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Surrogate selection is an experimental design that without sequencing
any DNA can restrict a sample of cells to those carrying certain genomic mu-
tations. In immunological disease studies, this design may provide a relatively
easy approach to enrich a lymphocyte sample with cells relevant to the dis-
ease response because the emergence of neutral mutations associates with the
proliferation history of clonal subpopulations. A statistical analysis of clono-
type sizes provides a structured, quantitative perspective on this useful prop-
erty of surrogate selection. Our model specification couples within-clonotype
birth-death processes with an exchangeable model across clonotypes. Beyond
enrichment questions about the surrogate selection design, our framework en-
ables a study of sampling properties of elementary sample diversity statistics;
it also points to new statistics that may usefully measure the burden of so-
matic genomic alterations associated with clonal expansion. We examine sta-
tistical properties of immunological samples governed by the coupled model
specification, and we illustrate calculations in surrogate selection studies of
melanoma and in single-cell genomic studies of T cell repertoires.
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1. Introduction.

1.1. Overview. With thymic-derived lymphocytes (i.e., T cells) sampled from periph-
eral blood or some other tissue compartment (e.g., tumor-infiltrating lymphocytes), any tech-
niques that would enrich the sample for disease-relevant cells could be useful, considering

Keywords and phrases: Bayes’s rule, clonal expansion, diversity statistic, enrichment, exchangeable birth-
death processes, experimental design, single cell sequencing, size bias, somatic mutation.

1

https://imstat.org/journals-and-publications/annals-of-applied-statistics/
mailto:peng.yu@wisc.edu
mailto:manewton@wisc.edu
mailto:mralbert@wisc.edu


2

the complexity of a typical T cell population and the potential for an improved understanding
of the immune response to disease. For example, at writing we have no effective biomark-
ers to predict how a melanoma patient will respond to immune checkpoint inhibition therapy.
Responses among similar patients may vary from morbid toxicity to full recovery (e.g., Gane-
san and Mehnert, 2020; Shum, Larkin and Turajlic, 2022), and it may be useful to identify
tumor-reactive T cell receptors that could inform therapy (e.g., Pétremand et al., 2024).

Surrogate selection is an experimental design strategy. It restricts a sample of T cells to
cells whose somatic ancestors in the study participant had acquired and then transmitted spe-
cific, selectable mutations. Selection assays based on mutations of the hypoxanthine-guanine
phosphoribosyltransferase (HPRT) gene are the most well studied, though the approach ap-
plies to any mutations that are neutral with respect to the immune response (Kaitz et al.,
2022). As an immune-system probe, HPRT surrogate selection has been used to study a vari-
ety of environmental effects and disease processes (Albertini, Castle and Borcherding, 1982;
Albertini, 2001; Kaitz et al., 2022). With a continued focus on disease studies, we examine
the sampling effects of surrogate selection; selected cells may represent in vivo amplified
clones that are more likely to be disease relevant than clones of randomly sampled cells, and
we seek a more thorough understanding of this enrichment phenomenon for the sake of im-
proved experimental design and data analysis. It remains to be confirmed in clinical settings,
but there is potential for surrogate selection to support the monitoring of patients in early
phases of immunotherapy by providing a window into their T cell response.

The idea that surrogate selection can enrich for clonally amplified T cells has provided
a rationale in many studies, though quantitative treatments of this strategy remain very lim-
ited. Statistical procedures have been deployed to test from sequence data the null hypoth-
esis that enrichment is absent, and the mounting evidence supports the alternative (e.g., Pei
et al., 2014; Zuleger et al., 2020). Considering cell growth dynamics, one would predict an
increased prevalence of various somatic mutations in cells within an actively proliferating
clone compared to a relatively quiescent one. Then conditioning on the presence of some
such mutation in a sampled cell, Bayes’s rule would imply that the cell is more likely to
be from the proliferating than the quiescent clone. Surrogate selection thus depends on the
biological consequences of in vivo clonal proliferation to enrich for activated T cells in indi-
viduals with an ongoing immunological response to disease. This enrichment effect is com-
plicated by the enormous complexity of T cell populations and relies on statistical properties
of the assemblage of dynamically varying clone sizes. Resolving these complications will
enhance our understanding of surrogate selection as a mechanistic probe for fundamental
biological/immunological processes.

The main contribution of the present work is to quantify the enrichment effect of surrogate
selection in an idealized but structurally relevant setting, and to leverage basic stochastic-
process theory to confirm and characterize the enrichment phenomenon in this model. Our
formulation also enables a study of distributional properties of elementary diversity statis-
tics, of the type often used in experimental studies. We show that samples identified us-
ing surrogate selection have lower expected sample diversity, in agreement with empirical
studies. Our theoretical analysis also exposes an interesting statistical prediction concerning
somatic mutations that are unrelated to any selection assay. From contemporary single-cell
genomic studies, we associate T cell clone sizes with estimates of somatic mutation burden,
and thereby provide a new measure of somatic burden of a T cell receptor.

1.2. Immunological setting. Consider a person’s T cell repertoire, comprised of perhaps
1011 or more CD4+ and CD8+ naive, effector, and memory T cells, and also partitioned
into clonotypes within each of which the T cell receptor (TCR) sequence of the cells is
constant (e.g., Nikolich-Žugich, Slifka and Messaoudi, 2004; Pennock et al., 2013; van den
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Broek, Borghans and van Wijk, 2018). This repertoire, which is central to the adaptive im-
mune system, is a union of clonotypes and is the cell population being sampled during data
collection. The number of T cells in each clonotype within the repertoire fluctuates over time
and usefully may be viewed as a stochastic process (Currie et al., 2012; Hodgkin, Dowling
and Duffy, 2014; Desponds, Mora and Walczak, 2016; Gaimann et al., 2020; Smith et al.,
2020; Molina-París and Lythe, 2021). The clonotype-defining TCR affects clonotype size
fluctuations, most notably by inducing cell division when the TCR productively interacts
with cognate antigen in the presence of appropriate co-stimulatory molecules. Of interest in
disease studies are antigens from proteins produced abnormally within a growing cancer, for
example, or antigens from normal proteins recognized by a defective immune response in
auto-immune disorders. Complexity of the adaptive immune response warrants highly de-
tailed stochastic-model dynamics, perhaps accounting for clonal competition or adaptation
(e.g., Stirk, Molina-París and van den Berg, 2008; Lythe and Molina-París, 2018; Rane et al.,
2018; Duque et al., 2020). However, even structurally simple models can support certain
lines of investigation and can guide statistical analysis in the growing number of empirical
studies. TCR analysis has been critical in studies investigating antitumor responses as well as
immune-related toxicity following treatment with immune-checkpoint blockade (e.g., Fairfax
et al., 2020; Valpione et al., 2020; Lozano et al., 2022; Valpione et al., 2021).

1.3. Surrogate selection. In the absence of an assay to measure the proliferation history
of a sampled T cell, surrogate selection provides an indirect measurement through the lens of
neutral somatic mutation. The most well-studied case leverages an assay to score somatic mu-
tations of hypoxanthine-guanine phosphoribosyltransferase (HPRT) (Albertini et al., 1990;
Albertini, 2001). Other assays rely on an efficient approach to screen mutations in phos-
phoinositolglycan class A (PIG-A) genes (Peruzzi et al., 2010; Dobrovolsky et al., 2017).
Coding an enzyme within the purine salvage pathway, HPRT normally helps to recycle nu-
cleotide bases from degraded DNA. Its post-translational modifications also confer cytotoxi-
city to purine analogs, including 6-thioguanine (6TG). Cultured lymphocytes are thus unable
to grow in the presence of 6TG unless they have incurred an inactivating HPRT mutation.
Each surviving T cell in an HPRT assay reports that an HPRT mutation occurred in that T
cell or in one of its somatic ancestors. Notably, no explicit DNA sequencing is involved. The
assay has been used to monitor somatic mutations in many settings, including, for example,
in Chernobyl liquidators (Jones et al., 2002), in Iraq war veterans (Nicklas et al., 2015), and
in studies of environmental exposures. Kaitz et al. (2022) reviews the implicit model for sur-
rogate selection and the literature using HPRT surrogate selection in autoimmune diseases,
cardiac transplantation, infectious diseases, a hematological disease, and cancer.

1.4. Summary of findings. The rationale for surrogate selection in disease studies is that
it provides an enrichment for relevant T cell clonotypes, and thus may be useful in monitoring
response to immunotherapy, for example. Some care is required in this argument, since while
a large, expanded clonotype has higher sampling probability than any smaller clonotype, the
vast diversity within a typical T cell repertoire means that even large clonotypes remain a
small fraction of the total population; indeed, most sampled cells come from small clono-
types. Basic stochastic process theory guides our effort to balance these factors. We find that
if at any time point the vector of clonotype sizes in a repertoire is exchangeable, and if the
temporal development of any one clonotype follows a sufficiently regular birth-death process,
then surrogate selection via neutral somatic mutation enriches the sampled cells for those of
larger clonotypes. We examine the impact of surrogate-selection on the expected value of
sample diversity statistics. In empirical validations, we re-examine single-cell data from pub-
licly available T cell repertoire samples that were obtained via 10x Genomics sequencing;
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in doing so we compute cell-level somatic burden statistics and associate this burden with
clonotype size. We also review sample diversity statistics from available surrogate-selection
studies.

2. One developing clonotype.

2.1. Model set up. Our calculations begin by considering one clonotype of the many
within an individual subject’s T cell repertoire. For definiteness, we label this clonotype σ,
recognizing that σ resides in a large finite label set S , which we associate with the set of
possible TCR sequences. At time t ≥ 0 relative to some reference time point t = 0 (e.g.,
birth), clonotype σ consists of Nσ(t) cells. If clonotype σ is ever non-empty, then there is
some origin time, say τσ , such that Nσ(t) = 0 for t < τσ and Nσ(t)> 0 only at times t≥ τσ .
We suppose that Nσ(τσ) = 1; that is, the clonotype originates upon successful completion
of receptor-forming recombination events (Elhanati et al., 2018). After positive and negative
selection induce thymocyte maturation, clonotype cells egress from the thymus and distribute
themselves throughout the body; we expect this all occurs on a short time scale compared to
the timing of typical observations, which might be from a mature subject’s peripheral blood
or tumor-infiltrating lymphocytes, for example.

The stochastic process {Nσ(t) : t≥ 0} fluctuates in response to all sorts of cell-biological
factors affecting cells in the clonotype, and must reflect a complex birth-death process (e.g.,
den Braber et al., 2012; Desponds, Mora and Walczak, 2016; Zhan et al., 2017). For example,
in the presence of appropriate cytokines, TCR interaction with cognate antigen triggers cell
proliferation, while apoptotic signals can induce cell death. Our understanding of repertoire
maintenance further supports the notion that if Nσ(s) = 0 at time s > τσ , then Nσ(t) = 0 for
all t ≥ s. This is analogous to the infinite-alleles assumption in population genetics; here it
means that a clonotype can only emerge once.

2.2. The branching tree. Following clonotype σ over time from τσ , there is a series of
event times at which cells in the clonotype either divide or die. Were we able to trace σ’s
complete history, we would record a binary tree, such as in Figure 1. At some observation
time tobs, each leaf of the tree is an extant cell that has experienced a number of cell divisions
since τσ . This division number is the number of edges along the path from the leaf node to
the first cell division; i.e., it is the depth of the leaf node in that reduced tree, assuming n≥ 2.
For a cell randomly sampled from the clonotype, let D denote this division number; it has a
probability distribution induced both by the stochastic development of σ and by the random
selection of the extant cell. Fortunately, this distribution has been the subject of extensive
study in the context of random binary trees (e.g., Lynch, 1965; Mahmoud, 1992; Aldous,
1996; Steel and McKenzie, 2001; Mahmoud and Neininger, 2003).

In the Yule model for trees, each cell division acts on a random cell, as if by a pure-
birth process without cell death. This symmetry over cell identity allows various explicit
computations. In fact, the probability generating function (p.g.f.) of D is

Gn(z) =E
{
zD

∣∣Nσ(tobs) = n
}
=

⟨2z⟩n−1

n!
,(1)

which is the formulation presented in (Mahmoud, 1992, Page 71-74), Eq. (2.4).1 Here
⟨x⟩n−1 = x(x+ 1)(x+ 2) · · · (x+ n− 2) is the rising factorial, which is conveniently ex-

1In (Mahmoud, 1992, Eq 2.4), a binary tree is assumed to contain n internal nodes and thus n+ 1 external
nodes (leaves) of the corresponding extended binary tree. In Steel and McKenzie (2001), following Mahmoud
(1992), the Yule tree is said to contain n+ 1 leaves. Our notation is slightly different as we use n to denote leaf
numbers. We ask that n≥ 2 and 1≤D ≤ n− 1. (In case n= 1, no divisions have happened so D = 0 w.p. 1.)
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Fig 1: Tree formed by a developing clonotype σ containing Nσ(tobs) = 7 extant cells at
time tobs after the initial cell was released from the thymus at time τσ . Event times along the
timeline indicate the 10 birth events (solid circles) and 4 death events (open circles). The fifth
birth event gives rise to a mutant cell, which is ancestral to 2 cells at tobs (dashed). Annotated
on the right for each cell is the pair (D,M) recording the number of postthymic divisions
leading to that cell and its mutation status, would that cell be sampled at tobs.

pressed in terms of Gamma and Beta functions Γ and B as:

⟨x⟩n−1

n!
=

Γ(x+ n− 1)

Γ(x)Γ(n+ 1)
=

1

(x+ n)(x+ n− 1)
· 1

B(x,n+ 1)
.

The p.g.f. Gn helps us connect the T cell repertoire with surrogate-selection dynamics.
Before pursuing that calculation, we note that the conditional expectation and variance of D,
given Nσ(tobs) = n, are also available, with both well approximated by twice the natural log-
arithm of n, and that as n increases, {D− 2 log(n)}/

√
2 log(n) converges in distribution

to a standard normal variate (Brown and Shubert, 1984; Mahmoud and Neininger, 2003).
Roughly, a randomly sampled cell from a randomly proliferating clonotype of current size n
(and ignoring cell death) has experienced about 2 log(n) cell divisions since receptor forma-
tion in the thymus. Sampling from the conditional distribution of D|Nσ(tobs) = n is reported
in Figure 2, revealing this proliferation effect for a handful of clonotype sizes. For complete-
ness we note the p.m.f. of D is,

(2) P {D = d |Nσ(tobs) = n}= 2d

n!
S(n− 1, d), d= 1,2, · · · , n− 1,

where S gives the unsigned Stirling number of the first kind (e.g., Lynch, 1965; Steel, 2024).

2.3. Neutral mutations. Surrogate selection aims to use neutral genomic mutations –
mutations that do not affect clonotype growth dynamics – as probes to report on these very
same dynamics. Uncorrected mitotic errors or other mutagenic effects are expected to occur
at some rate throughout the developing repertoire. We focus on mitotic mutations that affect
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Fig 2: Proliferation effect: Shown are violin plots of the division number D for cells in
randomly developed binary trees, having various sizes, n, at observation time. We used R
packages ape, to simulate Yule trees, and adephylo, to count divisions (Paradis and Schliep,
2019; Jombart, Balloux and Dray, 2010). Each plot summarizes 100,000 simulatedD values.
Empirical medians (white) and asymptotic means 2 log(n) (grey) are shown.

a single daughter cell, that are irreversible, and that occur independently across cell divi-
sions. We use θ ∈ (0,1/2) to denote the relative frequency of mutations at a given locus (e.g.,
HPRT) per daughter cell; i.e., 2θ is the mutation frequency per cell division. Other mecha-
nisms may induce mutations in both daughter cells or occur separately from mitosis (e.g.,
Abascal et al., 2021). Though statistical formulations may be adapted to these cases (e.g.,
Kendall, 1960; Roshan, Jones and Greenman, 2014), we emphasize one specific mechanism
for definiteness; robustness of our findings to certain variations in this mechanism are con-
firmed in Section 5.

Consider the thought experiment to sample a single cell uniformly at random from the
extant clonotype σ at time tobs, and let M be the binary (0/1) indicator that the sampled
cell harbors a mutation at the locus in question. We recognize that M really indicates that a
mutation event occurred somewhere in the ancestral lineage of the cell, and thus

P {M = 1 |D = d,Nσ(tobs) = n}= 1− (1− θ)d(3)

where D is the division number for this random cell. (The cell is not mutant if none of the
d opportunities for mutation yield such.) Incidentally, (3) implies that M and Nσ(tobs) are
conditionally independent given D. Our first finding concerns the rate of mutant genotype
in clonotypes of a given size, and is obtained by marginalizing the distribution of D. Define
ψn := P {M = 1|Nσ(tobs) = n}, and note that for neutral mutations and a Yule tree model,
ψ1 = 0, and for n≥ 2,

ψn =

n−1∑
d=1

P (M = 1 |D = d)P {D = d |Nσ(tobs) = n}

=

n−1∑
d=1

{
1− (1− θ)d

}
P {D = d |Nσ(tobs) = n}
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= 1−Gn(1− θ)

= 1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)
≈ 1− 1

n2θ Γ(2− 2θ)
,(4)

with the approximation on the last line improving for increasing n. Result (4) quantifies
the intuition that proliferating clonotypes provide a greater number of chances for mutation.
With θ > 0, limn→∞ψn = 1, and so an ever-proliferating clonotype is eventually dominated
by mutant cells. This matches limit theory for birth-death processes in which the growth rate
of mutant cells is no less than that of wild-type cells (e.g., Cheek and Antal, 2018).

We are not too concerned with the total number of mutant cells in the clonotype, whose
expected value is n times the per cell rate in (4), though our diversity calculations in Sec-
tion 3.5 rely on this distribution. That total mutant count is interesting in other settings, and
is governed by the Luria-Delbrück distribution; see Angerer (2001) or Roshan, Jones and
Greenman (2014) for the exact, non-asymptotic formulation. The reader may check that our
formula (4) matches the first-moment formula from Roshan, Jones and Greenman (2014),
Theorem 3.3, taking n= k and µ1 = 1− µ0 = 2θ; interestingly, a quite different approach is
taken in that paper.

2.4. Enrichment and Bayes’s rule. The development so far has emphasized probabilities
that condition on clonotype size. The stochastic evolution of clonotype σ over time induces a
distribution on clonotype size at observation time, which we layer in next. For example, the
linear pure-birth model leads to the Geometric{exp(−λσtobs)} distribution,

(5) P {Nσ(tobs) = n}= e−λσtobs
(
1− e−λσtobs

)n−1
, n≥ 1

where λσ is the birth rate (rate of cell division). Further, compounding over λσ gives the
Yule-Simon law with parameter ρ, which is inversely proportional to the expectation of λσ
(Huillet, 2020; Yu et al., 2025).

P {Nσ(tobs) = n}= ρB(n,ρ+ 1) =
ρΓ(ρ+ 1)Γ(n)

Γ(n+ ρ+ 1)
≈ ρΓ(ρ+ 1)

nρ+1
,(6)

where the approximation improves with increasing n. This is approximately a power-law, or
Zipf distribution, which has been found to fit many T-cell repertoires (e.g., Bolkhovskaya,
Zorin and Ivanchenko, 2014; Desponds, Mora and Walczak, 2016; Koch et al., 2018;
Gaimann et al., 2020; de Greef et al., 2020), with exponents ρ in the range 0.05 to 0.2. Other
marginal distributions on Nσ(tobs) may be induced by more complex stochastic dynamics,
such those modeling competition and thymic pressure (Lythe and Molina-París, 2018).

Combining the forward, mutant-genotype model (4) with a size model P {Nσ(tobs) = n},
we have by conditioning:

P {Nσ(tobs) = n |M = 1}= P {M = 1 |Nσ(tobs) = n} P {Nσ(tobs) = n}
P (M = 1)

(7)

=
P {Nσ(tobs) = n}

P (M = 1)

{
1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)

}
.

This Bayesian inversion of (4) quantifies surrogate selection’s enrichment effect in the pure-
birth case. One setting is shown in Figure 3, which illustrates the suppression of probability
on small clonotypes and inflation for larger ones. In that example, the median of the uncon-
ditional Geometric distribution is 6931 cells, while after conditioning on M = 1, the median
clonotype size shifts up to 8139 cells. This effect is not limited to the marginal Geometric
law. Figure 4 shows the result for a Logarithmic distribution (p.m.f. proportional to pn/n)
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and a Yule-Simon law (6), respectively. The enrichment phenomenon holds for any distri-
bution on clonotype size as long as the growth dynamics provide for full support so that all
conditional probabilities are well defined. Summarizing the findings for a single developing
clonotype, we have:

PROPOSITION 1. Suppose that each cell division in the developing clonotype σ increases
the clonotype size by 1 and occurs on a random extant cell, that a non-mutant dividing cell
produces one mutant descendant (w.p. 2θ) or no mutant descendants (w.p. 1− 2θ), that de-
scendants of a mutant dividing cell are both mutants, that there are no cell deaths, that σ
began with a single non-mutant cell, and that P {Nσ(tobs) = n} > 0 for n ≥ 1. If M indi-
cates that a randomly sampled cell from σ at time tobs is mutant, then the enrichment ratio
ϕn := P {Nσ(tobs) = n |M = 1}/P {Nσ(tobs) = n} is:

ϕn =
1

P (M = 1)

{
1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)

}
.

Further, ϕn is strictly increasing and approaches 1/P (M = 1)> 1 as n−→∞.

Two immediate corollaries assure that: (1) there exists a crossover point ncross with ϕn < 1
when n < ncross and ϕn > 1 when n > ncross, and (2) the conditional distribution is stochas-
tically larger than the marginal distribution, which is another perspective on the notion that
mass is pushed towards larger clonotypes. In fact, monotonicity of ϕn amounts to saying
that the marginal and conditional distributions satisfy the monotone likelihood ratio order-
ing, which is stronger than stochastic ordering of c.d.f.’s: P{Nσ(tobs) ≥ n | M = 1} ≥
P{Nσ(tobs) ≥ n} (see Pfanzagl, 1964). Among other things, it also follows that the con-
ditional distribution of Nσ(tobs) given M = 1 has larger expected value than the marginal
distribution. Conceptually, learning that the sampled cell is mutant tells us that the clonotype
is probably larger than we would have guessed otherwise.

2.5. Beyond pure birth. Relaxing the no-cell-death assumption makes quantifying en-
richment more difficult. Explicit calculations show that conditioning on M = 1 does not
necessarily enrich for larger clonotypes. A highly stylized example (Yu et al., 2025) captures
features of clonal expansion followed by rapid clonal decline. The intuition is that having
sampled a mutant cell, we learn that its containing clonotype is relatively old rather than
being relatively large; these two features are equivalent in the pure-birth model. Notwith-
standing this counterexample, we find that conditioning on mutation of a sampled cell does
enrich for larger clonotypes in a class of well-behaved birth-death processes.

At times τ1 < τ2 < · · · after τσ , changes A1,A2, · · · occur that either increase the clono-
type size (Ai = 1) or decrease the clonotype size (Ai =−1), in the first case by division of
a random cell, and in the latter by death of a random cell. It is important for our method of
proof that in either case this random selection is uniform among the cells within the clonotype
(i.e., neutral steps, e.g., Steel, 2024). By time t, the clonotype size is Nσ(t) = 1 +

∑I(t)
i=1Ai

where τI(t) ≤ t < τI(t)+1 and I(t) = max{j : τj ≤ t}. We suppose that Nσ(t) is not explo-
sive, and thus only a finite number of τj’s can occur in any finite time interval. We suppose
that Ai is conditionally independent of (τ1, τ2, · · · , τi) given A1,A2, · · · ,Ai−1, so that the
discrete clonal history becomes separable from timing issues. Further, we do not require
a Markov condition, though we are mindful that having Ai conditionally independent of
past changes given νi−1 = 1 +

∑i−1
j=1Aj provides for a Markovian jump chain ν1, ν2, · · · ,

with Nσ(t) = νI(t) (e.g., Grimmett and Stirzaker, 2001, pg 265). So that conditional prob-
abilities are well defined, we ask that clonotype dynamics assure full support, i.e., that
P {Nσ(tobs) = n} > 0 for all integers n ≥ 1. As in the pure-birth case, a mutation may
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Fig 3: P {Nσ(tobs) = n |M = 1} (grey) when the marginal distribution (black) is a Geo-
metric distribution with parameter e−λtobs = 10−4 and the mutation frequency θ = 10−6.
The crossover point ncross is 5624 cells.

Fig 4: P {Nσ(tobs) = n |M = 1} (grey) when the marginal clonotype size distribution
(black) is a Logarithmic distribution (left) or a Yule-Simon distribution (right), with param-
eters p = 1 − 10−5 for Logarithmic distribution and ρ = 0.1 for Yule-Simon distribution.
Mutation frequency θ = 10−6 in both cases. The crossover point ncross equals to 326 cells
under Logarithmic distribution, and ncross = 14270 under Yule-Simon distribution.
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arise in one daughter of a non-mutant cell in case Ai = 1; mutations occur with probabil-
ity θ per daughter cell, independently of all other properties of the clonotype up to that time
(i.e., neutral mutations). Both daughters of a dividing mutant cell are mutant. For a cell sam-
pled randomly from the clonotype at tobs, let M indicate its mutation status, and introduce
the conditional mutant frequency Ψ(a1, a2, · · · , ai) := P {M = 1 | Ai, I (tobs) = i}, where
Ai = ∩i

j=1(Aj = aj) tracks the specific birth-death sequence. Obviously we cannot sample
a cell from an empty clonotype, so we furthermore condition on non-extinction, i.e. νi ≥ 1
for all i. The Ψ function generalizes the pure-birth ψn sequence (4), which we recover with
i= (n− 1) and all aj = 1, for example.

PROPOSITION 2. In the birth-death process defined above, Zi := Ψ(A1,A2, · · · ,Ai) is
non-decreasing in i, converges almost surely to 1, andE(Zi) = P {M = 1 | I(tobs) = i} con-
verges to 1. Further, P {M = 1 |Nσ(tobs) = n} ≥ ψn for all sizes n, 0<P (M = 1)< 1, and
the enrichment ratio

P {Nσ(tobs) = n|M = 1}
P {Nσ(tobs) = n}

−→ 1

P (M = 1)
> 1 as n−→∞.

Many models meet the requirements of Proposition 2. For example marginal to non-
extinction, the linear birth-death process has the Ai’s i.i.d., with P (Ai = 1) = λ/(λ + µ)
for birth rate λ > 0 and death rate µ≥ 0. It is well known that extinction is almost sure when
λ≤ µ, but also that extinction occurs with probability µ/λ as long as λ > µ (e.g., Grimmett
and Stirzaker, 2001, pg 272). The regularity conditions hardly limit the shape of clonotype-
size distributions; they simply assure that Nσ(tobs) does not collapse to zero or explode to
infinity, and that conditioning events have positive probability. Proposition 2 means that con-
ditioning on mutant status does enrich for larger clonotypes, thus extending Proposition 1 to
a broader class of birth-death processes.

3. Sampling from the repertoire.

3.1. Model set up and size bias. Calculations so far refer to the random development
of a single clonotype and its internal mutation rate. More relevant to experimental data are
calculations that allow for sampling from the full repertoire, and thus the simultaneous devel-
opment of many clonotypes. We eschew detailed, cell-biological considerations, though we
do provide necessary structural elements to allow for a distributional comparison of diversity
statistics computed either from wild type or mutant T cell fractions. First, we address a curi-
ous size-biased sampling effect that emerges in considering the full repertoire, in contrast to
the single clonotype from Sections 2.4 and 2.5.

We focus on a single observation time tobs, at which point the repertoire S is com-
prised of non-empty clonotypes σ1, σ2, · · · , σℵclo

, of sizes N =
(
Nσ1

,Nσ2
, · · ·Nσℵclo

)
, with

ℵcel =
∑ℵclo

j=1Nσj
equal to the overall number of cells in the repertoire. In adult humans,

ℵcel and ℵclo may be on the order of 1011 and 108, respectively. Considering the snapshot
of the repertoire, here we appreciate but do not emphasize with notation anything about the
temporal, stochastic development of the clonotypes; for instance, we ignore the multitude of
receptors that are not extant at tobs, and we therefore have Nσj

> 0 for all j. The same tech-
nical device was used by Rothman and Templeton (1980) in studying statistical properties of
other assemblages, where additionally the assumption of finite exchangeability is helpful in
revealing interesting system properties. We also adopt the finite exchangeability assumption
for the joint mass function,

fjoint (n1, n2, · · · , nℵclo
) = P

(
Nσ1

= n1,Nσ2
= n2, · · · ,Nσℵclo

= nℵclo

)
(8)
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Fig 5: Simulated repertoire of ℵcel = 1000 cells comprising ℵclo = 100 non-empty clono-
types (encasing circles). The 287 mutant cells are white and the remaining 713 wild-type
cells are grey, giving a realized mutant frequency 0.287. As predicted mathematically, the
larger clonotypes have an over-representation of mutant cells. Sampling uniformly among
clonotypes, the average extant clonotype size is 10.0 cells; given the sampled clonotype con-
tains a mutant cell, the average clonotype size is 16.0 cells. On the other hand, sampling
uniformly among cells, the average clonotype size of the sampled cell (i.e., with size bias) is
23.0 cells. The average clonotype size when sampling mutant cells, however, is even larger,
at 27.7 cells. This synthetic data was simulated from a Bose-Einstein clone-size model and a
Luria-Delbrück mutation model, with mutation frequency θ = 0.05.

for counts nj ≥ 1, which not only simplifies the specification, but also means that joint
probability masses depend on the frequency spectrum holding the counts-of-counts: C(k) =∑

σ 1[Nσ = k]. Figure 5 realizes a small synthetic example.
To appreciate the size-bias issue, consider sampling a single cell uniformly from the reper-

toire, and let S ∈ S denote its clonotype identifier. We recognize that NS , the size of the
clonotype holding the sampled cell, is random owing to both the random development of the
repertoire, as governed at least at the observation time by (8), and owing to the sampling of a
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cell from the repertoire. Conditioning throughout on ℵcel and using exchangeability, we have

P (NS = n) =
∑
σ∈S

P (NS = n,S = σ) =
∑
σ∈S

P (Nσ = n,S = σ)

=
∑
σ∈S

P (S = σ |Nσ = n)P (Nσ = n) =
∑
σ∈S

(
n

ℵcel

)
P (Nσ = n)

= nP (Nσ = n)

(
ℵclo

ℵcel

)
for any σ ∈ S.(9)

Size bias is reflected in the multiplication by n in (9). It conveys the fact that sampling a cell
uniformly at random from a randomly developing repertoire is different than sampling a cell
uniformly at random from a randomly developing clonotype. One consequence of (9) is that
NS is stochastically larger than Nσ (Arratia, Goldstein and Kochman, 2019; Yu et al., 2025).
In any case, surrogate selection aims to further bias distributions towards larger clonotypes
than would be obtained marginally. Before studying this enrichment, it is helpful to investi-
gate a few exchangeable models and their relationship to well-known marginal distributions.

3.2. Joint assemblages and limiting margins: examples. By various compounding and
conditioning operations applied to a collection of independent Poisson variates, Rothman
and Templeton (1980) obtained an interesting exchangeable specification that we reconsider
for (8):

fjoint(n1, n2, · · · , nℵclo
)∝

ℵclo∏
j=1

pnj
Γ(nj + α)

Γ(nj + 1)
,(10)

where the system-defining parameters α > 0 and p ∈ (0,1) reflect properties of the assem-
blage. By modifying limiting regimes for ℵcel, ℵclo, and α, Rothman and Templeton (1980),
inter alia, recovered reference marginal distributions distinguished especially by tail behav-
ior. For example, conditioning on ℵcel =

∑
jNσj

to eliminate p, and setting α = 1 gives
the Bose-Einstein case. Sending ℵclo/ℵcel → γ0 ∈ (0,1) as both the numerator and denom-
inator diverge in this case, the marginal limiting distribution of any one clonotype size is
Geometric(γ0), as in (5), which matches the pure-birth Yule tree model, with γ0 = e−λσtobs .
Similarly, if α→ 0, the limiting margin is the Logarithmic distribution, with p.m.f. propor-
tional to pnj/nj ; and if the limit of ℵclo/ℵcel itself has a Beta(ρ,1) distribution, then the
limiting margin is the Yule-Simon power law (6). Empirical size distributions from the Bose-
Einstein simulation conform nicely to these theoretical predictions (Figure S5, Yu et al.,
2025). These intriguing relationships provide a modeling framework allowing us to elabo-
rate single-clonotype calculations (Section 2) into the context of full-repertoire sampling. In
particular, where various conditions on the joint assemblage give rise to different limiting
marginal distributions for a given clonotype’s Nσ , we can similarly deduce the size-biased
distribution of NS . Details are provided in (Appendix B, Yu et al., 2025); summarizing here,
the size-biased version of the Geometric (5) has p.m.f. nγ20(1− γ0)

n−1, and the size-biased
version of the Yule-Simon (6) has the p.m.f. ρnB(n,ρ+ 2); see also Fig S1. Here, we exer-
cise these reference distributions primarily to explore single versus multi-clonal models, but
we recognize they would be useful building blocks in model-based analysis of clonotype-size
data. Related to Section 2.5, these reference distributions also emerge from considerations of
dynamics of birth-death processes (Dessalles, D’orsogna and Chou, 2018).
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3.3. Enrichment. Size bias attributable to repertoire versus single-clonotype sampling
does not alter the basic enrichment properties revealed in Propositions 1 and 2, except for a
slight change in constants. For example, with the mutation model as in Section 2.4, and such
that within each clonotype the stochastic process meets the conditions of Proposition 1, we
have:

P (NS = n |M = 1)

P (NS = n)
=

1

P (M = 1)

{
1− Γ(n+ 1− 2θ)

Γ(n+ 1)Γ(2− 2θ)

}
which is also a strictly increasing function of n that approaches limit 1/P (M = 1). The result
follows from the single-clonotype sampling result (4), Bayes’s rule, and the equality:

P (M = 1 |NS = n) =
∑
σ∈S

P (M = 1, S = σ |NS = n)(11)

=
∑
σ∈S

P (M = 1 |Nσ = n,S = σ)P (S = σ |NS = n)

= P (M = 1 |Nσ = n,S = σ) for any σ ∈ S.

By analogy, Proposition 2 may also be extended to sampling from the full repertoire. In
summary,

PROPOSITION 3. If clonotype sizes at observation time tobs are exchangeable, as in (8),
if each individual clonotype evolves to its size at tobs according to the dynamics in Proposi-
tion 1 or Proposition 2, and if M and S are the mutation status and clonotype identifier of
a cell drawn randomly from the full repertoire, then the enrichment ratio P (NS = n |M =
1)/P (NS = n) eventually exceeds 1 for sufficiently large n.

The enrichment phenomenon is illustrated in the synthetic repertoire in Figure 5, which
shows mutant and wild-type subclones of various clonotypes, and highlights how sampling
the mutant fraction would bias towards larger clonotypes. From the perspective of experimen-
tal design, Proposition 3 affirms and quantifies the sampling effects of surrogate selection.

3.4. Mutant Frequency. At least in the absence of cell death, a random cell from the
repertoire is more likely to be mutant than a random cell from any specific, randomly devel-
oping clonotype: P (M = 1)≥ P (M = 1 | S = σ), which we confirm in the Appendix D by
a calculation similar to (9). This mutant frequency P (M = 1) is of independent interest and
can be estimated by various dilution assays. As reviewed in Kaitz et al. (2022), the mutant
frequency is different from the mutation frequency θ. The former considers the rate at which
mutant cells are found in a sample from the repertoire; the latter is the rate that mutations
emerge among cell divisions in a developing clonotype. Some numerical comparisons are
provided in Table S2 and Fig S2 (Yu et al., 2025).

3.5. Diversity statistics. An important motivation for the preceding theoretical calcula-
tions is to understand the impact of surrogate selection on statistics from a random sample
from a repertoire. Suppose the amount of sampled material from one subject is a fraction
ϵ= nsamp/ℵcel of the entire repertoire, and let Xσ record the number of cells within the sam-
ple of nsamp cells that have receptor σ. Conditional upon the clonotype sizes, we treat this
empirical frequency as Poisson distributed, considering typical experimental settings and the
relative rarity of individual clonotypes (e.g., Sepúlveda, Paulino and Carneiro, 2010). Thus,

Xσ|N ∼ Poisson (ϵNσ) .(12)
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The number of clonotypes represented by k cells in the sample is Yk =
∑

σ 1[Xσ = k];
most diversity statistics are computed from these occupancy counts, {Yk} (e.g., Lande, 1996;
Zhang and Zhou, 2010; Chiffelle et al., 2020). The most simple one is D =

∑nsamp

k=1 Yk, which
is the number of distinct clonotypes observed in the sample. Note also nsamp =

∑
k kYk. Rec-

ognizing D =
∑

σ 1[Xσ > 0], it is immediate from exchangeability that:

E(D) = ℵclo

1−
∑
n≥1

e−nϵP (Nσ = n)

 , for any one σ.(13)

Using probability generating functions, we may compute expected diversity directly for the
reference marginals. For example, taking the limiting Geometric margin for P (Nσ = n)
noted in Section 3.2,

E(D) = ℵclo

{
1− γ0

eϵ − (1− γ0)

}
.(14)

Alternatively, if Nσ ∼ Log(p), then,

(15) E(D) = ℵclo

{
1− log(1− pe−ϵ)

log(1− p)

}
.

For Yule-Simon marginal distribution with parameter ρ, we get,

(16) E(D) = ℵclo

{
1− ρe−ϵ

ρ+ 1
2F1

(
1,1;ρ+ 2; e−ϵ

)}
where 2F1(a, b; c; z) is the Gaussian hypergeometric function. In typical repertoires, we ex-
pect parameter settings assuring high diversity, such that E(D) is relatively close to nsamp.

Surrogate selection enables direct sampling from the mutant fraction, and our formalism
allows a quantitative assessment of the selection effect on expected sample properties. By
enriching for larger clonotypes, surrogate selection would seem to lead to fewer cells from
very small clonotypes, and thus less diverse samples. Here we confirm that property. Set
ϵ̃= nsamp/{ℵcelP (M = 1)}, which is an amount larger than ϵ that is sufficient to produce,
in expectation, nsamp mutant cells from the repertoire. These cells arise from the clonotypes
according to sample counts X̃σ , which, given the total numbers of mutant counts across the
repertoire, Ñ =

{
Ñσ

}
, then satisfy

X̃σ

∣∣∣ Ñ ∼ Poisson
(
ϵ̃Ñσ

)
.(17)

The mutant sample, which in expectation has the same number of mutant cells as the total
number of cells in the full-repertoire sample, has its own diversity, D̃ =

∑
σ 1[X̃σ > 0]. By

manipulating the probability generating function of the Luria-Delbrück distribution, and also
leveraging results in Roshan, Jones and Greenman (2014), we find explicit formulas for the
expected diversity among mutant-sampled cells.

PROPOSITION 4. In the pure-birth, Yule tree model for clonotype development, with a
Geometric(γ0) distribution for each clonotype size at observation time, and with mutation
frequency θ as in Proposition 1, the mutant sample has expected diversity:

E(D̃) = ℵclo

[
1− γ0

(1− eϵ̃){1− e−ϵ̃(1− γ0)}2θ + eϵ̃{1− e−ϵ̃(1− γ0)}

]
.
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Alternatively, in case the clonotype-size distribution is Logarithmic(p), then the expected
diversity is:

E(D̃) = ℵclo

[
1−

2θ log(1− pe−ϵ̃)− log
{
(1− eϵ̃)(1− pe−ϵ̃)2θ + eϵ̃ − p

}
−(1− 2θ) log(1− p)

]
.

In either case, E(D̃)<E(D) as long as θ ∈ (0, ϵ/2).

Thus, in two reference models, Proposition 4 expresses the precise effect of surrogate
selection on the expected diversity of a repertoire sample. The result extends to more gen-
eral distributions by mixing. For example, if conditional upon γ0 the clonotype sizes are
Geometric(γ0), and if γ0 = exp(−W ) for W ∼ Exp(ρ), then marginally the clonotype size
is Yule-Simon distributed with parameter ρ, and the expected diversity bound carries through
the expectation: E

{
E
(
D− D̃

∣∣ γ0)}> 0.

Fig 6: Expected sample diversity (vertical) at various mutation frequencies θ (horizontal)
and for different marginal distributions of clonotype size (Geometric or Logarithmic) and
considering sampling the whole repertoire (random), sampling the mutant subset (condi-
tional), and a null version sampling the mutant fraction where mutant status is independent
of clonotype size (null). Calculations use a repertoire of size ℵcel = 109 cells and ℵclo = 106

clones, and a sampling fraction ϵ = 10−5. The Geometric parameter is set γ0 = ℵclo/ℵcel

and the Logarithmic parameter p= 0.9998779 solves −(1− p) log(1− p) = pγ0, following
(Watterson, 1974, eq. 3.1). Expected sample diversity is always lower in the mutant fraction
than in random draws from the whole repertoire, in accordance with Proposition 4.

A skeptic uncertain about the extent of surrogate selection’s enrichment effect would point
out that sample diversity could be lower in the mutant fraction owing only to the effect of re-
ducing the population size. In sampling a repertoire fraction ϵ̃ to recover nsamp mutant cells,
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we might have very few cells to draw from when P (M = 1) is very small, and this setting
would result in lower sample diversity whether or not the event M = 1 enriches for larger
clonotypes. Having mutation independent of Nσ provides a ready null version of Proposi-
tion 4, details of which are in Yu et al. (2025), Appendix E. Figure 6 provides a numerical
illustration, and shows that expected sample diversity is lower when sampling the mutant
fraction, above and beyond the drop expected by reduced-population-size effects alone.

3.6. Somatic burden. Our calculations emphasize mutation status at some special locus
(like HPRT) for which experimental assays provide for ready sampling of cells within that
mutant fraction of the repertoire. Yet the calculations also inform an analysis of more general
mutational signatures carried by sampled T cells. Intuitively, there may be a lot of informa-
tion, for example about prior antigen exposure, that is recorded in present genomic state of
sampled T cells, whether or not we consider mutations for an in vitro selection assay.

A T cell sampled randomly from the repertoire resides in a random clonotype S of size
NS . At any genomic locus g within a host of measurable sites G, this cell has mutation status
Mg relative to its prethymic state. We are thinking

Mg = 1 [locus g in sampled cell has incurred a somatic mutation] ,

which opens us up to a genome-wide spectrum of mutations, rather than changes at a single,
surrogate-selection-driving locus. To this end, we define a sampled cell’s somatic burden L
to be the summation of Mg over all g ∈ G. We find it convenient to consider a sequence of
collections G1,G2, · · · , approaching G, with Gm containing m loci, and for which at step m,
P
(
Mm

g = 1 |NS = n
)
= ψn(θ

m
g ) for locus-specific mutation frequency θmg , and with ψn as

in (3) but now highlighting its dependence on mutation frequency. This formula works in the
pure-birth model structure thanks to Proposition 1 and the exchangeability in (8). Within this
framework, we have the step-m burden Lm =

∑
g∈Gm Mm

g .

PROPOSITION 5. If clonotypes satisfy the regularity conditions in Proposition 1, if clono-
type sizes are exchangeable as in (8), and if λm =

∑
g∈Gm θmg −→ λ as m−→∞ for some

λ > 0, then

lim
m→∞

E(Lm |NS = n) = 2λ(Hn − 1) = λψ′
n(0)(18)

where Hn is the nth harmonic number and ψ′
n(θ) = dψn(θ)/dθ.

Put another way, the expected number of postthymic somatic mutations in a T cell (i.e.,
the expected somatic burden) is approximately proportional to the logarithm of that cell’s
clonotype size, at least under the stated regularity conditions. Single-cell sequencing studies
provide a means to measure L on sampled cells, and also to associate it with clonotype size,
as we investigate next.

4. Empirical studies.

4.1. Somatic burden. Single-cell sequencing technologies provide an exciting window
into the dynamics of the T cell repertoire. Here we reanalyze publicly available data reported
by 10x Genomics on samples from 7 different T cell repertoires, including 5 peripheral blood
mononuclear cell (PMBC) samples from healthy human donors, a melanoma patient and a
lung cancer patient. Yu et al. (2025), Appendix F, summarizes the data resources and provides
additional details on our analysis pipeline. In every case, the repertoire sampling and prior
analysis provided both TCR sequence and single cell whole-transcriptome RNA-seq on thou-
sands of cells. The TCR sequence information allows us to cluster cells into clonotypes. Our
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interest in somatic burden puts quite different demands on the RNA-seq data than the orig-
inal studies. Rather than derive transcript abundance, first we repurpose the RNA-seq reads
to report on underlying somatic mutations that emerged in the genomic DNA. Following the
workflow in Edwards et al. (2022), and using the GATK pipeline for genomic-variant call-
ing (McKenna et al., 2010; Auwera and O’Connor, 2020), we computed single-cell-expressed
single-nucleotide-variant calls (sce-SNVs) from the read data using Mutect2 (Cibulskis
et al., 2013; DePristo et al., 2011), applied consistently across the different repertoires. De-
tails for SNV calling are in Appendix F, but we note here that to focus better on postthymic
somatic variants, we filtered any calls that would have appeared in more than one clonotype.
In total over the 7 repertoires, we measured 30257 cells that resided in 27758 clonotypes, and
which altogether presented 1609 sce-SNVs.

Figure S3 (Yu et al., 2025) summarizes average somatic burden as a function of clonotype
size for one repertoire. Though not statistically significant, it shows an intriguing increase
in estimated mean burden with increasing clonotype size, just as predicted by Proposition 5.
Not all data sets show as clear a trend (Table 1), though in a meta-analysis which combines
the 7 repertoires, we see stronger evidence of an increase in expected burden with clonotype
size (Figure 7). We applied a linear model to cell-level data, with response the measured
burden, and with an adjusted clonotype size predictor, where the adjustment accounts for the
different sampling rates across the repertoires. We estimate β̂ = 0.6 SNVs per unit increase in
logarithm of clonotype size. A stratified permutation, which shuffles cells between clonotypes
within repertoires, gives a modest p-value of 0.02 on this clonotype-size effect.

Cell-function data provide an intriguing validation of the association between somatic
burden and clonotype size. Recall that within the T cell repertoire, cells specialize towards a
variety of distinct functional subtypes that are distinguished by features of the single-cell tran-
scriptional profile (e.g., Andreatta et al., 2021; Ianevski, Giri and Aittokallio, 2022). These
include naive cells which have yet to have been activated by antigen, and various effector,
memory, and exhausted subtypes. Figure S4 shows a 2-dimensional embedding of 22424 T
cells according to their single-cell transcriptional profiles; these constitute the subset of cells
analyzed above for which a confident functional T cell subtype classification was available.
Cells thus have a subtype label, in addition to a somatic burden score and clonotype size
score; Figure 8 summarizes two of the interesting pairwise marginal distributions, and pro-
vides an empirical assessment that is fully in line with our theoretical development and our
understanding of T cell biology. Sampled T cells are predominantly naive, with predomi-
nantly singleton TCRs and without any somatic variants. Further, as confirmed by formal
hypothesis tests (Appendix H), naive T cells correspond to smaller clonotypes and have less
somatic burden than non-naive T cells.

4.2. Melanoma case studies. We reconsider surrogate selection data presented in Zuleger
et al. (2020), and we focus here (Table 2) on a metastatic melanoma patient for whom reper-
toire sampling was performed repeatedly over the course of what turned out to be a success-
ful immunotherapy treatment. As the table shows, the HPRT wild-type (WT) samples have
greater sample diversity than the HPRT mutant (MT) samples, which have passed in vitro
selection.

The mass culture conditions and cDNA sequencing approach used by Zuleger et al. (2020)
affect the distribution of counts in Table 2, making them over-dispersed compared to ideal
cell counts. Assays based upon single-cell-derived isolates precisely count wild-type and
HPRT mutant cells, rather than cDNAs, and are not subject to additional variance caused
by in vitro growth effects. However, they are more labor intensive than mass cultures and
provide less overall sequencing data. Table 3 summarizes such data from the peripheral blood
of 11 subjects studied in Zuleger et al. (2011). In all cases the HPRT surrogate selected
samples are less diverse than the wild-type cells, as predicted by the enrichment calculations
in Section 3.5.
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TABLE 1
Somatic burden of cells by clonotype size (rows), derived from seven T cell repertoire samples (columns)
made publicly available by 10x Genomics. Details of the data resources are in Supplementary Table S3. We

repurposed the single-cell RNA-seq reads to infer somatic variants and compute somatic burden counts per cell
(average burden in upper table, SNVs/cell); and we used the reported TCR sequences to partition cells into

clonotypes (numbers of clonotypes in bottom table).

Clonotype size 20K 10K SC5K PBMC3 Controller Melanoma Lung
1 0.018 0.017 0.076 0.042 0.019 0.057 0.390
2 0.002 0.005 0.103 0.043 0.029 0.121 0.245
3 0 0 0 0 0 0.035 0.407
4 0 0 - 0.042 0 0.278 0.667
5 0 0 0 0 0 0 0.400
6 0 0 0 2.167 0 - 0.292
7 0 - 0 0 0 - 0.429
8 0 0 3.000 0 - - 0.875
9 0 - 0 - - 0 0.444

10 0 - - 0 0 - 0.200
11 0 - 0 - 0 0 0.455
12 - 0 - - 0 0 0.292
13 - - - - - 0 -
14 0 - 0.429 - - 0 -
17 - - - 0 - - 0.588
19 0 - - - - 0 -

[20,40] 0.100 0 - - 0 - 1.283
> 40 0 - 0.170 0.171 - - -

Clonotype size 20K 10K SC5K PBMC3 Controller Melanoma Lung
1 8395 4211 1643 5659 4118 1097 1315
2 239 111 39 278 123 66 108
3 39 35 8 33 23 19 27
4 13 6 - 6 6 9 12
5 15 5 1 4 5 3 3
6 7 2 2 1 1 - 4
7 5 - 2 2 2 - 2
8 6 1 1 4 - - 1
9 2 - 1 - - 1 2

10 1 - - 2 1 - 2
11 2 - 1 - 1 1 1
12 - 1 - - 1 1 2
13 - - - - - 1 -
14 1 - 1 - - 1 -
17 - - - 2 - - 1
19 1 - - - - 2 -

[20,40] 1 1 - - 1 - 2
> 40 1 - 1 1 - - -

TABLE 2
Empirical repertoire diversity in wild-type and HPRT mutant fractions, derived from sequencing TCR

cDNAs from mass cultures obtained at 5 time-points on one melanoma patient
Time point Total reads WT unique / reads MT unique / reads

1 108722 2840 / 58896 158 / 49826
2 111652 4587 / 53435 182 / 58217
3 98834 2709 / 49799 156 / 49035
4 87804 2091 / 52277 84 / 35527
5 98286 2209 / 51711 133 / 46575
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Fig 7: Each of 30257 T cells from 7 repertoires is associated with a somatic burden (vertical)
and also a clonotype size (horizontal), the latter of which is adjusted in an effort to normalize
repertoire samples. The curve shows the estimated effect on expected burden of the logarithm
of clonotype size, as determined by a linear model fit (β̂ = 0.6 SNVs per unit increase in log
clonotype size). Statistical significance of the estimated slope was assessed by a stratified
randomization, which shuffled cells between clonotypes but within repertoires (permutation
p-value 0.02 with B = 104 shuffles). Though statistically significant, the result is not fully
resistant; for example, the cells in large clonotypes have very high leverage; dropping the
cells with adjusted clonotype size greater than 100, for example, leads to an insignificant
permutation p-value. The adjusted log size is log clonotype size minus log of repertoire size
plus log of largest repertoire size.

5. Concluding Remarks. Gaining a better understanding of the adaptive immune sys-
tem is a central focus of contemporary biomedical research, considering that system’s role
in health and disease. We seek clinically useful methods to identify T cells that may be re-
sponding to antigens presented by melanoma, but it is challenging to recognize a patient’s
disease-specific antigens, and it is also difficult predict the antigens to which a given TCR
will bind. Research on both these frontiers is important and will capitalize on advances in the
data sciences (e.g., Lu et al., 2021; Li et al., 2021). In any case, techniques that could readily
enrich a lymphocyte sample for T cells responsive to disease-relevant antigens would have a
variety of applications; for instance, they could be useful in monitoring a patient’s response
to immunotherapy. The present work provides a statistical basis to the use of surrogate selec-
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Fig 8: Over the 22424 cells from 7 T cell repertoires for which scRNA-seq data provide a
confident cell type call, shown are empirical joint distributions of cell type (horizontal) and
clonotype size (vertical, left panel) or somatic burden (vertical, right panel). Grey scale is by
bins at cut points 10, 102, 103, and 104, and marginal counts are shown on outer edges.

TABLE 3
Empirical repertoire diversity in wild-type and HPRT mutant fractions, derived from single-cell isolate

data on seven melanoma patients and four healthy donors. Subjects 1, 2, 3, 5, 6, 9, 13 are melanoma
patients; Subjects 26, 29, 30, 32 are healthy donors. Subjects are sorted by the number of sequenced TCRs.

Subject # T cells WT unique / cells MT unique / cells
5 122 19 / 19 102 / 103
2 114 49 / 49 61 / 65
1 101 31 / 32 45 / 69

32 95 54 / 54 30 / 41
26 81 36 / 36 44 / 45

3 79 17 / 17 55 / 62
30 69 39 / 39 29 / 30
13 69 23 / 23 43 / 46
29 56 36 / 36 19 / 20

9 50 11 / 11 23 / 39
6 26 18 / 18 8 / 8

tion, which aims to enrich lymphocyte samples for disease-relevant cells by recognizing that
prior clonal expansions may be associated with the accumulation of neutral somatic alter-
ations. Relatively straightforward assays, like HPRT and PIG-A, are available to filter cells
having incurred some convenient somatic alteration. Earlier studies have compared selected
and unselected cell populations, using both standard and novel statistical tools to account for
sources of variation affecting cell phenotypes (e.g., Pei et al., 2014; Zuleger et al., 2020).
No prior studies have considered the stochastic basis of surrogate selection itself, and this
problem has been the central focus of the present paper.
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We treat the stochastic development of a single clonotype and demonstrate that condition-
ing on a mutant sampled cell enriches for larger clonotypes in a class of birth-death processes
(Propositions 1 and 2). We extend the development to exchangeable collections of clonotypes
(Proposition 3), accounting for the size bias and complexity of real repertoires. We study the
effects of selection on the sampling distribution of a commonly computed diversity statistic
(Proposition 4). Looking beyond selection, we investigate the accumulation of neutral so-
matic mutations across the genome, and show how the same modeling calculations demon-
strate that cells in older, expanded clonotypes are expected to carry a greater mutation burden.
Extensive efforts by others have advanced birth-death processes for immunodynamics (e.g.,
Roshan, Jones and Greenman, 2014; Dessalles, D’orsogna and Chou, 2018; Molina-París and
Lythe, 2021); to our knowledge, prior work does not examine the sampling effects caused by
conditioning on a mutant fraction of the population. However, such examination sheds light
on a potentially useful experimental design strategy.

Our theoretical predictions are accompanied by empirical results both from surrogate se-
lection studies and recent single-cell sequencing projects. One take-home message is that we
have resolved the sampling phenomenon exemplified in the simulated data of Figure 5. Cells
sampled from this synthetic repertoire are associated with larger clonotypes when we con-
dition on them being mutant, even though mutation events are completely neutral. We also
report on a repurposing of scRNA-seq data to assess somatic genomic changes and we offer
a new somatic burden statistic for T cells. In spite of high noise levels we detect a significant
association between clonotype size and somatic burden. Owing to our restricted permutation
method, the result is protected from the effects of confounding variables that vary among
repertoires, and the result is validated in part by cell lineage calculations (Figure 8). In future
efforts, we expect that (1) more reliable genomic DNA sequence data may become available
for this purpose, and (2) that better variant calling pipelines could be customized for reper-
toire sampling (e.g., to recognize the common germline of sampled cells). Improvements in
somatic variant calling could foster other statistical calculations to infer properties of clono-
type dynamics (e.g., Figure S7, Yu et al. (2025)). They may also improve the detection and
removal of prethymic mutations, which are less relevant to immunological surveillance.

Our focus is an applied problem that has not received formal statistical analysis in prior
literature. To study the enrichment phenomenon, we place great emphasis on the stochastic
aspects of a person’s time-bound developing T cell repertoire. Certain modeling features,
like exchangeability of clonotype sizes, have little basis in biology, yet they have tremen-
dous practical appeal: for one thing, contemporary immuno-profiling studies report frequency
spectra and draw inferences from the shape of these spectra. These frequency spectra are
sufficient statistics in exchangeable models, as we remind readers in Section 3.1. While con-
temporary data sets are relatively large compared historical data, nevertheless the amount of
data on individual clonotypes remains very limited, and analysts are not well positioned to
entertain non-exchangeable models in many practical settings. Other assumptions, such as
neutrality in the identity of cells that die, mutate, or divide, are popular in cell biology; vi-
olations are no doubt possible, but the assumptions taken constitute a baseline from which
more elaborate models may be derived. Assumptions on the birth-death processes are not
parametric; they provide some general constraints on the developing repertoire.

Non-mitotic mutations have not been considered in our development, though they can
occur by a variety of mechanisms (e.g., Abascal et al., 2021). Statistically, non-mitotic mu-
tations add background noise to a sampled cell’s somatic burden count, L, and elevate a
given locus’ mutant frequency P (M = 1) above what is induced through mitotic mutation
alone. While the history of two different cells could reflect different exposure risks for non-
mitotic mutation, we note that all cells in the repertoire at time tobs have experienced the
same overall time for non-mitotic mutations to emerge; at least they descend from the con-
ception event, and surely they all descend from some progenitor of the hematopoietic stem
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cell pool. So, any two cells at tobs, no matter how many differences in their mitotic pasts, will
have the same time for accumulation of non-mitotic mutations. If the probability is κ that a
non-mitotic mutation arises at a specific locus by time tobs, then actual mutant frequency
P (M = 1) = 1− (1− κ)P (Mmitotic = 0). From this we find the enrichment ratio ϕn retains
the monotonicity properties as confirmed in the purely mitotic cases in Propositions 1, 2, and
3, but the ultimate enrichment is reduced by an amount related to the noise level κ.

The joint distribution of clonotype sizes, discussed briefly in Section (3.2) warrants further
study in the context of T cell repertoires. We note, for example, that the exchangeable for-
mulation (8) associated with Logarithmic marginals induces the Ewens sampling formula as
the distribution on sufficient statistics (the counts of counts), which is of fundamental impor-
tance in other domains (e.g., Crane, 2016; Tavaré, 2021). The clonal enrichment phenomenon
is not restricted to particular joint distributions, however coupling our calculations to specific
repertoire models (e.g., Böttcher, Wald and Chou, 2023) may enable more quantitative as-
sessment of the surrogate selection effect. Studies of immunosenescence, or the age-related
deterioration of the immune system, might also benefit from surrogate selection to probe
the more actively aging immune components (e.g., Liu et al., 2023). We note too that surro-
gate selection is a limited tool, in part because a multitude of causes beyond the presence of
disease antigens may be stimulating clonotype proliferation. In any case, we hope that our
work supports informed statistical analysis of T cell data sets, planning of immunological
experiments, and applications to monitoring immune response.

SUPPLEMENTARY MATERIAL

Supplementary Calculations (DOI: ** SurrogateSelectionSupplement.pdf)
We provide derivations, proofs, and additional modeling elements in support of findings pre-
sented above, as well as further details on data preparation and analysis for Section 4. Mate-
rial in Yu et al. (2025) is organized into nine appendices that refer to appropriate sections of
the present paper.
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