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Abstract

We study the sample complexity of learning an e-optimal policy in an average-
reward Markov decision process (MDP) under a generative model. For weakly

communicating MDPs, we establish the complexity bound O (SAE%), where H is
the span of the bias function of the optimal policy and S A is the cardinality of the
state-action space. Our result is the first that is minimax optimal (up to log factors)
in all parameters S, A, H, and ¢, improving on existing work that either assumes
uniformly bounded mixing times for all policies or has suboptimal dependence
on the parameters. We also initiate the study of sample complexity in general
(multichain) average-reward MDPs. We argue a new transient time parameter B

is necessary, establish an O (SA B+H) complexity bound, and prove a matching
(up to log factors) minimax lower bound. Both results are based on reducing the
average-reward MDP to a discounted MDP, which requires new ideas in the general

setting. To optimally analyze this reduction we develop improved bounds for
~-discounted MDPs, showing that O (S Ar— > ) and O(SA - 7)2 2> samples

suffice to learn e-optimal policies in weakly commumcatlng and in general MDPs,
respectively Both these results circumvent the well-known minimax lower bound

of O (S Ar—ms = 7)3 5 ) for y-discounted MDPs, and establish a quadratic rather than
cubic horlzon dependence for a fixed MDP instance.

1 Introduction

The paradigm of Reinforcement learning (RL) has demonstrated remarkable successes in various
sequential learning and decision-making problems. Empirical successes have motivated extensive
theoretical study of RL algorithms and their fundamental limits. The RL environment is commonly
modeled as a Markov decision process (MDP), where the objective is to find a policy 7 that maximizes
the expected cumulative rewards. Different reward criteria are considered, such as the finite horizon
total reward E™ | ZtT:O R;] and the infinite horizon total discounted reward E™ [3~7°  v'R,] with a
discount factor v < 1. The finite horizon criterion only measures performance for 7" steps, and the
discounted criterion is dominated by rewards from the first ﬁ time steps. In many situations where
the long-term performance of the policy = is of interest, we may prefer to evaluate policies by their
long-run average reward lim7_, o (1/7)E™ | tT;OI Ry].

A foundational theoretical problem in RL is the sample complexity for learning a near-optimal policy
using a generative model of the MDP [10], meaning the ability to obtain independent samples of the
next state given any initial state and action. For the finite horizon and discounted reward criteria, the
sample complexity of this task has been thoroughly studied (e.g., [2} 13, [15, 19} 11, [12]]). However,
despite significant effort (reviewed in Section [I.T)), the sample complexity of the average reward
setting is unresolved in existing literature.
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Our contributions In this paper, we resolve the sample complexity of weakly communicating
Average-Reward MDPs (AMDP) in terms of H := ||h*]|_ ., the span of the bias (a.k.a. relative value

function) of the optimal policy. We show that 5(SAH / 52) samples suffice to find an e-optimal
policy of a weakly communicating MDP with S states and A actions. This bound, presented in

Theoremlzl, is the first that matches the minimax lower bound Q(SAH / 52) up to log factors.

span’

Furthermore, we initiate the study of sample complexity for average-reward general MDPs, which
refers to the class of all finite-space MDPs without any restrictions [[14]]. General MDPs are not
necessarily weakly communicating and all their optimal policies may be multichain. In this general
setting, we demonstrate the span H alone cannot characterize the sample complexity, as the lower
bound in Theoremexhibits instances which require > HS A /&2 samples. This observation motivates
our introduction of a new transient time bound parameter B, which in conjunction with H captures
the sample complexity of general average-reward MDPs. Specifically, our Theorem 8 shows that

0] (SA B;QH) samples suffice to learn an e-optimal policy, and Theorem 4 provides a matching

minimax lower bound of €2 (SABJ—QH). We remark that it is trivially impossible to achieve low regret
in standard online settings of general MDPs, since the agent may become trapped in a closed class
of low reward states [4]. The simulator setting is natural for studying general MDPs since it avoids
this fatal issue, although the existence of multiple closed classes with different long-run rewards still
plays a fundamental role in the minimax sample complexity, as reflected in the dependence on B.

To establish the above upper bounds, we adopt the reduction-to-discounted-MDP approach [9, 20],
and improve on prior work by developing enhanced sample complexity bounds for y-discounted
MDPs (DMDPs). We improve the analysis of variance parameters related to DMDPs using a
new multistep variance Bellman equation, which is applied in a recursive manner to bound the
variance of near-optimal policies. For general (multichain) MDPs, we further utilize law-of-total-
variance ideas to bound the total variance contribution from transient states, which present new
challenges significantly different to their behavior in the weakly communicating setting. Our average-
to-discounted reduction also requires new techniques, because many structural properties used
in earlier reduction arguments no longer hold for general MDPs. Our analysis leads to DMDP

sample complexities of 9] (S Aﬁ) and 5(&4%) to learn e-optimal policies in weakly
communicating and general MDPs, respectively. Notably, the latter bound, valid for all MDPs,
circumvents the existing lower bound Q(ﬁ) [3L 115]. Whereas this minimax lower bound

allows the adversary to choose the transition matrix P based on y with B ~ ﬁ |3, Theorem 3],

our result reflects the complexity of a fixed MDP P through its parameters H, B and a quadratic
dependence on the effective horizon ﬁ This fixed- P complexity is essential for our particular
algorithmic approach, where the reduction discount + is chosen depending on P. It is also a more
relevant framework in general for many RL problems where the discount factor is tuned for best

performance on a particular instance.

1.1 Comparison with related work on average-reward MDPs

We summarize in Table[I]existing sample complexity results for average reward MDPs.

Various parameters have been used to characterize the sample complexity of average reward MDPs,
including the diameter D of the MDP, the uniform mixing time bound 7, for all policies, and the
span H of the optimal bias; formal definitions are provided in Section[2. All sample complexity
upper bounds involving 7,,;¢ require the strong assumption that all stationary deterministic policies
have finite mixing times. Otherwise, Tynhif = 00 by definition, which for example occurs if some
policy induces a periodic Markov chain. It is also possible to have D = oo, while H and our newly
introduced B are always finite for finite state-action spaces. As shown in [20], there is generally no
relationship between D and Tyyi¢; they can each be arbitrarily larger than the other. On the other
hand, it has been shown that H < D [4] and that H < 87t [20]. Therefore, either of the first two
minimax lower bounds in Table[I (which both use hard instances that are weakly communicating)

imply a lower bound of Q (S AE%) and thus the minimax optimality of our Theorem l%l
To the best of our knowledge, no prior work has considered the average-reward sample complexity

of general (potentially multichain) MDPs. Existing results make assumptions at least as strong as
weakly communicating or uniformly bounded mixing times.



Method Sample Complexity Reference Comments

Primal-Dual SMD O (S A %) (81 requires uniform mixing
Reduction to DMDP (0] (S A%) (9] requires uniform mixing
~ 3
Policy Mirror Descent 0] (S A%) [13] requires uniform mixing
Reduction to DMDP O (S ATugt ) [22] requires uniform mixing
Reduction to DMDP 9] (S Aeﬂg) [20] weakly communicating
Refined Q-Learning 0] (S A ':—j) [26] ~ weakly communicating
Reduction to DMDP 0] (S Asﬂz) Our Theorem|[2| weakly communicating
Reduction to DMDP 9] (S A B;ZH ) Our Theorem g general MDPs
Lower Bound QN(SA Tugit ) 9] implies (:2 (sAH)
Lower Bound ~Q (S As%) [20] implies (2 (S Asﬂz)
Lower Bound Q (SAELH) Our TheoremH general MDPs

Table 1: Algorithms and sample complexity bounds for average reward MDPs with S states and
A actions. The goal is finding an e-optimal policy under a generative model. Here H := ||h*||,,, is
the span of the optimal bias, Tyyuif is a uniform upper bound on mixing times of all policies, and D is
the MDP diameter, with the relationships H < 87, and H < D. B is the transient time parameter.

The work [9] was the first to develop an algorithm based on reduction to a discounted MDP with
a discount factor of v = 1 — ﬂfmf. Their argument was improved in [20], which improved the
uniform mixing assumption to only assuming a weakly communicating MDP, and used a smaller
discount factor v = 1 — 7. These arguments both make essential use of the fact that the optimal
gain is independent of the starting state, which does not hold for general MDPs. After analyzing the
reductions, both [9] and [20] then solved the discounted MDPs by appealing to the algorithm from
[12]. To the best of our knowledge, the algorithm of [12] is the only known algorithm for discounted
MDPs which could work with either reduction, as the reductions each require a 1f7 -optimal policy
from the discounted MDP, and other known algorithms for discounted MDPs do not permit such
large suboptimality levels. (We discuss algorithms for discounted MDPs in more detail below.) Other
algorithms for average-reward MDPs are considered in [9, |13} 126]]. The above results fall short of
matching the minimax lower bounds.

While preparing this manuscript, we became aware of [22], which considers the uniform mixing

setting and obtains a minimax optimal sample complexity O (S A T;gif) in terms of Typir. Although
developed independently, their work and ours have several similarities. We both utilize discounted
reductions and observe that it is possible to improve the sample complexity of the resulting DMDP task
by improving the analysis of variance parameters. They accomplish the improvement by leveraging
the uniform mixing assumption, whereas we make use of the low span of the optimal policy. Note
that H < 87yuir holds in general and there exist MDPs with H < 7,i¢ = 00, so our Theoremlgis
strictly stronger than the result of [22].

1.2 Comparison with related work on discounted MDPs

We discuss a subset of results for discounted MDPs in the generative setting. Several works [[15} 19}
1,112] obtain the minimax optimal sample complexity of 6(5 AW) for finding an e-optimal
policy w.r.t. the discounted reward. However, only [[12]] is able to show this bound for the full range
of € € (0, ﬁ] As mentioned, the reduction from average reward MDPs requires a large ¢ in the
resulting discounted MDP, making it unsurprising that all of [9, 20} [22] as well as our Algorithm|T
essentially use their algorithm. The matching lower bound is established in [15} 3].

As mentioned earlier, both we and the authors of [22, [21] independently observed that the
Q(SAW) sample complexity lower bound can be circumvented in the settings that arise



under the average-to-discounted reductions. The authors of [22| [21]] assume uniform mixing and

obtain a discounted MDP sample complexity of 5(&4 (11“;)‘362), first in [21] by modifying the
algorithm of [19], and then in [22] under a wider range of € by instead modifying the analysis of [12].

The work [21] also proves a matching lower bound. Our Theorem I for discounted MDPs attains
a sample complexity of O(SA#) assuming only that the MDP is weakly communicating.

Again, in light of the relationship that H < 87y,;¢, our results are strictly better (ignoring constants),
and their lower bound also establishes the optimality of our Theorem

2 Problem setup and preliminaries

A Markov decision process (MDP) is given by a tuple (S, .A, P,r), where S is the finite set of states,
A is the finite set of actions, P : § x A — A(S) is the transition kernel with A(S) denoting the
probability simplex over S, and r : S x A — [0, 1] is the reward function. Let S := |S| and A := | A]
denote the cardinality of the state and action spaces, respectively. Unless otherwise noted, all policies
considered are stationary Markovian policies of the form 7 : S — A(.A). For any initial state
sp € S and policy 7, we let Y denote the expectation with respect to the probability distribution
over trajectories (Sg, Ag, S1, A1,...) where Sy = sg, Ay ~ 7(S¢), and Si11 ~ P(- | St, As).
Equivalently, this is the expectation with respect to the Markov chain induced by 7 starting in state
80, with the transition probability matrix P given by (Pr), , == >_,c 4 7(als)P(s" | s,a). We
also define (r7)s := >, .4 m(als)r(s,a). We occasionally treat P as an (S x A)-by-S matrix
where Py, s = P(s,a,s’). We also let Ps, denote the row vector such that P, (s') = P(s,a,s’).
For any s € S and any bounded function X of the trajectory, we define the variance V7 [X] :=
ET (X — E7 [X])?, with its vector version V™ [X] € RS given by (V™ [X]), =VI[X].Fors €S,
let e, € RS be the vector that is all 0 except for a 1 in entry s. Let 1 € RS be the all-one vector. For

each v € RS, define the span semi-norm [[V]span = MaXses v(s) — minges v(s).

Discounted reward criterion A discounted MDP is a tuple (S, A, P, r,~), where v € (0,1) is
the discount factor. For a stationary policy m, the (discounted) value function V.7 : S — [0, 00)

is defined, for each s € S, as V7 (s) := ET [>.;2 7" Ry], where Ry = 7(S;, A;) is the reward
received at time ¢. It is well-known that there exists an optimal policy 7 that is deterministic and

satisfies Vwﬂ; (s) = Vi (s) := sup, V(s) for all s € S [14]. In discounted MDPs the goal is to
compute an e-optimal policy, which we define as a policy 7 satisfying || Vi-Vy HOO < e. We define

one more variance parameter Vp,_ [V7] € R, specific to a given policy 7, by (Vp, [V]) =
2

ZS’ES (Pﬂ)s,s’ [V'yﬂ(s/) - ZS// (PTI')S’S// V,YW(SH)] .

Average-reward criterion In an MDP (S, A, P, ), the average reward per stage or the gain of a
policy 7 starting from state s is defined as p™ (s) := limy_,o0 =ET[ 32_01 R;]. The bias function of
any stationary policy 7 is h™(s) := C-limp_,o0 ET[ 327! (Ry — p™(S;)) ], where C-lim denotes
the Cesaro limit. When the Markov chain induced by Py is aperiodic, C-lim can be replaced with the
usual limit. For any policy m, its p™ and h™ satisfy p™ = Prp™ and p™ + h™ = r, + P h".

A policy 7* is Blackwell-optimal if there exists some discount factor 5 € (0, 1) such that for all v > ¥
we have VW’T* > VI for all policies 7. Henceforth we let 7* denote some fixed Blackwell-optimal
policy, which is guaranteed to exist when S and A are finite [14]. We define the optimal gain p* € RS
by p*(s) = sup, p”(s) and note that we have p* = p™ . For all s € S, p*(s) > max,e 4 Psap*, or
equivalently p* > Py p* for all policies 7 (and this maximum is achieved by 7*). We also define h* =
h™ (and we note that this definition does not depend on which Blackwell-optimal 7* is used, if there
are multiple). For all s € S, p* and h* satisfy p*(s) + h*(s) = max,ec 4:p,, p*=p* (s) "'sa + Psah™,
known as the (unmodified) Bellman equation.

A weakly communicating MDP is such that the states can be partitioned into two disjoint subsets
S = &1 U S, such that all states in Sy are transient under any stationary policy and within Sy, any
state is reachable from any other state under some stationary policy. In weakly communicating MDPs
p* is a constant vector (all entries are equal), and thus (p*, h*) are also a solution to the modified
Bellman equation p*(s) + h*(s) = maxge .4 rsqe + Psah*. When discussing weakly communicating
MDPs we occasionally abuse notation and treat p* as a scalar. A stationary policy is multichain if it



induces multiple closed irreducible recurrent classes, and an MDP is called multichain if it contains
such a policy. Weakly-communicating MDPs always contain some gain-optimal policy which is
unichain (not multichain), but in general MDPs, all gain-optimal policies may be multichain and p*
may not be a constant vector. All uniformly mixing MDPs are weakly communicating. In the average
reward setting, our goal is find an e-optimal policy, defined as a policy 7 such that ||p* — p™ || < €.

Complexity parameters Our most important complexity parameter is the span of the optimal bias
function H := ||h*||,,,- In addition, for general MDPs we introduce a new transient time parameter
B, defined as follows. Let II be the set of deterministic stationary policies. For each 7w € 11, let R™
be the set of states which are recurrent in the Markov chain P, and let 7™ = S \ R™ be the set of
transient states. Let Tr~ = inf{t : Sy € R™} be the first hitting time of a state which is recurrent
under 7. We say an MDP satisfies the bounded transient time property with parameter B if for all
policies 7 and states s € S we have ET [Tgr~] < B, or in words, the expected time spent in transient
states (with respect to the Markov chain induced by ) is bounded by B.

We recall several other parameters used in the literature to characterize sample complexity. The
diameter is defined as D := max, ¢, infrerr Ef, [1s,], where 7, denotes the hitting time of a state
s € §. For each policy 7, if the Markov chain induced by P has a unique stationary distribution
Vr, we define the mixing time of 7 as 7, := inf{ el (Py)' — yIHl < %} If all
policies 7 € II satisfy this assumption, we define the uniform mixing time Typi¢ := SUp, ¢y 7. Note
that D and 7yy,i¢ are generally incomparable [20], while we always have H < D [4] and H < 87pi¢
[20]. It is possible for Ty, = o0, for instance if there are any policies which induce periodic Markov
chains. Also, D = oo if there are any states which are transient under all policies. However, H and B
are finite in any MDP with S, A < co. Also if Typif is finite, Lemma[27|shows B < 475

We assume access to a generative model [10]], also known as a simulator. This means we can obtain
independent samples from P(- | s,a) for any given s € S,a € A, but P itself is unknown. We
assume the reward function r is deterministic and known, which is standard in generative settings
(e.g., [1L 12]]) since otherwise estimating the mean rewards is relatively easy. Specifically, to learn
an e-optimal policy for the discounted MDP, we would need to estimate each entry of r to accuracy

O((1 — ~)e), which requires a lower order number of samples O(W) For this reason we
assume (as in [20]) that H > 1. Usmg samples from the generatlve model, our Algorithm [1|constructs
an empirical transition kernel P.Fora policy 7, we use V”( ) to denote the value function computed
with respect to the Markov chain with transition matrix P (as opposed to P;). Our Algonthml 1{also
utilizes a perturbed reward function 7, and we use the notation V’f (s) to denote a value function
computed using this reward (and P, ); more concretely, we replace R; with Et = 7(S, Ay) in the
definition above of V. We use the notation YA/,Y’fp when using Pand 7 simultaneously.

3 Main results for weakly communicating MDPs

Our approach is based on reducing the average-reward problem to a discounted problem. We first
present our algorithm and guarantees for the discounted MDP setting. As discussed in Subsection
[I.T, our algorithm of choice, Algorithm[T] is essentially the same as the one presented in [12] with a

slightly different perturbation level ¢. Algorithm |1 I constructs an empirical transition kernel P using
n samples per state-action pair from the generative model, and then solves the resulting empirical

(perturbed) MDP (13 7,7). As noted in [12]], the perturbation ensures %,*Yp can be computed exactly
in poly(- =5, A ,log(1/d¢)) time by multiple standard MDP solvers. We remark in passing that
the S A-by-S transition matrix P has at most n.S A nonzero entries.

Our Theorem I provides an improved sample complexity bound for Algorithm [T under the setting
that the MDP is weakly communicating.

Theorem 1 (Sample Complexity of Weakly Communicating DMDP). Suppose the discounted MDP
(P,r,7) is weakly communicating, H < ﬁ and € < H. There exists a constant Cy > 0 such that,

for any 6 € (0,1), if n > Cy (175)252 log ((1 SA) —), then with probability at least 1 — 6, the policy
V e

p output by Algorithm H satisfies ||V. § €.



Algorithm 1 Perturbed Empirical Model-Based Planning

input: Sample size per state-action pair n, target accuracy ¢, discount factor
1: for each state-action palr (s, a) €S xAdo
Collect n samples S} , 8%, from P(- | s,a)

2 s,ar

3 Form the empirical transition kernel P(s’ | s,a) = N I{S:, = s}, foralls' € S

4: end for

5: Set perturbation level £ = (1 — 7)e/6

6: Form perturbed reward 7 = r 4+ Z where Z (s, a) & “Unif(0, &)

7: Compute a policy 7 , which is optimal for the perturbed empirical discounted MDP (P, 7, )
8

. =%
. return ™

gince we observe n samples for each state-action pair, Theorem [I shows that a total number of
O(254 o )252 ) samples suffices to learn an e-optimal policy. This bound improves on the O (ﬁ)
complexity bound from [12] when the span H is no larger than the effective horizon ﬁ This
assumption holds in many situations, as can be seen by using the relationships H < D orH < 8mynit.
On the other hand, in the regime with H > =, the existing bound O<W) also achieved by

Algorlthm [ is superior. In this regime, the dlscountmg effectively truncates the MDP at a short
horizon = before the long-run behavior of the optimal policy (as captured by H) kicks in.

Proof highlights for Theorem[l] The key to obtaining this improved complexity is a careful anal-
and

ysis of certain instance-specific variance parameters. It suffices to bound HXA/»;T;, - V7
Hf/{fgvp — vy - by O(e). The prior DMDP complexity of ﬁ is obtained using the well-
known law of-total-variance argument [3} (1} [12]], which ultimately yields a sample complexity like
O( - v 52 HVW* DorZo v Ryl H ) -V

the cumulative discounted reward HV Ztoo 0V Ry] H is bounded by ﬁ, since the total reward

oo

< O(e). From here, the variance of
(o)

in a trajectory is within [0, 72— } We instead seek to bound HV > 2o R H <0 (1 'y)

Assume H is an integer. The first step is to decompose V7~ [Zt o V' Ry] recursively like

oo H . o0
> 'R, P (Pes) V| Ry
t=0 t=0

(see our Lemma|[I3). This is a multi-step version of the standard variance Bellman equation (e.g., [16}

H—1
S AR+ AHVT (Sw)

t=0

Theorem 1]). Ordinarily an H-step expansion would not be useful, since the term Vyﬂ” (SH) by itself
appears to have fluctuations on the order of ﬁ in the worst case depending on Sy (note Sy is the
random state encountered at time H). However, in our setting, we should have Vq,w” (Sh) ~ ﬁ p*+

h*(Sh), reducing the magnitude of the random fluctuations to order H = [|2* |, (See Lemmal_lg
for a formalization of this approximation which first appeared in [23]].) Therefore expansion to

steps achieves the optimal tradeoff between maintaining V™ {Z?:_Ol ARy +~HVY 7 (Sy )] <0 (H?)
and minimizing y2". As desired this yields HV”; D20V Ry H < O(%) = O(%), where
oo

17{/% < O(H(ll—'y)> requires ﬁ > H. See LemmalEIfor the complete argument.

~*
P _ Lifv,p

which is the “evaluation error” of the empirically optimal policy 7 . However, applying the same

We would like to use a similar argument as above to bound the second term

s

which, unlike for the analogous term involving

~*

. . iy
argument would give a bound in terms of HV7 P ,
span

the frue optimal policy 77, is not a priori bounded in terms of H. (If we instead assumed uniform
mixing, we could immediately bound this by O (7yunif).) Thus, to control the variance associated with

* o SO(H+ [V = v ). which

can be shown to yield the desired sample complexity. O

evaluating 7%

. 7
we are able to recursively bound HVA, P




Now we present our main result for the average-reward problem in the weakly communicating setting.
Applied in this setting with a DMDP target accuracy of £ = H, our Algorithm [2|reduces the problem

to y-discounted MDP with 5 = 1 — 15 and then calls Algorithmwith target accuracy H.

Algorithm 2 Average-to-Discount Reduction

input: Sample size per state-action pair n, target accuracy ¢ € (0, 1], DMDP target accuracy &
I: Sety=1-— 35
2: Obtain 7* from Algorithm|1|with sample size per state-action pair n, accuracy g, discount 7

3: return 7

We have the following sample complexity bound for Algorithm 2]

Theorem 2 (Sample Complexity of Weakly Communicating AMDP). Suppose the MDP (P, r)
is weakly communicating. There exists a constant C1 > 0 such that for any 6,¢ € (0,1), if
n > Clg% log (%) and we call Algorithmlgwith € = H, then with probability at least 1 — 6, the

output policy T* satisfies the elementwise inequality p* — p%* <el.
Again, since we observe n samples for each state-action pair, this result shows that 9] (HESZA) total
samples suffice to learn an e-optimal policy for the average reward MDP. This bound matches the
minimax lower bound in [20] and is superior to existing results for weakly communicating MDPs
(see Table . We note that the proof of Theorem |1|works so long as H is any upper bound of ||2*||

hence Algorithm 2|also only needs an upper bound for ||h*|

span’
span*

We show in the following theorem that it is in general impossible to obtain a useful upper bound on
[[2* || gpan With a sample complexity that is a function of only ||2* This suggests that it is not easy
to remove the need for knowledge of ||h*||

span*
span*

Theorem 3. For any givenn,T > 1, there exist two MDPs My and My with S = 4, A = 1 such
that M has optimal bias span 1, My has optimal bias span T, and it is impossible to distinguish
between M and My with probability > % with n samples from each state-action pair.

Thus even for an MDP with a small span, there exists another MDP that has an arbitrarily large span
and is arbitrarily statistically close (that is, cannot be distinguished even with a large sample size
n). We emphasize that all previous algorithms in Table[I]also require knowledge of their respective
complexity parameters, and such assumptions are pervasive throughout the literature on average-
reward RL. The only exception of which we are aware is the contemporaneous work [7]], which

achieves a suboptimal O(S A%) sample complexity without knowledge of 7, in the uniformly
mixing setting. It is unclear if H-based sample complexities are possible without knowing H. Besides
the evidence offered by Theorem [3] in the online setting, it has been conjectured that knowledge of H
is necessary to obtain an H-dependent regret bound [6] [5, [25]. Moreover, even with knowledge of H,
the only known online algorithm with optimal regret is computationally inefficient [25], making it
somewhat surprising that our Theorem 2| uses a simple and efficient algorithm.

Nevertheless, when H is unknown, one can replace H with the diameter D (since H < D). The
diameter is known to be estimable [25,17] and is often a more refined complexity parameter than

Tunif- Our Theoremlgis the first to imply the optimal diameter-based complexity 9] (2 ;42]3 ), given
knowledge of D or using a constant-factor upper bound obtained from some estimation procedure.

4 Main results for general MDPs

Our starting point for general MDPs is that unlike the weakly communicating setting, their complexity
cannot be captured solely by ||h*|[,,,. We first argue this point informally using the simple example
in Figure [T, which is parameterized by a value 7' > 1. Only state 1 contains multiple actions, and
action 2 is optimal since it leads to state 2 which collects reward 0.5 forever, while taking action 1
will always eventually lead to state 3 where the reward is 0 forever. We thus have p* = [0.5,0.5,0] "
and [|h*|,,, = 0. However, clearly €2(7") samples are required to even observe a transition 1 — 3,
so the sample complexity must depend on 7' > H (without observing a transition 1 — 3, we cannot
determine that action 1 is not optimal). Taking action 1 leads to a large reward of 1 in the short



term (for T steps in expectation), so even if we had perfect knowledge of the environment, the
optimal y-discounted policy would not choose the optimal action @ = 2 until the effective horizon
ﬁ > Q(T). Thus ﬁ ~ H is insufficient for the reduction to discounted MDP. Note that this
instance has its bounded transient time parameter B = T'. This example reflects that transient states
play a categorically different role in general MDPs: in the weakly communicating setting, states
which are transient under all policies can be completely ignored, whereas in this example our action
at state 1 fully determines our reward even though state 1 is transient under all policies.

a=2R=05

Figure 1: A general MDP where -discounted approximation fails unless 1= = Q(T) > [|h*| -
The statistical hardness is formally captured by the following theorem, which uses improved instances
to obtain the correct dependence on €.

Theorem 4 (Lower Bound for General AMDPs). For any ¢ € (0,1/4), B > 1, A > 4 and
S € 8N, for any algorithm Alg which is guaranteed to return an € /3-optimal policy for any input
average-reward MDP with probability at least i, there exists an MDP M = (P, r) such that:

1. M has S states and A actions.

2. Letting h* be the bias of the Blackwell-optimal policy for M, we have || h* ||Span =0.

3. M satisfies the bounded transient time assumption with parameter B.

Blog(SA) )
22

4. Alg requires Q( samples per state-action pair on M.

A similar minimax lower bound holds for the discounted setting.

Theorem 5 (Lower Bound for General DMDP). Foranye € (0,1/4), B>1, A>4and S € 8N
for any algorithm Alg which is guaranteed to return an ¢ /3-optimal policy for any input discounted
MDP with probability at least %, there exists a discounted MDP M = (P, r,~) such that:

1. M has S states and A actions.

2. M satisfies the bounded transient time assumption with parameter B.

Blog(SA)

3. Alg requires Q( )2

) samples per state-action pair on M.

The lower bounds of O (ﬂz) from the weakly communicating setting still apply in the general setting.
H+B
e2

Together with Theorem |4{they imply a 0] ( ) lower bound for general average-reward MDPs.

Figure [l|demonstrates that, unlike the weakly communicating setting, discounted reduction with ﬁ
set in terms of only H cannot succeed for general MDPs. (Contrast with Lemma 9] for the analogous
theorem from [20]] for weakly communicating MDPs.) We remedy this issue and lay the foundation
for our matching upper bound by proving a new reduction theorem in terms of H and B; in particular,
B measures how much farther ahead we must look in order to determine which closed communicating
class will be reached. By Lemma|2_7] B < 47unit, although B is always finite unlike 7y;¢.

Theorem 6 (Average-to-Discount Reduction for General MDP). Suppose (P, r) is a general MDP,

has an optimal bias function h* satisfying ||h*||span < H, and satisfies the bounded transient time

assumption with parameter B. Fix e € (0,1] and sety =1 — gty For any e, € [0, ﬁ] if wis
any e~-optimal policy for the discounted MDP (P, r,~), then p* — p™ < (3 + 2 BEJ:H )51.

Proof highlights. Letting 7%, be the optimal policy for the y-discounted MDP, our first key observation
is that p* is constant within any irreducible closed recurrent block of the Markov chain Pﬂf/ , essentially



because all states in this block must be reachable from each other with probability one (see Lemma

E). Leveraging the optimality of 77, this enables us to bound both ’Vyﬂ; (s) — = p*(s)‘ and

Bt
’VWM (s)— ﬁ o™ (s)| by O(||n* Hspan) for any s which is recurrent under 7, which when combined
demonstrate that the gain p™ (s) of 7} is near-optimal for its recurrent states. See Lemma I_ZIl We

then leverage the bounded transient time assumption to guarantee that for transient s, V5 (s) is
dominated by the expected returns from recurrent states, since at most O(B) time is spent in transient
states. We complete the proof of Theorem [6]by combining these facts, as well as extending them to
accommodate approximately optimal policies. O

Next we establish an improved sample complexity for the discounted problem in the setting relevant
to this reduction. This bound matches the lower bound in Theorem [5|up to log factors.

Theorem 7 (Sample Complexity of General DMDP). Suppose B +H < 11 and ¢ < B+ H. There
exists a constant C3 > 0 such that, for any § € (0,1), if n > Cs (15;")@62 log (uf%&), then with

probability 1 — 6, the policy 75 |, output by Algorithmsatisﬁes HVW* - V»yﬂ”’ ||OO <e.

Finally, we present our result for the sample complexity of general average-reward MDPs, matching
the lower bound in Theorem [ up to log factors. We again use the reduction Algorithm 2, this time
with the larger DMDP target accuracy € = B + H, leading to a discount factor of ¥y = 1 — m.
Theorem 8 (Sample Complexity of General AMDP). There exists a constant Cy > 0 such that for
any d,e € (0,1), ifn > C4B€+—2H log (%) and we call Algorithm@with e = B+ H, then with

probability at least 1 — 0, the output policy T* satisfies the elementwise inequality p* — pﬁ* <el.

Proof highlights. Similarly to Theorem [2, we seek to bound certain variance parameters, and this
time it would suffice to bound the variance of the cumulative discounted reward starting from any
state s like |V§” Do R <0 (T%S) Such a bound indeed holds for states s that are recurrent
under 77, because p*(S;) will remain constant to p*(s) for all Z, since, as mentioned above, p* is
constant on closed irreducible recurrent blocks, and all (S¢)>o will stay in the same block as s.
Therefore, we can almost reuse our argument from the weakly communicating case. However, if
. . . X 2\ .
s is transient, it is easy to see that ‘V;T” > ooV Ry ‘ = Q((ﬁ) ) in general (even under the
bounded transient time assumption), as we can consider an example where from s we transition
to either an absorbing reward 1 state or an absorbing reward 0 state. Thus, when s is transient,

instead of bounding |V:; > reo v Ry
el (I —Pry) Ve, V7]
in these previous works is bounded in terms of HV”; > o vth]H ; see Lemma |12 for this

relationship). We instead develop a novel law-of-total-variance-style argument which limits the total
contribution of transient states to this sharper variance parameter. See Lemma [26] for details. O

, we directly work with the sharper variance parameter

, which is also common to the analysis of DMDPs [3, 1} 12] (and

5 Conclusion

In this paper we obtained optimal sample complexities for weakly communicating and general
average reward MDPs by improving the analysis of discounted MDPs, revealing a quadratic rather
than cubic dependence on the effective horizon for a fixed instance. A limitation of our results (as
well as of all previous results) is that the average-to-discounted reduction requires prior knowledge
of parameters for optimal complexity, and an interesting open question is whether it is possible to
remove this assumption. In conclusion, we believe our results shed greater light on the relationship
between the discounted and average reward settings as well as the fundamental complexity of the
discounted setting, and we hope that our technical developments can be useful in future work, such
as leading to efficient optimal algorithms in the online setting.
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A Proofs for weakly communicating MDPs

In this section, we provide the proofs for our main results in Section [3 for weakly communicating
MDPs. Before beginning, we note that given that H > 1, we may assume that H is an integer by
setting H <~ [H1, which only affects the sample complexity by a constant multiple < 2 relative to the

original parameter H. Let | M{| _, := sup,. ., _<1 [|Mv]|,, denote the £, operator norm of a

matrix M. We record the standard and useful fact that || (1 — vP")~"|| __, _ < 12 for any transition

probability matrix P’, which follows from the Neumann series (I —vP')™" =", (vP’ )" and the
elementary fact that | P'[| __, . < 1.

A.1 Technical lemmas

First we formally state the main theorem from [20]], which gives a reduction from weakly communi-
cating average-reward problems to discounted problems.

Lemma 9. Suppose (P,r) is an MDP which is weakly communicating and has an optimal bias
function h* satisfying ||h*||,,, < H. Fixe € (0,1] and sety =1 — §. Forany e, € [0, ﬁ], if wis
any e~-optimal policy for the discounted MDP (P, r,~), then

pr=p" < (8—0—3%’) el.

From here, we will first establish lemmas which are useful for proving Theorem [I]on discounted
MDPs, and then we will apply the reduction approach of Lemma(9]to prove Theorem [2on average-
reward MDPs. As mentioned in the introduction, a key technical component of our approach is to
establish superior bounds on a certain instance-dependent variance quantity which replace a factor of
1% with a factor of H. Before reaching this step however, to make use of such a bound, we require
an algorithm for discounted MDPs which enjoys a variance-dependent guarantee.

The work [[12] obtains bounds with variance dependence that suffice for our purposes. However,
they do not directly present said variance-dependent bounds, so we must slightly repackage their
arguments in the form we require.

Lemma 10. There exist absolute constants cy,co such that for any § € (0,1), if n >

[
1=y

log (ﬁ), then with probability at least 1 — 6, after running Algorithm we have

~m oy ‘1 1Og (1;914)65 T
HVW% -V - <7 w (- '7P7f§)_1 VPW; {V’Y 7]
oo ()
log ( ) .
(1—~)de (5 S
toay (1 —9)n ‘VW oo+6
and
ST T €1 lOg ((17 )58) T
|7 = v < BN = Pey )7 Ve [V
oo (2)
SA
o8 (%) |,
+C1’Yw“/’y7’ OO—‘r,

Proof. First we establish equation (I). The proof of [12, Lemma 1] shows that when n >

}6_‘3; 2log (%), with probability at least 1 — & we have
o 210 (1555) o
HV'YW - <4y " (I_VPW;)_ VPW; [va}
~ %0 3)

2log (LSloiﬁ) H .

:
T a o !

oo
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Now since

Hf/{fgfvf” OO:H(IwP,r*) oy = (I = 7Pry) 1|
<@ =vPe) 7|7l
R
iy 1 _7 - 67

we can obtain equation (1) by triangle inequality (although we will choose the constant ¢; below).
Next we establish equation (2)). Using [12l Lemma 6], with probability at least 1 — & we have that

A * A~k A* 55(1 — 7) 65(1 — 7)2
@5 0, 75p() = @3 pls0)| > 25 = o 4)

uniformly over all s and all @ # 75 ,(s). From this separation condition (4] (4), the assumptions of [12]

Lemma 5] hold (with w = % in their notation) for the MDP with the perturbed reward 7. The

proof of [12, Lemma 5] shows that under the event @) holds, the conditions for [[12] Lemma 2] are

satisfied (with, in their notation, 5; = 2log (mSA log 5= ) = 2log (% log 1—~,>)
with additional failure probability < §. The proof of [12, Lemma 2] then shows that, assuming

= 2 43
n> 16e 1629 1og (Lf“slog ﬁ),we have

(1-v)%e?
< 47\/ & (I =l %;,p)ily/ %P;r; [Ljﬁ;"]
P
57652 A°

where we abbreviated 8, = 2log (m log ﬁ) for notational convenience.

ST S ’Yﬁl Ty,p
|7 v

(1 _,y)n P

o0

&)

K

We can again calculate that

YsP

o ~x
Ty.p Ty.p
| v

= H(I —YPzs )R — (I = Pz: ) 'rs

o0

<[P )| W=7l
’ 00— 00

< & ¢

~1—v 6

7*

~x
ATr’Y-,P v,P
o) HV%p -V

~T* 7*
7P VP
oo < HV’)’J) - V%p

+ & by triangle inequality, essentially giving (2).

. 4Slog —=—
Finally, to choose the constants ¢; and ¢y, we first note that 2log (%) < B <

c} log (%) for some absolute constant ¢}, and therefore also all our requirements on n are

fulfilled when n > 166 ) log (%) = % log (ﬁ) for another absolute constant cb.

Lastly we note that by the union bound the total failure probability is at most 34, so to obtain a failure
probability of 6’ we may set 6 = §’/3 and absorb the additional constant when defining ¢y, ¢3 in
terms of ¢}, ¢}, and we also then increase ¢; by a factor of 4 to absorb the factor of 4 appearing in the
first terms within (3) and (3)).

Now we can analyze the variance parameters

(I =2Pe) Ve V]| and (T =P )7 Ve [V

)

which appear in the error bounds in Lemma[I0. We begin by reproducing the following inequality
from [23, Lemma 2].

Lemma 11. In a weakly communicating MDP, for all v € [0, 1), it holds that
1

VO (s) — EP

sup < H.
S

13



The following relates the variance parameter of interest to another parameter, the variance of the total
discounted rewards. This result essentially appears in [1, Lemma 4] (which was in turn inspired by
[3, Lemma 8]), but since their result pertains to objects slightly different than P, and Vp_ [Vf] , we
provide the full argument for completeness.

Lemma 12. For any deterministic stationary policy w, we have

2

VT(
L=~

! H“ — PN Ve [V <

ZVth
t=0

Proof. First we note the well-known variance Bellman equation (see for instance [[16, Theorem 1]):

Z’Yth Z’Yth

t=0 t=0

v =Vp, [VJ] +4°PrV" (6)

Now we can basically identically follow the argument of [[1, Lemma 4]. The matrix (1—~)(I—vP;)~!
has rows which are each probability distributions (are non-negative and sum to 1). Therefore, by
Jensen’s inequality and the concavity of the function x — +/, for each row s € S we have

(= )el (I 7P Ve, V]| < /(1= el (1~ vPo)~1V5_ [Vy]].

Using this fact we can calculate that, abbreviating v = Vp_ [V,ﬂ ,

A0 =3P Vil = 10 =0 =P A

< v—wm = = 7Pa) el

—1
—vﬁwu VPt

In order to relate || (I —~P;)~ UHOO to H(I — vaﬂ)_lvHOO in order to apply the variance Bellman
equation (6), we calculate
(I =yPr)~ || L = |(I =vPx) " (I =¥*Pr)(I —7°Pr) "0

= | =vPr) " (A = NI + (I —7Px)) (I —=7°Pr) 0|

= (@ =N = yPr) ™"+ 1) (I =~ Pr) " o]

< H(l—v)(I—VPﬂ) Y= 2P ol 1 = 22P)

S Q=N =P om0 1T =7*Pr) 0l o + ([T = 2*Pr) o
(L+N||T=~*Pr) M|
<2HI Y Pr) Mol
Combining these calculations with the variance Bellman equation (6), we conclude that
=Pl <1 e 10 2B el < 7 Ve [ R
as desired. O

The following is a multi-step version of the variance Bellman equation, which we will later apply
with T" = H but holds for arbitrary 7.

Lemma 13. For any integer T' > 1, for any deterministic stationary policy m, we have

ZVth Z’Yfptt

t=0 t=0

T-1
"> AR+ 4"V (Sr)

t=0

+ '72TPTV7T
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and consequently

HV” (S 2 R+ ATV (S|

VTF 1— ,YQT

(o8]

> 'R
t=0

oo

Proof. Fix astate sg € S. Letting Fr be the o-algebra generated by (51, ..., St), we calculate that

o0 o0 2
Sir| =z, (zm . w(sw)
t=0

t=0

T-1 2
= Ef, (Z V' Ry + 4TV (1) — Vi (s0) + Z V'R, — TVJ(ST)>

t=0

T—1 2
= ]E‘go ET ( Z ’)/th -+ ")/TV‘IT(ST So -+ Z ")/th TV,YW(ST) >

t=0

||

A B

Using the above shorthands and opening the square, we obtain

Z ’Yth

= E7, [E], [A> + B* + 2AB|Fr]]

=E7 [A®+E] [B?|Fr] +24E], [B|Fr]]
= EJ, [A? + EE, [B?]]

T-1 2 o 2
=E], (Z YRy + fyTVﬂ(ST) V7 (s0) ) +ES, (Z 'R, — WTVJ(ST)>
L t=0 t=T
T—1 2 00 2
=Ef, (Z V' Ry +~" VI (Sr) - (80)> +~*TEE, (Z V' Ry — VJ@T))
t=0 t=0
_T 1 0o
= VI D AR ATV (Sr) |+ el PEVT Y A R
t=0 t=0

where we used the tower property, the Markov property, and the fact that E7 [B|F7] = 0 (which
is immediate from the definition of V7). Since e;ro PT is a probability distribution, it follows from
Holder’s inequality that |e] PTV™ [3°7° v R,]| < [[V™ [372, 7' Re]|| - Therefore, it holds that

Sp~ T

9] T-1 [eS)
D AVR|| < > AV R+~ (Sr) D AR
t=0 t=0 oo t=0 00
and we can obtain the desired conclusion after rearranging terms. O

We also need the following elemetary inequality.

Lemmal4. [fv > 1 — %for some integer T’ > 1, then

Proof. Fixing T' > 1, we have

1_72T
ﬁ:1+7+72++727—‘_1
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2T
which is increasing in -, so inf >, 1 % is attained at ¥ = 1 — £. Now allowing T’ > 1 to be

1\2T
arbitrary, note % =T (1 -(1- %)QT) so it suffices to show that 1— (1 — 4)*" > 1—¢2
7T

forall T' > 1. By computing the derivative, one finds that 1 — (1 — %)2T is monotonically decreasing,

SO
1 2T 1 2T 1
—(1-= > i —(1-= =1-—=.
(7)) 2w () =g

We can now provide a bound on the variance of the total discounted rewards under 7.

Lemma 15. Letting 7, be the optimal policy for the weakly communicating discounted MDP (P,7,7),
ify>1— & we have

V™

> 'R
t=0

oo

Proof. By using the multi-step variance Bellman equation in Lemma [13} it suffices to bound the
quantity HV”; [Z?;ol Y Ry + MV (Sw) H :

Fixing a state sg € S,

H-1 rH-1
VIS A R MV () | = VST A R+ (vﬁ(SH) - 1_17,))]
t=0 Lt=0
* H-1 * 1 2
<Ei |Y_ 7R+ (Vwﬁ”(SH) - 1/)*)
t=0 -7
L |H-1 2 X X 1 2
< 2Eq; Z V'R +2Eg |/ (V’Yﬂw(SH) - 1_7:0*>
t=0

2
T 1
< 2H% + 2sup (Vv 7(s) — p*)
< 4H?

where in the final inequality we used Lemma|IT} Taking the maximum over all states s and combining
with Lemma[I3] we obtain

4H?

V™ T

IN

Z Vth
t=0

Combining this bound with the elementary inequality in Lemma 4] which can be rearranged to show
that ﬁ <2 (171«,)H’ we complete the proof. O

oo

We also need to control the variance under %;J), which requires additional steps. This is done in the
following lemma.

Lemma 16. We have

= ~ Tk 2 p ~* 2
H2 4 ||vee — e |+ v - 7
H(1 —~)

>

V%:wp

<15

oo

Z ’Ytét
t=0
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Proof. In light of the multi-step variance Bellman equation in Lemma [I3] it suffices to give a bound
on HVﬂ,p {Z?;ol Y Ry + ARV (SH)} H . We have for any state s that

H—1
vijs zwtmm;wsm]
pary
. H1 - )
_ e tpo Hy, ™~.,p H *
=V ;'YRt‘i"Y Vayp " (Sh) — 1_7/’1

H-1 2
~ _ o 1
<Eq” < YRy +MVy 37 (Sh) — VHMP*>
—0
1

2
7 ~ 7 n 5 1
=Eq " < Y By M (VigP (Sh) = V37 (Sk) )+ (VW(SH) - 17,)*))
t=0
2

s H-1 o - o 2
< 3Eg" (Z Wﬁ) +3yME® (V%g*p(SH) -V ”(SH))

T Tt 1 2
+ 37" Eqy " (Vw "(Sn) — Mp*)
I H-1 2 o . . 2 . 12
< 3EL;" (Z v%) + 6yEL T (VI (Sh) = VI (Sw)) -+ 692" v — vy
t=0

7 o | 2
+ 37" Es (Vv "(Sh) — T4 ) ; (7

where we have used triangle inequality and the inequalities (a + b)? < 2a? + 2b2 and (a + b+ ¢)? <
3a? + 3b% + 3c¢2. Now we bound each term of . First, we have

~x H-—1 B 2 (1_ )E ) : ,
3G (Zm> < 3(H [7l0)? < 3H (o + €7 < 6H? (1+(67) ) < 6H? (6) ,
t=0

where we had 1225 <

- = < & because ﬁ > Hand £ < H. Clearly it holds that

%* /7%* ﬂ_* 2 %* ﬂ.* 2
67> "By (V'y TP(Sh) — Vy 7(SH)) <6 HV’Y R

oo

By an argument identical to those used in the proof of the error bounds in Lemma[I0] we get

T Tt
¥,p P
HV'va - V’Y

o) 1—’7 6’

2H %* %* 2
so 6y HV%}’,‘p =T

< % < %2 since £ < H. Finally, using Lemma , we obtain

o0

2
< 3H2.

2
T wk 1
3y Esg (V"/’Y(SH) - MP*> < 3sup

T 1 «
V'Y’Y(SH) - 1 _,Yp
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Using all these bounds in , we have

~%
iy
VS(;%D

H—1 .
> AR+ VHV%%"’(SH)]
t=0

2

H—1 2
F* ~ Fx F* * 2 F* 7*
< 3Ea; (Z vth> + 672 (V2P (Sh) = VT (S) )+ 67 [V — v
t=0

(oo}
~* * 1 2
+37*"Eqy " (Vv "(Su) — 1—7’)*)
49 1 T |12
< (T s3] e v
6 6 oo
%* Tr* 2
< 12H2+6HVV“’ —v ®)
Finally, we use the elementwise inequality
V’YW'Y 2 V’Yﬁ"{»p
> Vyp? — HV%gp =V - 1
> Vip - HV':E’]) -Vl
[ee]
> Vvﬁw - ‘ ‘//\ﬂgm — Ve - 1- ‘77% - Vvﬁw - 1,

from which it follows that [V, — ;77| < |[97r — v
o0

this with (8), we conclude

=~k Fiod
¥ ¥
+ HV'va - V'Y
L)

. Combining

~% H-1 ~ 7* T w* 2 ~* * 2
Vi ZWthJrVHVw,?f"(SH)] R P L i L] 1 Sl (T
=0 o0 o0
Now combining with Lemma [[3]and then using Lemma[T4] we have
e e [ R s
T (e8]
v [Sva]| <
t=0 o
w* 2 - o x2
H2 4 ||ve — D +HVW—VVg
<12 -
~x T 2 * * 12
s H2 o+ v = ||+ v - 9
<12 £ ==
H(1 =)
. a2 o ot )2
H2 ||V = e |+ v - 7
15 o0 o0
H(1 =)
as desired. O

A.2 Proofs of Theorems[I]and

With the above lemmas we can complete the proof of Theorem|T]on discounted MDPs.

Proof of Theorem|Il| Our approach will be to utilize our variance bounds within the error bounds

*

from Lemma |10. We will find a value for n which guarantees that Hf/fg -V,

and

o0
*

‘7;,13’]3 - Vvﬂw are both < ¢/2, which guarantees that HVV#W - Vvﬂw
o0

<e.

oo
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C2 L 1
i log ((1—7)55) SO wWe assume n is

First we note that the conclusions of LemmaErequire n >
large enough that this holds.

Now we bound H \/};Z, — Vyﬂ” H . Starting with inequality (1)) from Lemmaand then applying our
variance bounds through Lemr%oa@ and then Lemma T3] we have

Gt
HV%P - V’Y

c1 log (( 78 ) " log (ﬁ) ot 3
< [— Pyt V,[V”} 77‘V” =
=7 n (I—y "*) Py |77 Oo+61’7 (1—=y)n 7 oo+6

c1 log ((1 7)65) 2 > log (m) o
< V™ YR tay—g ’ o+

n 1—7 tz:; ’ o R G P 7l
“ log =3¢ 7 log (1 w)&e) T €
< \/ e T v +2
—y)n © 6
SA SA
< c1 log ((1—@55) 10 H e log ((1—@55) LE
=\ n 1-72"" (- "6

where in the last inequality we used the facts that H VV7rw

< —,y and v < 1. Now if we assume

n > 360c¢; (175)252 log ((1;@,’3)&), we have
SA SA
H‘/}ﬂ'; _ Vﬂ'*y @ 10g (m> 10 H +e 10g (m> + E
TP e T n 1-72 """ (1-y)n 6
< f\F+ - + 6
< 5/2

due to the fact that ¢ < H.

Next, to bound H 177?22,"’ — Vj”’ ‘ , starting from inequality (2) in Lemma and then analogously
applying Lemma|[I2]and then Lerflorna@ we obtain

S
+ —

Hf/\"yﬂ:’v P _ V’;’T’y P N
c1 log ((1 ’y)és) 7 log (%) 7

c1log ((1 v)ée) 2 PUR P N log ((15%55) 7 £
< N 'R o \Umoe) ‘ 5 €
- n 1—7 ZW ¢ Ty (I—7)n P oo+6

t=0 .
SA T* AT 2 * ~ax 12

c1 log (m) 2 H? + HV’Y B 8 HV’Y T=Vip
< ]_5 o0
- n 1—v H(1—)

+oay——7——

log< S 7)55) H
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< % as well as the facts that HVA:?)‘"

Combining with the fact from above that Hf/fg — VV7rw

ﬁ,’yﬁl,and\/mg\/a—i-\/g,wehave
c1log (ﬁ) 2 TH2 + HVv = Vap”
oo n 1—’)/ H(l—’y)

SA
N log <(1_7)55) n E
“l (1-7)2n 6

c1 log ((12‘)55) 30 \/5 \/ R oE
7H2 H VP v,P
n H1—7)2\V4 v Ve

log <W> c

o0

IN

)

T e
C1 log (7(1_5,‘?)58) 30 \/g F* AT
— ZH H VP P
n H(1 — )2 i Yy TPl
SA

i log <(177)55) " e

“ (1—~)2n 6
Rearranging terms gives
SA
) c1log <(1—'y)65> 30 H‘Aﬁ;’p Ve

n H(1—~)2 P 7 oo

SA
R log (m) wH/2 log (m) + &
= n (1= """ (1-97n 6

Assuming n > 120¢; (1_;')252 log ((1_5;4)65), we have

Cllog (1—v 1 1
1— (1-7)ée 7)68 1 1_\/ Ha )2:1_5
\ H(1 - —

>

I|™
| =

<

since ¢ < H. Also assuming n > (75/2) - 24201 = )2 5 log ((1 )5 ) we have similarly to before

that
5A SA
erlog (2 ) [75m/2 Clog(m) £
n =2 " 1= 6
L [A=m22 H 1= 1 e
=2 Ho (0-7?2 24 H (1-9)2 6

€
< = —.
—24 24 6 4

. . 2 7 ~SFE 7
Combining these two calculations, we have 1 5 HV%g’p -V,r < 5,80 HV%E;D -V,r <
oo (oo}
as desired.
Si h tablished that ‘A/ﬁ; — Vﬂ; XA/%;"’ — V%;") < £, since also ‘7 T >V
ince we have establi b Y| || Ve . <, P>

we can conclude that

™ e o ™ b e
VA/ - V'Y S V'\/’p - V"/ 1 + V’Y V’Y

1<el,
(oo}
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that is that 7% is e-optimal for the discounted MDP (P, 7, 7).

We finally note that all our requirements on the size of n can be satisfied by requiring

n > Cy H log ( 54 )
T (1) (1 —v)de
_ max{ coH 360ciH  (75/2)24%¢; H } o ( SA )
' (1—7)%?" (1—7)%?" (1 -7)%? (1 —7)de

e 360ciH  (75/2)24%¢H SA
> max , , log
1—7"(1=7)22" (1—7)%2 (1 —7)de

H H? 1 : 1
where we used that =72 > =) > = (since T >HandH > ¢). O

We next use Theorem|I|to prove Theorem 2] on average-reward MDPs.

Proof of Theorem[2] Using Theorem [1| with target accuracy H and discount factor 7 = 1 — 5, we
obtain a H-optimal policy for the discounted MDP (P, r,7) with probability at least 1 — ¢ as long as

> C H 1 54
tE A e
H H2 (12HSA>

_ 2 -
=120 H2 2 log e de

which is satisfied when n > C sﬂl’ log (%) for sufficiently large C1.

Applying Lemma@ (with error parameter 75 since we have choseny = 1 — E/Hl 2), we have that

~x H 9
* us < o 7< 1
P —=p <8+3 >12 €

as desired. O

A.3 Proof of Theorem[3

Proof of Theorem E] Fix T, n > 1. First we define the instances M and M, which have parameters
B and ¢ which we will choose later, using Figure 2. Note that in both MDPs, all states have only
one action. The only difference is in the state transition distribution at state 1: For M, this is a
Cat(3, 1) distribution and for M this is a Cat(3 +¢, 1 — ) distribution, where Cat(p1, p2) denotes
the categorical distribution with event probabilities p; and ps = 1 — p;.
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Instance M,
Figure 2: MDPs used in Theorem 3]

Now we calculate the bias of instance M. It is easy to check the stationary distribution is y =
1,1 +35, 1 — 5, 0]. Therefore it has optimal gain p* = 11+ 1+ 5=1+2 Now we claim that
the optimal bias is

—£/2
1—¢/2
—1-¢/2
—(B+1)5

hr =

We can check this by showing that yxh* = 0 and that p*1 + h* = r + Ph*, where P is the transition
matrix of the above MDP (again, note that each state has only one action, so there is only one policy,
and we use this policy to induce the markov chain with transition matrix P). First,

It is also easy to check the first three rows of the equality p*1 + h* = r + Ph*. For the fourth row,
we have

N e 1 1 . 1\,
h(4)++22+Bh(1)+<1 B)h(4)
1., —€ ¢

<:>Eh(4)f 5

35
= h*(4) = %(BJrl).
Thus [|2* || = 3—/2— (=(B+1)5) = 3(Be+1). If weset B = 2L — 1 we have 1A |span = T

Also note that the calculation for A* holds for any ¢, so the optimal bias span of M is [0, %, — %, 0T,
and thus M has optimal bias span 1.

span

Finally, to distinguish between the two MDPs M and M;, we must be able to determine the
next-state distribution of state 1, that is, to distinguish between the two hypotheses ()1 = Cat(%, %)

and Q2 = Cat(% + ¢, % — ¢). Given n i.i.d. observations from the transition distribution of state 1,
this is a binary hypothesis testing problem between the product distributions Q7 and Q)5. By Le
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Cam’s bound [24], the testing failure probability is lower bounded by

(- QF ~ Q3lw) > 5 (1 - ;DKL@’;@;))

DN | =

2

-1 (- fiva@ien).

where | QT — Q% ||tv and Dk (QT|Q%) denote the total variation distance and Kullback-Leibler (KL)
divergence between Q7 and ()%, respectively, and the last two (in)equalities follow from Pinsker’s
inequality and tensorization of KL divergence. By direct calculation, we have

1 1 1 1

Prl@]Qa) =5 los 5. o loe o

1 —2¢ 1 2e
< Z. =
-2 142 2 1-—2¢
4e?
1 —4e2

log(1+2z) <z,Vr> -1

§8€2 e <

| =

Combining the last two equations, we see that the testing failure probability is at least % (1 -V 4n52) .

1

Thus, if we set e = T/

the failure probability is at least i. O

B Proofs for general MDPs

In this section, we provide the proofs for our main results in Section 4] for general MDPs. Again, we
can assume that H 4 B is an integer, which only affects the sample complexity by a constant multiple
<2

First we develop more notation which will be useful in the setting of general MDPs. Recall we
defined, for any policy 7, that R™ is the set of states which are recurrent in the Markov chain P,
and 7™ = S\ R™ is the set of transient states. We now present a standard decomposition of Markov
chains [14, Appendix A]. For any policy 7, possibly after reordering states so that the recurrent states
appear first (and are grouped into disjoint irreducible closed sets), we can decompose

X, 0}

Pﬂ' = |:Yﬂ— Zﬂ— (10)

such that X are probabilities of transitions between states which are recurrent under 7, Y, are
probabilities of transitions from 7™ into R™, and Z,. are probabilities of transitions between states
within 7. Furthermore, supposing there are k irreducible closed blocks within R™, X is block-
diagonal of the form

X1 0 0

0 X7r,2 A 0

X'fr = . . . .
R

The limiting matrix of the Markov chain induced by policy 7 is defined as the matrix
=
P> =ClimP! = lim — Y PL
=GP = i 7 P

P2 is a stochastic matrix (all rows positive and sum to 1) since S is finite. We also have P, P° =
P2 = P2° P;. Additionally, p™ = P2°r,. In terms of our decomposition, we have

o [X> 0
Pr = [Yﬂoo 0] (1)
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where

X0 0
0 X, 0
X;:o = . . ’ . . 9

each X% = 137:,1 for some stochastic row vector x;i, and Y,° = (I — Z,) 1Y, X°. Also we

have (I — Z)" ' =372 ZL, and Y2 ZLY = (I — Zr) 'Y} has stochastic rows (each row is a
probability distribution, that is all entries are positive and sum to 1).

With the same arrangement of states as within the above decomposition of P, (10), let

3
Vo= |
i

decompose VT into recurrent and transient states, and generally we use this same notation for any
vector z € RS: we let T list the values of z, for recurrent z € R™,  contain z, for s € 77, and we
assume the entire = has been rearranged so that 2 = [T x| " . Note that the rearrangement of states
depends on the policy 7 so this notation has potential for confusion if applied to objects relating to
multiple policies at once, but the policy determining the rearrangement will always be clear from
context in our arguments.

The main reason we decompose P into recurrent and transient states is the following key observation.

Lemma 17. For any policy , if s,s' are in the same recurrent block of the Markov chain with
transition matrix Py, then p*(s) = p*(s').

Proof. Define the history-dependent policy 7 which follows 7 until its history first contains s’, after
which point it follows 7*. Since p*(s) is the optimal gain achievable starting at s by following
any history-dependent policy [14], we have p*(s) > p™(s) := limg oo AEI S/ ' R, (Where
IET; is defined in the natural way from the distribution over trajectories (Sp, Ag, ... ) where A; ~
7(So, Ag, ..., S¢) and Syq ~ P(- | S, Ap)). Let Ty = inf{t > 1:.S; = s} be the hitting time of
state s’ and let 7, be the stopped o-algebra (with respect to the filtration where for all nonnegative
integers t, F; is the o-algebra generated by Sy, Ao, . .., St, A¢). Then

T-1 B

T-1
. 1 = 1 R
Jim 7B 2 B = i BT BT ) B f”
t=0 L t=0
T,,—1 T—-1
= lim —E7 | Y R +E] | Ri|Fr,
T—oo T I =0 =T,
1 (T, -1 1
- TIE)I;O TIES ; Rt +g(Ta Ts’)
- Th~I>Ic1>o TES ; Rt +g(Ta TS’)
oL 1
> i —ET /
Jim BT [g(T, Ty )]

where g(T,k) := E?;,* [ Z:Ok_l Rt], and we used the tower property, Fr ,-measurability of

tT;'O_l R;, the strong Markov property, and the definition of 7. Now note that Ty, < oo al-

most surely since s and s’ are in the same recurrent block, and on the event {7, = k} for any natural
number k, we have that

T—k—1

>

t=0

o1 1
Th_I)r;o Tg(T, k) = lim TE )

T—o0 s

=p*(s)
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because we can bound

1 T-1 Eo1 T—k—1 1 T-1
TEY > R — 7 < HED > R < EY > R
t=0 t=0 t=0
and both sides converge to p*(s’). Therefore w converges almost surely to the constant p*(s’),

and also this random variable is bounded by 1, so by the dominated convergence theorem we have

T—o0

1 1
lim —=E7 [¢(T,T)] =ET | lim —g¢(T,Ty)| = p*(s).
i 55 (7T = B | i 2T, T)| = ()

Thus we have shown that p*(s) > p*(s’). Since s and s’ were arbitrary states in the same recurrent
block we also have p*(s’) > p*(s), and thus p*(s) = p*(s’) as desired. O

Lemma 18. For any state s which is transient under a policy 7, if the MDP satisfies the bounded
transient time assumption with parameter B, we have

00

§ T 7t
€s Z7r

t=0

<B.

1

Proof. LetT = inf{t : S; € R™}. Notice that ||eSTZ7tr||1 = PT(T > t). Therefore, we have

o0 o0
Soelzil| <3 el e,
t=0 1 t=0

= iIP’f;(T > t)
t=0

= ES [T]
<B,

where we used a well-known formula for the expectation of nonnegative-integer-valued random
variables, and the bounded transient time assumption. O

Lemma 19. Let s be a transient state under P,.. Then

e:([ - VPTr)_l = [ej—r Zl?;l ’Ykzﬁ_lyﬂ(l - VXW)_l &T Ztoio Vthr] :

Proof. Using the decomposition of P,, we can calculate for any integer ¢ > 1 that
Pt _ X‘fr O
T 2 YRXE 2L

Therefore, we have
o0
el (I—vP) " =el > 4'PL
t=0

= les " 220! 22:1 ZEWYLXITR e T YA 2t

= [‘is—r D ohet e, YV ZETIY L X e T Y Vthr]

= [es " SRV 2T YR S TRXTE e T 300 ZE]
= [es T R AP ZETIY (T — X)) et Y L]

Note that we are able to rearrange the order of the summation in the third equality because all
summands are (elementwise) positive. O
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B.1 Proof of Theorem 6]

Theorem [6] our result which helps reduce general average reward MDPs to discounted MDPs, is
proven as a straightforward consequence of the following sequence of lemmas, some of which will
also be needed for the proof of our discounted MDP sample complexity bound Theorem

Lemma 20. We have

*

1
Vi - ——p*|| <||h*
G e I

oo

span *

Proof. We begin by observing that 7* satisfies
p* =+ h* = T~ + Pﬂ-*h*.
Therefore, it holds that
T —1
V= —qPp) 1pe
= (I - 'YPTr*)_l (p* +h*— P‘n’*h*)
= (I - 7P7r*>_1p* + (I - 'YPﬂ”*)_l (I - P‘n’*) h*.
Since Py« p* = p*, we can calculate that
1
I — Pﬂ—* -1 % _ tPt**: tox *
(I=7Pr)'p* =D 4Pl =) ~'p "
t>0 t>0

It also holds that
(I =APp)™" (I = Prs) =Y _4'PL(I - Pyr)

t>0
=D AP =) AP
t>0 t>0
= P+ (4 — ) PL (12)

t>0

and Y ,o 7't =4t = (y—1) X ;507" = —1. Therefore is the difference of two stochastic
matrices, and so it follows that B
H(I - ’YPTF*)_l (I - Pﬂ'*) h*Hoo < ||h*||span .

O

Lemma 21. If 7, is optimal for the discounted MDP (P,r,v) and s is recurrent under ), then

1 * *
Vi (s) — =57 ()| < 17" lpan

and

1 x
Vi (s) — ﬁpﬂ” (s)

< 2|[n]|

span *

These facts can be written as Vvﬂ; — L% < |Ip < 2|l

span span

T %
and HV7 T

o} e}

respectively.

Proof. First note that if s is recurrent for the Markov chain Pw* then all states in the support of

€, P,T* are in the same recurrent block as state s, and p* is constant (and equal to p*(s)) within this
recurrent block by Lemma|[I7} The (unmodified) Bellman equation states that

pr(s)+h*(s) = max  7Tgq + Psah™.
a:Psqp*=p*(s)
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Since we established that e;rPﬁ; p* = p*(s), all actions a in the support of 7%(a | s) satisfy
Psop* = p*(s), and therefore

p*(s)+h*(s) = max  Tsq + Psoh”
a:Pgqp*=p*(s)

>y (rsa + Psah®)
acA

= GST (7”71—:{ + Pﬂ—;h*) .
Since this holds for all s € R”;, we can rearrange to obtain that
Try < P54+ h* — Proh* = p* + W% — X h*.

Now we can follow an argument which is similar to that of [23, Lemma 2]. We have

VWW; = (I = yPr:)"tras
(I X ) 7"71-*
< (1= Xn)) 7 (774 BF = Xy )

using monotonicity of (I — X,r;)_1 in the final inequality. Due to the observation above that for
all s € R™, all actions a in the support of 75 (a | s) satisfy Psop* = p*(s), we have Xy p* = p*.
Therefore we have

(I - X, **ZV =S =

For the second term, by using an argument which is completely analogous to that used in Lemma[20]

we have H (I = Xr:)7! (F — XW;W> ‘ < ||P* || pan- Combining these steps we obtain that
T 1 — x
Vit = T < A" llgpan 1

To obtain a lower bound, we can combine the optimality of 77, for the y-discounted problem with
Lemma 20 to obtain the bound

T 1 7* 1 —
V"/‘Y - ip = Vﬂ- - mp* > ||h’*Hspan 1.
Therefore we can conclude that ||V, ” — ﬁ? < 1A | span-
o0

For the second bound in the lemma statement, we first note that, as observed in [20]],

o0
T 1 *
P%VV“’:P%ZO’V s T _nytPoorw* _7_7p7r’v.
Also, as discussed previously, if s € R™ then eSTPW; p* = p*(s), so then we also have e PXp* =
x
p*(s) (which can be seen directly from the definition of the limiting matrix P7). Equivalently,
ed (I - P;f%’) p* = 0. Using both of these two observations, we have

i 1 T
V’vv(s)_tl) (s )ZGI(I_P%))VVW
X 1
=e, (I~ P%)(va - ﬁp*)
7r 1
=& (I - X3) (V3" — EP*)
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Therefore, we obtain

* T* 1 —
T——p™ <||(I-X3)(Vy" — ——p*
v - | < o xmor - 2|
T 1
< |Vo ¥ — ——p*
N ! 1 _’Yp span
T 1 J—
<2||\V,7 — ——p*
‘ IR
< 217" | pan
using the first bound from the lemma statement in the final inequality. O
Lemma 22. We have
T 1 « «
‘V”Y’Y_lp ‘ SB—"_“h ||span
(o)
and
5 1 N
Vy R < B+ 2h"|gpan -

Proof. Note that by combining with Lemma @, it suffices to prove for any transient state s € T
that

Fiod 1 *
V»y 7(8) — mp*(s) <B+ ||h ”span
and
‘n',: 1 *
V’Y (S)—ip ( ) < B+2Hh ||span‘

*

Let s be transient under 77. Then starting by using Lemma we can calculate

*

Vi (s)=el (I =Py *)_1”;

T T ot —
= E A a T Jr’yZ'y es Z ,r*(I ’yXTr*) T
t=0

= Zv es Zw*r,rx —1—727 eSTZW*Y,r*V g

t=0
<> e Zir + <Z es ZL.Y, ) |ARD (13)
=0 v T
By Lemma|[T8| we have that
(oo}
Z 7r*T7T* < TZt ‘ TT{* < B.
t=0 o

Now we can obtain the two bounds in the lemma statement by bounding the second term of (13) in
two different ways. For the first bound in the lemma statement, we can use the first bound in Lemma
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[21]to calculate that

(ZeTZt ,T*> V< ( el Z5.Y, > 7 <ZeTZf ) ’Vﬂ -
t=0 o0
7r* 1 _
T ot
= e Z V" — ——p*
<t—0 ) 1- 7 11— Y oo
( oo
< ey Zn. Y, )p + (1A
= Zs pan
t=0 I=n
(Samn) sty
t=0
= TZL Ve X% | Ly [R*]|
= t:()i 71'}; 7\',‘; 71—; 1— ’yp span
_ Tyoo 1 % h*
- s 773; mp + || ||span
T poo x *
= 1_'-)/63 Pﬂ':{p +Hh ||span
1 * *
S ﬁp (‘9) + ||h ||span
where we used the fact that X% p* = p* and then that e[ P> p* < p*(s). This gives an upper bound
’Y ¥
of
7"; 1 * *
Vry S ﬁp (3) + B + ||h ||span :
Combining with the lower bound
ﬂ—_’; * 1 * *
V'Y (S) 2 V'y (8) Z mp (S) - ||h’ ||span7
we obtain that
v - Ll <B e
v T ﬁ/’ = + 112"l span

which is the first bound in the lemma statement.
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To obtain the second bound in the lemma statement, using the second bound from Lemma 2T} we can
calculate for the second term in (13) that

oo
T 7t T 7t T 7t
s Z V»Y /A 7p 34 €s Z ‘
(permos )7 < (i) T+ (e

T*

| /\
N

1-—

oo

IN

1 -
T 7t T
k) T 2

t=0
(o)
oo
e TZKYN*> —P e + 21|17
T T 1— span
t=0
oo

T
g Z‘fr,’;yﬂ,’;> 1— XOOTW* +2Hh*”§pan

TYOOTW* +2|h*||

span

T
- ey P + 2|07
1—v span
S .
= ﬁ/’ 7(8) 4 2|77 || gpan

where in the second equality we used the fact that (Zt —0 ZZ Yis ) is a probability distribution,

and in the final steps we used the decomposition of P25 and the fact that p”z =Px Trs.
Y Y

Therefore by combining these steps we obtain that

xt . 1.
V’Y ( )< B+2Hh ||span mp ’Y(S)

Combining with the lower bound

e w* 1 * 1 T *
V»YW(S) 2 V’y ( ) > 17p ( )_ Hh Hspan 2 mp ’Y(s) - Hh ||span’

we obtain the desired bound

T 1
Vi (s) — R ™ (s)| < B+ 2 1A [l pan -
O
Lemma 23. If 7 satisfies V.| > Vf” — 01, then
us 1 T
V'y - 177P <3B+2||h*||span

Proof. Similar to the proof of Lemmas 2T)and 22] we will first establish a bound for the states which
are recurrent under 7. Specifically, we will first show that if s is recurrent under m we have

Vi) = ")

< 2B+ 20| (14)

span

Letting s € R™, following steps which are similar to the proof of the second part of Lemma 2T} we
have
1

V'yﬂ-(s) - lfp ( ) e:(I_P;O)VA/ﬂ-
T T
=e, (I - P7)(V] - ﬁp*)
* 1 *
=el (I-PX)(Vy" — ﬁp*) +€I(I_P7$O)(Vyﬂ -V
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Vo — pﬂ'w
K v

oo
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using the fact discussed in Lemmathat el (I — P>)p* = 0 since s is recurrent under 7. Then by
triangle inequality, we obtain

1 Eio 1 - s
Vi(s) — ﬁpﬂ(s) < les (I =PR) (V5" = F— |+ es (I = PEYVT = Vy7)
wk 1 i
< |V — ——p*F Hvﬂ_vw
B ‘ ! 1- Vp span " K ! span
ollv - | 40
¥ 1 _Vp .
< 2B+ 2 {|P¥|pan +
where we used the facts that ||-[|,,, < 2|l and that vy > V> vV, — 01

Having established (14]), we now extend to transient states using arguments similar to those for the
second bound of Lemma[22. Let s be transient under 7. Then starting by using Lemma|[I9] we can
calculate

VT (s) =el (I —yPy) 'ry

—Zves ZmeZveJZt (I — X,

—Z'y es Tzt Tﬂ+72'y eSTZtYVTr
t=0 t=0

o0
e Zhra + (ZesTZerﬂ> vr
t=0
<|Sera el s (Seran )
t=0
<B+ (Zest;Yﬂ> Vr (15)

E%g

t

I
=

t=0
t=0

using the bounded transient time assumption via Lemma [I8]in the final step. Then we can calculate

00 1
E: T 7t T E: T t E: T t o T
(t—Oes ZﬂYW) V’Y S( = Z ) p +< = Z ) 1_7p [e ]
> 1 | 1
= (> e 2Ly, p“+’V,Y”p”
= 1—7 1-7" o

= 1
Ze TZ7tTY7T> 7p +2B+2 ||h*H§pan

= 1
ZeTZfTYw) 1—P°°r,r + 2B+ 2|h*

spdn
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/—\/—\(—\/—\
Il
[en]

ZeTzfryﬁ) waﬁ + 2B+ 2 ||h*|
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= es | YT + 2B + 2 ||h*|
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5pdn

= ed Pry + 2B + 2 ||h¥|
L—n

spdn

31



where in the first equality we used the fact that (Z;’i 0 i Z};YW) is a probability distribution, in the

second inequality we used the bound (14)), and in the final steps we used the decomposition of P2°
and the fact that p™ = P2°r,.

Therefore by combining this last bound with the bound (15)), we have

T 1 us
V’y (8) §38+2Hh*”spdn+6+ﬁp (S)
Combining with the lower bound
T 7\'; ﬂ_* 1 1
Vi(s) 2 Va7 =6 2 Vi (s) =0 2 3= p"(5) = [P llgpun =0 2 =227 () = 17l spun —

we conclude that

x 1
Vi (s)—ﬁp (s)| <3B+2|r"]

as desired. O

span

Proof of Theorem[6] Suppose T is &.-optimal for the discounted MDP (P, r,~). We can calculate
that

1
T 2V = (B4 2 gy + 1)
> ‘/ryﬂ’Y - (38 +2 ||h*Hspan + 257)
> V7 = (3B + 2[|h* | pan + 264)

1
> 1— ,,Yp* - (SB +3 Hh*Hspan + 267)’
where in the first inequality we used Lemma 23, in the second inequality we used the fact that 7 is
€-optimal, in the third inequality we used the optimality of 7 for the discounted MDP, and in the

final inequality we used Lemma[20] Therefore by mulitplying both sides by 1 — v, we have that

TS ok * > F _
- H(3B+3Hh llspan +267) = P ( B H>€

B.2 Proof of Theorem [7](Discounted MDP Bounds)

In this section, we provide our main result on the sample complexity of general discounted MDPs.

Our proof relies on three lemmas that provide bounds on relevant variance parameters. The first

lemma controls the variance for 77,’; on recurrent states.

Lemma 24. Letting 7’y be the optimal policy for the discounted MDP (P, r,), ify > 1 —
have

1
Brry W€

- 32 B+H
X —_— .
7 5 (1—-7)?

T =Pe) ™[ Ve, V]
SER™H

5

Proof. First, using the decomposition (10), we can calculate for any s € R™ that

(=P )™ Ve, [V =& (1 =2 Xa) Vi, (V]
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Also due to the decomposition, notice that set R™ is a closed set for the Markov chain with transition
matrix Pr, and furthermore when restricting to the entries corresponding to this closed set we obtain

the transition matrix X xe Therefore we can apply Lemmato this subchain to obtain that

y

7 [
t=0

oo 0o

(I_’YXW;)_l Vx. [Vvﬂw}

Abbreviating L = B + H, we can also then apply Lemma|13|to bound

HW S A Re VT (5) H

1 —~2L

x

v <

Z YRy
t=0

oo

We can repeat a similar argument as within Lemma [T5]to bound this term. Fixing an initial state

so € R™, the key observation is that p* is constant on the recurrent block of X7, containing so,

and therefore any state trajectory So = So,51, 52, ... under the transition matrix Pr. will have

p*(SL) = p*(so). Therefore for this fixed sy we have

L1 L1
e T e Tr 1
i S| <vE [t (e - )]
t=0 t=0
L—-1
7"; t L ”»*y 1 *
< Eso YR+ (V47 (SL) — 1T—° (s0)
t=0 v
|-t 2 . . 1 2
<2E Y 2R +2Eg " (VMSL) - 1_p*(sO>)
t=0 v
L |L-1 2 . . 1 2
=2Es) | > 7'Ri| +2Es |7" (V’v "(SL) - 1P*(5L)>
t=0 v
2
T 1
<o 42 swp (V) - 2000
SER™ 1—n
< 2L% 4+ 2H?
<4rL?

where we used Lemma in the penultimate inequality. Applying this argument to all sg € R™ we
obtain

L-1
V™S TR ARV (SE) ||| < 4L

t=0
oo
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Therefore by combining with our initial bounds we have that

el (I— ’pr;)l\/VPm [Vvﬂ;}

max_ y
SER™Y

2 =
< i | [ S
1—xy t=0

oo

2 HW (S A R AV (1) H
< >
“V1—x 1 —~2L
< 2 412
“V1—A\1-—~2L

2 162
<
“V1-—9\5L(1—7)
L
Vs A=y

where in the penultimate inequality we used Lemmato bound 171v“ <

5 1
i gm—y O

The next lemma controls the variance for %;‘ p On recurrent states.

Lemma 25. Letting 7%, | be the optimal policy for the discounted MDP (13, ), ify>1-— WIH’

we have
max y|ey (I =Pz )7/ Ve, [Vﬁ"’}
SGRW"V’I‘) ’ YsP

B e e i I i
- (1—7)2+ B+H 11—+

Proof. Let L = B + H. By the same arguments as in the beginning of the proof of Lemma |24, we
have

AV

max -y
SER™p

T =P )V, [V

Z ’Ytét
t=0

oo

HW% [Zf;ol Y Ry + LV 3" (St)

.

-2
V1 \ 1 -2t

s0 it again suffices to bound V77 .» {Zfz_ol VR, + WLV;;"’(SL)] Fix s) € R™». Again, as
observed in Lemma p* is constant on the recurrent block of Xﬁ:{ . containing sg, so we will have
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p*(S1) = p*(so) with probability one. Therefore (mostly following the steps of Lemma[l6)

L—1
Ve [ Y AR+ Ve <SL>]
t=0
. [L=1 . 1
=V | DA R+ AVt (Se) - VLMP*(SO)]

IN

L—1 2
7 ~ 7 1
Esg® <Z v Ry + v Vyyn(SL) — 'VLMP*(SO)>

(Z»ﬁR % (VI3 (92) ~ VI (50) + (vﬁwm—l_lvp*(sm))

2

3 2
< 3E§3’p (Z ’Ytﬁt> + 3V2LE:OW’D ( 5" (SL) — vﬂW(SL))
t=0

7 o 1 2
3L (VI (50) - o050 )

2

e - o x 2 - o
< 3R (Z ’Yth> N (va,p(SL) - VVWW(SL)) + 672 vafg'p — vy

t=0 00
7t o 1, 2
4 3y2LED e (VWW(SL) — ﬁp (SL)) (16)

using the inequalities (a + b + ¢)? < 3a? + 3b% + 3¢? and (a + b)? < 2a® + 2b*. Now we bound
each term of analogously to the steps of Lemma[I6 For the first term of (16)),

]EJ"(ZV ) < 3(LIFl)? < 3L3(r . +©)° < 612 (”(u_g)) ) <ot ()

where we had (=)< 7)6 < &7 < + because ﬁ > Land e < L. For the second term of (16),

2

*

7* T* * 2 =* -
692LES ™ (V7 (S0) = V37 (S1)) <6 v — v

oo

~* * 2
Y vy

V’va - V'Y )
o0

AT 7*
vP 7P
HV’Yap - V’Y

<6 (HVA:;)I’ - VWWW)

|

_|_

o0

where we used (a + b)? < 2a? + 2b* and the fact that HV,:Y” -Vl <

|7 - v

which was shown in Lemma For the third term of (16),

2 2 2 2
() o<

where the fact that HVyﬂp — V:”’ < % is identical to the arguments used in the proof of

Lemma [I0] and the final inequality is due to the assumption that e < L. For the fourth term of (16),

o0

~% ~x 2 ~% ~x
2L Ty.p Ty.p Ty.p Ty.p
6y Hv'y,p -V - <6 |\Vyp® =V,

2

* 1
Vi — ——p*
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< 32
: <

2
o X 1
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using Lemma22]for the second inequality. Using all these bounds in (16), we obtain
L-1 .

> A R+ A VIR (SE)
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49 1 ST o
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and so (since this holds for arbitrary sg € Rﬂvp), we have

-1 .
> AR+ yEVyp(SL)

t=0

68 ~TF 7
< S o | v

V7.0

* 2
-

X T
¥ ¥
+ HV'va - V’Y
00

Therefore, combining with our initial arguments,
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where we used Lemma to bound }Y < g
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’Y v
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FW%
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The next lemma controls the variance on all states.

Lemma 26. Under the settings of Lemmas[24and[25] we have

V|| (0 =P Ve, V]

and

(L= 7Pr; )4/ VEns [v%gp

B+H 15 HV’YP - ’va +HV’YP V’Y 0o
(1—+~ \/B+H 1— '

Proof. First we establish the first bound in the lemma statement. As we have already bounded the
entries corresponding to the recurrent states of 7 by Lemma |24, it remains to bound the transient

states. Let s € 7™ be an arbitrary transient state. Using Lemma |19} we have

e;rr)/([_ ’YPﬂ;)il VPW; [Vwﬂw} = 'YesT Z'szk 1Y % (- VXW§)71 VPW:{ {V’Yﬂ’y}

e T YAzt [, [V (a7

t=0
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Now we bound each of the terms in (I7). For the first term, we can calculate
Tzfykzk 1Y I_’YX‘n'j;>_1 VPW* |:V—Y7T:{:|
T k—1 1 v, v
< yes Z Z Yos (I- ’yXﬁ;) pr; [Vw 7}
T Z ZFly
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32 B+H

5 (1—9)?

Zﬁf 1Y,,; is a probability distribution and Lemma
v

(I =7 Xr) ™ Ve, {Vvﬂ;}

1

where we used the fact thates " > 2

For the second term of (17), we have

oo - o0 e 'yteSTZ,tr* .
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€s ZtO tZt
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2 t, T ot ™
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1 t=0

o
t
es’ E o Zw:,
t=0

SZortes Zhs
T Zf o ,YtZ

distribution (all entries of this row vector are posmve and they sum to 1 due to our normalization).
Now we bound each factor in (I8). Using Lemma[I8] we have

o0 o0
t t
esTy V2L ety Zt
t=0 1 t=0 1
For the second factor in (18], we have

oo o0

T ™ T ;]
ZVt‘Ls Z;;VPW; [wa} < Z’Yt‘is Zfr;VPW; [Vvv}
t=0 —_— —_—

T k 7k—1 _ Nty v
tes Z’yZ Yoy (I =4 X)) Vp, [VV}

where we used Jensen’s inequality since x — /x is concave and is a probability

<

< VB.

= 68 (I — '}/Pﬂ;)7 VPW* |:V’Y7T’Y:|
where the equality step is due to Lemma[I9. Now we can apply two steps which are used within
Lemma |12 to obtain the desired bound on this term. Abbreviating v = Vp_, [Vf”], it is shown
ad
within Lemma[12] that
= 2
t

D VB| < g
— (I=7)

(where the final inequality is because the total discounted return is within [0, ﬁ]) Therefore we
can bound the second factor in (18)) as

72 H(I_VPW;)_H}H < 292 H(I_’FPW;)_%}H < 2(|V™
(oo}

o}

(o)
T 2 \/§
Y rte 2 Ve, (VU] <\ e =y
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Combining all of these bounds back into (17)), we have

_ -, 32 B+H V2
eI = yPe) [V, [V < Saoqp VB,
B+H
<4y ="
(1—7)?

Thus we have established the first inequality from the lemma statement.

For the second inequality, the argument is entirely analogous, except that we use Lemma [25]instead
of Lemma and also in the MDP with the perturbed reward 7 we have the bound

H B (H%)Q - <|r||oo+§>2
“\l-~/) = 1—7

it (1) <7 ()

where we used the fact that (1_67)5 < 6(B+H) g because 1 S > B + Hand e < B + H. Thus we
can obtain the bound

o0

S om
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Y| =7Pes ) Ve, [foivp}

v e W e
- B+H 1—7
7f
B
+\f6(1_
v aE +Hv — v
-3 B+H [ 15 va ¥.p gl o
- B+H 177
This completes the proof of the lemma. O

We are now ready to prove Theorem|[7]on the sample complexity of general discounted MDPs.

Proof of Theorem([7] To prove Theorem[ we will combine our bounds of the variance parameters
in Lemma[26 with Lemma|[T0. First, starting with (1)) from Lemma|[I0 and combining with the first
bound from Lemma. we have that there exist absolute constants ¢, ¢2 such that for any § € (0, 1),
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if n > 7% log ( = 55)’ then with probability at least 1 — ¢

SA
C1 10g (m)

HV“:Z’ -V o =7 " (I - an;)’l VP,r; [Vvﬂw]
SA
N log ((ky)ae) ‘ oy n €
v (I=9)n Tl 6
SA SA
- c1log ((177)55)4 B+H e log <(177)55) H n L e
- n (I—7)2 7 (I—=9)n Tl 6
SA SA
< ¢1log ((1—7)56) 4 | BtH Lo log ((1—7)5€> L€
- n 1-72"" (- "6
5 1 g2 €
< —
— 6 + 16-62B+H *
€
< a0
-2

where the penultimate inequality is under the assumption that n. > 16 - 62¢; = E{t’:’wz log ((1 S j;‘) 5= ),
and the final inequality makes use of the fact that ¢ < B + H.

Next, still using Lemma under the same event, we also have

[ v
Cllog<ﬁ) P
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s
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et
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< erlog (245 ( /B+H 15 | v e
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N log T—7)de 7)58 71
c L <
! I—=v)n 61—v 6

using the second inequality from Lemma 26 for the second inequality, and then we use the fact

that ’ Vf,g*” < %ﬁ which was argued in Lemma E as well as the fact from above that
o0
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cllog (17 \/7
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< ¢e/2 < (B + H)/2. After rearranging, we obtain that
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using the assumption that ¢ < B + H. Under the same condition on n, we also have that
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where again we used the assumption that ¢ < B + H. Combining these two bounds with the

inequality (19), we obtain that
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which implies that
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Finally, we check that all of our conditions on n can be satisfied if

B+H

B+H ca SA
> 62 -10%c; —————,6% - 16 1 _—
! max{ I E, “e 7} Og(( >

e2(1—v)2"1—
(B+H)?

1—7)de

and since ﬁ > B+ Hand B+ H > ¢, we have 2(1 :)2 > 52(1 7) > % so the above is

guaranteed if we set C5 = max{62 - 10%¢;, co} and require n > Cs 2(1 'v) log ((1 j:l) ) O
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B.3 Proof of Theorem [8|(General Average-Reward MDP Bounds)

In this section, we prove our main result on the sample complexity of general average-reward MDPs.

Proof of Theorem 5| We can combine our bound for discounted MDPs, Theorem with our reduction
from average-reward MDPs to discounted MDPs, Theorem [6}

. .
e We obtain a

(B + H)-optimal policy for the discounted MDP (P, r,7) with probability at least 1 — § as long as

B+H SA
"> g e o ()

B+H (B+H)21 12(B+H) SA
(B+H)2 g2 8 5 de

Using Theorem lz with target accuracy B + H and discount factor ¥ = 1 —

= 12204

which is satisfied when n > 04% log (%:H)) for sufficiently large Cjy.

Applying Theorem E] (with error parameter 15 ), we obtain

o B+HY\ ¢
gt < 2—— | — <e1
prp —(3+ B+H)12—‘E

as desired. O

B.4 Proof of Theorems 4 and 5] (Lower Bounds)

In this section, we prove our minimax lower bounds on the sample complexity of general average-
reward MDPs (Theorem[4) and discounted MDPs (Theorem [3).

Proof of TheoremH] First consider the MDP instances M, indexed by a* € {1,..., A} shown
in Figure E In all instances, states 2,3 and 4 are absorbing states, and state 1 is a transient state.
State 1 has A actions and is the only state with multiple actions. At state 1, taking action a = 1 will
take the agent to state 4 deterministically; taking action 2 will take the agent back to state 1 with
probability P(1]1,2) = 1 — £, to state 2 with probability (2|1, 2), and to state 3 with probability
P(3]1,2) =1 — P(1]1,2) — P(2|1,2). The instances differ only in the values of P(2|1,a) and
P(3]1, a), which are shown in Figure along with the reward R for each state-action pair.

For the MDP instance M, the optimal policy is taking action a = 1 at state 1, leading to an average
reward of 1/2; taking any other action leads to a sub-optimal average reward of % Similarly, for
the instance M+ with a* € {2,..., A}, the optimal action is a = a* with average reward %,
the action & = 1 has average reward %, and all other actions have average reward % By direct
calculation, we find that the span of the optimal policy is [[2*||,,, = 0 in all instances. Moreover, by

taking any action a # 1, the agent will stay in state 1 for B steps in expectation before transitioning
to state 2 or 3, so the bounded transient time is satisfied with parameter B.

We next define (A—1)5/4 master MDPs M+ - indexed by s* € {1,...,S/4}anda* € {2,..., A}
as follows. Each master MDP MSW has S/4 copies of sub-MDPs such that the s*th sub-MDP is
equal to M« and all other sub-MDPs are equal to M;. We rename the states so that the states of
the sth sub-MDP has states 4s + 1,4s + 2,4s + 3,4s + 4 corresponding to states 1, 2, 3,4 of the
instances shown in Figure E Note each of these master MDPs has S states and A actions, satisfies
the bounded transient time property with parameter B, and has the span of the bias of its Blackwell
optimal policy equal to 0. Note that for a given policy 7 to be £/3-average optimal in master MDP
M+ o+, it must take action a* in state 4s* + 1 with probability at least 2 /3, and it must take action 1
in states 4s + 1 for s € {1,...,5/4} \ {s*} with probability at least 2/3.

Thus, for an algorithm Alg to output an £/3-average optimal policy 7, it must identify the master
MDP instance M~ 4+ (equivalently, the values of s* and a*), in the sense that there must be exactly
one state 4s + 1 where an action a # 1 is taken with probability > 2/3. Therefore it suffices to lower
bound the failure probability of any algorithm Alg for this (A — 1)S/4-way testing problem. By
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a=1,R=1/2

ae{2,... A}, R=(1+2)/2

Instance M,

@:)R:l/Q

Instance M+, fora* € {2,..., A}
Figure 3: MDP Instances Used in the Proof of Lower Bound in Theorem

construction, for any two distinct index pairs (s7,a}) and (s3, aj), the master MDPs M, ,+ and

M differ only in the state-action pairs (4s7, a}) and (4s3, a), and we have

. % 1 1—2¢ 1+2¢
Pﬂs*a (-|451,a1):Cat(1— ; ):: Q1,

el B’ 2B 2B
1 142 1—2¢
P (]4sh,al) =Cat(1— —, ——= Z =)
MSﬁ,ag( | 5170/1) a( Ba 2B ) 2B ) Q27

where Cat(p1, p2, p3) denotes the categorical distribution with event probabilities p;’s (and vice versa
for the distributions of the state action pair (453, a%)).

Now we use Fano’s method [18]] to lower bound this failure probability. Choose an index .J uniformly
at random from the set 7 := {1,...,5/4} x {2,..., A} and suppose that we draw n iid samples
X = (Xy,...,X,) from the master MDP M ;; note that under the generative model, each random
variable X; represents an (S X A)-by-S transition matrix with exactly one nonzero entry in each row.
Letting I(.J; X) denote the mutual information between .J and X, Fano’s inequality yields that the
failure probability is lower bounded by

1 I(J; X) + log2
log((A —1)5/4)
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We can calculate using the fact that the P;’s are i.i.d., the chain rule of mutual information, and the
form of the construction that

I(J; X) = nI(J; X1)
é n max DKL (Pﬂ

(s7.a1),(s3.03) €7
(sT,ay)#(s3,a3)

= TL(DKL(Ql | QQ) +DKL(Q2 ‘ Ql))

By direct calculation, we have

Py, )
272

* g *
si.af

1—-2¢ 1-2¢ 1+2¢ 142
D (@u]Q2) = —p=log =g + g~ loe 7
<1—25 —4e 1+ 2¢ 4de

S9B 1422 2B 1-2

log(1+2) < z,Ve > -1

_ 16¢2
~ B(1+42¢)(1 - 2¢)

32¢2 1
< — e < —.
- B — 4

Also note that Dgy. (Q2]|Q1) = Dx1(Q1]Q2) in this case. Therefore the failure probability is at least

~ I(J;P") +log 2 - n8 4 log 2
log((A—1)S/4) — log((A —1)S/4)

64>
n—g

1
=3 " Tog((A= 1)S/4)"

where in the second inequality we assumed A and S are at least a sufficiently large constant. For the
above RHS to be smaller than 1/4, we therefore require n > Q(Bl%gsm). O

Proof of Theorem[5] The desired DMDP lower bound follows from combining our AMDP lower
bound Theorem [ with the average-to-discount reduction in Theorem 6] O

B.5 Relationship between transient time and mixing time

Lemma 27. In any uniformly mixing MDP, we have B < 47;s.

Proof. Fix a deterministic stationary policy w. Notice that since all states in the support of the
stationary distribution v, are recurrent, for any s € S we have

PT (S, is transient) = Z PT (S, =5")

s'eT™

<Y RIS =)+ Y [PI(S =5)—v(s)|
s'eT™ s'ER™

=Y P (Se =) —v7(s)]
s'eS

1 iy
< 2max 5 leg Pr— 7,
<2. 9~ Lt/ Tunit |

where the final inequality uses standard properties of mixing [11, Chapter 4]. Now define T' = inf{¢ :
S € R™}. Then, using a standard formula for the expectation of nonnegative-integer-values random
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variables, we have for any s € S that
E7 [T] =) PI(T >1t)

=Y P7 (S, is transient)
t=0

<2 Z 9Lt/ Tunit ]
t=0

oo
-0
=2 Z Tunif2
£=0

= 47ynit-

Since this bound holds for all s € S and all deterministic stationary policies 7, we conclude that
B < 4rupir. [
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* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The conclusion (Section E) mentions the main limitation, of the necessity of
knowledge of H/B for the optimal average-reward complexity results to hold, and this point
is elaborated upon in Section 3]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

45



Answer: [Yes]

Justification: All assumptions are provided with their respective theorems and within the
problem setup Section 2] and formal proofs of all results are provided in Appendices[A and
Bl

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: The paper does not include experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research does not involve any human subjects or datasets, and as a
foundational theoretical paper it does not have any direct potentially harmful societal
consequences.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is foundational research on the sample complexity of average-reward
and discounted MDPs, and thus is not directly tied to any negative applications.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not provide any data nor models.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use any code, model, nor data assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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