for all i, j,
we must have Lk = 0. Finally, it is not immediate that Uk ↭ 0, but we ensure this by finding
u ↑ Rsk such that diag(u) ↭ 0 and such that diag(u) also satisfies the oracle SDP KKT conditions
(still with Lk = 0). Define u as the unique solution to Uk1sk = diag(u)1sk . Clearly u ↓ 0 since
Uk

↓ 0, so we have diag(u) ↭ 0 and diag(u) ↓ 0. Also by definition of u the complementarity
condition (16d) still holds with diag(u) in place of Uk, since Ŷ k = 11↘. This leaves us only to
check the dual feasibility condition (16b) that

⇒⇑
A (k)

≃ ωI ≃ diag(u) + Lk ⊜ 0. Again since (16d)
holds with diag(u) in place of Uk, we have that 1 is an eigenvector of

⇒⇑
A (k)

≃ ωI ≃ diag(u) + Lk

(with eigenvalue 0), and for all vectors v orthogonal to 1, we have

v↘
(
⇒⇑
A (k)

≃ ωI ≃ diag(u) + Lk
)
v = v↘


p≃ q

2
11↘ +W (k)

≃ ωI ≃ diag(u) + Lk


v

= v↘
(
W (k)

≃ ωI ≃ diag(u)
)
v

↔ v↘
(
W (k)

≃ ωI
)
v

< 0

55

ZUREK CHEN

using the facts that v↘1 = 0, Lk = 0, and that ω >
W (k)


op. Therefore

⇒⇑
A (k)

≃ ωI ≃ diag(u) +

Lk ⊜ 0 as desired.

C.4. Concentration Inequalities

Theorem 40 (Bernstein’s Inequality (Vershynin, 2018)) Suppose (Xi)ni=1 are independent zero-
mean random variables such that |Xi| ↔ M almost surely. Then for any t ↓ 0,

P
(

n

i=1

Xi ↓ t

)
↔ exp

(
≃

1
2 t

2

∑n
i=1 E[X2

i] +
1
3Mt

)
.

Theorem 41 ((Bandeira and Van Handel, 2016)) Suppose X is a symmetric n ↘ n matrix with
independent entries such that EXij = 0 and |Xij | ↔ B for all 1 ↔ i, j ↔ n. Let ⇀ = maxi

∑
j EX2

ij .
Then there exists an absolute constant c > 0 such that for any t ↓ 0,

P
(
↖X↖op ↓ 4

→
⇀ + t

)
↔ n exp


≃

t2

cB2


.

Proof of Lemma 15 We simply check the conditions of Theorem 41. First we establish (20),
which we will actually establish by showing that ↖W↖op ↔ B1

→
pn, which immediately implies (20)

(although we could simply state this bound on ↖W↖op in Lemma 15, we want the event in the
lemma to be independent of the non-block-diagonal noise entries). We have EWij = 0, |Wij | ↔

max{p, 1≃ p} = 1≃ p ↔ 1, and EW 2
ij = p(1≃ p) ↔ p, so with ⇀ = np and B = 1 in Theorem 41

we have

P
(
↖W↖op ↓ 4

→
pn+ t

)
↔ n exp


≃
t2

c


.

By our assumption that p ↓
logm
n , →pn ↓

→
logm, so setting t = 3

→
c logm the above probability

is ↔ n exp(≃9 logm) = nm↗9
↔ m↗8 (since n ↔ m). Now take B1 = 4 + 3

→
c to obtain (20).

To establish (18), following the same steps for a fixed cluster k such that p↗q
2 sk ↓

→
pn logm

we will obtain

P
W (k)


op

↓ 4
→
psk + t


↔ sk exp


≃
t2

c


.

Now we use the assumed size of the cluster to show that →psk is the dominant term when we set
t = ”(

→
logm). We have

psk ↓
p≃ q

2
sk ↓

√
pn logm ↓ logm

where the final inequality again uses that p ↓
logm
n , so taking square roots →psk ↓

→
logm and

therefore we may again set t = 3
→
c logm and obtain a failure probability of m↗8.

To establish (19) note
W (k)

:,j


2
↔

W (k)


op. Finally by taking a union bound, there are

obviously fewer than n ↔ m clusters so the overall failure probability is O(m↗7).

56

GAP-FREE CLUSTERING

Proof of Lemma 16 A bound of this form first appeared in Abbe et al. (2017), but we use the version
from (Chen et al., 2021, Theorem 4.2). One technical issue is that (Chen et al., 2021, Theorem 4.2)
uses a failure probability which is inverse polynomial in the size of the matrix in the theorem, which
in our case will be si, but we seek a failure probability which is inverse polynomial in m. However,
by inspecting the proof, thanks to the fact that m ↓ n ↓ si, the exact same argument goes through if
we replace log si by logm in the conclusion as well as the conditions of (Chen et al., 2021, Theorem
4.2).

Now fix a cluster i such that p↗q
2 si ↓

→
pn logm. As checked in the proof of Lemma 15, this

implies that →psi ↓
→
logm. Now we check the conditions of (Chen et al., 2021, Theorem 4.2).

Note A(i)
≃

p+q
2 Jsi→si = W (i) + p↗q

2 Jsi→si , and p↗q
2 Jsi→si is rank 1 and has top eigenvector 1⇐

si
1,

which has incoherence parameter si
 1⇐

si
1

2

⇒
= 1 and top eigenvalue p↗q

2 si. Each entry of W (i) is
independent with mean zero, variance ↔ p(1≃ p) ↔ p, and is almost surely bounded by 1. (Chen
et al., 2021, Theorem 4.2) requires that 1→

psi/ logm
= O(1), which is satisfied due to our assumption

on the size of si, since as mentioned this assumption implies →psi ↓
→
logm.

Therefore by (Chen et al., 2021, Theorem 4.2) there exists an absolute constant c > 0 such that if
→
psi logm ↔ cp↗q

2 si, there exists a constant B2 such that with probability at least 1≃O(m↗5) we
have v

i
≃

1
→
si
1


⇒

↔ 2B2

→
p logm

(p≃ q)si
.

We now let B3 =
1
c and note that

p≃ q

2
si ↓ B3

√
pn logm =¬

√
psi logm ↔

√
pn logm ↔

1

c

p≃ q

2
si.

Furthermore by examining the proof of (Chen et al., 2021, Theorem 4.2) it is also established for all
j ↑ [si] that v

i,j
≃

1
→
si
1


⇒

↔ 2B2

→
p logm

(p≃ q)si

(in the same event where the bound on vi is shown to hold).
Now repeating this argument for each sufficiently large cluster and taking a union bound over all

O(n) ↔ O(m) clusters, we obtain the desired conclusion.

Proof of Lemma 17 We let B4 = max{B2, B3, 1}. Now we fix a cluster k such that p↗q
2 sk ↓

max{B2, B3}
→
pn logm. Under the event in Lemma 16, for all j ↑ [sk] we have that

v
k,j

≃
1

→
sk

1


⇒

↔ 2B2

→
p logm

(p≃ q)sk

=
1

→
sk

2

(p≃ q)sk
B2

√
psk logm

↔
1

→
sk

.

Therefore we have that
vk,j


⇒ ↔

2⇐
sk

.

57

ZUREK CHEN

Now also fix j and define F k,j to be the event where (23) holds, and note that F k,j is independent
of wk,j . Therefore we can apply Bernstein’s inequality conditionally on the event F k,j to obtain

P
(
〈
wk,j , vk,j

〉 ↓ t
F k,j

)
↔ 2 exp

(
≃t2/2

p1 + t
3

2⇐
sk

)

using the facts that
vk,j

2
2
= 1,

vk,j

⇒ ↔

2⇐
sk

on F k,j . Now we can take t = B5
→
p logm and

note that as we checked in the proof of Lemma 15, the assumption that p↗q
2 sk ↓ B4

→
pn logm ↓

→
pn logm implies →psk ↓

→
logm which ensures that

≃t2/2

p+ 2t
3
⇐
sk

↔
≃pB2

5 logm/2

p+ p2B5
⇐
logm

3
⇐
psk

↔ ≃
B2

5/2

1 + 2B5
3

logm

so we can make exp


↗t2/2

p+ 2t
3
↗
sk


↔ m↗5 by taking B5 sufficiently large. Also, by inspecting the

proof of Lemma 17, the event where (22) holds occurs with probability at least 1≃O(m↗4), and as
shown above F k,j is guaranteed to hold when (22) holds, so we have that P(F k,jc) ↔ O(m↗4).

Therefore

P
(
〈
wk,j , vk,j

〉 ↓ B5

√
p logm

)
↔ P

(
〈
wk,j , vk,j

〉 ↓ B5

√
p logm

F k,j
)
+ P(F k,jc)

↔ O(m↗4)

and now taking a union bound over at most n ↔ m pairs (k, j), we obtain the desired conclusion.

Proof of Lemma 18 Fix a cluster k such that p↗q
2 sk ↓ B4

→
pn logm, and let w be the jth row

of W (k) for some fixed j ↑ [sk]. Note that
 1⇐

sk
1sk


2
= 1 and

 1⇐
sk
1sk


⇒

= 1⇐
sk

, so using
Bernstein’s inequality the same way as in the proof of Lemma 17 we obtain

P



w,

1
→
sk

1sk

 ↓ B5

√
p logm


↔ O(m↗5).

Now taking a union bound over at most n ↔ m pairs (k, j) we obtain the desired conclusion.

Proof of Lemma 22 Fix a cluster k satisfying p↗q
2 sk ↓ B4

→
pn logm and fix j ↑ [sk]. Technically,

we have not assumed that we are in the event F k,j := Ek,j
1 ∩


ω1

(
⇒⇑
A k,j

)
> ωk


, which is

the event that the (k, j)th LOO relaxed oracle SDP (29) is guaranteed to have rank-one solution
Y

k,j
= yk,jyk,j

↘ by Lemma 21. We simply extend the definition of yk,j to be 0 outside the event
F k,j . Then the desired bound trivially holds on F k,jc, so we have that

P



wk,j ,

1
→
sk

yk,j
 ↓ t


= P




wk,j ,

1
→
sk

yk,j
 ↓ t

F
k,j


P(F k,j)

↔ P



wk,j ,

1
→
sk

yk,j
 ↓ t

F
k,j


.

58

GAP-FREE CLUSTERING

Since
yk,j


⇒ ↔ 1 from Lemma 21, we have

 1⇐
sk
yk,j


⇒

↔
1⇐
sk

and
 1⇐

sk
yk,j


2
↔ 1. Since yk,j

and F k,j are independent of wk,j , we can apply Bernstein’s inequality to obtain that

P



wk,j ,

1
→
sk

yk,j
 ↓ t


↔ P




wk,j ,

1
→
sk

yk,j
 ↓ t

F
k,j



↔ 2 exp

(
≃t2/2

p1 + t
3

1⇐
sk

)

↔ O(m↗5)

by taking t = B5
→
p logm identically to the proof of Lemma 17. Now taking a union bound over

all ↔ n ↔ m pairs (k, j), we obtain that with probability at least 1 ≃ O(m↗4), for all k such that
p↗q
2 sk ↓ B4

→
pn logm and all j ↑ [sk],


〈
wk,j , 1⇐

sk
yk,j

〉 ↔ B5
→
p logm. Now multiplying both

sides by
→
sk, we obtain the desired conclusion.

Proof of Lemma 31 We will use Bernstein’s inequality. Let S be the set of all k satisfying
p↗q
2 sk ↓ B4

→
pn logm. Fix k ↑ S, fix another cluster j △= k, and let w be one row of W (kj).

Note w ↑ Rsk , and all entries have mean zero, variance q(1≃ q) ↔ p, and magnitude bounded by
max{q, 1≃ q} ↔ 1.

By Lemma 30 that under the event E3 we have
xk


⇒ ↔

2⇐
sk

and also note that E3 is indepen-
dent of w (since E3 only involves noise variables which are part of the diagonal blocks (W (i))i↓[K]).
Therefore Bernstein’s inequality gives that

P
(w↘xk

 ↓ t
E3

)
↔ 2 exp

(
≃

t2/2

p+ 2t
3
⇐
sk

)

↔ O(m↗5)

by taking t = B5
→
p logm in the same way as in the proof of Lemma 17. Taking a union bound over

all clusters j △= k all rows (↔ n ↔ m in total), we have

P
(
sup
j ↖=k

W (jk)xk

⇒

↓ B5

√
p logm

E3

)
↔ O(m↗4)

and taking a union bound over all k ↑ S

P
(
sup
k↓S

sup
j ↖=k

W (jk)xk

⇒

↓ B5

√
p logm

E3

)
↔ O(m↗3).

Therefore recalling that P(Ec
3) ↔ O(m↗3),

P
(
sup
k↓S

sup
j ↖=k

W (jk)xk

⇒

↓ B5

√
p log n

)
↔ P

(
sup
k↓S

sup
j ↖=k

W (jk)xk

⇒

↓ B5

√
p log n

E3

)
+ P(Ec

3)

↔ O(m↗3).

Proof of Lemma 32 During the proof of Lemma 15 we already check that with probability at least
1≃O(m↗8), we have ↖W↖op ↔ B1

→
pn.

59

ZUREK CHEN

Appendix D. Proofs for Recursive Clustering

Proof of Theorem 10 First, we note that assuming the recovery SDP subroutine always succeeds,
since in Algorithm 1 we only remove recovered clusters which are so large that they are guaranteed to
be all-one, the sequence of clusters which will be recovered is actually known a priori. (If we removed
clusters which were recovered but are mid-size, then since their recovery is highly noise-dependent,
we would not be able to predict which mid-size clusters would be recovered in a given round. We
believe a more careful analysis would have no trouble with this added complexity, but since the
ultimate conclusions of Theorem 10 would not change, we elect to only remove clusters which are
guaranteed to be all-one.)

From an analysis standpoint, we have access to the list (s1, . . . , sK) of all true cluster sizes.
Let Z1 = (1, . . . ,K) represent the original SBM instance. There is obviously an algorithm which,
given Zς, either recursively constructs Zς+1 by removing all clusters from Zς which meet the
guaranteed all-ones recovery threshold of Zς (case 1 of Theorem 2), or if there are no such clusters,
simply terminates. This will produce a sequence Z1, . . . , Zr as well as the sequence of instance sizes
n1, . . . , nr. Now for each fixed ↼ ↑ [r], we apply Theorem 2 with m = n to guarantee that all clusters
of size large enough to meet the all-ones recovery threshold C ≃(p, q)

→
nς log n will be successfully

recovered by the recovery SDP with failure probability at most O(n↗3). Note that although their
sizes are initially unknown to a user, after being recovered their sizes will be known, allowing us to
verify that they meet the all-ones recovery threshold and then remove them as specified in Algorithm
1. Taking a union bound over these r ↔ K ↔ n rounds, we are guaranteed with probability at least
1≃O(n↗2) that Algorithm 1 will recover all clusters of size at least C ≃(p, q)

→
nς log n at each round

↼.

Now to prove Theorem 10 we can simply analyze the sequence Z1, . . . , Zr. First, again the total
number of rounds is ↔ K since we stop once no clusters are recovered in a given round.

Next, considering the round r where the algorithm terminates, since no clusters were recovered,
this means that all clusters sizes in Zr must be below C ≃(p, q)

→
nr log n. Since there are at most K

total clusters in Zr, this allows us to bound the total number of remaining nodes nr as

nr ↔ KC ≃(p, q)
√

nr log n

↔
n

1
2↗ω

C ≃(p, q)
→
log n

C ≃(p, q)
√

nr log n

= n
1
2↗ω→nr.

Rearranging, we obtain that nr ↔ n1↗2ω.

We prove the final part of the theorem by induction over rounds ↼. First, after ↼ = 0 rounds, there
will be all n nodes remaining, matching the claim. Next, suppose inductively that after some fixed
round ↼ we have ↔ n1↗ω

∑ε↑1
i=0 2↑i unrecovered nodes remaining. Then the recovery threshold for the

next round will be ↔ T = C ≃(p, q)
→
log nn

1
2(1↗ω

∑ε↑1
i=0 2↑i). The maximum number of nodes that

60

GAP-FREE CLUSTERING

can be below this threshold during the next round is less than or equal to

KT ↔
n

1
2↗ω

C ≃(p, q)
→
log n

C ≃(p, q)
√
log nn

1
2(1↗ω

∑ε↑1
i=0 2↑i)

= n
1
2↗ωn

1
2(1↗ω

∑ε↑1
i=0 2↑i)

= n
1
2↗ωn

1
2↗ω

∑ε
i=1 2

↑i

= n1↗ω
∑ε

i=0 2
↑i

proving the desired claim.

Appendix E. Proofs for Clustering With a Faulty Oracle

In this section we prove Theorem 6 on faulty oracle clustering with a target recovery size of s, we
prove our instance-adaptive query complexity guarantees in Theorem 7, and then finally we prove
our Theorem 8 which achieves improved query complexity for the case that K is bounded.

First, we state several concentration inequalities which will be used in this section.

Theorem 42 (Hoeffding’s Inequality (Hoeffding, 1994)) Suppose (Xi)ni=1 are independent ran-
dom variables such that Xi ↑ [ai, bi] almost surely. Let X =

∑n
i=1Xi and µ = EX . Then for any

t ↓ 0,

P (|X ≃ µ| ↓ t) ↔ 2 exp


≃

2t2∑n
i=1(bi ≃ ai)2


.

Theorem 43 (Chernoff’s Inequality for Bernoulli random variables (Mitzenmacher and Upfal, 2005))
Suppose (Xi)ni=1 are independent random variables such that Xi ↑ {0, 1} almost surely. Let
X =

∑n
i=1Xi and µ = EX . Then

1. For any ϑ ↓ 0, P (X ↓ (1 + ϑ)µ) ↔ exp
(
≃

ε2µ
2+ε

)
.

2. For any 0 < ϑ < 1, P (X ↔ (1≃ ϑ)µ) ↔ exp
(
≃

ε2µ
2

)
.

3. For any 0 < ϑ < 1, P (|X ≃ µ| ↓ ϑµ) ↔ 2 exp
(
≃

ε2µ
3

)
.

Now before proving our theorems on faulty oracle clustering, we first start by fixing a subsample
T and analyzing the majority voting procedure and the performance of the recovery SDP (1) on the
subgraph on nodes T to prove two lemmas which will be useful for all subsequent proofs.

Lemma 44 Let T ▽ [n] be fixed. There exists C1 such that the following holds: With probability
at least 1≃ O(n↗3), for each cluster k ↑ [K] such that |Vk ∩ T | ↓ C1 logn

ε2 , letting S≃
k be the first

C1 logn
ε2 nodes in Vk ∩ T , for each node i △↑ T , if we query (i, j) for all j ↑ S≃

k, then:

1. If i ↑ Vk, then the majority of queries will be 1.

2. If i △↑ Vk, then the majority of queries will be 0.

61

ZUREK CHEN

Proof First we fix S≃
k and i. For each j ↑ S≃

k let Ij be the outcome of the query (i, j), and let
N =

∑|S↓
k|

j=1 be the sum of the queries. First, if i ↑ Vk, then Ij has distribution Bernoulli(12 + ε
2), so

then by Hoeffding’s inequality

P

N ↔

|S≃
k|

2


= P


N ≃ EN ↔ ≃

ϑ|S≃
k|

2



↔ exp




≃2

(
ε|S↓

k|
2

)2

|S≃
k|





= exp


≃
1

2
ϑ2|S≃

k|



which is O(n↗5) if |S≃
k| =

C1 logn
ε2 for sufficiently large C1 (in fact C1 = 10). For the other case that

i △↑ Vk, then Ij has distribution Bernoulli(12 ≃
ε
2), so again by Hoeffding’s inequality

P

N ↓

|S≃
k|

2


= P


N ≃ EN ↓

ϑ|S≃
k|

2



↔ exp


≃
1

2
ϑ2|S≃

k|



which is again O(n↗5).
Now taking a union bound over all ↔ n nodes i △↑ T and all ↔ n clusters k satisfying |Vk ∩ T | ↓

C1 logn
ε2 , we obtain the desired conclusion with a failure probability of at most O(n↗3).

Lemma 45 Let T ▽ [n] be fixed. There exists C such that with probability at least 1≃O(n↗3), if
we query all i, j ↑ T to form an adjacency matrix A and apply the recovery SDP (1) with m = n,
then

1. All clusters k such that |T ∩ Vk| ↓
C
→

|T | logn
ε will be recovered.

2. No clusters k such that |T ∩Vk| ↔
C
→

|T | logn
3ε will be recovered (and the blocks of the recovery

SDP solution will be zero).

Proof This follows immediately from Theorem 2, once we note that by querying all i, j ↑ T , this is
equivalent to an SBM instance with p = 1+ε

2 and q = 1↗ε
2 , and so p≃ q = ϑ.

With Lemmas 44 and 45 we can now easily prove Theorem 6.
Proof of Theorem 6 Now we can simply unfix T and find a high-probability event under which
Algorithm 2 succeeds.

Lemma 46 There exists C2 such that for any s ↓ C2

⇐
n logn
ε , if we take ϱ = C2

n logn
s2ε2 , then with

probability at least 1≃O(n↗3):

1. 7
8ϱn ↔ |T | ↔ 9

8ϱn.

2. For all clusters k such that sk ↓ s, 7
8ϱsk ↔ |T ∩ Vk| ↔

9
8ϱsk.

62

GAP-FREE CLUSTERING

3. For all clusters k such that sk ↓ s, |T ∩ Vk| ↓
C
→

|T | logn
ε .

Proof We let Ii be an indicator for the event that node i is included in T . Then Ii is distributed as
Bernoulli(ϱ) and |T | =

∑n
i=1 Ii. Then by Chernoff’s inequality,

P

||T |≃ ϱn| ↓


1 +

1

8


ϱn


↔ exp

(
≃

ϱn

82 · 3

)
.

Now since φn
82·3 ↓

C2
82·3

n2

s2
logn
ε2 ↓

C2
82·3

logn
ε2 ↓ 5 log n for sufficiently large C2, we have that 7

8ϱn ↔

|T | ↔ 9
8ϱn with probability at least 1≃O(n↗5). An identical argument holds for all clusters k such

that sk ↓ s (except we will use sk
s ↓ 1 in place of n

s ↓ 1). Union bounding over all these events, we
have a failure probability which is less than O(n↗3).

Lastly, under these events, for each k such that sk ↓ s we have

|T ∩ Vk| ↓
7

8
ϱsk ↓

7

8

sk
s

→
C2ϱn log n

ϑ
↓

7

8

→
C2ϱn log n

ϑ
↓

C
√

9
8

→
ϱn log n

ϑ
↓

C
√

|T | log n

ϑ

where the second-last inequality holds as long as C2 is sufficiently large.

Now we can complete the proof of Theorem 6. For any fixed T ▽ [n] which satisfies the
conclusions of Lemma 46, from Lemma 45 we have that all clusters k of size at least s will have
Vk ∩ T correctly recovered by the recovery SDP with failure probability O(n↗3). Then by taking
the first C1 logn

ε2 nodes from each recovered (sub)clusters, Lemma 44 guarantees that with failure
probability O(n↗3) we will successfully recover each entire cluster. Note that Lemma 46 guarantees
all clusters k with sk ↓ s will have |T ∩ Vk| ↓

C1 logn
ε2 , since we have

|T ∩ Vk| ↓
7

8
ϱn =

7

8
C2

n2

s2
log n

ϑ2
↓

7

8
C2

log n

ϑ2
↓ C1

log n

ϑ2
.

Now unfixing T , the event in Lemma 46 occurs with probability at least 1 ≃ O(n↗3), giving an
overall failure probability of O(n↗3).

Finally, to check the sample complexity, we first note that by Lemma 46, we have

|T | ↔
9

8
ϱn =

9

8
C2

n2 log n

s2ϑ2

so querying all pairs in T requires O
(
|T |2

)
↔ O

(
n4 log2 n

s4ε4

)
queries. Next, to bound the number of

queries used for the majority voting phase, each subcluster of T which gets recovered will lead to at
most n ·

C1 logn
ε2 ↔ O

(
n logn
ε2

)
queries, so it remains to bound the number of subclusters contained

in T that are recovered. From Lemma 45 we know that for the subcluster of cluster k to be recovered
we need |T ∩ Vk| ↓

C
→

|T | logn
3ε . Therefore under the event from Lemma 46 the maximum number

of such clusters is

|T |

C
→

|T | logn
3ε

↔ O


ϑ
→
ϱn

→
log n


↔ O

(n
s

)
.

63

ZUREK CHEN

Therefore the majority voting procedure requires O
(
n2 logn

sε2

)
queries, leading to the claimed total

query complexity.

Next we present the proof of the guarantees for our instance-adaptive clustering algorithm.
Proof of Theorem 7 We reuse the same value of C1 as from Theorem 6, and we require C2 to
be at least as large as required in Theorem 6. Let r be the smallest r such that ŝr = n

2r↑1 ↓ s1.
Now we can outline our proof strategy. With this choice of r, we are essentially guaranteed by
Theorem 6 and the form of ϱr that cluster 1 would be recovered on round r (if that round is reached).
This immediately implies the claimed query complexity since the algorithm will terminate no later
than round r. Then we will ensure that no clusters which are significantly smaller than s1 will be
recovered during any of the rounds before r (inclusive).

Our first step will be to analyze the subsampling procedure. We define Tr for all r = 1, . . . , r as
the subsample of [n] which would be sampled if we reached round r.

Lemma 47 There exist absolute constants C2, C3 such that if we take ϱr = C2
n logn
ŝ2rε

2 for each
r ↑ [r], then with probability at least 1≃O(n↗2):

1. For all r ↑ [r], 7
8ϱrn ↔ |Tr| ↔

9
8ϱrn.

2. For all r ↑ [r] and for all k such that sk ↔
s1
C3

, we have |Tr ∩ Vk| ↔
C
→

|Tr| logn
3ε .

3. We have |Tr ∩ V1| ↓
C
→

|Tr| logn
ε .

Proof For each fixed r, 7
8ϱrn ↔ |Tr| ↔

9
8ϱrn follows by applying Lemma 46, so then we can obtain

the first item by applying a union bound over all r ↔ n rounds.
The third item also follows from the third item of Lemma 46 (the conditions of which hold for

round r and for cluster 1 by the definition of r).
Now we check the second item. First we fix a cluster k such that sk ↔

s1
C3

and a round r ↔ r. We

know from the first item that |Tr| ↓
7
8ϱrn, so it suffices to show that |Tr ∩ Vk| ↔

√
7
8
C
⇐
φrn logn
3ε .

Now for each i ↑ Vk we let Ii be an indicator for the event that node i is included in Tr and note that
the Ii are independent, they have distribution Bernoulli(ϱr), and their sum is |Tr ∩ Vk|. We calculate
that

P
(
|Tr ∩ Vk| ↓

√
7

8

C
→
ϱrn log n

3ϑ

)
= P

(
|Tr ∩ Vk|≃ E|Tr ∩ Vk| ↓

√
7

8

C
→
ϱrn log n

3ϑ
≃ ϱrsk

)

= P
(
|Tr ∩ Vk|≃ E|Tr ∩ Vk| ↓

(√
7

8

C
→
n log n

3ϑ
→
ϱrsk

≃ 1

)
ϱrsk

)

= P

|Tr ∩ Vk|≃ E|Tr ∩ Vk| ↓


C ≃ ŝr

sk
≃ 1


ϱrsk



where we use the fact that by definition of ϱr,

√
7

8

C
→
n log n

3ϑ
→
ϱrsk

=

√
7

8

C
→
n log n

3ϑsk

ŝrϑ
→
C2n log n

=

√
7
8C

3
→
C2

ŝr
sk

= C ≃ ŝr
sk

64

GAP-FREE CLUSTERING

and the last equality is a definition. Therefore by Chernoff’s inequality

P
(
|Tr ∩ Vk| ↓

√
7

8

C
→
ϱrn log n

3ϑ

)
↔ exp



≃

(
C ≃ ŝr

sk
≃ 1

)2
ϱrsk

1 + C ≃ ŝr
sk



 . (51)

Note that since r ↔ r and s1
C3

↓ sk, by definition of r we have that

ŝr ↓ ŝr =
1

2
ŝr↗1 >

1

2
s1 ↓

C3

2
sk.

Also if x is sufficiently large (x ↓ 5 works) then we will have

(x≃ 1)2

1 + x
=

x2 ≃ 2x+ 1

1 + x
↓

x

2
.

Using this in (51) by requiring C3 to be sufficiently large so that C ≃ ŝr
sk

↓ 5, we have

P
(
|Tr ∩ Vk| ↓

√
7

8

C
→
ϱrn log n

3ϑ

)
↔ exp

(
≃
C ≃ ŝr

sk

2
ϱrsk

)

= exp


≃
C ≃

2
ŝrϱr



= exp


≃
C ≃

2
C2

n

ŝr

log n

ϑ2



↔ exp


≃
C ≃

2
C2 log n



= exp



≃
1

2

√
7
8C

3
→
C2

C2 log n





↔ O(n↗5)

where we obtain the final inequality by requiring C2 sufficiently large. Now we can conclude by
taking a union bound over all ↔ n clusters k such that s1

C3
↓ sk and all ↔ n rounds r ↔ r.

Now, for each round r ↑ [r], we can apply Lemma 45 to ensure the success of the recovery SDP
when applied to the subsample Tr, and we can apply Lemma 44 to ensure the success of the majority
voting procedure (if applied to a recovered subcluster). Each of these lemmas has failure probability
O(n↗3) and we apply each r ↔ n times, giving the claimed failure probability by a union bound.

The third item of Lemma 47 combined with Lemma 45 guarantees that if the algorithm has not
terminated by round r, then a subcluster from cluster 1 will be recovered on this round (as well as
possibly other subclusters) so the algorithm will terminate by round r. Therefore the maximum query
complexity due to querying all pairs within subsamples Tr (up until the first round a subcluster is

65

ZUREK CHEN

recovered) is

O
(
|T1|

2 + · · ·+ |Tr|
2
)
↔ O

(
9

8
ϱ1n

2

+ · · ·+


9

8
ϱrn

2
)

↔ O

(
9

8

(
21↗1

)2 log n
ϑ2

2

+ · · ·+


9

8

(
2r↗1

)2 log n
ϑ2

2
)

↔ O


n4

s41

log2 n

ϑ4



using the facts that ϱrn = n2 logn
ŝ2rε

2 =
(
2r↗1

)2 logn
ε2 , that 2r↗1

↔
n
s1

, and that a geometric series

is bounded by a multiple of its largest term. Adding in the O
(
n logn
ε2

)
sample complexity for the

majority voting procedure (since we only apply it to find one cluster), we obtain the claimed query
complexity.

Lastly, the second item of Lemma 47 combined with Lemma 45 guarantees that no subcluster
from a cluster k such that sk ↔

s1
C3

will be recovered at any round up to and including round r, so we
are guaranteed that whenever the first subcluster is recovered, it must be from a cluster k such that
sk ↓

s1
C3

. Furthermore from our earlier application of Lemma 44 the entirety of this cluster k will be
correctly recovered.

Finally we present the proof of the guarantees for our algorithm for faulty oracle clustering when
K is bounded.
Proof of Theorem 8 We face the same technical issue as in the proof of Theorem 10 on recursive
clustering, which concisely is that we would like to apply Theorem 2 to guarantee success of the
recovery SDP (1) when given each constructed adjacency matrix Ar as input, for each round r.
This would simply follow from a union bound over all rounds if we knew which clusters would be
present at each round. However, since there are mid-size clusters whose recovery is random, we
face a combinatorial explosion of lists of clusters which could still be remaining at each round, and
therefore we cannot guarantee the success of the recovery SDP for each option at each round via a
union bound. Again, we believe that this could ideally be overcome by very carefully tracking each
random event required for the success of the recovery SDP for each possible instance of remaining
clusters and noting that the same events should guarantee success of the recovery SDP for many
different instances.

Instead, we devise the following technical workaround which involves modifying Algorithm 4:
Each round r, for any subcluster recovered by the recovery SDP, the majority voting procedure will
(w.h.p.) correctly identify all nodes in the cluster, making the size of the cluster known. If the size
of the cluster is at least nr

Kr
, we remove it as usual. However, if we recover a cluster smaller than

nr
Kr

, we do not remove its nodes, but we remember the set S of nodes. This way, we are guaranteed
that each round r, only the clusters of size at least nr

Kr
are removed, making the list of clusters which

remain at each round deterministic (under the good event). If, during a later round r≃, we again
recover a subcluster of S, we do not apply the majority voting procedure again, and we will remove
the nodes S if and only if we now have |S| ↓ nr↓

Kr↓
. This ensures that each cluster will only have the

majority voting procedure applied to it once, ensuring that our workaround does not increase the
query complexity.

66

GAP-FREE CLUSTERING

Now we analyze this modified algorithm. First, similarly to the proof of Theorem 10, we let
F1 = [K] and given Fr, we recursively construct Fr+1 = {k ↑ Fr : sk <

∑
i↘Fr

si
|Fr| }. This choice

is so that (under the good event) Fr will represent all clusters which have not been removed at
the start of round r, and then Fr+1 is obtained by removing all clusters which have size at least
(# nodes remaining in Fr)/(# clusters remaining in Fr).

Now we define a good event for the subsamples T1, . . . , TK (which may not all be reached by
the algorithm). First, for convenience, we let n̂r =

∑
i↓Fr

si denote the number of nodes remaining
in the clusters represented by Fr and we let K̂r = |Fr| denote the number of clusters represented
by Fr. For each r, we sample T̂r from the nodes which are members of the clusters included in
Fr. We differentiate these notationally from the nr,Kr, Tr which are defined over the course of the
algorithm, but under the good event below, n̂r, K̂r will be identical to nr,Kr and T̂r will have the
same distribution as Tr.

Lemma 48 There exists an absolute constant C2 such that, taking ϱr = C2
K̂2

r logn
n̂rε2

, with probability
at least 1≃O(n↗2):

1. For each r ↑ [K], we have 7
8ϱrn̂r ↔ T̂r ↔

9
8ϱrn̂r.

2. For each cluster k, letting r be the first round such that sk ↓
n̂r

K̂r
(if such a round exists), we

have 7
8ϱrsk ↔ |T̂r ∩ Vk| ↔

9
8ϱrsk.

3. For each cluster k, letting r be the first round such that sk ↓
n̂r

K̂r
(if such a round exists), we

have |T̂r ∩ Vk| ↓
C
→

|T̂r| logn
ε .

Proof The first item is very similar to the first item of Lemma 46 except we use a different choice
subsampling ratio ϱr. Fix a round r. For each node i which is in a cluster k ↑ Fr, let Ii be an
indicator for the event that node i is included in T̂r. Then Ii is distributed as Bernoulli(ϱr) and
|T̂r| =

∑n̂r
i=1 Ii. Then by Chernoff’s inequality,

P
|T̂r|≃ ϱrn̂r

 ↓

1 +

1

8


ϱrn̂r


↔ exp


≃
ϱrn̂r

82 · 3



= exp

(
≃

C2

82 · 3

K̂2
r log n

ϑ2

)

↔ exp


≃

C2

82 · 3
log n



↔ O(n↗3)

where the final inequality is for sufficiently large C2. Now unfixing r and applying a union bound
over all ↔ K ↔ n rounds, we obtain the first item.

67

ZUREK CHEN

For the second item, fix a cluster k and let r be the first round such that sk ↓
n̂r

K̂r
. By an identical

argument to the previous step we have

P
|T̂r ∩ Vk|≃ ϱrsk

 ↓

1 +

1

8


ϱrsk


↔ exp

(
≃

ϱrsk
82 · 3

)

= exp

(
≃

C2

82 · 3

K̂2
r log n

n̂rϑ2
sk

)

↔ exp

(
≃

C2

82 · 3

K̂r log n

ϑ2

)

↔ exp


≃

C2

82 · 3
log n



↔ O(n↗3)

using the fact that sk ↓
n̂r

K̂r
. Now we obtain the second item by taking a union bound over all K ↔ n

clusters.
The third item follows from the previous two. For each cluster k, letting r be the first round such

that sk ↓
n̂r

K̂r
(if such a round exists), we have

|T̂r ∩ Vk| ↓
7

8
ϱrsk ↓

7
→
C2

8

K̂r
→
log n

ϑ
→
n̂r

→
ϱrsk ↓

7
→
C2

8

→
n̂r log n

ϑ

→
ϱr

↓

C
√

9
8

→
ϱrn̂r log n

ϑ
↓

C
√
|T̂r| log n

ϑ

where the second line is for sufficiently large C2.

Now, for each r, we apply Lemma 45 to guarantee the success of the recovery SDP when applied
to the adjacency matrix obtained from the subsample T̂r with probability at least 1≃O(n↗3), and
combining this with the third item of the previous Lemma 48, this guarantees that when the nodes
are those belonging to the clusters of Fr, we will recover subclusters from each cluster k such that
sk ↓

n̂r

K̂r
. Now applying Lemma 44 we are guaranteed that the majority voting procedure will

correctly recover the remaining nodes from each such subcluster, because Lemma 48 guarantees that
we will have

|T̂r ∩ Vk| ↓
7

8
ϱrsk =

7

8
C2

K̂2
r log n

n̂rϑ2
sk ↓

7

8
C2

K̂r log n

ϑ2
↓

C1 log n

ϑ2
.

The (modified) algorithm therefore ensures that all nodes belonging to clusters such that sk ↓
n̂r

K̂r

would be recovered and removed.
Now since this holds for any round r, and we start with n̂1 = n1 = n and F1 = [K], this

guarantees that T1 has the same distribution as T̂1, and then the above argument shows that with
probability at least 1≃ O(n↗2), for each round r, we have nr = n̂r, Kr = K̂r, and the clusters k
such that sk ↓

nr
Kr

= n̂r

K̂r
are recovered and removed (which is at least one cluster), leaving exactly

the clusters remaining in Fr+1.

68

GAP-FREE CLUSTERING

Now it remains to check the query complexity and establish the recovery threshold. The majority
voting procedure requires O(n logn

ε2) queries per subcluster and gets applied at most K times, giving
a term of O(nK logn

ε2). Under the aforementioned events, the subsampling procedure for the rth
round makes

O(|Tr|
2) = O(ϱ2rn

2
r) = O


K4

r log
2 n

ϑ4


↔ O


K4 log2 n

ϑ4



queries, and there are obviously at most K rounds, leading to a total query complexity of

O


nK log n

ϑ2
+

K5 log2 n

ϑ4


.

To establish the recovery threshold, note that the algorithm terminates at the first round r such that
nr ↔ C2

K2
r logn
ε2 , implying that each remaining cluster is smaller than this amount and thus also

smaller than C2
K2 logn

ε2 .

Appendix F. Semirandom Recovery Proof

Proof of Theorem 4 Recall that A≃ is the adjacency matrix sampled from the standard SBM, and
the observed A is A≃ subject to the semirandom perturbations. For purposes of analysis, we can
apply our Theorem 2 to the SBM problem with adjacency matrix A≃. Let E be the event that the
conclusions of Theorem 2 hold for the solution Ŷ ≃ of the analogous recovery SDP (1) but with A≃ in
place of A (it is shown in Theorem 2 that P(E) ↓ 1≃O(n3)). Under the event E, we have that Ŷ ≃

is the unique solution to the recovery SDP, meaning for all feasible Y △= Ŷ ≃ we have

Ŷ ≃, A≃

≃
p+ q

2
J


≃ ωTr(Ŷ ≃) >


Y,A≃

≃
p+ q

2
J


≃ ωTr(Y). (52)

Next we argue that also for all feasible Y , we have
〈
Ŷ ≃, A≃A≃

〉
↓


Y,A≃A≃ . (53)

We show this in an elementwise fashion by using the form of Ŷ ≃ and the definition of the large
cluster semirandom model. If Aij > A≃

ij , then i, j must be two nodes within a cluster k such

that p↗q
2 sk ↓

3
2B

→
pn log n ↓

(
1 + 1

B

)
→
pn log n, using the fact that ε = B and B > 2 so

(
1 + 1

B

)
↔

3
2 . Therefore the conclusion of Theorem 2, which hold under the event E, guarantees

that Ŷ ≃
ij = 1. By feasibility of Y , we have Yij ↔ 1, and therefore Ŷ ≃

ij(Aij ≃A≃
ij) ↓ Yij(Aij ≃A≃

ij).
If Aij < A≃

ij , then i, j belong to two different clusters, and under the event E we have Ŷ ≃
ij = 0.

Since Yij ↓ 0 by feasibility of Y , we again have that Ŷ ≃
ij(Aij ≃A≃

ij) ↓ Yij(Aij ≃A≃
ij). Finally, this

same inequality obviously holds if Aij = A≃
ij . Summing over i, j we obtain the inequality (53).

Finally, by adding inequalities (52) and (53) and cancelling A≃, we obtain that

Ŷ ≃, A≃

p+ q

2
J


≃ ωTr(Ŷ ≃) >


Y,A≃

p+ q

2
J


≃ ωTr(Y).

69

ZUREK CHEN

Therefore we have shown that Ŷ ≃ is also the unique optimal solution to the recovery SDP (1) (which
uses A, not A≃), meaning that Ŷ = Ŷ ≃ under the event E. Therefore we have shown that all
conclusions of Theorem 2 hold under the event E, and thus Theorem 2 still holds under the large
cluster semirandom model, as desired.

Appendix G. Eigenvalue Perturbation Bound Proofs

Proof of Theorem 12 We begin in the same way as the argument from (Eldridge et al., 2018,
Theorem 6). Define St:T as the set of all vectors in Col(Ut:T) with norm 1, and likewise for ST+1:n

and St:n. Then by the Courant-Fischer min-max principle we have that

ωt (M +H) ↔ max
x↓St:n

x↘ (M +H)x.

Now we can write any x ↑ St:n as x = ϖu+ φu⇓, where u ↑ St:T , u⇓ ↑ ST+1:n and ϖ2 + φ2 = 1.
Therefore the above is equivalent to

ωt(M +H) ↔ max
ω,ϱ,ω2+ϱ2=1

max
u↓St:T

max
u≃↓ST+1:n

{

ϖ2u↘Mu+ ϖ2u↘Hu+ 2ϖφu↘Mu⇓ + 2ϖφu↘Hu⇓ + φ2u↘⇓Mu⇓ + φ2u↘⇓Hu⇓

}
.

Now we begin to deviate slightly from (Eldridge et al., 2018, Theorem 6). We have u↘Mu ↔

ωt, u↘Hu ↔ h by assumption, u↘Mu⇓ = 0, u↘Hu⇓ ↔ ↖HUt:T ↖op, u↘⇓Mu⇓ ↔ ωT+1, and
u↘⇓Hu⇓ ↔ ↖H↖op. Thus

ωt(M +H) ↔ max
ω,ϱ,ω2+ϱ2=1

ϖ2ωt + ϖ2h+ ϖφ ↖HUt:T ↖op + φ2ωT+1 + φ2
↖H↖op

= max
ϱ↓[0,1]

(1≃ φ2)(ωt + h) + 2(1≃ φ)φ ↖HUt:T ↖op + φ2(ωT+1 + ↖H↖op)

= max
ϱ↓[0,1]

ωt + h+ φ2(ωT+1 ≃ ωt + ↖H↖op ≃ h≃ 2 ↖HUt:T ↖op) + 2φ ↖HUt:T ↖op .

Now by our assumption the leading coefficient (ωT+1 ≃ ωt + ↖H↖op ≃ h≃ 2 ↖HUt:T ↖op) is < 0, so
the quadratic has unique maximum over R.

Using the elementary formula for the maximum of a quadratic, we have that

ωt(M +H) ↔ ωt + h+
≃4 ↖HUt:T ↖

2
op

4(ωT+1 ≃ ωt + ↖H↖op ≃ h≃ 2 ↖HUt:T ↖op)

= ωt + h+
↖HUt:T ↖

2
op

ωt(M)≃ ωT+1(M)≃ ↖H↖op + h+ 2 ↖HUt:T ↖op
.

70

	Introduction
	Problem Setup and Prior Art
	Algorithms and Prior Results for Unbalanced SBM

	Our Contributions
	Semirandom Robustness
	Recursive Clustering
	Clustering With a Faulty Oracle
	Eigenvalue Perturbation Bounds

	Proof Outline of Main Theorem
	Additional Notation
	Additional Discussion of Results and Related Work
	Further Details of Ailon et al. and Gap-Dependent Clustering
	Additional Related Work
	Discussion and Comparison of Recursive Clustering Results
	Discussion and Comparison of Faulty Oracle Clustering Results
	Discussion of Eigenvalue Perturbation Bounds

	Proof of Main Theorem
	Oracle SDP Solutions
	All-Zero Solution
	All-One Solution
	Nonzero Critical Size Solution

	Recovery SDP Solution
	Both clusters large
	One cluster large, one cluster small
	Both clusters small
	Checking KKT conditions

	Clustering With a Gap Proofs
	Concentration Inequalities

	Proofs for Recursive Clustering
	Proofs for Clustering With a Faulty Oracle
	Semirandom Recovery Proof
	Eigenvalue Perturbation Bound Proofs

