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Abstract

We study the sample complexity of learning an ω-optimal policy in an average-
reward Markov decision process (MDP) under a generative model. For weakly
communicating MDPs, we establish the complexity bound Õ

(
SA H

ω2

)
, where H is

the span of the bias function of the optimal policy and SA is the cardinality of the
state-action space. Our result is the first that is minimax optimal (up to log factors)
in all parameters S,A,H, and ω, improving on existing work that either assumes
uniformly bounded mixing times for all policies or has suboptimal dependence
on the parameters. We also initiate the study of sample complexity in general
(multichain) average-reward MDPs. We argue a new transient time parameter B
is necessary, establish an Õ

(
SAB+H

ω2

)
complexity bound, and prove a matching

(up to log factors) minimax lower bound. Both results are based on reducing the
average-reward MDP to a discounted MDP, which requires new ideas in the general
setting. To optimally analyze this reduction, we develop improved bounds for
ε-discounted MDPs, showing that Õ

(
SA H

(1→ε)2ω2

)
and Õ

(
SA B+H

(1→ε)2ω2

)
samples

suffice to learn ω-optimal policies in weakly communicating and in general MDPs,
respectively. Both these results circumvent the well-known minimax lower bound
of !̃

(
SA 1

(1→ε)3ω2

)
for ε-discounted MDPs, and establish a quadratic rather than

cubic horizon dependence for a fixed MDP instance.

1 Introduction

The paradigm of Reinforcement learning (RL) has demonstrated remarkable successes in various
sequential learning and decision-making problems. Empirical successes have motivated extensive
theoretical study of RL algorithms and their fundamental limits. The RL environment is commonly
modeled as a Markov decision process (MDP), where the objective is to find a policy ϑ that maximizes
the expected cumulative rewards. Different reward criteria are considered, such as the finite horizon
total reward Eϑ

[∑T
t=0 Rt

]
and the infinite horizon total discounted reward Eϑ [

∑↑
t=0 ε

tRt] with a
discount factor ε < 1. The finite horizon criterion only measures performance for T steps, and the
discounted criterion is dominated by rewards from the first 1

1→ε time steps. In many situations where
the long-term performance of the policy ϑ is of interest, we may prefer to evaluate policies by their
long-run average reward limT↓↑(1/T )Eϑ

[∑T→1
t=0 Rt

]
.

A foundational theoretical problem in RL is the sample complexity for learning a near-optimal policy
using a generative model of the MDP [10], meaning the ability to obtain independent samples of the
next state given any initial state and action. For the finite horizon and discounted reward criteria, the
sample complexity of this task has been thoroughly studied (e.g., [2, 3, 15, 19, 1, 12]). However,
despite significant effort (reviewed in Section 1.1), the sample complexity of the average reward
setting is unresolved in existing literature.
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Our contributions In this paper, we resolve the sample complexity of weakly communicating
Average-Reward MDPs (AMDP) in terms of H := →hϖ→span, the span of the bias (a.k.a. relative value
function) of the optimal policy. We show that Õ

(
SAH/ω2

)
samples suffice to find an ω-optimal

policy of a weakly communicating MDP with S states and A actions. This bound, presented in
Theorem 2, is the first that matches the minimax lower bound !̃

(
SAH/ω2

)
up to log factors.

Furthermore, we initiate the study of sample complexity for average-reward general MDPs, which
refers to the class of all finite-space MDPs without any restrictions [14]. General MDPs are not
necessarily weakly communicating and all their optimal policies may be multichain. In this general
setting, we demonstrate the span H alone cannot characterize the sample complexity, as the lower
bound in Theorem 4 exhibits instances which require ↑HSA/ω2 samples. This observation motivates
our introduction of a new transient time bound parameter B, which in conjunction with H captures
the sample complexity of general average-reward MDPs. Specifically, our Theorem 8 shows that
Õ
(
SAB+H

ω2

)
samples suffice to learn an ω-optimal policy, and Theorem 4 provides a matching

minimax lower bound of !
(
SAB+H

ω2

)
. We remark that it is trivially impossible to achieve low regret

in standard online settings of general MDPs, since the agent may become trapped in a closed class
of low reward states [4]. The simulator setting is natural for studying general MDPs since it avoids
this fatal issue, although the existence of multiple closed classes with different long-run rewards still
plays a fundamental role in the minimax sample complexity, as reflected in the dependence on B.

To establish the above upper bounds, we adopt the reduction-to-discounted-MDP approach [9, 20],
and improve on prior work by developing enhanced sample complexity bounds for ε-discounted
MDPs (DMDPs). We improve the analysis of variance parameters related to DMDPs using a
new multistep variance Bellman equation, which is applied in a recursive manner to bound the
variance of near-optimal policies. For general (multichain) MDPs, we further utilize law-of-total-
variance ideas to bound the total variance contribution from transient states, which present new
challenges significantly different to their behavior in the weakly communicating setting. Our average-
to-discounted reduction also requires new techniques, because many structural properties used
in earlier reduction arguments no longer hold for general MDPs. Our analysis leads to DMDP
sample complexities of Õ

(
SA H

(1→ε)2ω2

)
and Õ

(
SA B+H

(1→ε)2ω2

)
to learn ω-optimal policies in weakly

communicating and general MDPs, respectively. Notably, the latter bound, valid for all MDPs,
circumvents the existing lower bound !̃

(
SA

(1→ε)3ω2

)
[3, 15]. Whereas this minimax lower bound

allows the adversary to choose the transition matrix P based on ε with B ↓ 1
1→ε [3, Theorem 3],

our result reflects the complexity of a fixed MDP P through its parameters H,B and a quadratic
dependence on the effective horizon 1

1→ε . This fixed-P complexity is essential for our particular
algorithmic approach, where the reduction discount ε is chosen depending on P . It is also a more
relevant framework in general for many RL problems where the discount factor is tuned for best
performance on a particular instance.

1.1 Comparison with related work on average-reward MDPs

We summarize in Table 1 existing sample complexity results for average reward MDPs.

Various parameters have been used to characterize the sample complexity of average reward MDPs,
including the diameter D of the MDP, the uniform mixing time bound ϖunif for all policies, and the
span H of the optimal bias; formal definitions are provided in Section 2. All sample complexity
upper bounds involving ϖunif require the strong assumption that all stationary deterministic policies
have finite mixing times. Otherwise, ϖunif = ↔ by definition, which for example occurs if some
policy induces a periodic Markov chain. It is also possible to have D = ↔, while H and our newly
introduced B are always finite for finite state-action spaces. As shown in [20], there is generally no
relationship between D and ϖunif ; they can each be arbitrarily larger than the other. On the other
hand, it has been shown that H ↗ D [4] and that H ↗ 8ϖunif [20]. Therefore, either of the first two
minimax lower bounds in Table 1 (which both use hard instances that are weakly communicating)
imply a lower bound of !̃

(
SA H

ω2

)
and thus the minimax optimality of our Theorem 2.

To the best of our knowledge, no prior work has considered the average-reward sample complexity
of general (potentially multichain) MDPs. Existing results make assumptions at least as strong as
weakly communicating or uniformly bounded mixing times.
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Method Sample Complexity Reference Comments

Primal-Dual SMD Õ
(
SA ϱ2

unif
ω2

)
[8] requires uniform mixing

Reduction to DMDP Õ
(
SA ϱunif

ω3

)
[9] requires uniform mixing

Policy Mirror Descent Õ
(
SA ϱ3

unif
ω2

)
[13] requires uniform mixing

Reduction to DMDP Õ
(
SA ϱunif

ω2

)
[22] requires uniform mixing

Reduction to DMDP Õ
(
SA H

ω3

)
[20] weakly communicating

Refined Q-Learning Õ
(
SAH

2

ω2

)
[26] weakly communicating

Reduction to DMDP Õ
(
SA H

ω2

)
Our Theorem 2 weakly communicating

Reduction to DMDP Õ
(
SAB+H

ω2

)
Our Theorem 8 general MDPs

Lower Bound !̃
(
SA ϱunif

ω2

)
[9] implies !̃

(
SA H

ω2

)

Lower Bound !̃
(
SAD

ω2

)
[20] implies !̃

(
SA H

ω2

)

Lower Bound !̃
(
SAB+H

ω2

)
Our Theorem 4 general MDPs

Table 1: Algorithms and sample complexity bounds for average reward MDPs with S states and
A actions. The goal is finding an ω-optimal policy under a generative model. Here H := →hϖ→span is
the span of the optimal bias, ϖunif is a uniform upper bound on mixing times of all policies, and D is
the MDP diameter, with the relationships H ↗ 8ϖunif and H ↗ D. B is the transient time parameter.

The work [9] was the first to develop an algorithm based on reduction to a discounted MDP with
a discount factor of ε = 1 ↘ ω

ϱunif
. Their argument was improved in [20], which improved the

uniform mixing assumption to only assuming a weakly communicating MDP, and used a smaller
discount factor ε = 1 ↘ ω

H
. These arguments both make essential use of the fact that the optimal

gain is independent of the starting state, which does not hold for general MDPs. After analyzing the
reductions, both [9] and [20] then solved the discounted MDPs by appealing to the algorithm from
[12]. To the best of our knowledge, the algorithm of [12] is the only known algorithm for discounted
MDPs which could work with either reduction, as the reductions each require a ω

1→ε -optimal policy
from the discounted MDP, and other known algorithms for discounted MDPs do not permit such
large suboptimality levels. (We discuss algorithms for discounted MDPs in more detail below.) Other
algorithms for average-reward MDPs are considered in [9, 13, 26]. The above results fall short of
matching the minimax lower bounds.

While preparing this manuscript, we became aware of [22], which considers the uniform mixing
setting and obtains a minimax optimal sample complexity Õ

(
SA ϱunif

ω2

)
in terms of ϖunif . Although

developed independently, their work and ours have several similarities. We both utilize discounted
reductions and observe that it is possible to improve the sample complexity of the resulting DMDP task
by improving the analysis of variance parameters. They accomplish the improvement by leveraging
the uniform mixing assumption, whereas we make use of the low span of the optimal policy. Note
that H ↗ 8ϖunif holds in general and there exist MDPs with H ≃ ϖunif = ↔, so our Theorem 2 is
strictly stronger than the result of [22].

1.2 Comparison with related work on discounted MDPs

We discuss a subset of results for discounted MDPs in the generative setting. Several works [15, 19,
1, 12] obtain the minimax optimal sample complexity of Õ

(
SA 1

(1→ε)3ω2

)
for finding an ω-optimal

policy w.r.t. the discounted reward. However, only [12] is able to show this bound for the full range
of ω ⇐ (0, 1

1→ε ]. As mentioned, the reduction from average reward MDPs requires a large ω in the
resulting discounted MDP, making it unsurprising that all of [9, 20, 22] as well as our Algorithm 1
essentially use their algorithm. The matching lower bound is established in [15, 3].

As mentioned earlier, both we and the authors of [22, 21] independently observed that the
!̃
(
SA 1

(1→ε)3ω2

)
sample complexity lower bound can be circumvented in the settings that arise
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under the average-to-discounted reductions. The authors of [22, 21] assume uniform mixing and
obtain a discounted MDP sample complexity of Õ

(
SA ϱunif

(1→ε)2ω2

)
, first in [21] by modifying the

algorithm of [19], and then in [22] under a wider range of ω by instead modifying the analysis of [12].
The work [21] also proves a matching lower bound. Our Theorem 1 for discounted MDPs attains
a sample complexity of Õ

(
SA H

(1→ε)2ω2

)
assuming only that the MDP is weakly communicating.

Again, in light of the relationship that H ↗ 8ϖunif , our results are strictly better (ignoring constants),
and their lower bound also establishes the optimality of our Theorem 1.

2 Problem setup and preliminaries

A Markov decision process (MDP) is given by a tuple (S,A, P, r), where S is the finite set of states,
A is the finite set of actions, P : S ⇒ A ⇑ ”(S) is the transition kernel with ”(S) denoting the
probability simplex over S , and r : S⇒A ⇑ [0, 1] is the reward function. Let S := |S| and A := |A|
denote the cardinality of the state and action spaces, respectively. Unless otherwise noted, all policies
considered are stationary Markovian policies of the form ϑ : S ⇑ ”(A). For any initial state
s0 ⇐ S and policy ϑ, we let Eϑ

s0 denote the expectation with respect to the probability distribution
over trajectories (S0, A0, S1, A1, . . . ) where S0 = s0, At ⇓ ϑ(St), and St+1 ⇓ P (· | St, At).
Equivalently, this is the expectation with respect to the Markov chain induced by ϑ starting in state
s0, with the transition probability matrix Pϑ given by (Pϑ)s,s→ :=

∑
a↔A ϑ(a|s)P (s↗ | s, a). We

also define (rϑ)s :=
∑

a↔A ϑ(a|s)r(s, a). We occasionally treat P as an (S ⇒ A)-by-S matrix
where Psa,s→ = P (s, a, s↗). We also let Psa denote the row vector such that Psa(s↗) = P (s, a, s↗).
For any s ⇐ S and any bounded function X of the trajectory, we define the variance Vϑ

s [X] :=
Eϑ
s (X ↘ Eϑ

s [X])2, with its vector version Vϑ [X] ⇐ RS given by (Vϑ [X])s = Vϑ
s [X]. For s ⇐ S,

let es ⇐ RS be the vector that is all 0 except for a 1 in entry s. Let 1 ⇐ RS be the all-one vector. For
each v ⇐ RS , define the span semi-norm →v→span := maxs↔S v(s)↘mins↔S v(s).

Discounted reward criterion A discounted MDP is a tuple (S,A, P, r, ε), where ε ⇐ (0, 1) is
the discount factor. For a stationary policy ϑ, the (discounted) value function V ϑ

ε : S ⇑ [0,↔)
is defined, for each s ⇐ S, as V ϑ

ε (s) := Eϑ
s [
∑↑

t=0 ε
tRt], where Rt = r(St, At) is the reward

received at time t. It is well-known that there exists an optimal policy ϑϖ
ε that is deterministic and

satisfies V
ϑω
ε

ε (s) = V ϖ
ε (s) := supϑ V

ϑ
ε (s) for all s ⇐ S [14]. In discounted MDPs the goal is to

compute an ω-optimal policy, which we define as a policy ϑ satisfying
∥∥V ϑ

ε ↘ V ϖ
ε

∥∥
↑ ↗ ω. We define

one more variance parameter VPϑ

[
V ϑ
ε

]
⇐ RS , specific to a given policy ϑ, by

(
VPϑ

[
V ϑ
ε

])
s
:=

∑
s→↔S (Pϑ)s,s→

[
V ϑ
ε (s↗)↘

∑
s→→ (Pϑ)s,s→→ V

ϑ
ε (s↗↗)

]2
.

Average-reward criterion In an MDP (S,A, P, r), the average reward per stage or the gain of a
policy ϑ starting from state s is defined as ϱϑ(s) := limT↓↑

1
T E

ϑ
s

[∑T→1
t=0 Rt

]
. The bias function of

any stationary policy ϑ is hϑ(s) := C-limT↓↑ Eϑ
s

[∑T→1
t=0 (Rt ↘ ϱϑ(St))

]
, where C-lim denotes

the Cesaro limit. When the Markov chain induced by Pϑ is aperiodic, C-lim can be replaced with the
usual limit. For any policy ϑ, its ϱϑ and hϑ satisfy ϱϑ = Pϑϱϑ and ϱϑ + hϑ = rϑ + Pϑhϑ .

A policy ϑϖ is Blackwell-optimal if there exists some discount factor ε̄ ⇐ (0, 1) such that for all ε ⇔ ε̄
we have V ϑω

ε ⇔ V ϑ
ε for all policies ϑ. Henceforth we let ϑϖ denote some fixed Blackwell-optimal

policy, which is guaranteed to exist when S and A are finite [14]. We define the optimal gain ϱϖ ⇐ RS

by ϱϖ(s) = supϑ ϱ
ϑ(s) and note that we have ϱϖ = ϱϑ

ω

. For all s ⇐ S, ϱϖ(s) ⇔ maxa↔A Psaϱϖ, or
equivalently ϱϖ ⇔ Pϑϱϖ for all policies ϑ (and this maximum is achieved by ϑϖ). We also define hϖ =
hϑω

(and we note that this definition does not depend on which Blackwell-optimal ϑϖ is used, if there
are multiple). For all s ⇐ S, ϱϖ and hϖ satisfy ϱϖ(s) + hϖ(s) = maxa↔A:Psaςω=ςω(s) rsa + Psahϖ,
known as the (unmodified) Bellman equation.

A weakly communicating MDP is such that the states can be partitioned into two disjoint subsets
S = S1 ↖ S2 such that all states in S1 are transient under any stationary policy and within S2, any
state is reachable from any other state under some stationary policy. In weakly communicating MDPs
ϱϖ is a constant vector (all entries are equal), and thus (ϱϖ, hϖ) are also a solution to the modified
Bellman equation ϱϖ(s) + hϖ(s) = maxa↔A rsa + Psahϖ. When discussing weakly communicating
MDPs we occasionally abuse notation and treat ϱϖ as a scalar. A stationary policy is multichain if it
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induces multiple closed irreducible recurrent classes, and an MDP is called multichain if it contains
such a policy. Weakly-communicating MDPs always contain some gain-optimal policy which is
unichain (not multichain), but in general MDPs, all gain-optimal policies may be multichain and ϱϖ

may not be a constant vector. All uniformly mixing MDPs are weakly communicating. In the average
reward setting, our goal is find an ω-optimal policy, defined as a policy ϑ such that →ϱϖ ↘ ϱϑ→↑ ↗ ω.

Complexity parameters Our most important complexity parameter is the span of the optimal bias
function H := →hϖ→span. In addition, for general MDPs we introduce a new transient time parameter

B, defined as follows. Let # be the set of deterministic stationary policies. For each ϑ ⇐ #, let Rϑ

be the set of states which are recurrent in the Markov chain Pϑ, and let T ϑ = S \ Rϑ be the set of
transient states. Let TRϑ = inf{t : St ⇐ Rϑ} be the first hitting time of a state which is recurrent
under ϑ. We say an MDP satisfies the bounded transient time property with parameter B if for all
policies ϑ and states s ⇐ S we have Eϑ

s [TRϑ ] ↗ B, or in words, the expected time spent in transient
states (with respect to the Markov chain induced by ϑ) is bounded by B.

We recall several other parameters used in the literature to characterize sample complexity. The
diameter is defined as D := maxs1 ↘=s2 infϑ↔! Eϑ

s1 [ςs2 ], where ςs denotes the hitting time of a state
s ⇐ S. For each policy ϑ, if the Markov chain induced by Pϑ has a unique stationary distribution
φϑ, we define the mixing time of ϑ as ϖϑ := inf

{
t ⇔ 1 : maxs↔S

∥∥∥e≃s (Pϑ)
t ↘ φ≃ϑ

∥∥∥
1
↗ 1

2

}
. If all

policies ϑ ⇐ # satisfy this assumption, we define the uniform mixing time ϖunif := supϑ↔! ϖϑ . Note
that D and ϖunif are generally incomparable [20], while we always have H ↗ D [4] and H ↗ 8ϖunif
[20]. It is possible for ϖunif = ↔, for instance if there are any policies which induce periodic Markov
chains. Also, D = ↔ if there are any states which are transient under all policies. However, H and B

are finite in any MDP with S,A < ↔. Also if ϖunif is finite, Lemma 27 shows B ↗ 4ϖunif .

We assume access to a generative model [10], also known as a simulator. This means we can obtain
independent samples from P (· | s, a) for any given s ⇐ S, a ⇐ A, but P itself is unknown. We
assume the reward function r is deterministic and known, which is standard in generative settings
(e.g., [1, 12]) since otherwise estimating the mean rewards is relatively easy. Specifically, to learn
an ω-optimal policy for the discounted MDP, we would need to estimate each entry of r to accuracy
O((1 ↘ ε)ω), which requires a lower order number of samples Õ

(
SA

(1→ε)2ω2

)
. For this reason we

assume (as in [20]) that H ⇔ 1. Using samples from the generative model, our Algorithm 1 constructs
an empirical transition kernel P̂ . For a policy ϑ, we use V̂ ϑ

ε (s) to denote the value function computed
with respect to the Markov chain with transition matrix P̂ϑ (as opposed to Pϑ). Our Algorithm 1 also
utilizes a perturbed reward function r̃, and we use the notation V ϑ

ε,p(s) to denote a value function
computed using this reward (and Pϑ); more concretely, we replace Rt with R̃t = r̃(St, At) in the
definition above of V ϑ

ε . We use the notation V̂ ϑ
ε,p when using P̂ and r̃ simultaneously.

3 Main results for weakly communicating MDPs

Our approach is based on reducing the average-reward problem to a discounted problem. We first
present our algorithm and guarantees for the discounted MDP setting. As discussed in Subsection
1.1, our algorithm of choice, Algorithm 1, is essentially the same as the one presented in [12], with a
slightly different perturbation level ↼. Algorithm 1 constructs an empirical transition kernel P̂ using
n samples per state-action pair from the generative model, and then solves the resulting empirical
(perturbed) MDP (P̂ , r̃, ε). As noted in [12], the perturbation ensures ϑ̂ϖ

ε,p can be computed exactly
in poly( 1

1→ε , S, A, log(1/↽ω)) time by multiple standard MDP solvers. We remark in passing that
the SA-by-S transition matrix P̂ has at most nSA nonzero entries.

Our Theorem 1 provides an improved sample complexity bound for Algorithm 1 under the setting
that the MDP is weakly communicating.

Theorem 1 (Sample Complexity of Weakly Communicating DMDP). Suppose the discounted MDP

(P, r, ε) is weakly communicating, H ↗ 1
1→ε , and ω ↗ H. There exists a constant C2 > 0 such that,

for any ↽ ⇐ (0, 1), if n ⇔ C2
H

(1→ε)2ω2 log
(

SA
(1→ε)φω

)
, then with probability at least 1↘ ↽, the policy

ϑ̂ϖ
ε,p output by Algorithm 1 satisfies

∥∥∥V ϖ
ε ↘ V

ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ ω.
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Algorithm 1 Perturbed Empirical Model-Based Planning
input: Sample size per state-action pair n, target accuracy ω, discount factor ε

1: for each state-action pair (s, a) ⇐ S ⇒A do
2: Collect n samples S1

s,a, . . . , S
n
s,a from P (· | s, a)

3: Form the empirical transition kernel P̂ (s↗ | s, a) = 1
n

∑n
i=1 I{Si

s,a = s↗}, for all s↗ ⇐ S
4: end for
5: Set perturbation level ↼ = (1↘ ε)ω/6

6: Form perturbed reward r̃ = r + Z where Z(s, a)
i.i.d.⇓ Unif(0, ↼)

7: Compute a policy ϑ̂ϖ
ε,p which is optimal for the perturbed empirical discounted MDP (P̂ , r̃, ε)

8: return ϑ̂ϖ
ε,p

Since we observe n samples for each state-action pair, Theorem 1 shows that a total number of
Õ
(

HSA
(1→ε)2ω2

)
samples suffices to learn an ω-optimal policy. This bound improves on the Õ

(
SA

(1→ε)3ω2

)

complexity bound from [12] when the span H is no larger than the effective horizon 1
1→ε . This

assumption holds in many situations, as can be seen by using the relationships H ↗ D or H ↗ 8ϖunif .
On the other hand, in the regime with H > 1

1→ε , the existing bound Õ
(

SA
(1→ε)3ω2

)
, also achieved by

Algorithm 1, is superior. In this regime, the discounting effectively truncates the MDP at a short
horizon 1

1→ε before the long-run behavior of the optimal policy (as captured by H) kicks in.

Proof highlights for Theorem 1. The key to obtaining this improved complexity is a careful anal-
ysis of certain instance-specific variance parameters. It suffices to bound

∥∥∥V̂
ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

and
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

by O(ω). The prior DMDP complexity of SA
(1→ε)3ω2 is obtained using the well-

known law-of-total-variance argument [3, 1, 12], which ultimately yields a sample complexity like
Õ
(√

SA
(1→ε)ω2

∥∥Vϑω
ε [
∑↑

t=0 ε
tRt]

∥∥
↑

)
to bound

∥∥∥V̂
ϑω
ε

ε,p↘V
ϑω
ε

ε

∥∥∥
↑

↗ O(ω). From here, the variance of

the cumulative discounted reward
∥∥∥Vϑω

ε [
∑↑

t=0 ε
tRt]

∥∥∥
↑

is bounded by 1
(1→ε)2 , since the total reward

in a trajectory is within [0, 1
1→ε ]. We instead seek to bound

∥∥∥Vϑω
ε [
∑↑

t=0 ε
tRt]

∥∥∥
↑

↗ O
(

H

1→ε

)
.

Assume H is an integer. The first step is to decompose Vϑω
ε [
∑↑

t=0 ε
tRt] recursively like

Vϑω
ε

[ ↑∑

t=0

εtRt


= Vϑω

ε

[
H→1∑

t=0

εtRt + εHV
ϑω
ε

ε (SH)


+ ε2H

(
Pϑω

ε

)H

Vϑω
ε

[ ↑∑

t=0

εtRt



(see our Lemma 13). This is a multi-step version of the standard variance Bellman equation (e.g., [16,
Theorem 1]). Ordinarily an H-step expansion would not be useful, since the term V

ϑω
ε

ε (SH) by itself
appears to have fluctuations on the order of 1

1→ε in the worst case depending on SH (note SH is the

random state encountered at time H). However, in our setting, we should have V
ϑω
ε

ε (SH) ↓ 1
1→ε ϱ

ϖ +

hϖ(SH), reducing the magnitude of the random fluctuations to order H = →hϖ→span. (See Lemma 11
for a formalization of this approximation which first appeared in [23].) Therefore expansion to H

steps achieves the optimal tradeoff between maintaining Vϑω
ε

∑
H→1
t=0 εtRt+εHV

ϑω
ε

ε (SH)

↗ O

(
H

2
)

and minimizing ε2H. As desired this yields
∥∥∥Vϑω

ε [
∑↑

t=0 ε
tRt]

∥∥∥
↑

↗ O
(

H
2

1→ε2H

)
= O

(
H

1→ε

)
, where

1
1→ε2H ↗ O

(
1

H(1→ε)

)
requires 1

1→ε ⇔ H. See Lemma 15 for the complete argument.

We would like to use a similar argument as above to bound the second term
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

,
which is the “evaluation error” of the empirically optimal policy ϑ̂ϖ

ε,p. However, applying the same

argument would give a bound in terms of
∥∥∥V

ϑ̂ω
ε,p

ε

∥∥∥
span

, which, unlike for the analogous term involving
the true optimal policy ϑϖ

ε , is not a priori bounded in terms of H . (If we instead assumed uniform
mixing, we could immediately bound this by O(ϖunif).) Thus, to control the variance associated with
evaluating ϑ̂ϖ

ε,p, we are able to recursively bound
∥∥∥V

ϑ̂ω
ε,p

ε

∥∥∥
span

↗ O
(
H +

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘V
ϑ̂ω
ε,p

ε

∥∥∥
↑

)
, which

can be shown to yield the desired sample complexity.
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Now we present our main result for the average-reward problem in the weakly communicating setting.
Applied in this setting with a DMDP target accuracy of ω = H, our Algorithm 2 reduces the problem
to ε-discounted MDP with ε = 1↘ ω

12H and then calls Algorithm 1 with target accuracy H.

Algorithm 2 Average-to-Discount Reduction

input: Sample size per state-action pair n, target accuracy ω ⇐ (0, 1], DMDP target accuracy ω
1: Set ε = 1↘ ω

12ω
2: Obtain ϑ̂ϖ from Algorithm 1 with sample size per state-action pair n, accuracy ω, discount ε
3: return ϑ̂ϖ

We have the following sample complexity bound for Algorithm 2.
Theorem 2 (Sample Complexity of Weakly Communicating AMDP). Suppose the MDP (P, r)
is weakly communicating. There exists a constant C1 > 0 such that for any ↽, ω ⇐ (0, 1), if

n ⇔ C1
H

ω2 log
(
SAH

φω

)
and we call Algorithm 2 with ω = H, then with probability at least 1↘ ↽, the

output policy ϑ̂ϖ
satisfies the elementwise inequality ϱϖ ↘ ϱϑ̂

ω ↗ ω1.

Again, since we observe n samples for each state-action pair, this result shows that Õ
(
HSA
ω2

)
total

samples suffice to learn an ω-optimal policy for the average reward MDP. This bound matches the
minimax lower bound in [20] and is superior to existing results for weakly communicating MDPs
(see Table 1). We note that the proof of Theorem 1 works so long as H is any upper bound of →hϖ→span,
hence Algorithm 2 also only needs an upper bound for →hϖ→span.

We show in the following theorem that it is in general impossible to obtain a useful upper bound on
→hϖ→span with a sample complexity that is a function of only →hϖ→span. This suggests that it is not easy
to remove the need for knowledge of →hϖ→span.
Theorem 3. For any given n, T ⇔ 1, there exist two MDPs M0 and M1 with S = 4, A = 1 such

that M0 has optimal bias span 1, M1 has optimal bias span T , and it is impossible to distinguish

between M0 and M1 with probability ⇔ 3
4 with n samples from each state-action pair.

Thus even for an MDP with a small span, there exists another MDP that has an arbitrarily large span
and is arbitrarily statistically close (that is, cannot be distinguished even with a large sample size
n). We emphasize that all previous algorithms in Table 1 also require knowledge of their respective
complexity parameters, and such assumptions are pervasive throughout the literature on average-
reward RL. The only exception of which we are aware is the contemporaneous work [7], which
achieves a suboptimal Õ(SA ϱ8

unif
ω8 ) sample complexity without knowledge of ϖunif in the uniformly

mixing setting. It is unclear if H-based sample complexities are possible without knowing H. Besides
the evidence offered by Theorem 3, in the online setting, it has been conjectured that knowledge of H
is necessary to obtain an H-dependent regret bound [6, 5, 25]. Moreover, even with knowledge of H,
the only known online algorithm with optimal regret is computationally inefficient [25], making it
somewhat surprising that our Theorem 2 uses a simple and efficient algorithm.

Nevertheless, when H is unknown, one can replace H with the diameter D (since H ↗ D). The
diameter is known to be estimable [25, 17] and is often a more refined complexity parameter than
ϖunif . Our Theorem 2 is the first to imply the optimal diameter-based complexity Õ(SAD

ω2 ), given
knowledge of D or using a constant-factor upper bound obtained from some estimation procedure.

4 Main results for general MDPs

Our starting point for general MDPs is that unlike the weakly communicating setting, their complexity
cannot be captured solely by →hϖ→span. We first argue this point informally using the simple example
in Figure 1, which is parameterized by a value T > 1. Only state 1 contains multiple actions, and
action 2 is optimal since it leads to state 2 which collects reward 0.5 forever, while taking action 1
will always eventually lead to state 3 where the reward is 0 forever. We thus have ϱϖ = [0.5, 0.5, 0]≃

and →hϖ→span = 0. However, clearly !(T ) samples are required to even observe a transition 1 ⇑ 3,
so the sample complexity must depend on T ↑ H (without observing a transition 1 ⇑ 3, we cannot
determine that action 1 is not optimal). Taking action 1 leads to a large reward of 1 in the short
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term (for T steps in expectation), so even if we had perfect knowledge of the environment, the
optimal ε-discounted policy would not choose the optimal action a = 2 until the effective horizon
1

1→ε ⇔ !(T ). Thus 1
1→ε ↓ H is insufficient for the reduction to discounted MDP. Note that this

instance has its bounded transient time parameter B = T . This example reflects that transient states
play a categorically different role in general MDPs: in the weakly communicating setting, states
which are transient under all policies can be completely ignored, whereas in this example our action
at state 1 fully determines our reward even though state 1 is transient under all policies.

1

2

3

a = 1, R = 1

P (1 | 1, 1) = 1↘ 1
T

P (3 | 1, 1) = 1
T

a = 2, R = 0.5

R = 0.5

R = 0

Figure 1: A general MDP where ε-discounted approximation fails unless 1
1→ε = !(T ) ↑ →hϖ→span.

The statistical hardness is formally captured by the following theorem, which uses improved instances
to obtain the correct dependence on ω.
Theorem 4 (Lower Bound for General AMDPs). For any ω ⇐ (0, 1/4), B ⇔ 1, A ⇔ 4 and

S ⇐ 8N, for any algorithm Alg which is guaranteed to return an ω/3-optimal policy for any input

average-reward MDP with probability at least
3
4 , there exists an MDP M = (P, r) such that:

1. M has S states and A actions.

2. Letting hϖ
be the bias of the Blackwell-optimal policy for M, we have →hϖ→span = 0.

3. M satisfies the bounded transient time assumption with parameter B.

4. Alg requires !
(
B log(SA)

ω2

)
samples per state-action pair on M.

A similar minimax lower bound holds for the discounted setting.
Theorem 5 (Lower Bound for General DMDP). For any ω ⇐ (0, 1/4), B ⇔ 1, A ⇔ 4 and S ⇐ 8N
for any algorithm Alg which is guaranteed to return an ω/3-optimal policy for any input discounted

MDP with probability at least
3
4 , there exists a discounted MDP M = (P, r, ε) such that:

1. M has S states and A actions.

2. M satisfies the bounded transient time assumption with parameter B.

3. Alg requires !
(
B log(SA)
(1→ε)2ω2

)
samples per state-action pair on M.

The lower bounds of Õ
(
H

ω2

)
from the weakly communicating setting still apply in the general setting.

Together with Theorem 4 they imply a Õ
(
H+B

ω2

)
lower bound for general average-reward MDPs.

Figure 1 demonstrates that, unlike the weakly communicating setting, discounted reduction with 1
1→ε

set in terms of only H cannot succeed for general MDPs. (Contrast with Lemma 9 for the analogous
theorem from [20] for weakly communicating MDPs.) We remedy this issue and lay the foundation
for our matching upper bound by proving a new reduction theorem in terms of H and B; in particular,
B measures how much farther ahead we must look in order to determine which closed communicating
class will be reached. By Lemma 27 B ↗ 4ϖunif , although B is always finite unlike ϖunif .
Theorem 6 (Average-to-Discount Reduction for General MDP). Suppose (P, r) is a general MDP,

has an optimal bias function hϖ
satisfying →hϖ→span ↗ H, and satisfies the bounded transient time

assumption with parameter B. Fix ω ⇐ (0, 1] and set ε = 1 ↘ ω
B+H

. For any ωε ⇐ [0, 1
1→ε ], if ϑ is

any ωε-optimal policy for the discounted MDP (P, r, ε), then ϱϖ ↘ ϱϑ ↗
(
3 + 2 ωε

B+H

)
ω1.

Proof highlights. Letting ϑϖ
ε be the optimal policy for the ε-discounted MDP, our first key observation

is that ϱϖ is constant within any irreducible closed recurrent block of the Markov chain Pϑω
ε

, essentially
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because all states in this block must be reachable from each other with probability one (see Lemma
17). Leveraging the optimality of ϑϖ

ε , this enables us to bound both
V ϑω

ε
ε (s) ↘ 1

1→ε ϱ
ϖ(s)

 and
V ϑω

ε
ε (s)↘ 1

1→ε ϱ
ϑω
ε (s)

 by O
(
→hϖ→span

)
for any s which is recurrent under ϑϖ

ε , which when combined
demonstrate that the gain ϱϑ

ω
ε (s) of ϑϖ

ε is near-optimal for its recurrent states. See Lemma 21. We

then leverage the bounded transient time assumption to guarantee that for transient s, V
ϑω
ε

ε (s) is
dominated by the expected returns from recurrent states, since at most O(B) time is spent in transient
states. We complete the proof of Theorem 6 by combining these facts, as well as extending them to
accommodate approximately optimal policies.

Next we establish an improved sample complexity for the discounted problem in the setting relevant
to this reduction. This bound matches the lower bound in Theorem 5 up to log factors.

Theorem 7 (Sample Complexity of General DMDP). Suppose B+ H ↗ 1
1→ε and ω ↗ B+ H. There

exists a constant C3 > 0 such that, for any ↽ ⇐ (0, 1), if n ⇔ C3
B+H

(1→ε)2ω2 log
(

SA
(1→ε)φω

)
, then with

probability 1↘ ↽, the policy ϑ̂ϖ
ε,p output by Algorithm 1 satisfies

∥∥V ϖ
ε ↘ V

ϑ̂ω
ε,p

ε

∥∥
↑ ↗ ω.

Finally, we present our result for the sample complexity of general average-reward MDPs, matching
the lower bound in Theorem 4 up to log factors. We again use the reduction Algorithm 2, this time
with the larger DMDP target accuracy ω = B+ H, leading to a discount factor of ε = 1↘ ω

12(B+H) .

Theorem 8 (Sample Complexity of General AMDP). There exists a constant C4 > 0 such that for

any ↽, ω ⇐ (0, 1), if n ⇔ C4
B+H

ω2 log
(

SA(B+H)
φω

)
and we call Algorithm 2 with ω = B+ H, then with

probability at least 1↘ ↽, the output policy ϑ̂ϖ
satisfies the elementwise inequality ϱϖ ↘ ϱϑ̂

ω ↗ ω1.

Proof highlights. Similarly to Theorem 2, we seek to bound certain variance parameters, and this
time it would suffice to bound the variance of the cumulative discounted reward starting from any
state s like

Vϑω
ε

s [
∑↑

t=0 ε
tRt]

 ↗ O
(
H+B

1→ε

)
. Such a bound indeed holds for states s that are recurrent

under ϑϖ
ε , because ϱϖ(St) will remain constant to ϱϖ(s) for all t, since, as mentioned above, ϱϖ is

constant on closed irreducible recurrent blocks, and all (St)t⇐0 will stay in the same block as s.
Therefore, we can almost reuse our argument from the weakly communicating case. However, if
s is transient, it is easy to see that

Vϑω
ε

s [
∑↑

t=0 ε
tRt]

 = !
((

1
1→ε

)2) in general (even under the
bounded transient time assumption), as we can consider an example where from s we transition
to either an absorbing reward 1 state or an absorbing reward 0 state. Thus, when s is transient,
instead of bounding

Vϑω
ε

s [
∑↑

t=0 ε
tRt]

, we directly work with the sharper variance parametere≃s (I ↘ εPϑω
ε
)→1

√
VPϑω

ε

[
V

ϑω
ε

ε
], which is also common to the analysis of DMDPs [3, 1, 12] (and

in these previous works is bounded in terms of
∥∥∥Vϑω

ε [
∑↑

t=0 ε
tRt]

∥∥∥
↑

; see Lemma 12 for this
relationship). We instead develop a novel law-of-total-variance-style argument which limits the total
contribution of transient states to this sharper variance parameter. See Lemma 26 for details.

5 Conclusion

In this paper we obtained optimal sample complexities for weakly communicating and general
average reward MDPs by improving the analysis of discounted MDPs, revealing a quadratic rather
than cubic dependence on the effective horizon for a fixed instance. A limitation of our results (as
well as of all previous results) is that the average-to-discounted reduction requires prior knowledge
of parameters for optimal complexity, and an interesting open question is whether it is possible to
remove this assumption. In conclusion, we believe our results shed greater light on the relationship
between the discounted and average reward settings as well as the fundamental complexity of the
discounted setting, and we hope that our technical developments can be useful in future work, such
as leading to efficient optimal algorithms in the online setting.
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A Proofs for weakly communicating MDPs

In this section, we provide the proofs for our main results in Section 3 for weakly communicating
MDPs. Before beginning, we note that given that H ⇔ 1, we may assume that H is an integer by
setting H ↙ ∝H′, which only affects the sample complexity by a constant multiple < 2 relative to the
original parameter H. Let →M→↑↓↑ := supv:⇒v⇒↑⇑1 →Mv→↑ denote the ⇀↑ operator norm of a
matrix M . We record the standard and useful fact that

∥∥(I ↘ εP ↗)→1
∥∥
↑↓↑ ↗ 1

1→ε for any transition
probability matrix P ↗, which follows from the Neumann series (I ↘ εP ↗)→1 =

∑
t⇐0 (εP

↗)t and the
elementary fact that →P ↗→↑↓↑ ↗ 1.

A.1 Technical lemmas

First we formally state the main theorem from [20], which gives a reduction from weakly communi-
cating average-reward problems to discounted problems.
Lemma 9. Suppose (P, r) is an MDP which is weakly communicating and has an optimal bias

function hϖ
satisfying →hϖ→span ↗ H. Fix ω ⇐ (0, 1] and set ε = 1↘ ω

H
. For any ωε ⇐ [0, 1

1→ε ], if ϑ is

any ωε-optimal policy for the discounted MDP (P, r, ε), then

ϱϖ ↘ ϱϑ ↗
(
8 + 3

ωε
H

)
ω1.

From here, we will first establish lemmas which are useful for proving Theorem 1 on discounted
MDPs, and then we will apply the reduction approach of Lemma 9 to prove Theorem 2 on average-
reward MDPs. As mentioned in the introduction, a key technical component of our approach is to
establish superior bounds on a certain instance-dependent variance quantity which replace a factor of
1

1→ε with a factor of H. Before reaching this step however, to make use of such a bound, we require
an algorithm for discounted MDPs which enjoys a variance-dependent guarantee.

The work [12] obtains bounds with variance dependence that suffice for our purposes. However,
they do not directly present said variance-dependent bounds, so we must slightly repackage their
arguments in the form we require.
Lemma 10. There exist absolute constants c1, c2 such that for any ↽ ⇐ (0, 1), if n ⇔
c2

1→ε log
(

SA
(1→ε)φω

)
, then with probability at least 1↘ ↽, after running Algorithm 1, we have

∥∥∥V̂
ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

↗ε

c1 log
(

SA
(1→ε)φω

)

n

∥∥∥∥∥(I ↘ εPϑω
ε
)→1


VPϑω

ε


V

ϑω
ε

ε

∥∥∥∥∥
↑

+ c1ε
log

(
SA

(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑω
ε

ε

∥∥∥
↑

+
ω

6

(1)

and

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ε

c1 log
(

SA
(1→ε)φω

)

n

∥∥∥∥∥(I ↘ εPϑ̂ω
ε,p

)→1


VPϑ̂ω

ε,p


V

ϑ̂ω
ε,p

ε,p

∥∥∥∥∥
↑

+ c1ε
log

(
SA

(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑ̂ω
ε,p

ε,p

∥∥∥
↑

+
ω

6
.

(2)

Proof. First we establish equation (1). The proof of [12, Lemma 1] shows that when n ⇔
16e2

1→ε 2 log
(

4S log e
1↓ε

φ

)
, with probability at least 1↘ ↽ we have

∥∥∥V̂
ϑω
ε

ε ↘ V
ϑω
ε

ε

∥∥∥
↑

↗ 4ε

2 log
(

4S log e
1↓ε

φ

)

n

∥∥∥∥∥(I ↘ εPϑω
ε
)→1


VPϑω

ε


V

ϑω
ε

ε

∥∥∥∥∥
↑

+ ε
2 log

(
4S log e

1↓ε

φ

)

(1↘ ε)n

∥∥∥V
ϑω
ε

ε

∥∥∥
↑

.

(3)
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Now since ∥∥∥V̂
ϑω
ε

ε,p ↘ V̂
ϑω
ε

ε

∥∥∥
↑

=
∥∥∥(I ↘ εP̂ϑω

ε
)→1r̃ϑω

ε
↘ (I ↘ εP̂ϑω

ε
)→1rϑω

ε

∥∥∥
↑

↗
∥∥∥(I ↘ εP̂ϑω

ε
)→1

∥∥∥
↑↓↑

→r̃ ↘ r→↑

↗ ↼

1↘ ε
=

ω

6
,

we can obtain equation (1) by triangle inequality (although we will choose the constant c1 below).

Next we establish equation (2). Using [12, Lemma 6], with probability at least 1↘ ↽ we have that
Q̂ϖ

ε,p(s, ϑ̂
ϖ
ε,p(s))↘ Q̂ϖ

ε,p(s, a)
 >

↼↽(1↘ ε)

3SA2
=

ω↽(1↘ ε)2

18SA2
(4)

uniformly over all s and all a ∞= ϑ̂ϖ
ε,p(s). From this separation condition (4), the assumptions of [12,

Lemma 5] hold (with ⇁ = ωφ(1→ε)2

18SA2 in their notation) for the MDP with the perturbed reward r̃. The
proof of [12, Lemma 5] shows that under the event (4) holds, the conditions for [12, Lemma 2] are
satisfied (with, in their notation, β1 = 2 log

(
32

(1→ε)2↼φSA log e
1→ε

)
= 2 log

(
576S2A3

(1→ε)4φ2ω log
e

1→ε

)
)

with additional failure probability ↗ ↽. The proof of [12, Lemma 2] then shows that, assuming
n > 16e2

1→ε 2 log
(

576S2A3

(1→ε)4φ2ω log
e

1→ε

)
, we have

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε,p

∥∥∥
↑

↗ 4ε


β1

n

∥∥∥∥(I ↘ εPϑ̂ω
ε,p

)→1
√
VPϑ̂ω

ε,p


V

ϑ̂ω
ε,p

ε,p

∥∥∥∥
↑

+
εβ1

(1↘ ε)n

∥∥∥V
ϑ̂ω
ε,p

ε,p

∥∥∥
↑

(5)

where we abbreviated β1 = 2 log
(

576S2A3

(1→ε)4φ2ω log
e

1→ε

)
for notational convenience.

We can again calculate that
∥∥∥V

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

=
∥∥∥(I ↘ εPϑ̂ω

ε,p
)→1r̃ϑ̂ω

ε,p
↘ (I ↘ εPϑ̂ω

ε,p
)→1rϑ̂ω

ε,p

∥∥∥
↑

↗
∥∥∥(I ↘ εPϑ̂ω

ε,p
)→1

∥∥∥
↑↓↑

→r̃ ↘ r→↑

↗ ↼

1↘ ε
=

ω

6
,

so
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε,p

∥∥∥
↑

+ ω
6 by triangle inequality, essentially giving (2).

Finally, to choose the constants c1 and c2, we first note that 2 log
(

4S log e
1↓ε

φ

)
↗ β1 <

c↗1 log
(

SA
(1→ε)φω

)
for some absolute constant c↗1, and therefore also all our requirements on n are

fulfilled when n ⇔ 16e2

1→ε c
↗
1 log

(
SA

(1→ε)φω

)
= c→2

1→ε log
(

SA
(1→ε)φω

)
for another absolute constant c↗2.

Lastly we note that by the union bound the total failure probability is at most 3↽, so to obtain a failure
probability of ↽↗ we may set ↽ = ↽↗/3 and absorb the additional constant when defining c1, c2 in
terms of c↗1, c↗2, and we also then increase c1 by a factor of 4 to absorb the factor of 4 appearing in the
first terms within (3) and (5).

Now we can analyze the variance parameters
∥∥∥∥∥(I ↘ εPϑω

ε
)→1


VPϑω

ε


V

ϑω
ε

ε

∥∥∥∥∥
↑

and

∥∥∥∥∥(I ↘ εPϑ̂ω
ε,p

)→1


VPϑ̂ω

ε,p


V

ϑ̂ω
ε,p

ε,p

∥∥∥∥∥
↑

,

which appear in the error bounds in Lemma 10. We begin by reproducing the following inequality
from [23, Lemma 2].
Lemma 11. In a weakly communicating MDP, for all ε ⇐ [0, 1), it holds that

sup
s

V
ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϖ
 ↗ H.

13



The following relates the variance parameter of interest to another parameter, the variance of the total
discounted rewards. This result essentially appears in [1, Lemma 4] (which was in turn inspired by
[3, Lemma 8]), but since their result pertains to objects slightly different than Pϑ and VPϑ

[
V ϑ
ε

]
, we

provide the full argument for completeness.
Lemma 12. For any deterministic stationary policy ϑ, we have

ε

∥∥∥∥(I ↘ εPϑ)
→1

√
VPϑ

[
V ϑ
ε

]∥∥∥∥
↑

↗


2

1↘ ε


∥∥∥∥∥V

ϑ

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

.

Proof. First we note the well-known variance Bellman equation (see for instance [16, Theorem 1]):

Vϑ

[ ↑∑

t=0

εtRt


= ε2VPϑ

[
V ϑ
ε

]
+ ε2PϑVϑ

[ ↑∑

t=0

εtRt


. (6)

Now we can basically identically follow the argument of [1, Lemma 4]. The matrix (1↘ε)(I↘εPϑ)→1

has rows which are each probability distributions (are non-negative and sum to 1). Therefore, by
Jensen’s inequality and the concavity of the function x ∈⇑

∋
x, for each row s ⇐ S we have

(1↘ ε)e≃s (I ↘ εPϑ)
→1

√
VPϑ

[
V ϑ
ε

] ↗
√(1↘ ε)e≃s (I ↘ εPϑ)→1VPϑ

[
V ϑ
ε

].

Using this fact we can calculate that, abbreviating v = VPϑ

[
V ϑ
ε

]
,

ε
∥∥(I ↘ εPϑ)

→1∋v
∥∥
↑ = ε

1

1↘ ε

∥∥(1↘ ε)(I ↘ εPϑ)
→1∋v

∥∥
↑

↗ ε
1

1↘ ε

√
→(1↘ ε)(I ↘ εPϑ)→1v→↑

= ε
1∋
1↘ ε

√
→(I ↘ εPϑ)→1v→↑.

In order to relate
∥∥(I ↘ εPϑ)→1v

∥∥
↑ to

∥∥(I ↘ ε2Pϑ)→1v
∥∥
↑ in order to apply the variance Bellman

equation (6), we calculate
∥∥(I ↘ εPϑ)

→1v
∥∥
↑ =

∥∥(I ↘ εPϑ)
→1(I ↘ ε2Pϑ)(I ↘ ε2Pϑ)

→1v
∥∥
↑

=
∥∥(I ↘ εPϑ)

→1 ((1↘ ε)I + ε(I ↘ εPϑ)) (I ↘ ε2Pϑ)
→1v

∥∥
↑

=
∥∥((1↘ ε)(I ↘ εPϑ)

→1 + εI
)
(I ↘ ε2Pϑ)

→1v
∥∥
↑

↗
∥∥(1↘ ε)(I ↘ εPϑ)

→1(I ↘ ε2Pϑ)
→1v

∥∥
↑ + ε

∥∥(I ↘ ε2Pϑ)
→1v

∥∥
↑

↗ (1↘ ε)
∥∥(I ↘ εPϑ)

→1
∥∥
↑↓↑

∥∥(I ↘ ε2Pϑ)
→1v

∥∥
↑ + ε

∥∥(I ↘ ε2Pϑ)
→1v

∥∥
↑

↗ (1 + ε)
∥∥(I ↘ ε2Pϑ)

→1v
∥∥
↑

↗ 2
∥∥(I ↘ ε2Pϑ)

→1v
∥∥
↑

Combining these calculations with the variance Bellman equation (6), we conclude that

ε
∥∥(I ↘ εPϑ)

→1∋v
∥∥
↑ ↗ ε

1∋
1↘ ε

√
2 →(I ↘ ε2Pϑ)→1v→↑ ↗


2

1↘ ε


∥∥∥∥∥V

ϑ

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

as desired.

The following is a multi-step version of the variance Bellman equation, which we will later apply
with T = H but holds for arbitrary T .
Lemma 13. For any integer T ⇔ 1, for any deterministic stationary policy ϑ, we have

Vϑ

[ ↑∑

t=0

εtRt


= Vϑ

[
T→1∑

t=0

εtRt + εTV ϑ
ε (ST )


+ ε2TPT

ϑ Vϑ

[ ↑∑

t=0

εtRt



14



and consequently

∥∥∥∥∥V
ϑ

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

↗

∥∥∥Vϑ
∑T→1

t=0 εtRt + εTV ϑ
ε (ST )

∥∥∥
↑

1↘ ε2T
.

Proof. Fix a state s0 ⇐ S . Letting FT be the σ-algebra generated by (S1, . . . , ST ), we calculate that

Vϑ
s0

[ ↑∑

t=0

εtRt


= Eϑ

s0

 ↑∑

t=0

εtRt ↘ V ϑ
ε (s0)

2

= Eϑ
s0


T→1∑

t=0

εtRt + εTV ϑ
ε (ST )↘ V ϑ

ε (s0) +
↑∑

t=T

εtRt ↘ εTV ϑ
ε (ST )

2

= Eϑ
s0

[
Eϑ
s0

[
T→1∑

t=0

εtRt + εTV ϑ
ε (ST )↘ V ϑ

ε (s0)

  
A

+
↑∑

t=T

εtRt ↘ εTV ϑ
ε (ST )

  
B

2FT



Using the above shorthands and opening the square, we obtain

Vϑ
s0

[ ↑∑

t=0

εtRt


= Eϑ

s0

[
Eϑ
s0

[
A2 +B2 + 2AB

FT

]]

= Eϑ
s0

[
A2 + Eϑ

s0

[
B2

FT

]
+ 2AEϑ

s0 [B|FT ]
]

= Eϑ
s0

[
A2 + Eϑ

ST

[
B2

]]

= Eϑ
s0






T→1∑

t=0

εtRt + εTV ϑ
ε (ST )↘ V ϑ

ε (s0)

2

+ Eϑ
ST




 ↑∑

t=T

εtRt ↘ εTV ϑ
ε (ST )

2








= Eϑ
s0






T→1∑

t=0

εtRt + εTV ϑ
ε (ST )↘ V ϑ

ε (s0)

2

+ ε2TEϑ
ST




 ↑∑

t=0

εtRt ↘ V ϑ
ε (ST )

2








= Vϑ
s0

[
T→1∑

t=0

εtRt + εTV ϑ
ε (ST )


+ ε2T e≃s0P

T
ϑ Vϑ

[ ↑∑

t=0

εtRt


,

where we used the tower property, the Markov property, and the fact that Eϑ
s0 [B|FT ] = 0 (which

is immediate from the definition of V ϑ
ε ). Since e≃s0P

T
ϑ is a probability distribution, it follows from

Holder’s inequality that
e≃s0P

T
ϑ Vϑ [

∑↑
t=0 ε

tRt]
 ↗ →Vϑ [

∑↑
t=0 ε

tRt]→↑. Therefore, it holds that
∥∥∥∥∥V

ϑ
s0

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

↗

∥∥∥∥∥V
ϑ

[
T→1∑

t=0

εtRt + εTV ϑ
ε (ST )

∥∥∥∥∥
↑

+ ε2T

∥∥∥∥∥V
ϑ
s0

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

and we can obtain the desired conclusion after rearranging terms.

We also need the following elemetary inequality.
Lemma 14. If ε ⇔ 1↘ 1

T for some integer T ⇔ 1, then

1↘ ε2T

1↘ ε
⇔


1↘ 1

e2


T ⇔ 4

5
T.

Proof. Fixing T ⇔ 1, we have

1↘ ε2T

1↘ ε
= 1 + ε + ε2 + · · ·+ ε2T→1
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which is increasing in ε, so infε⇐1→ 1
T

1→ε2T

1→ε is attained at ε = 1↘ 1
T . Now allowing T ⇔ 1 to be

arbitrary, note
1→(1→ 1

T )
2T

1→(1→ 1
T )

= T
(
1↘

(
1↘ 1

T

)2T) so it suffices to show that 1↘
(
1↘ 1

T

)2T ⇔ 1↘e2

for all T ⇔ 1. By computing the derivative, one finds that 1↘
(
1↘ 1

T

)2T is monotonically decreasing,
so

1↘

1↘ 1

T

2T

⇔ lim
T↓↑

1↘

1↘ 1

T

2T

= 1↘ 1

e2
.

We can now provide a bound on the variance of the total discounted rewards under ϑϖ
ε .

Lemma 15. Letting ϑϖ
ε be the optimal policy for the weakly communicating discounted MDP (P, r, ε),

if ε ⇔ 1↘ 1
H

, we have

∥∥∥∥∥V
ϑω
ε

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

↗ 5
H

1↘ ε
.

Proof. By using the multi-step variance Bellman equation in Lemma 13, it suffices to bound the
quantity

∥∥∥Vϑω
ε

∑
H→1
t=0 εtRt + εHV

ϑω
ε

ε (SH)
∥∥∥

↑
.

Fixing a state s0 ⇐ S ,

Vϑω
ε

s0

[
H→1∑

t=0

εtRt + εHV
ϑω
ε

ε (SH)


= Vϑω

ε
s0

[
H→1∑

t=0

εtRt + εH


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ


↗ Eϑω
ε

s0



H→1∑

t=0

εtRt + εH


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ


2

↗ 2Eϑω
ε

s0



H→1∑

t=0

εtRt



2

+ 2Eϑω
ε

s0

ε
H


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ


2

↗ 2H2 + 2 sup
s


V

ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϖ
2

↗ 4H2

where in the final inequality we used Lemma 11. Taking the maximum over all states s and combining
with Lemma 13 we obtain

∥∥∥∥∥V
ϑω
ε

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

↗ 4H2

1↘ ε2H
.

Combining this bound with the elementary inequality in Lemma 14, which can be rearranged to show
that 1

1→ε2H ↗ 5
4

1
(1→ε)H , we complete the proof.

We also need to control the variance under ϑ̂ϖ
ε,p, which requires additional steps. This is done in the

following lemma.

Lemma 16. We have

∥∥∥∥∥V
ϑ̂ω
ε,p

[ ↑∑

t=0

εtR̃t

∥∥∥∥∥
↑

↗ 15
H

2 +
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
2

↑
+
∥∥∥V

ϑω
ε

ε ↘ V̂
ϑω
ε

ε,p

∥∥∥
2

↑
H(1↘ ε)

.
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Proof. In light of the multi-step variance Bellman equation in Lemma 13, it suffices to give a bound
on

∥∥∥Vϑ̂ω
ε,p

∑
H→1
t=0 εtR̃t + εHV

ϑ̂ω
ε,p

ε,p (SH)
∥∥∥

↑
. We have for any state s0 that

Vϑ̂ω
ε,p

s0

[
H→1∑

t=0

εtR̃t + εHV
ϑ̂ω
ε,p

ε,p (SH)



= Vϑ̂ω
ε,p

s0

[
H→1∑

t=0

εtR̃t + εHV
ϑ̂ω
ε,p

ε,p (SH)↘ εH
1

1↘ ε
ϱϖ


↗ Eϑ̂ω
ε,p

s0


H→1∑

t=0

εtR̃t + εHV
ϑ̂ω
ε,p

ε,p (SH)↘ εH
1

1↘ ε
ϱϖ
2

= Eϑ̂ω
ε,p

s0


H→1∑

t=0

εtR̃t + εH

(
V

ϑ̂ω
ε,p

ε,p (SH)↘ V
ϑω
ε

ε (SH)
)
+ εH


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ
2

↗ 3Eϑ̂ω
ε,p

s0


H→1∑

t=0

εtR̃t

2

+ 3ε2HEϑ̂ω
ε,p

s0

(
V

ϑ̂ω
ε,p

ε,p (SH)↘ V
ϑω
ε

ε (SH)
)2

+ 3ε2HEϑ̂ω
ε,p

s0


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ
2

↗ 3Eϑ̂ω
ε,p

s0


H→1∑

t=0

εtR̃t

2

+ 6ε2HEϑ̂ω
ε,p

s0

(
V

ϑ̂ω
ε,p

ε (SH)↘ V
ϑω
ε

ε (SH)
)2

+ 6ε2H
∥∥∥V

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
2

↑

+ 3ε2HEϑ̂ω
ε,p

s0


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ
2

, (7)

where we have used triangle inequality and the inequalities (a+ b)2 ↗ 2a2 +2b2 and (a+ b+ c)2 ↗
3a2 + 3b2 + 3c2. Now we bound each term of (7). First, we have

3Eϑ̂ω
ε,p

s0


H→1∑

t=0

εtR̃t

2

↗ 3 (H →r̃→↑)2 ↗ 3H2(→r→↑ + ↼)2 ↗ 6H2


1 +


(1↘ ε)ω

6

2


↗ 6H2


7

6

2

,

where we had (1→ε)ω
6 ↗ ω

6H ↗ 1
6 because 1

1→ε ⇔ H and ω ↗ H. Clearly it holds that

6ε2HEϑ̂ω
ε,p

s0

(
V

ϑ̂ω
ε,p

ε (SH)↘ V
ϑω
ε

ε (SH)
)2

↗ 6
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V
ϑω
ε

ε

∥∥∥
2

↑
.

By an argument identical to those used in the proof of the error bounds in Lemma 10, we get

∥∥∥V
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ 1

1↘ ε
↼ =

ω

6
,

so 6ε2H
∥∥∥V

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
2

↑
↗ ω2

6 ↗ H
2

6 since ω ↗ H. Finally, using Lemma 11, we obtain

3ε2HEϑ̂ω
ε,p

s0


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ
2

↗ 3 sup
s

V
ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ

2

↗ 3H2.
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Using all these bounds in (7), we have

Vϑ̂ω
ε,p

s0

[
H→1∑

t=0

εtR̃t + εHV
ϑ̂ω
ε,p

ε,p (SH)



↗ 3Eϑ̂ω
ε,p

s0


H→1∑

t=0

εtR̃t

2

+ 6ε2HEϑ̂ω
ε,p

s0

(
V

ϑ̂ω
ε,p

ε (SH)↘ V
ϑω
ε

ε (SH)
)2

+ 6ε2H
∥∥∥V

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
2

↑

+ 3ε2HEϑ̂ω
ε,p

s0


V

ϑω
ε

ε (SH)↘
1

1↘ ε
ϱϖ
2

↗

49

6
+

1

6
+ 3


H

2 + 6
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V
ϑω
ε

ε

∥∥∥
2

↑

↗ 12H2 + 6
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V
ϑω
ε

ε

∥∥∥
2

↑
. (8)

Finally, we use the elementwise inequality

V
ϑω
ε

ε ⇔ V
ϑ̂ω
ε,p

ε

⇔ V̂
ϑ̂ω
ε,p

ε,p ↘
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

1

⇔ V̂
ϑω
ε

ε,p ↘
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

1

⇔ V
ϑω
ε

ε ↘
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

1↘
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

1,

from which it follows that
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V
ϑω
ε

ε

∥∥∥
↑

↗
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑
+
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

. Combining
this with (8), we conclude

Vϑ̂ω
ε,p

s0

[
H→1∑

t=0

εtR̃t + εHV
ϑ̂ω
ε,p

ε,p (SH)


↗ 12H2 + 12

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
2

↑
+ 12

∥∥∥V̂
ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
2

↑
. (9)

Now combining with Lemma 13 and then using Lemma 14, we have
∥∥∥∥∥V

ϑ̂ω
ε,p

[ ↑∑

t=0

εtR̃t

∥∥∥∥∥
↑

↗

∥∥∥Vϑ̂ω
ε,p

∑
H→1
t=0 εtR̃t + εHV

ϑ̂ω
ε,p

ε (SH)
∥∥∥

↑
1↘ ε2H

↗ 12
H

2 +
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
2

↑
+

∥∥∥V
ϑω
ε

ε ↘ V̂
ϑω
ε

ε,p

∥∥∥
2

↑
1↘ ε2H

↗ 12
5

4

H
2 +

∥∥∥V
ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
2

↑
+
∥∥∥V

ϑω
ε

ε ↘ V̂
ϑω
ε

ε,p

∥∥∥
2

↑
H(1↘ ε)

= 15
H

2 +
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
2

↑
+

∥∥∥V
ϑω
ε

ε ↘ V̂
ϑω
ε

ε,p

∥∥∥
2

↑
H(1↘ ε)

as desired.

A.2 Proofs of Theorems 1 and 2

With the above lemmas we can complete the proof of Theorem 1 on discounted MDPs.

Proof of Theorem 1. Our approach will be to utilize our variance bounds within the error bounds
from Lemma 10. We will find a value for n which guarantees that

∥∥∥V̂
ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

and
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

are both ↗ ω/2, which guarantees that
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V
ϑω
ε

ε

∥∥∥
↑

↗ ω.
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First we note that the conclusions of Lemma 10 require n ⇔ c2
1→ε log

(
SA

(1→ε)φω

)
so we assume n is

large enough that this holds.

Now we bound
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

. Starting with inequality (1) from Lemma 10 and then applying our
variance bounds through Lemma 12 and then Lemma 15, we have
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

↗ ε

c1 log
(

SA
(1→ε)φω

)

n

∥∥∥∥∥(I ↘ εPϑω
ε
)→1


VPϑω

ε


V

ϑω
ε

ε

∥∥∥∥∥
↑

+ c1ε
log

(
SA

(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑω
ε

ε

∥∥∥
↑

+
ω

6

↗

c1 log
(

SA
(1→ε)φω

)

n


2

1↘ ε


∥∥∥∥∥V

ϑω
ε

[ ↑∑

t=0

εtRt

∥∥∥∥∥
↑

+ c1ε
log

(
SA

(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑω
ε

ε

∥∥∥
↑

+
ω

6

↗

c1 log
(

SA
(1→ε)φω

)

n


2

1↘ ε

√

5
H

1↘ ε
+ c1ε

log
(

SA
(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑω
ε

ε

∥∥∥
↑

+
ω

6

↗

c1 log
(

SA
(1→ε)φω

)

n

√

10
H

(1↘ ε)2
+ c1

log
(

SA
(1→ε)φω

)

(1↘ ε)2n
+

ω

6

where in the last inequality we used the facts that
∥∥∥V

ϑω
ε

ε

∥∥∥
↑

↗ 1
1→ε and ε ↗ 1. Now if we assume

n ⇔ 360c1
H

(1→ε)2ω2 log
(

SA
(1→ε)φω

)
, we have

∥∥∥V̂
ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

↗

c1 log
(

SA
(1→ε)φω

)

n

√

10
H

(1↘ ε)2
+ c1

log
(

SA
(1→ε)φω

)

(1↘ ε)2n
+

ω

6

↗ 1

6

∋
ω2 +

1

6

ω2

H
+

ω

6
↗ ω/2

due to the fact that ω ↗ H.

Next, to bound
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

, starting from inequality (2) in Lemma 10 and then analogously
applying Lemma 12 and then Lemma 16, we obtain

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ ε

c1 log
(

SA
(1→ε)φω

)

n

∥∥∥∥∥(I ↘ εPϑ̂ω
ε,p

)→1


VPϑ̂ω

ε,p


V

ϑ̂ω
ε,p

ε,p

∥∥∥∥∥
↑

+ c1ε
log

(
SA

(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑ̂ω
ε,p

ε,p

∥∥∥
↑

+
ω

6

↗

c1 log
(

SA
(1→ε)φω

)

n


2

1↘ ε


∥∥∥∥∥V

ϑ̂ω
ε,p

[ ↑∑

t=0

εtR̃t

∥∥∥∥∥
↑

+ c1ε
log

(
SA

(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑ̂ω
ε,p

ε,p

∥∥∥
↑

+
ω

6

↗

c1 log
(

SA
(1→ε)φω

)

n


2

1↘ ε


15

H2 +
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
2

↑
+
∥∥∥V

ϑω
ε

ε ↘ V̂
ϑω
ε

ε,p

∥∥∥
2

↑
H(1↘ ε)

+ c1ε
log

(
SA

(1→ε)φω

)

(1↘ ε)n

∥∥∥V
ϑ̂ω
ε,p

ε,p

∥∥∥
↑

+
ω

6
.
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Combining with the fact from above that
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

↗ H

2 , as well as the facts that
∥∥∥V

ϑ̂ω
ε,p

ε,p

∥∥∥
↑

↗
1

1→ε , ε ↗ 1, and
∋
a+ b ↗

∋
a+

∋
b, we have

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗

c1 log
(

SA
(1→ε)φω

)

n


2

1↘ ε


15

5
4H

2 +
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
2

↑
H(1↘ ε)

+ c1
log

(
SA

(1→ε)φω

)

(1↘ ε)2n
+

ω

6

↗

c1 log
(

SA
(1→ε)φω

)

n

√
30

H(1↘ ε)2


5

4
H2 +

∥∥∥V
ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
2

↑



+ c1
log

(
SA

(1→ε)φω

)

(1↘ ε)2n
+

ω

6

=

c1 log
(

SA
(1→ε)φω

)

n

√
30

H(1↘ ε)2


5

4
H+

∥∥∥V
ϑ̂ω
ε,p

ε ↘ V̂
ϑ̂ω
ε,p

ε,p

∥∥∥
↑



+ c1
log

(
SA

(1→ε)φω

)

(1↘ ε)2n
+

ω

6
.

Rearranging terms gives

1↘

c1 log
(

SA
(1→ε)φω

)

n

√
30

H(1↘ ε)2




∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗

c1 log
(

SA
(1→ε)φω

)

n

√
75H/2

(1↘ ε)2
+ c1

log
(

SA
(1→ε)φω

)

(1↘ ε)2n
+

ω

6
.

Assuming n ⇔ 120c1
H

(1→ε)2ω2 log
(

SA
(1→ε)φω

)
, we have

1↘

c1 log
(

SA
(1→ε)φω

)

n

√
30

H(1↘ ε)2
⇔ 1↘ 1

2

√
ω2(1↘ ε)2

H

1

H(1↘ ε)2
= 1↘ 1

2

ω

H
⇔ 1

2

since ω ↗ H. Also assuming n ⇔ (75/2) · 242c1 H

(1→ε)2ω2 log
(

SA
(1→ε)φω

)
we have similarly to before

thatc1 log
(

SA
(1→ε)φω

)

n

√
75H/2

(1↘ ε)2
+ c1

log
(

SA
(1→ε)φω

)

(1↘ ε)2n
+

ω

6

↗ 1

24

√
(1↘ ε)2ω2

H

H

(1↘ ε)2
+

1

24

(1↘ ε)2ω2

H

1

(1↘ ε)2
+

ω

6

↗ ω

24
+

ω

24
+

ω

6
=

ω

4
.

Combining these two calculations, we have 1
2

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ ω
4 , so

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ ω
2

as desired.

Since we have established that
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

,
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ ω
2 , since also V̂

ϑ̂ω
ε,p

ε,p ⇔ V̂
ϑω
ε

ε,p,
we can conclude that

V
ϑω
ε

ε ↘ V
ϑ̂ω
ε,p

ε ↗
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

1+
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

1 ↗ ω1,
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that is that ϑ̂ϖ
ε,p is ω-optimal for the discounted MDP (P, r, ε).

We finally note that all our requirements on the size of n can be satisfied by requiring

n ⇔ C2
H

(1↘ ε)2ω2
log


SA

(1↘ ε)↽ω



:= max

{
c2H

(1↘ ε)2ω2
,

360c1H

(1↘ ε)2ω2
,
(75/2)242c1H

(1↘ ε)2ω2

}
log


SA

(1↘ ε)↽ω



⇔ max

{
c2

1↘ ε
,

360c1H

(1↘ ε)2ω2
,
(75/2)242c1H

(1↘ ε)2ω2

}
log


SA

(1↘ ε)↽ω



where we used that H

(1→ε)2ω2 ⇔ H
2

(1→ε)ω2 ⇔ 1
1→ε (since 1

1→ε ⇔ H and H ⇔ ω).

We next use Theorem 1 to prove Theorem 2 on average-reward MDPs.

Proof of Theorem 2. Using Theorem 1 with target accuracy H and discount factor ε = 1↘ ω
12H , we

obtain a H-optimal policy for the discounted MDP (P, r, ε) with probability at least 1↘ ↽ as long as

n ⇔ C2
H

(1↘ ε)2H2
log


SA

(1↘ ε)↽ω



= 122C2
H

H2

H
2

ω2
log


12H

ω

SA

↽ω



which is satisfied when n ⇔ C1
H

ω2 log
(
SAH

φω

)
for sufficiently large C1.

Applying Lemma 9 (with error parameter ω
12 since we have chosen ε = 1↘ ω/12

H
), we have that

ϱϖ ↘ ϱϑ̂
ω

↗

8 + 3

H

H


ω

12
↗ ω1

as desired.

A.3 Proof of Theorem 3

Proof of Theorem 3. Fix T, n ⇔ 1. First we define the instances M0 and M1, which have parameters
B and ω which we will choose later, using Figure 2. Note that in both MDPs, all states have only
one action. The only difference is in the state transition distribution at state 1: For M0 this is a
Cat( 12 ,

1
2 ) distribution and for M1 this is a Cat( 12 + ω, 1

2 ↘ ω) distribution, where Cat(p1, p2) denotes
the categorical distribution with event probabilities p1 and p2 = 1↘ p1.
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Instance M1

Figure 2: MDPs used in Theorem 3

Now we calculate the bias of instance M1. It is easy to check the stationary distribution is µ =
[ 12 ,

1
4 + ω

2 ,
1
4 ↘ ω

2 , 0]. Therefore it has optimal gain ϱϖ = 1
2
1
2 + 1

4 + ω
2 = 1

2 + ω
2 . Now we claim that

the optimal bias is

hϖ =





↘ω/2
1
2 ↘ ω/2

↘ 1
2 ↘ ω/2

↘(B + 1) ω2



 .

We can check this by showing that µhϖ = 0 and that ϱϖ1+ hϖ = r + Phϖ, where P is the transition
matrix of the above MDP (again, note that each state has only one action, so there is only one policy,
and we use this policy to induce the markov chain with transition matrix P ). First,

µhϖ = ↘ω

4
+

1

8
+

ω

4
↘ ω

8
↘ ω2

4
↘ 1

8
+

ω

4
↘ ω

8
+

ω2

4
= 0.

It is also easy to check the first three rows of the equality ϱϖ1+ hϖ = r + Phϖ. For the fourth row,
we have

hϖ(4) +
1

2
+

ω

2
=

1

2
+

1

B
hϖ(1) +


1↘ 1

B


hϖ(4)

△▽ 1

B
hϖ(4) =

↘ω

2B
↘ ω

2

△▽ hϖ(4) =
ω

2
(B + 1).

Thus →hϖ→span = 1
2↘ω/2↘

(
↘(B + 1) ω2

)
= 1

2 (Bω+1). If we set B = 2T
ω ↘ 1

2 , we have →hϖ→span = T .
Also note that the calculation for hϖ holds for any ω, so the optimal bias span of M0 is [0, 1

2 ,↘
1
2 , 0]

≃,
and thus M0 has optimal bias span 1.

Finally, to distinguish between the two MDPs M0 and M1, we must be able to determine the
next-state distribution of state 1, that is, to distinguish between the two hypotheses Q1 = Cat( 12 ,

1
2 )

and Q2 = Cat( 12 + ω, 1
2 ↘ ω). Given n i.i.d. observations from the transition distribution of state 1,

this is a binary hypothesis testing problem between the product distributions Qn
1 and Qn

2 . By Le
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Cam’s bound [24], the testing failure probability is lower bounded by

1

2
(1↘ →Qn

1 ↘Qn
2→TV) ⇔

1

2


1↘


1

2
DKL(Qn

1 |Qn
2 )



=
1

2


1↘


n

2
DKL(Q1|Q2)


,

where →Qn
1 ↘Qn

2→TV and DKL(Qn
1 |Qn

2 ) denote the total variation distance and Kullback–Leibler (KL)
divergence between Qn

1 and Qn
2 , respectively, and the last two (in)equalities follow from Pinsker’s

inequality and tensorization of KL divergence. By direct calculation, we have

DKL(Q1|Q2) =
1

2
log

1

1 + 2ω
+

1

2
log

1

1↘ 2ω

↗ 1

2
· ↘2ω

1 + 2ω
+

1

2
· 2ω

1↘ 2ω
log(1 + x) ↗ x, ̸x > ↘1

=
4ω2

1↘ 4ω2

↗ 8ω2 ω ↗ 1

4
.

Combining the last two equations, we see that the testing failure probability is at least 1
2

(
1↘

∋
4nω2

)
.

Thus, if we set ω = 1
4
⇓
n

, the failure probability is at least 1
4 .

B Proofs for general MDPs

In this section, we provide the proofs for our main results in Section 4 for general MDPs. Again, we
can assume that H+ B is an integer, which only affects the sample complexity by a constant multiple
< 2.

First we develop more notation which will be useful in the setting of general MDPs. Recall we
defined, for any policy ϑ, that Rϑ is the set of states which are recurrent in the Markov chain Pϑ,
and T ϑ = S \ Rϑ is the set of transient states. We now present a standard decomposition of Markov
chains [14, Appendix A]. For any policy ϑ, possibly after reordering states so that the recurrent states
appear first (and are grouped into disjoint irreducible closed sets), we can decompose

Pϑ =

[
Xϑ 0
Yϑ Zϑ

]
(10)

such that Xϑ are probabilities of transitions between states which are recurrent under ϑ, Yϑ are
probabilities of transitions from T ϑ into Rϑ, and Zϑ are probabilities of transitions between states
within T ϑ. Furthermore, supposing there are k irreducible closed blocks within Rϑ, Xϑ is block-
diagonal of the form

Xϑ =





Xϑ,1 0 · · · 0
0 Xϑ,2 · · · 0
...

...
. . .

...
0 0 · · · Xϑ,k



 .

The limiting matrix of the Markov chain induced by policy ϑ is defined as the matrix

P↑
ϑ = C-lim

T↓↑
PT
ϑ = lim

T↓↑

1

T

T→1∑

t=0

P t
ϑ.

P↑
ϑ is a stochastic matrix (all rows positive and sum to 1) since S is finite. We also have PϑP↑

ϑ =
P↑
ϑ = P↑

ϑ Pϑ . Additionally, ϱϑ = P↑
ϑ rϑ . In terms of our decomposition, we have

P↑
ϑ =

[
X↑

ϑ 0
Y ↑
ϑ 0

]
(11)
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where

X↑
ϑ =





X↑
ϑ,1 0 · · · 0
0 X↑

ϑ,2 · · · 0
...

...
. . .

...
0 0 · · · X↑

ϑ,k




,

each X↑
ϑ,i = 1x≃

ϑ,i for some stochastic row vector x≃
ϑ,i, and Y ↑

ϑ = (I ↘ Zϑ)→1YϑX↑
ϑ . Also we

have (I ↘Zϑ)→1 =
∑↑

t=0 Z
t
ϑ , and

∑↑
t=0 Z

t
ϑYϑ = (I ↘Zϑ)→1Yϑ has stochastic rows (each row is a

probability distribution, that is all entries are positive and sum to 1).

With the same arrangement of states as within the above decomposition of Pϑ (10), let

V ϑ
ε =

[
V ϑ
ε

V ϑ
ε

]

decompose V ϑ
ε into recurrent and transient states, and generally we use this same notation for any

vector x ⇐ RS : we let x list the values of xs for recurrent x ⇐ Rϑ , x contain xs for s ⇐ T ϑ , and we
assume the entire x has been rearranged so that x = [x x]≃. Note that the rearrangement of states
depends on the policy ϑ so this notation has potential for confusion if applied to objects relating to
multiple policies at once, but the policy determining the rearrangement will always be clear from
context in our arguments.

The main reason we decompose Pϑ into recurrent and transient states is the following key observation.
Lemma 17. For any policy ϑ, if s, s↗ are in the same recurrent block of the Markov chain with

transition matrix Pϑ , then ϱϖ(s) = ϱϖ(s↗).

Proof. Define the history-dependent policy ϑ̃ which follows ϑ until its history first contains s↗, after
which point it follows ϑϖ. Since ϱϖ(s) is the optimal gain achievable starting at s by following
any history-dependent policy [14], we have ϱϖ(s) ⇔ ϱϑ̃(s) := limT↓↑

1
T E

ϑ̃
s

∑T→1
t=0 Rt (where

Eϑ̃
s is defined in the natural way from the distribution over trajectories (S0, A0, . . . ) where At ⇓

ϑ̃(S0, A0, . . . , St) and St+1 ⇓ P (· | St, At)). Let Ts→ = inf{t ⇔ 1 : St = s↗} be the hitting time of
state s↗ and let FTs→ be the stopped σ-algebra (with respect to the filtration where for all nonnegative
integers t, Ft is the σ-algebra generated by S0, A0, . . . , St, At). Then

lim
T↓↑

1

T
Eϑ̃
s

T→1∑

t=0

Rt = lim
T↓↑

1

T
Eϑ̃
s

[
Eϑ̃
s

[
T→1∑

t=0

Rt

FTs→



= lim
T↓↑

1

T
Eϑ̃
s




Ts→→1∑

t=0

Rt + Eϑ̃
s




T→1∑

t=Ts→

Rt


FTs→









= lim
T↓↑

1

T
Eϑ̃
s




Ts→→1∑

t=0

Rt + g(T, Ts→)





= lim
T↓↑

1

T
Eϑ
s




Ts→→1∑

t=0

Rt + g(T, Ts→)





⇔ lim
T↓↑

1

T
Eϑ
s [g(T, Ts→)]

where g(T, k) := Eϑω

s→

∑T→k→1
t=0 Rt


, and we used the tower property, FTs→ -measurability of

∑Ts→→1
t=0 Rt, the strong Markov property, and the definition of ϑ̃. Now note that Ts→ < ↔ al-

most surely since s and s↗ are in the same recurrent block, and on the event {Ts→ = k} for any natural
number k, we have that

lim
T↓↑

1

T
g(T, k) = lim

T↓↑

1

T
Eϑω

s→

[
T→k→1∑

t=0

Rt


= ϱϖ(s↗)
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because we can bound

1

T
Eϑω

s→

[
T→1∑

t=0

Rt


↘ k

T
↗ 1

T
Eϑω

s→

[
T→k→1∑

t=0

Rt


↗ 1

T
Eϑω

s→

[
T→1∑

t=0

Rt



and both sides converge to ϱϖ(s↗). Therefore g(T,Ts→ )
T converges almost surely to the constant ϱϖ(s↗),

and also this random variable is bounded by 1, so by the dominated convergence theorem we have

lim
T↓↑

1

T
Eϑ
s [g(T, Ts→)] = Eϑ

s

[
lim

T↓↑

1

T
g(T, Ts→)

]
= ϱϖ(s↗).

Thus we have shown that ϱϖ(s) ⇔ ϱϖ(s↗). Since s and s↗ were arbitrary states in the same recurrent
block we also have ϱϖ(s↗) ⇔ ϱϖ(s), and thus ϱϖ(s) = ϱϖ(s↗) as desired.

Lemma 18. For any state s which is transient under a policy ϑ, if the MDP satisfies the bounded

transient time assumption with parameter B, we have

∥∥∥∥∥

↑∑

t=0

e≃s Z
t
ϑ

∥∥∥∥∥
1

↗ B.

Proof. Let T = inf{t : St ⇐ Rϑ}. Notice that
∥∥e≃s Zt

ϑ

∥∥
1
= Pϑ

s (T > t). Therefore, we have
∥∥∥∥∥

↑∑

t=0

e≃s Z
t
ϑ

∥∥∥∥∥
1

↗
↑∑

t=0

∥∥e≃s Zt
ϑ

∥∥
1

=
↑∑

t=0

Pϑ
s (T > t)

= Eϑ
s [T ]

↗ B,

where we used a well-known formula for the expectation of nonnegative-integer-valued random
variables, and the bounded transient time assumption.

Lemma 19. Let s be a transient state under Pϑ . Then

e≃s (I ↘ εPϑ)
→1 =

[
es≃

∑↑
k=1 ε

kZk→1
ϑ Yϑ(I ↘ εXϑ)→1 es≃

∑↑
t=0 ε

tZt
ϑ

]
.

Proof. Using the decomposition of Pϑ , we can calculate for any integer t ⇔ 1 that

P t
ϑ =

[
Xt

ϑ 0∑t
k=1 Z

k→1
ϑ YϑXt→k

ϑ Zt
ϑ

]
.

Therefore, we have

e≃s (I ↘ εPϑ)
→1 = e≃s

↑∑

t=0

εtP t
ϑ

=
[
es≃

∑↑
t=0 ε

t
∑t

k=1 Z
k→1
ϑ YϑXt→k

ϑ es≃
∑↑

t=0 ε
tZt

ϑ

]

=
[
es≃

∑↑
k=1

∑↑
t=k ε

tZk→1
ϑ YϑXt→k

ϑ es≃
∑↑

t=0 ε
tZt

ϑ

]

=
[
es≃

∑↑
k=1 ε

kZk→1
ϑ Yϑ

∑↑
t=k ε

t→kXt→k
ϑ es≃

∑↑
t=0 ε

tZt
ϑ

]

=
[
es≃

∑↑
k=1 ε

kZk→1
ϑ Yϑ(I ↘ εXϑ)→1 es≃

∑↑
t=0 ε

tZt
ϑ

]
.

Note that we are able to rearrange the order of the summation in the third equality because all
summands are (elementwise) positive.
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B.1 Proof of Theorem 6

Theorem 6, our result which helps reduce general average reward MDPs to discounted MDPs, is
proven as a straightforward consequence of the following sequence of lemmas, some of which will
also be needed for the proof of our discounted MDP sample complexity bound Theorem 7.
Lemma 20. We have ∥∥∥∥V

ϑω

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
↑

↗ →hϖ→span .

Proof. We begin by observing that ϑϖ satisfies

ϱϖ + hϖ = rϑω + Pϑωhϖ.

Therefore, it holds that

V ϑω

ε = (I ↘ εPϑω)→1rϑω

= (I ↘ εPϑω)→1 (ϱϖ + hϖ ↘ Pϑωhϖ)

= (I ↘ εPϑω)→1ϱϖ + (I ↘ εPϑω)→1 (I ↘ Pϑω)hϖ.

Since Pϑωϱϖ = ϱϖ, we can calculate that

(I ↘ εPϑω)→1ϱϖ =
∑

t⇐0

εtP t
ϑωϱϖ =

∑

t⇐0

εtϱϖ =
1

1↘ ε
ϱϖ.

It also holds that

(I ↘ εPϑω)→1 (I ↘ Pϑω) =
∑

t⇐0

εtP t
ϑω(I ↘ Pϑω)

=
∑

t⇐0

εtP t
ϑω ↘

∑

t⇐0

εtP t+1
ϑω

= Pϑω +
∑

t⇐0

(εt+1 ↘ εt)P t+1
ϑω (12)

and
∑

t⇐0 ε
t+1 ↘ εt = (ε ↘ 1)

∑
t⇐0 ε

t = ↘1. Therefore (12) is the difference of two stochastic
matrices, and so it follows that

∥∥(I ↘ εPϑω)→1 (I ↘ Pϑω)hϖ
∥∥
↑ ↗ →hϖ→span .

Lemma 21. If ϑϖ
ε is optimal for the discounted MDP (P, r, ε) and s is recurrent under ϑϖ

ε , then

V
ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϖ(s)

 ↗ →hϖ→span

and V
ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϑ

ω
ε (s)

 ↗ 2 →hϖ→span .

These facts can be written as

∥∥∥∥V
ϑω
ε

ε ↘ 1
1→ε ϱ

ϖ

∥∥∥∥
↑

↗ →hϖ→span and

∥∥∥∥V
ϑω
ε

ε ↘ 1
1→ε ϱ

ϑω
ε

∥∥∥∥
↑

↗ 2 →hϖ→span

respectively.

Proof. First note that if s is recurrent for the Markov chain Pϑω
ε
, then all states in the support of

e≃s Pϑω
ε

are in the same recurrent block as state s, and ϱϖ is constant (and equal to ϱϖ(s)) within this
recurrent block by Lemma 17. The (unmodified) Bellman equation states that

ϱϖ(s) + hϖ(s) = max
a:Psaςω=ςω(s)

rsa + Psah
ϖ.
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Since we established that e≃s Pϑω
ε
ϱϖ = ϱϖ(s), all actions a in the support of ϑϖ

ε(a | s) satisfy
Psaϱϖ = ϱϖ(s), and therefore

ϱϖ(s) + hϖ(s) = max
a:Psaςω=ςω(s)

rsa + Psah
ϖ

⇔
∑

a↔A
ϑϖ
ε(a | s) (rsa + Psah

ϖ)

= e≃s

(
rϑω

ε
+ Pϑω

ε
hϖ

)
.

Since this holds for all s ⇐ Rϑω
ε , we can rearrange to obtain that

rϑω
ε
↗ ϱϖ + hϖ ↘ Pϑω

ε
hϖ = ϱϖ + hϖ ↘Xϑω

ε
hϖ.

Now we can follow an argument which is similar to that of [23, Lemma 2]. We have

V
ϑω
ε

ε = (I ↘ εPϑω
ε
)→1rϑω

ε

= (I ↘Xϑω
ε
)→1rϑω

ε

↗ (I ↘Xϑω
ε
)→1

(
ϱϖ + hϖ ↘Xϑω

ε
hϖ

)

using monotonicity of (I ↘Xϑω
ε
)→1 in the final inequality. Due to the observation above that for

all s ⇐ Rϑω
ε , all actions a in the support of ϑϖ

ε(a | s) satisfy Psaϱϖ = ϱϖ(s), we have Xϑω
ε
ϱϖ = ϱϖ.

Therefore we have

(I ↘Xϑω
ε
)→1ϱϖ =

↑∑

t=0

εtXϑω
ε
ϱϖ =

↑∑

t=0

εtϱϖ =
1

1↘ ε
ϱϖ.

For the second term, by using an argument which is completely analogous to that used in Lemma 20
we have

∥∥∥(I ↘Xϑω
ε
)→1

(
hϖ ↘Xϑω

ε
hϖ

)∥∥∥
↑

↗ →hϖ→span. Combining these steps we obtain that

V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ ↗ →hϖ→span 1.

To obtain a lower bound, we can combine the optimality of ϑϖ
ε for the ε-discounted problem with

Lemma 20 to obtain the bound

V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ ⇔ V ϑω

ε ↘ 1

1↘ ε
ϱϖ ⇔ →hϖ→span 1.

Therefore we can conclude that
∥∥∥∥V

ϑω
ε

ε ↘ 1
1→ε ϱ

ϖ

∥∥∥∥
↑

↗ →hϖ→span.

For the second bound in the lemma statement, we first note that, as observed in [20],

P↑
ϑω
ε
V

ϑω
ε

ε = P↑
ϑω
ε

↑∑

t=0

εtP t
ϑω
ε
rϑω

ε
=

↑∑

t=0

εtP↑
ϑω
ε
rϑω

ε
=

1

1↘ ε
ϱϑ

ω
ε .

Also, as discussed previously, if s ⇐ Rϑω
ε then e≃s Pϑω

ε
ϱϖ = ϱϖ(s), so then we also have e≃s P

↑
ϑω
ε
ϱϖ =

ϱϖ(s) (which can be seen directly from the definition of the limiting matrix P↑
ϑω
ε

). Equivalently,
e≃s (I ↘ P↑

ϑω
ε
)ϱϖ = 0. Using both of these two observations, we have

V
ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϑ

ω
ε (s) = e≃s (I ↘ P↑

ϑω
ε
)V

ϑω
ε

ε

= e≃s (I ↘ P↑
ϑω
ε
)(V

ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ)

= es
≃(I ↘X↑

ϑω
ε
)(V

ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ).
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Therefore, we obtain
∥∥∥∥V

ϑω
ε

ε ↘ 1

1↘ ε
ϱϑ

ω
ε

∥∥∥∥
↑

↗
∥∥∥∥(I ↘X↑

ϑω
ε
)(V

ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ)

∥∥∥∥
↑

↗
∥∥∥∥V

ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥

span

↗ 2

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
↑

↗ 2 →hϖ→span

using the first bound from the lemma statement in the final inequality.

Lemma 22. We have

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
↑

↗ B+ →hϖ→span

and

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϑ

ω
ε

∥∥∥∥
↑

↗ B+ 2 →hϖ→span .

Proof. Note that by combining with Lemma 21, it suffices to prove for any transient state s ⇐ T ϑω
ε

that
V

ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϖ(s)

 ↗ B+ →hϖ→span

and
V

ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϑ

ω
ε (s)

 ↗ B+ 2 →hϖ→span .

Let s be transient under ϑϖ
ε . Then starting by using Lemma 19, we can calculate

V
ϑω
ε

ε (s) = e≃s (I ↘ εPϑω
ε
)→1rϑω

ε

=
↑∑

t=0

εtes
≃Zt

ϑω
ε
rϑω

ε
+ ε

↑∑

t=0

εtes
≃Zt

ϑω
ε
Yϑω

ε
(I ↘ εXϑω

ε
)→1rϑω

ε

=
↑∑

t=0

εtes
≃Zt

ϑω
ε
rϑω

ε
+ ε

↑∑

t=0

εtes
≃Zt

ϑω
ε
Yϑω

ε
V

ϑω
ε

ε

↗
↑∑

t=0

es
≃Zt

ϑω
ε
rϑω

ε
+

 ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε


V

ϑω
ε

ε . (13)

By Lemma 18 we have that

↑∑

t=0

es
≃Zt

ϑω
ε
rϑω

ε
↗

∥∥∥∥∥

↑∑

t=0

es
≃Zt

ϑω
ε

∥∥∥∥∥
1

∥∥∥rϑω
ε

∥∥∥
↑

↗ B.

Now we can obtain the two bounds in the lemma statement by bounding the second term of (13) in
two different ways. For the first bound in the lemma statement, we can use the first bound in Lemma
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21 to calculate that

 ↑∑

t=0

e≃s Z
t
ϑω
ε
Yϑω

ε


V

ϑω
ε

ε ↗
 ↑∑

t=0

e≃s Z
t
ϑω
ε
Yϑω

ε


1

1↘ ε
ϱϖ +

 ↑∑

t=0

e≃s Z
t
ϑω
ε
Yϑω

ε

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
↑

1

=

 ↑∑

t=0

e≃s Z
t
ϑω
ε
Yϑω

ε


1

1↘ ε
ϱϖ +

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
↑

↗
 ↑∑

t=0

e≃s Z
t
ϑω
ε
Yϑω

ε


1

1↘ ε
ϱϖ + →hϖ→span

=

 ↑∑

t=0

e≃s Z
t
ϑω
ε
Yϑω

ε


1

1↘ ε
X↑

ϑω
ε
ϱϖ + →hϖ→span

=

 ↑∑

t=0

e≃s Z
t
ϑω
ε
Yϑω

ε
X↑

ϑω
ε


1

1↘ ε
ϱϖ + →hϖ→span

= e≃s Y
↑
ϑω
ε

1

1↘ ε
ϱϖ + →hϖ→span

=
1

1↘ ε
e≃s P

↑
ϑω
ε
ϱϖ + →hϖ→span

↗ 1

1↘ ε
ϱϖ(s) + →hϖ→span

where we used the fact that X↑
ϑω
ε
ϱϖ = ϱϖ and then that e≃s P↑

ϑω
ε
ϱϖ ↗ ϱϖ(s). This gives an upper bound

of

V
ϑω
ε

ε ↗ 1

1↘ ε
ϱϖ(s) + B+ →hϖ→span .

Combining with the lower bound

V
ϑω
ε

ε (s) ⇔ V ϑω

ε (s) ⇔ 1

1↘ ε
ϱϖ(s)↘ →hϖ→span ,

we obtain that

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
↑

↗ B+ →hϖ→span

which is the first bound in the lemma statement.
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To obtain the second bound in the lemma statement, using the second bound from Lemma 21, we can
calculate for the second term in (13) that ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε


V

ϑω
ε

ε ↗
 ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε


1

1↘ ε
ϱϑ

ω
ε +

 ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϑ

ω
ε

∥∥∥∥
↑

1

=

 ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε


1

1↘ ε
ϱϑ

ω
ε +

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϑ

ω
ε

∥∥∥∥
↑

↗
 ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε


1

1↘ ε
ϱϑ

ω
ε + 2 →hϖ→span

=

 ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε


1

1↘ ε
P↑
ϑω
ε
rϑω

ε
+ 2 →hϖ→span

=

 ↑∑

t=0

es
≃Zt

ϑω
ε
Yϑω

ε


1

1↘ ε
X↑

ϑω
ε
rϑω

ε
+ 2 →hϖ→span

=
1

1↘ ε
es

≃Y ↑
ϑω
ε
rϑω

ε
+ 2 →hϖ→span

=
1

1↘ ε
e≃s P

↑
ϑω
ε
rϑω

ε
+ 2 →hϖ→span

=
1

1↘ ε
ϱϑ

ω
ε (s) + 2 →hϖ→span

where in the second equality we used the fact that
(∑↑

t=0 e
≃
s Z

t
ϑω
ε
Yϑω

ε

)
is a probability distribution,

and in the final steps we used the decomposition of P↑
ϑω
ε

and the fact that ϱϑ
ω
ε = P↑

ϑω
ε
rϑω

ε
.

Therefore by combining these steps we obtain that

V
ϑω
ε

ε (s) ↗ B+ 2 →hϖ→span +
1

1↘ ε
ϱϑ

ω
ε (s).

Combining with the lower bound

V
ϑω
ε

ε (s) ⇔ V ϑω

ε (s) ⇔ 1

1↘ ε
ϱϖ(s)↘ →hϖ→span ⇔ 1

1↘ ε
ϱϑ

ω
ε (s)↘ →hϖ→span ,

we obtain the desired boundV
ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϑ

ω
ε (s)

 ↗ B+ 2 →hϖ→span .

Lemma 23. If ϑ satisfies V ϑ
ε ⇔ V

ϑω
ε

ε ↘ ↽1, then
∥∥∥∥V

ϑ
ε ↘ 1

1↘ ε
ϱϑ

∥∥∥∥
↑

↗ 3B+ 2 →hϖ→span + ↽.

Proof. Similar to the proof of Lemmas 21 and 22, we will first establish a bound for the states which
are recurrent under ϑ. Specifically, we will first show that if s is recurrent under ϑ we haveV

ϑ
ε (s)↘ 1

1↘ ε
ϱϑ(s)

 ↗ 2B+ 2 →hϖ→span + ↽. (14)

Letting s ⇐ Rϑ, following steps which are similar to the proof of the second part of Lemma 21, we
have

V ϑ
ε (s)↘ 1

1↘ ε
ϱϑ(s) = e≃s (I ↘ P↑

ϑ )V ϑ
ε

= e≃s (I ↘ P↑
ϑ )(V ϑ

ε ↘ 1

1↘ ε
ϱϖ)

= e≃s (I ↘ P↑
ϑ )(V

ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ) + e≃s (I ↘ P↑

ϑ )(V ϑ
ε ↘ V

ϑω
ε

ε )
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using the fact discussed in Lemma 21 that e≃s (I ↘ P↑
ϑ )ϱϖ = 0 since s is recurrent under ϑ. Then by

triangle inequality, we obtain
V

ϑ
ε (s)↘ 1

1↘ ε
ϱϑ(s)

 ↗
e

≃
s (I ↘ P↑

ϑ )(V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ)

+
e≃s (I ↘ P↑

ϑ )(V ϑ
ε ↘ V

ϑω
ε

ε )


↗
∥∥∥∥V

ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥

span
+
∥∥∥V ϑ

ε ↘ V
ϑω
ε

ε

∥∥∥
span

↗ 2

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
↑

+ ↽

↗ 2B+ 2 →hϖ→span + ↽,

where we used the facts that →·→span ↗ 2 →·→↑ and that V
ϑω
ε

ε ⇔ V ϑ
ε ⇔ V

ϑω
ε

ε ↘ ↽1.

Having established (14), we now extend to transient states using arguments similar to those for the
second bound of Lemma 22. Let s be transient under ϑ. Then starting by using Lemma 19, we can
calculate

V ϑ
ε (s) = e≃s (I ↘ εPϑ)

→1rϑ

=
↑∑

t=0

εtes
≃Zt

ϑrϑ + ε
↑∑

t=0

εtes
≃Zt

ϑYϑ(I ↘ εXϑ)
→1rϑ

=
↑∑

t=0

εtes
≃Zt

ϑrϑ + ε
↑∑

t=0

εtes
≃Zt

ϑYϑV ϑ
ε

↗
↑∑

t=0

es
≃Zt

ϑrϑ +

 ↑∑

t=0

es
≃Zt

ϑYϑ


V ϑ
ε

↗

∥∥∥∥∥

↑∑

t=0

es
≃Zt

ϑ

∥∥∥∥∥
1

∥∥rϑ
∥∥
↑ +

 ↑∑

t=0

es
≃Zt

ϑYϑ


V ϑ
ε

↗ B+

 ↑∑

t=0

es
≃Zt

ϑYϑ


V ϑ
ε (15)

using the bounded transient time assumption via Lemma 18 in the final step. Then we can calculate
 ↑∑

t=0

es
≃Zt

ϑYϑ


V ϑ
ε ↗

 ↑∑

t=0

es
≃Zt

ϑYϑ


1

1↘ ε
ϱϑ +

 ↑∑

t=0

es
≃Zt

ϑYϑ

∥∥∥∥V ϑ
ε ↘ 1

1↘ ε
ϱϑ

∥∥∥∥
↑

1

=

 ↑∑

t=0

es
≃Zt

ϑYϑ


1

1↘ ε
ϱϑ +

∥∥∥∥V ϑ
ε ↘ 1

1↘ ε
ϱϑ

∥∥∥∥
↑

↗
 ↑∑

t=0

es
≃Zt

ϑYϑ


1

1↘ ε
ϱϑ + 2B+ 2 →hϖ→span + ↽

=

 ↑∑

t=0

es
≃Zt

ϑYϑ


1

1↘ ε
P↑
ϑ rϑ + 2B+ 2 →hϖ→span + ↽

=

 ↑∑

t=0

es
≃Zt

ϑYϑ


1

1↘ ε
X↑

ϑ rϑ + 2B+ 2 →hϖ→span + ↽

=
1

1↘ ε
es

≃Y ↑
ϑ rϑ + 2B+ 2 →hϖ→span + ↽

=
1

1↘ ε
e≃s P

↑
ϑ rϑ + 2B+ 2 →hϖ→span + ↽

=
1

1↘ ε
ϱϑ(s) + 2B+ 2 →hϖ→span + ↽,
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where in the first equality we used the fact that
(∑↑

t=0 e
≃
s Z

t
ϑYϑ

)
is a probability distribution, in the

second inequality we used the bound (14), and in the final steps we used the decomposition of P↑
ϑ

and the fact that ϱϑ = P↑
ϑ rϑ .

Therefore by combining this last bound with the bound (15), we have

V ϑ
ε (s) ↗ 3B+ 2 →hϖ→span + ↽ +

1

1↘ ε
ϱϑ(s).

Combining with the lower bound

V ϑ
ε (s) ⇔ V

ϑω
ε

ε ↘ ↽ ⇔ V ϑω

ε (s)↘ ↽ ⇔ 1

1↘ ε
ϱϖ(s)↘ →hϖ→span ↘ ↽ ⇔ 1

1↘ ε
ϱϑ(s)↘ →hϖ→span ↘ ↽,

we conclude that V
ϑ
ε (s)↘ 1

1↘ ε
ϱϑ(s)

 ↗ 3B+ 2 →hϖ→span + ↽

as desired.

Proof of Theorem 6. Suppose ϑ is ωε-optimal for the discounted MDP (P, r, ε). We can calculate
that

1

1↘ ε
ϱϑ ⇔ V ϑ

ε ↘ (3B+ 2 →hϖ→span + ωε)

⇔ V
ϑω
ε

ε ↘ (3B+ 2 →hϖ→span + 2ωε)

⇔ V ϑω

ε ↘ (3B+ 2 →hϖ→span + 2ωε)

⇔ 1

1↘ ε
ϱϖ ↘ (3B+ 3 →hϖ→span + 2ωε),

where in the first inequality we used Lemma 23, in the second inequality we used the fact that ϑ is
ωε-optimal, in the third inequality we used the optimality of ϑϖ

ε for the discounted MDP, and in the
final inequality we used Lemma 20. Therefore by mulitplying both sides by 1↘ ε, we have that

ϱϑ ⇔ ϱϖ ↘ ω

B+ H
(3B+ 3 →hϖ→span + 2ωε) ⇔ ϱϖ ↘


3ω+ 2

ωε
B+ H


ω.

B.2 Proof of Theorem 7 (Discounted MDP Bounds)

In this section, we provide our main result on the sample complexity of general discounted MDPs.

Our proof relies on three lemmas that provide bounds on relevant variance parameters. The first
lemma controls the variance for ϑϖ

ε on recurrent states.

Lemma 24. Letting ϑϖ
ε be the optimal policy for the discounted MDP (P, r, ε), if ε ⇔ 1↘ 1

B+H
, we

have

max
s↔Rϑω

ε

ε

e
≃
s (I ↘ εPϑω

ε
)→1


VPϑω

ε


V

ϑω
ε

ε

 ↗

√
32

5

B+ H

(1↘ ε)2
.

Proof. First, using the decomposition (10), we can calculate for any s ⇐ Rϑω
ε that

e≃s (I ↘ εPϑω
ε
)→1


VPϑω

ε


V

ϑω
ε

ε


= es

≃(I ↘ εXϑω
ε
)→1


VPϑω

ε


V

ϑω
ε

ε



= es
≃(I ↘ εXϑω

ε
)→1

√

VXϑω
ε

[
V

ϑω
ε

ε

]
.
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Also due to the decomposition, notice that set Rϑω
ε is a closed set for the Markov chain with transition

matrix Pϑω
ε

, and furthermore when restricting to the entries corresponding to this closed set we obtain
the transition matrix Xϑω

ε
. Therefore we can apply Lemma 12 to this subchain to obtain that

ε

∥∥∥∥∥(I ↘ εXϑω
ε
)→1

√

VXϑω
ε

[
V

ϑω
ε

ε

]∥∥∥∥∥
↑

↗


2

1↘ ε



∥∥∥∥∥∥
Vϑω

ε

[ ↑∑

t=0

εtRt

∥∥∥∥∥∥
↑

.

Abbreviating L = B+ H, we can also then apply Lemma 13 to bound

∥∥∥∥∥∥
Vϑω

ε

[ ↑∑

t=0

εtRt

∥∥∥∥∥∥
↑

↗

∥∥∥∥V
ϑω
ε

∑L→1
t=0 εtRt + εLV

ϑω
ε

ε (SL)
∥∥∥∥

↑
1↘ ε2L

.

We can repeat a similar argument as within Lemma 15 to bound this term. Fixing an initial state
s0 ⇐ Rϑω

ε , the key observation is that ϱϖ is constant on the recurrent block of Xϑω
ε

containing s0,
and therefore any state trajectory S0 = s0, S1, S2, . . . under the transition matrix Pϑω

ε
will have

ϱϖ(SL) = ϱϖ(s0). Therefore for this fixed s0 we have

Vϑω
ε

s0

[
L→1∑

t=0

εtRt + εLV
ϑω
ε

ε (SL)


= Vϑω

ε
s0

[
L→1∑

t=0

εtRt + εL


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(s0)



↗ Eϑω
ε

s0



L→1∑

t=0

εtRt + εL


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(s0)



2

↗ 2Eϑω
ε

s0



L→1∑

t=0

εtRt



2

+ 2Eϑω
ε

s0

ε
L


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(s0)


2

= 2Eϑω
ε

s0



L→1∑

t=0

εtRt



2

+ 2Eϑω
ε

s0

ε
L


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(SL)


2

↗ 2L2 + 2 sup
s↔Rϑω

ε


V

ϑω
ε

ε (s)↘ 1

1↘ ε
ϱϖ(s)

2

↗ 2L2 + 2H2

↗ 4L2

where we used Lemma 21 in the penultimate inequality. Applying this argument to all s0 ⇐ Rϑω
ε we

obtain

∥∥∥∥∥∥
Vϑω

ε

[
L→1∑

t=0

εtRt + εLV
ϑω
ε

ε (SL)

∥∥∥∥∥∥
↑

↗ 4L2.

33



Therefore by combining with our initial bounds we have that

max
s↔Rϑω

ε

ε

e
≃
s (I ↘ εPϑω

ε
)→1


VPϑω

ε


V

ϑω
ε

ε

 ↗


2

1↘ ε



∥∥∥∥∥∥
Vϑω

ε

[ ↑∑

t=0

εtRt

∥∥∥∥∥∥
↑

↗


2

1↘ ε



∥∥∥∥V
ϑω
ε

∑L→1
t=0 εtRt + εLV

ϑω
ε

ε (SL)
∥∥∥∥

↑
1↘ ε2L

↗


2

1↘ ε

√
4L2

1↘ ε2L

↗


2

1↘ ε

√
16L2

5L(1↘ ε)

↗

√
32

5

L

(1↘ ε)2
,

where in the penultimate inequality we used Lemma 14 to bound 1
1→ε2L ↗ 5

4
1

(1→ε)L .

The next lemma controls the variance for ϑ̂ϖ
ε,p on recurrent states.

Lemma 25. Letting ϑ̂ϖ
ε,p be the optimal policy for the discounted MDP (P̂ , r̃, ε), if ε ⇔ 1↘ 1

B+H
,

we have

max
s↔Rϑ̂ω

ε,p

ε

e
≃
s (I ↘ εPϑ̂ω

ε,p
)→1


VPϑ̂ω

ε,p


V

ϑ̂ω
ε,p

ε,p



↗

√

29
B+ H

(1↘ ε)2
+


15

B+ H

∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

+
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

1↘ ε
.

Proof. Let L = B+ H. By the same arguments as in the beginning of the proof of Lemma 24, we
have

max
s↔Rϑ̂ω

ε,p

ε

e
≃
s (I ↘ εPϑ̂ω

ε,p
)→1


VPϑ̂ω

ε,p


V

ϑ̂ω
ε,p

ε,p

 ↗


2

1↘ ε



∥∥∥∥∥∥
Vϑ̂ω

ε,p

[ ↑∑

t=0

εtR̃t

∥∥∥∥∥∥
↑

↗


2

1↘ ε



∥∥∥∥V
ϑ̂ω
ε,p

∑L→1
t=0 εtR̃t + εLV

ϑ̂ω
ε,p

ε,p (SL)
∥∥∥∥

↑
1↘ ε2L

so it again suffices to bound Vϑ̂ω
ε,p

∑L→1
t=0 εtR̃t + εLV

ϑ̂ω
ε,p

ε,p (SL)

. Fix s0 ⇐ Rϑ̂ω

ε,p . Again, as
observed in Lemma 24, ϱϖ is constant on the recurrent block of Xϑ̂ω

ε,p
containing s0, so we will have
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ϱϖ(SL) = ϱϖ(s0) with probability one. Therefore (mostly following the steps of Lemma 16)

Vϑ̂ω
ε,p

s0

[
L→1∑

t=0

εtR̃t + εLV
ϑ̂ω
ε,p

ε,p (SL)



= Vϑ̂ω
ε,p

s0

[
L→1∑

t=0

εtR̃t + εLV
ϑ̂ω
ε,p

ε,p (SL)↘ εL 1

1↘ ε
ϱϖ(s0)



↗ Eϑ̂ω
ε,p

s0


L→1∑

t=0

εtR̃t + εLV
ϑ̂ω
ε,p

ε,p (SL)↘ εL 1

1↘ ε
ϱϖ(s0)

2

= Eϑ̂ω
ε,p

s0


L→1∑

t=0

εtR̃t + εL
(
V

ϑ̂ω
ε,p

ε,p (SL)↘ V
ϑω
ε

ε (SL)
)
+ εL


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(SL)

2

↗ 3Eϑ̂ω
ε,p

s0


L→1∑

t=0

εtR̃t

2

+ 3ε2LEϑ̂ω
ε,p

s0

(
V

ϑ̂ω
ε,p

ε,p (SL)↘ V
ϑω
ε

ε (SL)
)2

+ 3ε2LEϑ̂ω
ε,p

s0


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(SL)

2

↗ 3Eϑ̂ω
ε,p

s0


L→1∑

t=0

εtR̃t

2

+ 6ε2LEϑ̂ω
ε,p

s0

(
V

ϑ̂ω
ε,p

ε (SL)↘ V
ϑω
ε

ε (SL)
)2

+ 6ε2L
∥∥∥V

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
2

↑

+ 3ε2LEϑ̂ω
ε,p

s0


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(SL)

2

(16)

using the inequalities (a+ b+ c)2 ↗ 3a2 + 3b2 + 3c2 and (a+ b)2 ↗ 2a2 + 2b2. Now we bound
each term of (16) analogously to the steps of Lemma 16. For the first term of (16),

3Eϑ̂ω
ε,p

s0


L→1∑

t=0

εtR̃t

2

↗ 3 (L →r̃→↑)2 ↗ 3L2(→r→↑ + ↼)2 ↗ 6L2


1 +


(1↘ ε)ω

6

2


↗ 6L2


7

6

2

,

where we had (1→ε)ω
6 ↗ ω

6L ↗ 1
6 because 1

1→ε ⇔ L and ω ↗ L. For the second term of (16),

6ε2LEϑ̂ω
ε,p

s0

(
V

ϑ̂ω
ε,p

ε (SL)↘ V
ϑω
ε

ε (SL)
)2

↗ 6
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V
ϑω
ε

ε

∥∥∥
2

↑

↗ 6
(∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

+
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

)2

where we used (a+ b)2 ↗ 2a2 + 2b2 and the fact that
∥∥∥V

ϑ̂ω
ε,p

ε ↘ V
ϑω
ε

ε

∥∥∥
↑

↗
∥∥∥V̂

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

+
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

which was shown in Lemma 16. For the third term of (16),

6ε2L
∥∥∥V

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
2

↑
↗ 6

∥∥∥V
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
2

↑
↗ 6


↼

1↘ ε

2

= 6
(ω
6

)2
↗ L2

6

where the fact that
∥∥∥V

ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

↗ ↽
1→ε is identical to the arguments used in the proof of

Lemma 10, and the final inequality is due to the assumption that ω ↗ L. For the fourth term of (16),

3ε2LEϑ̂ω
ε,p

s0


V

ϑω
ε

ε (SL)↘
1

1↘ ε
ϱϖ(SL)

2

↗ 3

∥∥∥∥V
ϑω
ε

ε ↘ 1

1↘ ε
ϱϖ
∥∥∥∥
2

↑
↗ 3L2

using Lemma 22 for the second inequality. Using all these bounds in (16), we obtain

Vϑ̂ω
ε,p

s0

[
L→1∑

t=0

εtR̃t + εLV
ϑ̂ω
ε,p

ε,p (SL)


↗


49

6
+

1

6
+ 3


L2 + 6

(∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

+
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

)2
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and so (since this holds for arbitrary s0 ⇐ Rϑ̂ω
ε,p ), we have

Vϑ̂ω
ε,p

[
L→1∑

t=0

εtR̃t + εLV
ϑ̂ω
ε,p

ε,p (SL)


↗ 68

6
L2 + 6

(∥∥∥V̂
ϑ̂ω
ε,p

ε,p ↘ V
ϑ̂ω
ε,p

ε

∥∥∥
↑

+
∥∥∥V̂

ϑω
ε

ε,p ↘ V
ϑω
ε

ε

∥∥∥
↑

)2
.

Therefore, combining with our initial arguments,
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where we used Lemma 14 to bound 1
1→ε2L ↗ 5

4
1

(1→ε)L .

The next lemma controls the variance on all states.

Lemma 26. Under the settings of Lemmas 24 and 25, we have
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Proof. First we establish the first bound in the lemma statement. As we have already bounded the
entries corresponding to the recurrent states of ϑϖ

ε by Lemma 24, it remains to bound the transient
states. Let s ⇐ T ϑω

ε be an arbitrary transient state. Using Lemma 19, we have
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Now we bound each of the terms in (17). For the first term, we can calculate
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where we used the fact that es≃
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is a probability distribution and Lemma 24.

For the second term of (17), we have
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where we used Jensen’s inequality since x ∈⇑
∋
x is concave and
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is a probability

distribution (all entries of this row vector are positive and they sum to 1 due to our normalization).
Now we bound each factor in (18). Using Lemma 18, we have
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For the second factor in (18), we have
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where the equality step is due to Lemma 19. Now we can apply two steps which are used within
Lemma 12 to obtain the desired bound on this term. Abbreviating v = VPϑω
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
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, it is shown

within Lemma 12 that
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(where the final inequality is because the total discounted return is within [0, 1
1→ε ]). Therefore we
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Combining all of these bounds back into (17), we have
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Thus we have established the first inequality from the lemma statement.

For the second inequality, the argument is entirely analogous, except that we use Lemma 25 instead
of Lemma 24, and also in the MDP with the perturbed reward r̃ we have the bound
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,

where we used the fact that (1→ε)ω
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1
6 because 1

1→ε ⇔ B+ H and ω ↗ B+ H. Thus we
can obtain the bound
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This completes the proof of the lemma.

We are now ready to prove Theorem 7 on the sample complexity of general discounted MDPs.

Proof of Theorem 7. To prove Theorem 7 we will combine our bounds of the variance parameters
in Lemma 26 with Lemma 10. First, starting with (1) from Lemma 10 and combining with the first
bound from Lemma 26, we have that there exist absolute constants c1, c2 such that for any ↽ ⇐ (0, 1),
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where the penultimate inequality is under the assumption that n ⇔ 16 · 62c1 B+H
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and the final inequality makes use of the fact that ω ↗ B+ H.

Next, still using Lemma 10, under the same event, we also have
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using the second inequality from Lemma 26 for the second inequality, and then we use the fact
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B.3 Proof of Theorem 8 (General Average-Reward MDP Bounds)

In this section, we prove our main result on the sample complexity of general average-reward MDPs.

Proof of Theorem 8. We can combine our bound for discounted MDPs, Theorem 7, with our reduction
from average-reward MDPs to discounted MDPs, Theorem 6.

Using Theorem 7 with target accuracy B + H and discount factor ε = 1 ↘ ω
12(B+H) , we obtain a

(B+ H)-optimal policy for the discounted MDP (P, r, ε) with probability at least 1↘ ↽ as long as
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Applying Theorem 6 (with error parameter ω
12 ), we obtain
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as desired.

B.4 Proof of Theorems 4 and 5 (Lower Bounds)

In this section, we prove our minimax lower bounds on the sample complexity of general average-
reward MDPs (Theorem 4) and discounted MDPs (Theorem 5).

Proof of Theorem 4. First consider the MDP instances Maω indexed by aϖ ⇐ {1, . . . , A} shown
in Figure 3. In all instances, states 2, 3 and 4 are absorbing states, and state 1 is a transient state.
State 1 has A actions and is the only state with multiple actions. At state 1, taking action a = 1 will
take the agent to state 4 deterministically; taking action 2 will take the agent back to state 1 with
probability P (1|1, 2) = 1↘ 1

T , to state 2 with probability P (2|1, 2), and to state 3 with probability
P (3|1, 2) = 1 ↘ P (1|1, 2) ↘ P (2|1, 2). The instances differ only in the values of P (2|1, a) and
P (3|1, a), which are shown in Figure 3 along with the reward R for each state-action pair.

For the MDP instance M1, the optimal policy is taking action a = 1 at state 1, leading to an average
reward of 1/2; taking any other action leads to a sub-optimal average reward of 1→2ω

2 . Similarly, for
the instance Maω with aϖ ⇐ {2, . . . , A}, the optimal action is a = aϖ with average reward 1+2ω

2 ,
the action a = 1 has average reward 1

2 , and all other actions have average reward 1→2ω
2 . By direct

calculation, we find that the span of the optimal policy is →hϖ→span = 0 in all instances. Moreover, by
taking any action a ∞= 1, the agent will stay in state 1 for B steps in expectation before transitioning
to state 2 or 3, so the bounded transient time is satisfied with parameter B.

We next define (A↘1)S/4 master MDPs Msω,aω indexed by sϖ ⇐ {1, . . . , S/4} and aϖ ⇐ {2, . . . , A}
as follows. Each master MDP Msω,aω has S/4 copies of sub-MDPs such that the sϖth sub-MDP is
equal to Maω and all other sub-MDPs are equal to M1. We rename the states so that the states of
the sth sub-MDP has states 4s + 1, 4s + 2, 4s + 3, 4s + 4 corresponding to states 1, 2, 3, 4 of the
instances shown in Figure 3. Note each of these master MDPs has S states and A actions, satisfies
the bounded transient time property with parameter B, and has the span of the bias of its Blackwell
optimal policy equal to 0. Note that for a given policy ϑ to be ω/3-average optimal in master MDP
Msω,aω , it must take action aϖ in state 4sϖ + 1 with probability at least 2/3, and it must take action 1
in states 4s+ 1 for s ⇐ {1, . . . , S/4} \ {sϖ} with probability at least 2/3.

Thus, for an algorithm Alg to output an ω/3-average optimal policy ϑ, it must identify the master
MDP instance Msω,aω (equivalently, the values of sϖ and aϖ), in the sense that there must be exactly
one state 4s+1 where an action a ∞= 1 is taken with probability ⇔ 2/3. Therefore it suffices to lower
bound the failure probability of any algorithm Alg for this (A ↘ 1)S/4-way testing problem. By
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3
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a ⇐ {2, . . . , A}, R = (1 + 2ω)/2

P (1 | 1, a) = 1↘ 1
B

P (2 | 1, a) = 1→2ω
2B

P (3 | 1, a) = 1+2ω
2B

a = 1, R = 1/2

R = 1

R = 0

R = 1/2

Instance M1

1

2

3

4

a ⇐ {2, . . . , A} \ {aϖ}, R = (1 + 2ω)/2

P (1 | 1, a) = 1↘ 1
B

P (2 | 1, a) = 1→2ω
2B

P (3 | 1, a) = 1+2ω
2B

a = 1, R = 1/2

R = 1

R = 0

R = 1/2

a = aϖ, R = (1 + 2ω)/2

P (1 | 1, aϖ) = 1↘ 1
B

P (2 | 1, aϖ) = 1+2ω
2B

P (3 | 1, aϖ) = 1→2ω
2B

Instance Maω , for aϖ ⇐ {2, . . . , A}
Figure 3: MDP Instances Used in the Proof of Lower Bound in Theorem 4

construction, for any two distinct index pairs (sϖ1, aϖ1) and (sϖ2, a
ϖ
2), the master MDPs Msω1 ,a

ω
1

and
Msω2 ,a

ω
2

differ only in the state-action pairs (4sϖ1, aϖ1) and (4sϖ2, a
ϖ
2), and we have

PMsω1 ,aω
1

(· | 4sϖ1, aϖ1) = Cat

1↘ 1

B
,
1↘ 2ω

2B
,
1 + 2ω

2B


=: Q1,

PMsω2 ,aω
2

(· | 4sϖ1, aϖ1) = Cat

1↘ 1

B
,
1 + 2ω

2B
,
1↘ 2ω

2B


=: Q2,

where Cat(p1, p2, p3) denotes the categorical distribution with event probabilities pi’s (and vice versa
for the distributions of the state action pair (4sϖ2, aϖ2)).

Now we use Fano’s method [18] to lower bound this failure probability. Choose an index J uniformly
at random from the set J := {1, . . . , S/4} ⇒ {2, . . . , A} and suppose that we draw n iid samples
X = (X1, . . . , Xn) from the master MDP MJ ; note that under the generative model, each random
variable Xi represents an (S ⇒A)-by-S transition matrix with exactly one nonzero entry in each row.
Letting I(J ;X) denote the mutual information between J and X , Fano’s inequality yields that the
failure probability is lower bounded by

1↘ I(J ;X) + log 2

log((A↘ 1)S/4)
.
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We can calculate using the fact that the Pi’s are i.i.d., the chain rule of mutual information, and the
form of the construction that

I(J ;X) = nI(J ;X1)

↗ n max
(sω1 ,a

ω
1),(s

ω
2 ,a

ω
2)↔J :

(sω1 ,a
ω
1) ↘=(sω2 ,a

ω
2)

DKL

(
PMsω1 ,aω

1

 PMsω2 ,aω
2

)

= n
(
DKL(Q1 | Q2) + DKL(Q2 | Q1)

)
.

By direct calculation, we have

DKL(Q1|Q2) =
1↘ 2ω

2B
log

1↘ 2ω

1 + 2ω
+

1 + 2ω

2B
log

1 + 2ω

1↘ 2ω

↗ 1↘ 2ω

2B
· ↘4ω

1 + 2ω
+

1 + 2ω

2B
· 4ω

1↘ 2ω
log(1 + x) ↗ x, ̸x > ↘1

=
16ω2

B(1 + 2ω)(1↘ 2ω)

↗ 32ω2

B
ω ↗ 1

4
.

Also note that DKL(Q2|Q1) = DKL(Q1|Q2) in this case. Therefore the failure probability is at least

1↘ I(J ;Pn) + log 2

log((A↘ 1)S/4)
⇔ 1↘

n 64ω2

B + log 2

log((A↘ 1)S/4)

⇔ 1

2
↘

n 64ω2

B

log((A↘ 1)S/4)
,

where in the second inequality we assumed A and S are at least a sufficiently large constant. For the
above RHS to be smaller than 1/4, we therefore require n ⇔ !(B log(SA)

ω2 ).

Proof of Theorem 5. The desired DMDP lower bound follows from combining our AMDP lower
bound Theorem 4 with the average-to-discount reduction in Theorem 6.

B.5 Relationship between transient time and mixing time

Lemma 27. In any uniformly mixing MDP, we have B ↗ 4ϖunif .

Proof. Fix a deterministic stationary policy ϑ. Notice that since all states in the support of the
stationary distribution φϑ are recurrent, for any s ⇐ S we have

Pϑ
s (St is transient) =

∑

s→↔T ϑ

Pϑ
s (St = s↗)

↗
∑

s→↔T ϑ

Pϑ
s (St = s↗) +

∑

s→↔Rϑ

|Pϑ
s (St = s↗)↘ φϑ(s↗)|

=
∑

s→↔S
|Pϑ

s (St = s↗)↘ φϑ(s↗)|

↗ 2max
s↔S

1

2

∥∥e≃s P t
ϑ ↘ φϑ

∥∥
1

↗ 2 · 2→⇔t/ϱunif↖

where the final inequality uses standard properties of mixing [11, Chapter 4]. Now define T = inf{t :
St ⇐ Rϑ}. Then, using a standard formula for the expectation of nonnegative-integer-values random
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variables, we have for any s ⇐ S that

Eϑ
s [T ] =

↑∑

t=0

Pϑ
s (T > t)

=
↑∑

t=0

Pϑ
s (St is transient)

↗ 2
↑∑

t=0

2→⇔t/ϱunif↖

= 2
↑∑

⇀=0

ϖunif2
→⇀

= 4ϖunif .

Since this bound holds for all s ⇐ S and all deterministic stationary policies ϑ, we conclude that
B ↗ 4ϖunif .
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• For existing datasets that are re-packaged, both the original license and the license of
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• At submission time, remember to anonymize your assets (if applicable). You can either
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

50


	Introduction
	Comparison with related work on average-reward MDPs
	Comparison with related work on discounted MDPs

	Problem setup and preliminaries
	Main results for weakly communicating MDPs
	Main results for general MDPs
	Conclusion
	Proofs for weakly communicating MDPs
	Technical lemmas
	Proofs of Theorems 1 and 2
	Proof of Theorem 3

	Proofs for general MDPs
	Proof of Theorem 6
	Proof of Theorem 7 (Discounted MDP Bounds)
	Proof of Theorem 8 (General Average-Reward MDP Bounds)
	Proof of Theorems 4 and 5 (Lower Bounds)
	Relationship between transient time and mixing time


