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Abstract

This paper presents a new conformal method for

generating simultaneous forecasting bands guar-

anteed to cover the entire path of a new ran-

dom trajectory with sufficiently high probability.

Prompted by the need for dependable uncertainty

estimates in motion planning applications where

the behavior of diverse objects may be more or

less unpredictable, we blend different techniques

from online conformal prediction of single and

multiple time series, as well as ideas for address-

ing heteroscedasticity in regression. This solution

is both principled, providing precise finite-sample

guarantees, and effective, often leading to more

informative predictions than prior methods.

1. Introduction

Time series forecasting is a crucial problem with numerous

applications in science and engineering. Many machine

learning algorithms, including deep neural networks, have

been developed to address this task, but they are typically

designed to produce point predictions and struggle to quan-

tify uncertainty. This limitation is especially problematic

in domains involving intrinsic unpredictability, such as hu-

man behavior, and in high-stakes situations like autonomous

driving (Lindemann et al., 2023; Lekeufack et al., 2023) or

wildfire forecasting (Xu et al., 2022; 2023a).

A popular framework for endowing any model with reliable

uncertainty estimates is that of conformal prediction (Vovk

et al., 2005; Lei et al., 2018a). The idea is to observe and

quantify the model’s predictive performance on a calibra-

tion data set, independent of the training sample. If those

data are sampled from the test population, the calibration

performance is representative of the performance at test

time. Thus, it becomes possible, with suitable algorithms, to
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convert any model’s point predictions into intervals (or sets)

with guaranteed coverage properties for future observations.

Conformal prediction typically hinges on exchangeability—

an assumption less stringent than the requirement for cali-

bration and test data to be independent and identically dis-

tributed. Under data exchangeability, conformal prediction

can provide reliable statistical safeguards for any predic-

tive model. Its flexibility enables applications across many

tasks, including regression (Lei & Wasserman, 2014; Ro-

mano et al., 2019; Sesia & Romano, 2021), classification

(Lei et al., 2013; Sadinle et al., 2019; Podkopaev & Ramdas,

2021), outlier detection (Bates et al., 2023; Marandon et al.,

2024; Liang et al., 2024), and time series forecasting (Xu

& Xie, 2021; Stankeviciute et al., 2021; Xu & Xie, 2023b;

Ajroldi et al., 2023). This paper focuses on the last topic.

Conformal methods for time series tend to fall into one of

two categories: multi-series and single-series. Methods in

the former category aim to predict a new trajectory by lever-

aging other jointly exchangeable trajectories from the same

population (Stankeviciute et al., 2021; Lindemann et al.,

2023; Lekeufack et al., 2023). In the single-series setting,

the aim shifts to forecasting future values based on historical

observations from a fixed series, typically avoiding strict

exchangeability assumptions (Gibbs & Candès, 2021; 2022;

Angelopoulos et al., 2024). This paper draws inspiration

from both areas and addresses a remaining limitation of

current methods for multi-series forecasting.

The challenge addressed in this paper is that of data

heterogeneity—distinct time series with different levels of

unpredictability. For instance, in motion planning, fore-

casting the paths of pedestrians may be complicated by

the relatively erratic behavior of some individuals, such as

small children or intoxicated adults. This variability aligns

with the classical issue of heteroscedasticity. The latter has

recently gained some recognition within the conformal pre-

diction literature, particularly for regression (Romano et al.,

2019) and classification (Romano et al., 2020b; Einbinder

et al., 2022). In this paper, we address heteroscedasticity

within the more complex setting of trajectory forecasting.

Related Work

The challenge of conformal inference for non-exchangeable

data is receiving significant attention, both from more gen-
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eral perspectives (Tibshirani et al., 2019; Barber et al., 2023;

Qiu et al., 2023) and in the context of time-series forecasting.

An important line of research has focused on forecasting

a single series, including recent works inspired by Gibbs

& Candès (2021) such as Gibbs & Candès (2022); Bastani

et al. (2022); Zaffran et al. (2022); Feldman et al. (2023);

Dixit et al. (2023); Angelopoulos et al. (2024); Bhatnagar

et al. (2023). Further, other approaches that combine confor-

mal prediction with single-series forecasting include those

of Chernozhukov et al. (2018); Xu & Xie (2021; 2023a;b);

Sousa et al. (2022); Auer et al. (2023); Xu et al. (2023b).

The present paper builds on this extensive body of work,

drawing particular inspiration from Gibbs & Candès (2021).

However, our approach is distinct in its pursuit of stronger

simultaneous coverage guarantees, a goal justified by mo-

tion planning applications, for example, but not achievable

within the constraints of single-series forecasting.

Conformal prediction in multi-series forecasting has so far

received relatively less attention. Lin et al. (2022) explored a

somewhat related yet distinct problem. Their work focused

on ensuring different types of “longitudinal” and “cross-

sectional” coverage, which is a different goal compared to

our objective of simultaneously forecasting an entire new

trajectory. We conduct direct comparisons between our

method and those of Stankeviciute et al. (2021) and Yu et al.

(2023); Cleaveland et al. (2024). These address problems

akin to ours but adopt different approaches and do not fo-

cus on heteroscedasticity. Specifically, Stankeviciute et al.

(2021) implemented a Bonferroni correction, which is often

very conservative, while Yu et al. (2023), Cleaveland et al.

(2024), and Sun & Yu (2023) used a technique more aligned

with ours but lacking in adaptability to heteroscedastic con-

ditions.

2. Background and Motivation

2.1. Problem Statement and Notation

We consider a data set comprising n observations of arrays

of length (T +1), namely D := {Y (1), . . . ,Y (n)}. For i ∈
[n] := {1, . . . , n}, the array Y

(i) = (Y
(i)
0 , Y

(i)
1 , . . . , Y

(i)
T )

represents T +1 observations of some d-dimensional vector

Y
(i)
t = (Y

(i)
t,1 , . . . , Y

(i)
t,d ) ∈ R

d, measured at distinct time

steps t ∈ {0, . . . , T}. We will assume throughout the pa-

per that the n trajectories are sampled exchangeably from

some arbitrary and unknown distribution P . However, it

is worth emphasizing that we make no assumptions about

the potentially complex time dependence with each series

(Y
(i)
0 , Y

(i)
1 , . . . ,Y

(i)
T ). Intuitively, our goal is to leverage the

data in D to construct an informative prediction band for

the trajectory of a new series Y (n+1), which is assumed to

be also sampled exchangeably from the same distribution.

For simplicity, we focus on one-step-ahead forecasting,

which means that we want to construct a prediction band

for Y (n+1) one step at a time. That is, we imagine that the

initial position Y
(n+1)
0 is given and then wait to observe

Y
(n+1)
t−1 before predicting Y

(n+1)
t , for each t ∈ [T ]. This

perspective is often useful, for example in motion planning

applications, but it is of course not the only possible one.

Fortunately, though, our solution for the one-step-ahead

problem can easily be extended to multiple-step-ahead fore-

casting, as explained in Appendix A6, or even one-shot

forecasting of an entire trajectory.

Let Ĉ(Y (n+1)) := (Ĉ1(Y
(n+1)), . . . , ĈT (Y

(n+1))) repre-

sent the output prediction band, where each Ĉt(Y
(n+1)) ¦

R
d is a prediction region for the vector Y

(n+1)
t that may

depend on past observations Y
(n+1)
s for s < t, as well as

on the data in D. As we develop a method to construct

Ĉ(Y (n+1)), one goal is to ensure the following notion of

simultaneous marginal coverage:

P

[

Y
(n+1)
t ∈ Ĉt(Y

(n+1)), ∀t ∈ [T ]
]

g 1− ³. (1)

Simply put, the entire trajectory should lie within the band

with probability at least 1− ³, for some chosen level ³ ∈
(0, 1). This property is called marginal because it treats both

Y
(n+1) and the data in D as random samples from P .

2.2. Benefits and Limitations of Marginal Coverage

Marginal coverage is not only convenient, since it is achiev-

able under quite realistic assumptions, but also useful. For

example, in motion planning, prediction bands with simul-

taneous marginal coverage can help autonomous vehicles

decide on a path that is unlikely to collide with another vehi-

cle or pedestrian at any point in time. However, the marginal

nature of Equation (1) is not always fully satisfactory, par-

ticularly because it may obscure the adverse impacts of

heterogeneity across trajectories, as explained next.

Imagine forecasting the movement of pedestrians crossing a

street at night. Suppose that 90% of them are sober, walking

in highly predictable patterns, while the remaining 10% are

intoxicated. See Figure 1 for a visualization of this scenario.

It is clear that uncertainty estimation is of paramount con-

cern while forecasting the harder-to-predict drunk trajecto-

ries. Addressing this issue is crucial, for example, to ensure

that autonomous vehicles navigate such environments with

the necessary level of caution. However, not all prediction

bands with marginal coverage are equally useful in this con-

text. For example, 90% marginal coverage could be easily

attained even by a trivial algorithm that provides valid pre-

diction bands only for trajectories of the “easy” type. This

thought experiment shows that despite their general theoret-

ical guarantees, conformal prediction methods still require

careful design to provide informative uncertainty estimates,

particularly in the case of heterogeneous data.
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Figure 1. One-dimensional representations of 10 pedestrian trajec-

tories, one of which is intrinsically less predictable.

The aforementioned limitations of marginal coverage have

been acknowledged before. While achieving stronger theo-

retical guarantees in finite samples is generally unfeasible

(Vovk, 2012; Barber et al., 2021a), some approaches practi-

cally tend to work better in this regard than others. In partic-

ular, methods have been developed for regression (Romano

et al., 2019; Izbicki et al., 2020), classification (Romano

et al., 2020b; Cauchois et al., 2021; Einbinder et al., 2022),

and sketching (Sesia et al., 2023) to seek approximate con-

ditional coverage guarantees stronger than (1).

2.3. Towards Approximate Conditional Coverage

The goal in this paper is to construct prediction bands that

are valid not only for a large fraction of all trajectories but

also with high probability for distinct “types” of trajectory.

In our street crossing example, this means we would like to

have valid coverage not only marginally but also conditional

on some relevant features of the pedestrian. For example,

one may want Ĉ(n+1) to approximately satisfy

P

[

Y
(n+1)
t ∈ Ĉt(Y

(n+1)), ∀t | ϕ(Y (n+1))
]

g 1−³, (2)

where ϕ could represent the indicator of whether Y (n+1)

corresponds to an intoxicated pedestrian.

While there exist algorithms providing coverage condi-

tional on a limited set of discrete features (Romano et al.,

2020a), our challenge exceeds the capabilities of available

approaches. One issue is that the relevant features might

not be directly observable. For example, an autonomous

vehicle might only detect a pedestrian’s movements in real

time, lacking broader contextual information about that per-

son, such as knowing whether they are intoxicated or sober.

Therefore, our problem requires an innovative approach.

2.4. Preview of Main Contributions

We introduce a novel approach for constructing prediction

bands for (multi-dimensional) trajectories, called Confor-

malized Adaptive Forecaster for Heterogeneous Trajectories

(CAFHT). This method guarantees simultaneous marginal

coverage as defined in (1) and is shown to achieve superior

conditional coverage in practice compared to existing meth-

ods, as indicated by (2). A key feature of CAFHT is that it

does not require pre-specified labels of intrinsic difficulty

but rather it automatically adjusts the width of its prediction

bands to each new trajectory in an online manner. This

adaptability is derived from the capabilities of Adaptive

Conformal Inference (ACI) (Gibbs & Candès, 2021), which

dynamically adjusts the prediction intervals to reflect the

ease or challenge of predicting subsequent steps in a given

trajectory. Additionally, our method inherits from ACI the

ability to produce prediction bands that are generally valid

even for worst-case trajectories, provided these trajectories

are of sufficient length (Gibbs & Candès, 2021).

Figure 2 offers a glimpse into the effectiveness of CAFHT

applied to the pedestrian trajectories from Figure 1. Our

method’s advantage over state-of-the-art techniques (Stanke-

viciute et al., 2021; Yu et al., 2023) lies in its ability to auto-

matically generate narrower bands for easier trajectories and

wider ones for harder paths. As shown through extensive

experiments, this leads to more useful uncertainty estimates

with higher conditional coverage. In contrast, existing meth-

ods struggle to accommodate heterogeneity, often resulting

in uniform prediction bands for all trajectories.

Easy−to−predict Hard−to−predict
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Figure 2. Conformal forecasting bands constructed using different

methods, for the heterogeneous pedestrian trajectories from Fig-

ure 1. All methods guarantee simultaneous marginal coverage at

the 90% level. Our method (CAFHT) can automatically adapt to

the unpredictability of each trajectory. Here, the CFRNN bands so

wide as to be uninformative, spanning from -1 to +1.

In the next section, we explain how our approach integrates

traditional split-conformal inference with online conformal

prediction (Gibbs & Candès, 2021; 2022; Angelopoulos

et al., 2024). Originally designed for single-series forecast-

ing, these methods are adapted in our setting to construct

flexible prediction bands that automatically adjust to the

varying unpredictability of each trajectory. For clarity, we

begin by describing an implementation of our method based

on ACI (Gibbs & Candès, 2021), though other methods

could also be accommodated, including the conformal PID

approach from Angelopoulos et al. (2024) (discussed further

in Section 3.7). It is crucial to note that all implementations

of CAFHT are designed to provide the same guarantee of

simultaneous marginal coverage and the same capability to

accommodate heteroscedasticity.
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3. Methodology

3.1. Training a Black-Box Forecasting Model

The preliminary step in our CAFHT method consists of ran-

domly partitioning the data set D into two distinct subsets

of trajectories, Dtrain and Dcal. The subset Dtrain is used to

train a forecasting model ĝ. This model could be almost any-

thing, including a long short-term memory network (LSTM)

(Hochreiter & Schmidhuber, 1997; Alahi et al., 2016), a

transformer network (Nayakanti et al., 2022; Zhou et al.,

2023), or a traditional autoregressive moving average model

(Wei et al., 2023). Our only assumption regarding ĝ is that

it is able to generate point predictions for future steps based

on partial observations from a new time series.

In this paper, we choose an LSTM model for demonstration

and focus on one-step-ahead predictions. While the ability

of CAFHT to guarantee simultaneous marginal coverage

does not depend on the forecasting accuracy of ĝ, more

accurate models generally tend to yield more informative

conformal predictions (Lei et al., 2018b).

3.2. Initializing the Adaptive Prediction Bands

After training the forecaster ĝ on the data in Dtrain, our

method will convert its one-step-ahead point predictions for

any new trajectory Y into suitable prediction bands. This is

achieved by applying the ACI algorithm of Gibbs & Candès

(2021). For simplicity, we begin by focusing on the special

case of one-dimensional trajectories (d = 1). An extension

of our solution to higher-dimensional trajectories is deferred

to Section 3.6.

ACI was designed to generate one-step-ahead forecasts for a

single one-dimensional time series, without requiring a pre-

trained forecaster ĝ. In the single-series framework, Gibbs

& Candès (2021) suggested training ĝ in an online manner.

In our setting, where we have access to multiple trajectories

from the same population, it is logical to pre-train it. In

any case, pre-training does not exclude the potential for

further online updates of ĝ with each subsequent one-step-

ahead prediction. However, to simplify the notation, our

discussion now focuses on a static model.

A review of ACI (Gibbs & Candès, 2021) can be found in

Appendix A1. Here, we briefly highlight two critical aspects

of that algorithm. Note that the main ideas of our method

can also be straightforwardly applied in combinations with

other variations of the ACI method, as shown in Section 3.7.

Firstly, the ACI algorithm involves a “learning rate” param-

eter µ > 0, controlling the adaptability of the prediction

bands to the evolving time series. The adjustment mech-

anism operates as follows: at each time t, ACI modifies

the width of the upcoming prediction interval for Y (t+1).

If the previous interval failed to encompass Y (t), the next

interval is expanded; conversely, if it was sufficient, the next

interval is narrowed. Thus, larger values of µ result in more

substantial adjustments at each time step. In contrast, lower

values of µ generally lead to “smoother” prediction bands.

Secondly, the width of the ACI prediction band is also in-

fluenced by a parameter ³ ∈ (0, 1), which represents the

nominal level of the method. The design of the ACI al-

gorithm aims to ensure that, over an extended period, the

generated prediction bands will accurately contain the true

value of Yt approximately a 1 − ³ fraction of the time.

Consequently, a smaller ³ leads to broader bands.

Within our context, ACI is useful to transform the point

predictions of ĝ into uncertainty-aware prediction bands,

but it is not satisfactory on its own. Firstly, it is not always

clear how to choose a good learning rate. Secondly, the ACI

prediction bands lack finite-sample guarantees. Specifically,

they do not guarantee simultaneous marginal coverage (1).

Our method overcomes these limitations as follows.

3.3. Calibrating the Adaptive Prediction Bands

We now discuss how to calibrate the ACI prediction bands

discussed in the previous section to achieve simultaneous

marginal coverage (1). For simplicity, we begin by taking

the learning rate parameter µ as fixed. We will then discuss

later how to optimize the choice of µ in a data-driven way.

Let ĈACI(Y (i), µ) = [ℓ̂ACI(Y (i), µ), ûACI(Y (i), µ)] denote

the prediction band constructed by ACI, with learning rate µ
and level ³ACI ∈ (0, 1), for each calibration trajectory i ∈
Dcal. Note that this band is constructed one step at a time,

based on the point predictions of ĝ at each step t ∈ [T ] and

past observations of Y
(i)
s for all s < t; see Appendix A1 for

further details on ACI. We will refer to the cross-sectional

prediction interval identified by this band at time t ∈ [T ] as

ĈACI
t (Y (i), µ) = [ℓ̂ACI

t (Y (i), µ), ûACI
t (Y (i), µ)].

Our method will transform these ACI bands, which can

only achieve a weaker notion of asymptotic average cov-

erage because they do not leverage any exchangeability,

into simultaneous prediction bands satisfying (2). For each

i ∈ Dcal, CAFHT evaluates a conformity score ϵ̂i(µ):

ϵ̂i(µ) := max
t∈[T ]

{

max

{

[

ℓ̂ACI
t (Y (i), µ)− Y

(i)
t

]

+
,

[

Y
(i)
t − ûACI

t (Y (i), µ)
]

+

}}

,

(3)

where [x]+ := max(0, x) for any x ∈ R. Intuitively, ϵ̂i(µ)
measures the largest margin by which ĈACI(Y (i), µ) should

be expanded in both directions to simultaneously cover the

entire trajectory Y
(i) from t = 1 to t = T . This is in-
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spired by the method of Romano et al. (2019) for quantile

regression, although one difference is that their scores may

be negative. Other choices of conformity scores are also

possible in our context, however, as discussed in Section 3.5.

Let Q̂(1−³, µ) denote the +(1−³)(1+ |Dcal|),-th smallest

value of ϵ̂i(µ) among i ∈ Dcal. CAFHT constructs a pre-

diction band Ĉ(Y (n+1), µ) for Y (n+1), one step at a time,

as follows. Let ĈACI
t (Y (n+1), µ) denote the ACI prediction

interval for Y
(n+1)
t at time t ∈ [T ]. (Recall this depends on

ĝ and Y
(n+1)
s for all s < t.) Then, define the interval

Ĉt(Y
(n+1), µ) =

[

ℓ̂ACI
t (Y (n+1), µ)− Q̂(1− ³, µ),

ûACI
t (Y (n+1), µ) + Q̂(1− ³, µ)

]

.

(4)

Our prediction band Ĉ(Y (n+1), µ) for one-step-ahead fore-

casting is then obtained by concatenating the intervals

in (4) for all t ∈ [T ]. More compactly, we can write

Ĉ(Y (n+1), µ) = ĈACI(Y (n+1), µ)± Q̂(1− ³, µ).

The next result establishes finite-sample simultaneous cov-

erage guarantees for this method.

Theorem 1. Assume that the calibration trajectories in Dcal

are exchangeable with Y
(n+1). Then, for any ³ ∈ (0, 1),

the prediction band output by CAFHT, applied with fixed

parameters ³, ³ACI, and µ, satisfies (1).

The proof of Theorem 1 is relatively simple and can be found

in Appendix A2. We remark that this guarantee holds at the

desired level ³ regardless of the value of the ACI parameter

³ACI. However, it is typically intuitive to set ³ACI = ³. A

notable advantage of this choice is that it leaves us with the

challenge of tuning only one ACI parameter, µ.

Further, it is important to note that CAFHT can only expand

the ACI prediction bands, since its conformity scores are

non-negative. Thus, our method retains the ACI guarantee

of asymptotic average coverage at level 1 − ³ (Gibbs &

Candès, 2021), almost surely for any trajectory Y
(n+1):

lim
T→∞

1

T

T
∑

t=1

I[Yt /∈ Ĉt(Y
(n+1), µ)]

a.s.
= ³. (5)

See Appendix A1 for details about how ACI achieves (5).

3.4. Data-Driven Parameter Selection

The ability of the ACI algorithm to produce informative

prediction bands can sometimes be sensitive to the choice of

the learning rate µ (Gibbs & Candès, 2021; Angelopoulos

et al., 2024). This leads to a question: how can we select µ
in a data-driven manner? In our scenario, which involves

multiple relevant trajectories from the same population, ad-

dressing this tuning challenge is somewhat simpler than in

the original single-series context for which the ACI algo-

rithm was designed. Nonetheless, careful consideration is

still required in the tuning process of µ, as we discuss next.

As a naive approach, one may feel tempted to apply the

CAFHT method described above using different learning

rates, with the idea of then cherry-picking the value of µ
leading to the most appealing prediction bands. Unsur-

prisingly, however, such an unprincipled approach would

invalidate the coverage guarantee because it breaks the ex-

changeability between the test trajectory and the calibration

data. This issue is closely related to problems of conformal

prediction after model selection previously studied by Yang

& Kuchibhotla (2021) and Liang et al. (2023). Therefore,

we propose two alternative solutions inspired by their works.

The simplest approach to explain involves an additional data

split. Let us randomly partition Dcal into two subsets of

trajectories, D1
cal and D2

cal. The trajectories in D1
cal can be

utilized to select a good choice of µ in a data-driven way.

In particular, we seek the value of µ leading to the most

informative prediction bands—a goal that can be quantified

by minimizing the average width of our prediction bands

produced for the trajectories in D1
cal. Then, the calibration

procedure described in Section 3.3 will be applied using

only the data in D2
cal instead of the full Dcal. The fact that

the selection of µ does not depend on the calibration tra-

jectories in D2
cal means that µ can be essentially regarded

as fixed, and therefore our output bands enjoy the marginal

simultaneous coverage guarantee of Theorem 1. This ver-

sion of our CAFHT method is outlined in Algorithm 1. The

parameter tuning module of this procedure is summarized

by Algorithm A1 in Appendix A3.

Alternatively, it is also possible to carry out the selection of

µ̂ in a rigorous way without splitting Dcal. However, this

would require replacing the empirical quantile Q̂(1− ³, µ̂)
in the CAFHT method with a more conservative quantity

Q̂(1 − ³′, µ̂), where the value of ³′ < ³ depends on the

number L of candidate parameter values considered. We

refer to Appendix A4 for further details.

Our method employs a grid search to optimize the ACI

hyper-parameters, a standard practice for hyper-parameter

tuning. It is important to note that the more computation-

ally demanding components of CAFHT, such as training

the models and selecting µ via grid search, are conducted

offline and require completion only once. After these pre-

liminary steps, the real-time component of CAFHT, which

constructs prediction bands for new test trajectories, is fast

and efficient.
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Algorithm 1 CAFHT

1: Input: A pre-trained forecaster ĝ producing one-step-

ahead predictions; calibration trajectories Dcal; the ini-

tial position Y
(n+1)
0 of a test trajectory Y

(n+1); the

desired nominal level ³ ∈ (0, 1); a grid of candidate

learning rates {µ1, . . . , µL}.

2: Randomly split Dcal into D1
cal and D2

cal.

3: Select a learning rate µ̂ ∈ {µ1, . . . , µL}, applying Al-

gorithm A1 using the trajectory data in D1
cal.

4: Construct ĈACI(Y (i), µ̂) using ACI, for i ∈ D2
cal.

5: Evaluate ϵ̂i(µ̂) using (3), for i ∈ D2
cal.

6: Compute the empirical quantile Q̂(1− ³, µ̂).
7: for t ∈ [T ] do

8: Compute ĈACI
t (Y (n+1), µ̂) with ACI, using the past

of the trajectory (Y
(n+1)
0 , Y

(n+1)
1 , . . . , Y

(n+1)
t−1 ).

9: Compute a prediction interval Ĉt(Y
(n+1), µ̂) for the

next step, using (4).

10: Observe the next step of the trajectory, Y
(n+1)
t .

11: end for

12: Output: An online prediction band Ĉ(Y (n+1)).

3.5. CAFHT with Multiplicative Scores

A potential shortcoming of Algorithm 1 is that it can only

add a constant margin of error to the prediction band con-

structed by the ACI algorithm. While straightforward, this

approach may not be always optimal. In many cases, it

would seem more natural to utilize a multiplicative error.

The rationale behind this is intuitive: trajectories that are

inherently more unpredictable, resulting in wider ACI pre-

diction bands, may necessitate larger margins of error to

ensure valid simultaneous coverage. This concept can be

seamlessly integrated into the CAFHT method by replacing

the conformity scores initially outlined in (3) with these:

ϵ̃i(µ) = max
t∈T

{

max

{

[

ℓ̂ACI
t (Y (i), µ)− Y

(i)
t

]

+

|ĈACI
t (Y (i), µ)|

,

[

Y
(i)
t − ûACI

t (Y (i), µ)
]

+

|ĈACI
t (Y (i), µ)|

}}

.

(6)

Then, the counterpart of Equation (4) becomes

Ĉ(Y (n+1), µ) = ĈACI(Y (n+1), µ)

± Q̃(1− ³, µ) · |ĈACI(Y (n+1), µ)|,

where Q̃(1− ³, µ) is the +(1− ³)(1 + |Dcal|),-th smallest

value in {ϵ̃i(µ), i ∈ Dcal}.

At this point, it is easy to prove that the prediction bands

obtained produced by CAFHT with these multiplicative con-

formity scores still enjoy the same marginal simultaneous

coverage guarantee established by Theorem 1.

We refer to Figures A27–A28 in Appendix A5.4 for em-

pirical illustrations and comparisons of prediction bands

generated with multiplicative and additive scores; see also

Table A29 for a summary of their corresponding empirical

quantiles Q̂(1− ³, µ̂).

3.6. Extension to Multi-Dimensional Trajectories

The problem of forecasting trajectories with d > 1 (e.g.,

a two-dimensional walk), can be addressed with an intu-

itive extension of CAFHT. In fact, ACI extends naturally to

the multidimensional case and the first component of our

method that requires some special care is the computation

of the empirical quantile Q̂(1 − ³, µ̂). Yet, even this ob-

stacle can be overcome quite easily. Consider evaluating a

vector-valued version of the additive scores from (3):

ϵ̂ij(µ) := max
t∈[T ]

{

max

{

[

ℓ̂ACI
t,j (Y

(i), µ)− Y
(i)
t,j

]

+
,

[

Y
(i)
t,j − ûACI

t,j (Y
(i), µ)

]

+

}}

,

(7)

for each dimension j ∈ [d]. Then, we can recover a one-

dimensional problem prior to computing Q̂(1 − ³, µ̂) by

taking (for example) the maximum value of ϵ̂ij(µ); i.e.,

ϵ̂∞i (µ) = maxj∈[d] ϵ̂ij(µ). Ultimately, each Ĉt(Y
(n+1), µ)

is obtained by applying (4) with Q̂(1− ³, µ̂) defined as the

+(1− ³)(1 + |Dcal|),-th smallest value of ϵ̂∞i (µ).

We conclude this section by remarking that this general

idea could also be implemented using the multiplicative

conformity scores described in Section 3.5, as well as by

using different dimension reduction functions in (3). For

example, one may consider replacing the infinity-norm in (3)

with an ℓ2 norm, leading to a “spherical” margin of error

around the ACI prediction bands instead of a “square” one.

3.7. Leveraging Conformal PID Prediction Bands

CAFHT is not heavily reliant on the specific mechanics of

ACI. The crucial aspect of ACI is its capability to transform

black-box point forecasts into prediction bands that approx-

imately mirror the unpredictability of each trajectory. Thus,

our method can integrate with any variation of ACI.

Some of our demonstrations in Appendix A5 include an

alternative implementation of CAFHT that employs the

conformal PID algorithm of Angelopoulos et al. (2024)

instead of ACI. To minimize computational demands, our

demonstrations will primarily utilize the quantile tracking

feature of the original conformal PID method. This simpli-
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fied version of conformal PID is influenced only by a single

hyper-parameter—a learning rate µ, similar to ACI.

3.8. Direct Comparison to ACI

CAFHT utilizes ACI as an internal component and is de-

signed to leverage several exchangeable trajectories to con-

struct prediction bands for a new trajectory sampled from the

same population, while guaranteeing simultaneous marginal

coverage as defined in (1). In contrast, ACI handles a single

(arbitrary) trajectory and focuses on a different notion of

asymptotic average coverage, which allows for temporary

deviations of the true trajectory from the output prediction

band. This crucial distinction between CAFHT and ACI is

highlighted by the numerical experiments detailed in Fig-

ures A25–A26 in Appendix A5.3.

4. Numerical Experiments

4.1. Setup and Benchmarks

This section demonstrates the empirical performance of our

method. We focus on applying CAFHT with multiplicative

scores, based on the ACI algorithm, and tuning the learning

rate through data splitting. Additional results pertaining to

different implementations of CAFHT are in Appendix A5.

In all experiments, the candidate values for the ACI learning

rate parameter µ range from 0.001 to 0.1 at increments of

0.01, and from 0.2 to 0.9 at increments of 0.1.

The CAFHT method is compared with two benchmark ap-

proaches that also provide simultaneous marginal cover-

age (1). The first one is the Conformal Forecasting Recur-

rent Neural Network (CFRNN) approach of Stankeviciute

et al. (2021), which relies on a Bonferroni correction for

multiple testing. In particular, the CFRNN method produces

a prediction band satisfying (1) for a trajectory of length T
by separately computing T conformal prediction intervals

at level ³/T , one for each time step, each obtained using

regression techniques typical to the regression setting. An

advantage of this approach is that it is conceptually intuitive,

but it can become quite conservative if T is large.

The second benchmark is the Normalized Conformal Tra-

jectory Predictor (NCTP) of Yu et al. (2023). This method

is closer to ours but utilizes different scores and does not

leverage ACI to adapt to heterogeneity. In short, NCTP

directly takes as input a forecaster ĝ providing one-step-

ahead point predictions Ŷ
(i)
t and evaluates the scores ϵ̂i =

maxt∈[T ]{(|Ŷ (i)
t − Y

(i)
t |)/Ãt} for each i ∈ Dcal, where Ãt

are suitable data-driven normalization constants. This ap-

proach is similar to that of Cleaveland et al. (2024), which

deviates only in the computation of the Ãt constants, and it

tends to work quite well if the trajectories are homogeneous.

While there exist other methods, such as CopulaCPTS (Sun

& Yu, 2023), which can achieve simultaneous marginal cov-

erage as defined in (1), they, like NCTP, lack adaptability to

heteroscedastic conditions, and are thus expected to perform

similarly under such conditions. For clarity and concise-

ness, we focus on CFRNN and NCTP as the benchmarks

in our primary experiments. Additional experiments involv-

ing CopulaCPTS, detailed in Appendix A5.6, demonstrate

performance comparable to NCTP, as anticipated.

For all methods, the underlying forecasting model is a recur-

rent neural network with 4 stacked LSTM layers followed

by a linear layer. The learning rate is set equal to 0.001, for

an AdamW optimizer with weight decay 1e-6. The models

are trained for a total of 50 epochs, so that the mean squared

error loss loss approximately converges.

Prior to the beginning of our analyses, all trajectories will

be pre-processed with a batch normalization step based on

Dtrain, so that all values lie within the interval [−1, 1]. This

is useful to ensure a numerically stable learning process and

more easily interpretable performance measures.

In all experiments, we evaluate the performance of the pre-

diction bands in terms of their simultaneous marginal cover-

age (i.e., the proportion of test trajectories entirely contained

within the prediction bands), the average width (over all

times t ∈ [T ] and all test trajectories, which have a maxi-

mum value of 2 after standardizing our data to fall within

the range [−1, 1]), and the simultaneous coverage condi-

tional on a trajectory being “hard-to-predict”, as made more

precise in the next subsection.

It is crucial to note that while we, as experiment designers,

are aware of the “difficulty label” for each trajectory, the

methods used in this study do not have access to this infor-

mation. Therefore, achieving high simultaneous conditional

coverage is inherently challenging. Although not theoret-

ically guaranteed to exceed any specific threshold, higher

values of this measure are preferable for practical purposes.

4.2. Synthetic Trajectories

We begin by considering univariate (d = 1) synthetic trajec-

tories generated from an autoregressive (AR) model, Xt =
0.9Xt−1+0.1Xt−2− 0.2Xt−3+ ϵt, where ϵt ∼ N(0, Ã2

t ),
for all t ∈ [T ] with T = 100. Similar to Stankeviciute et al.

(2021), we consider two noise profiles: a dynamic profile

in which Ã2
t is increasing with time, and a static profile in

which Ã2
t is constant. The results based on the dynamic

profile are presented here, while the others are discussed in

Appendix A5. To make the problem more interesting, we

ensure that some trajectories are intrinsically more unpre-

dictable than the others. Specifically, in the dynamic noise

setting, we set Ã2
t = t·k, with k = 10, for a fraction ¶ = 0.1

of the trajectories, while Ã2
t = t for the remaining ones.

Figure 3 summarizes the performance of the three methods
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Figure 3. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

total number of training and calibration trajectories (of which 25% are utilized for calibration). All methods achieve 90% simultaneous

marginal coverage. Our method (CAFHT) leads to more informative bands with lower average width and higher conditional coverage.

The error bars indicate 2 standard errors. Note that the CFRNN bands here are so wide as to be uninformative.

as a function of the number of trajectories in D, which is

varied between 200 and 10,000. The results are averaged

over 500 test trajectories and 100 independent experiments.

See Table A1 in Appendix A5 for standard errors. In each

case, 75% of the trajectories are used for training and the

remaining 25% for calibration. Our method utilizes 50% of

the calibration trajectories to select the ACI learning rate µ.

All experiments target 90% simultaneous marginal coverage,

with additional results for higher coverage levels presented

in Appendix A5.5.

All methods attain 90% simultaneous marginal coverage,

aligning with theoretical predictions. Notably, CAFHT

yields the most informative bands, characterized by the

narrowest average width and higher conditional coverage

compared to NCTP. This can be explained by the fact that

NCTP is not designed to account for the varying noise lev-

els inherent in different trajectories. Consequently, NCTP

generates less adaptive bands, too wide for the easier tra-

jectories and too narrow for the harder ones. CAFHT also

surpasses CFRNN; while CFRNN seems to attain the high-

est conditional coverage, it generates very wide bands that

are practically uninformative for all trajectories. This is due

to its rigid approach to handling time dependencies via a

Bonferroni correction.

Figure 4 summarizes the results of similar experiments in-

vestigating the performances of different methods as a func-

tion of the prediction horizon T , which is varied between 5

and 100; see Table A2 in Appendix A5 for the correspond-

ing standard errors. Here, the number of trajectories in D
is fixed equal to 2000. The results highlight how CFRNN

becomes more conservative as T increases. By contrast,

NCTP produces relatively narrower bands but also achieves

the lowest conditional coverage. Meanwhile, our CAFHT

method again yields the most informative prediction bands,

with low average width and high conditional coverage.

Appendix A5 describes additional experimental results that

are qualitatively consistent with the main findings. These

experiments investigate the effects of the data dimensions

(Figure A1 and Table A3), of the proportion of hard trajecto-

ries (Figure A2 and Table A4), and evaluate the robustness

of different methods against distribution shifts (Figure A3

and Table A5). Additionally, these experiments are repli-

cated using synthetic data from an AR model with a static

noise profile; see Figures A4–A8 and Tables A6–A10.

Furthermore, we conducted several experiments to inves-

tigate the performance of various implementations of our

method. Figures A9–A13 and Tables A11–A15 focus on

comparing alternative model selection approaches while ap-

plying the multiplicative conformity scores defined in (6).

Figures A14–A18 and Tables A16–A20 summarize similar

experiments based on the additive scores defined in (3).

4.3. Pedestrian Trajectories

We now apply the three methods to forecast pedestrian tra-

jectories generated from the ORCA simulator (Van den Berg

et al., 2008), which follow nonlinear dynamics and are in-

trinsically harder to predict than the synthetic trajectories

discussed before. The data include 2-dimensional position

measurements for 1,291 pedestrians, tracked over T = 20
time steps. To make the problem more challenging, we intro-

duce dynamic noise to the trajectories of 10% of randomly

selected pedestrians, making their paths more unpredictable.

Figure 1 plots ten representative trajectories.

All trajectories are normalized as in the previous section, and

we train the same LSTM for 50 epochs. In each experiment,

the training and calibration sets use 1000 randomly chosen

trajectories, and the test set consists of the remaining 291

trajectories. All results are averaged over 100 repetitions.

Figure 5 investigates the effect of varying the noise level,

setting Ã2
t ∝ t·noise level (varied from 1.5 to 5) for the hard

trajectories and Ã2
t ∝ t for the easy ones. Again, all methods

attain 90% simultaneous marginal coverage, but CAFHT

produces the most informative bands, with relatively narrow

width and higher conditional coverage compared to NCTP.

Meanwhile, CFRNN leads to very conservative bands, as
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Figure 4. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

prediction horizon. Other details are as in Figure 3. For large prediction horizon, the CFRNN bands so wide as to be uninformative.
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Figure 5. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level controlling the intrinsic unpredictability of the more difficult trajectories. Note that the CFRNN bands so wide

as to be uninformative.

in the previous section. See Table A21 in Appendix A5 for

further details.

Additional numerical experiments are summarized in Ap-

pendix A5. Figure A19 and Table A22 investigate the effect

of having a larger fraction of hard trajectories. Figure A20

and Table A23 compare the performances of different meth-

ods as a function of the sample size used for training and

calibration. Figures A21–A24 and Tables A24–A27 per-

form a comparative analysis of different implementations

of our methods under varying noise levels, using both multi-

plicative and additive conformity scores.

5. Discussion

This work opens several directions for future research. On

the theoretical side, one may want to understand the condi-

tions under which our method can asymptotically achieve

optimal prediction bands in the limit of large sample sizes,

potentially drawing inspiration from Lei et al. (2018b) and

Sesia & Candès (2020). Moreover, there are several po-

tential ways to further enhance our method and address

some of its remaining limitations. For example, it could be

adapted to provide even stronger types of coverage guaran-

tees beyond those considered in this paper by conditioning

on the calibration data or on some other observable fea-

tures. Another possible direction is to study how to best

reduce the algorithmic randomness caused by data split-

ting (Vovk, 2015), possibly using cross-conformal methods

(Barber et al., 2021b) or E-value approaches (Bashari et al.,

2024). Additionally, our method could be further improved

by incorporating time dependency into the ACI learning rate

or by relaxing the exchangeability assumption by leverag-

ing weighted conformal inference ideas (Tibshirani et al.,

2019). Lastly, it would be especially interesting to apply

this method in real-world motion planning scenarios.

Software implementing the algorithms and data experi-

ments are available online at https://github.com/

FionaZ3696/CAFHT.git.
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A1. Further Details on the ACI Algorithm

A1.1. Background on ACI

In this section, we briefly review some relevant components of the adaptive conformal inference (ACI) method introduced

by Gibbs & Candès (2021) in the context of forecasting a single time series. The goal of ACI is to construct prediction

bands in an online setting, while accounting for possible changes in the data distribution across different times. Specifically,

ACI is designed to create prediction bands with a long-term average coverage guarantee. Intuitively, this guarantee means

that, for an indefinitely long time series, a sufficiently large proportion of the series should be contained within the output

band. This objective is notably distinct from the one investigated in our paper. However, since our method builds upon ACI,

it can be useful to recall some relevant technical details of the latter method.

In the online learning setting considered by Gibbs & Candès (2021), one observes covariate-response pairs {(Xt, Yt)}t∈N ¢
R

d × R in a sequential fashion. At each time step t ∈ N, the goal is to form a prediction set Ĉt for Yt using the previously

observed data {(Xr, Yr)}1frft−1 as well as the new covariates Xt. Given a target coverage level ³ ∈ (0, 1), the constructed

prediction set should guarantee that, over long time, at least 100(1− ³)% of the time Yt lies within the set.

Recall that standard split-conformal prediction methods require a calibration dataset Dcal ¦ {(Xr, Yr)}1frft−1 that is

independent of the data used to fit the regression model. The standard approach involves constructing a prediction set as

Ĉt(³) = {y : S(Xt, y) f Q̂(1− ³)}, where S(Xt, y) is a score that measures how well y conforms with the prediction

of the fitted model. For example, if we denote the fitted model as ĝ, a classical example of scoring function would be

S(Xt, y) = |ĝ(Xt)− y|. Then, in general, the score S(Xt, y) is compared to a suitable empirical quantile, Q̂(1−³), of the

analogous scores evaluated on the calibration data: Q̂(1− ³) = inf{s : (|Dcal|−1
∑

(Xr,Yr)∈Dcal
1{S(Xr,Yr)fs}) g 1− ³}.

If the observations taken at different times are not exchangeable with one another, however, standard conformal prediction

algorithms cannot achieve valid coverage. This is where ACI comes into play.

The core concept of ACI involves dynamically updating the functions ĝ, S(·), and Q̂(·) at each time step, utilizing newly

acquired data. Concurrently, ACI modifies the nominal miscoverage target level ³t of its conformal predictor for each

time increment. The purpose of adjusting the ³ level at each time step is to calibrate future predictions to be more or

less conservative depending on their empirical performance in covering past values of the time series. For instance, if a

prediction band is found to be excessively broad, it will be narrowed in subsequent steps, and the opposite applies if it’s too

narrow. This strategy enables ACI to continuously adapt to potential dependencies and distribution changes within the time

series, maintaining relevance and accuracy in an online context. Specifically, ACI employs the following ³-update rule:

³t+1 = ³t + µ(³− errt),

where

errt =

{

1, if Yt /∈ ĈACI
t (³t),

0, otherwise.
,

and ĈACI
t (³t) = {y : St(Xt, y) f Q̂t(1− ³t)}. Equivalently,

ĈACI
t (³t) = [ℓ̂ACI

t , ûACI
t ] = [ĝ(Xt)− Q̂t(1− ³t), ĝ(Xt) + Q̂t(1− ³t)].

The hyperparameter µ > 0 controls the magnitude of each update step. Intuitively, a larger µ means that ACI can rapidly

adjust to observed changes in the data distribution. However, this may come at the expense of increased instability in

the prediction bands. Consequently, the ideal value of µ tends to be specific to the application at hand, requiring careful

consideration to balance responsiveness and stability. This is why our CAFHT method involves a data-driven parameter

tuning component.

The main theoretical finding established by Gibbs & Candès (2021) is that ACI always attains valid long-term average
coverage. Notably, this result is achieved without the necessity for any assumptions regarding the distribution of the unique
time series in question. More precisely, with probability one,

∣

∣

∣

∣

∣

1

T

T
∑

t=1

errt − α

∣

∣

∣

∣

∣

≤
max(α1, 1− α1) + γ

Tγ
,
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which implies

lim
T→∞

T−1
T
∑

t=1

errt
a.s.
= ³.

This result is not essential for proving our simultaneous marginal coverage guarantee, but it offers an intuitive rationale

for our methodology. Indeed, the capacity of ACI to adaptively encompass the inherent variability in each time series is

key to our method’s enhanced conditional coverage compared to other conformal prediction approaches for multi-series

forecasting. Further, our method inherits the same long-term average coverage property of ACI because it can only expand

the prediction bands of the latter.

In this paper, we implement ACI without re-training the forecasting model ĝ at each step. This approach is viable due to our

access to additional “training” time series data from the same population, and it aids in diminishing the computational cost

of our numerical experiments. Nonetheless, our methodology is flexible enough to incorporate ACI with periodic re-training,

aligning with the practices suggested by Gibbs & Candès (2021) and the very recent related conformal PID method of

Angelopoulos et al. (2024).

A1.2. Warm Starts

As originally designed, ACI primarily aimed at achieving asymptotic coverage in the limit of a very long trajectory,

sometimes tolerating very narrow prediction intervals in the initial time steps. However, we have observed that this behavior

can negatively impact the performance of our method in finite-horizon scenarios. To address this issue, we introduce in

this paper a simple warm-start approach for ACI. This involves incorporating artificial conformity scores at the start of

each trajectory. These scores are generated as uniform random noise, with values falling within the range of observed

residuals in the training dataset. Consequently, ACI typically begins with a wider interval for its first forecast. Importantly,

this modification does not affect the long-term asymptotic properties of ACI when applied to a single trajectory, nor does

it impact our guarantee of finite-sample simultaneous marginal coverage. However, it often results in more informative

(narrower) prediction bands.

The solution described above is applied in our experiments using 5 warm-start scores, denoted as ϵ̂−4, . . . , ϵ̂0, and setting the

initial value of ³−4 equal to 0.1. A similar warm-start approach is also utilized when we apply the conformal PID algorithm

of Angelopoulos et al. (2024) instead of ACI. However, for the algorithm the warm start simply consists of setting the initial

quantile q0 equal to the (1− ³)-th quantile evaluated on the empirical distribution of scores computed using the training set.

A2. Proof of Theorem 1

Proof of Theorem 1. The proof follows directly from the exchangeability of the conformity scores, as it is often the case for

split-conformal prediction methods. Denote ϵ̂n+1(µ) the conformity score of the test trajectory Y
(t+1) evaluated using the

ACI prediction band constructed with step size µ. For any fixed ³ and µ > 0, we have that Y
(n+1)
t ∈ Ĉ

(n+1)
t ∀t ∈ [T ] if and

only if ϵ̂n+1(µ) f Q̂(1− ³, µ), where Q̂(1− ³, µ) is the +(1− ³)(1 + |Dcal|),-th smallest value of ϵ̂i(µ) for all i ∈ Dcal.

Since the test trajectory is exchangeable with Dcal, its score ϵ̂n+1(µ) is also exchangeable with {ϵ̂i(µ), i ∈ Dcal}. Then by

Lemma 1 in Romano et al. (2019), it follows that P(Y
(n+1)
t ∈ Ĉ

(n+1)
t ∀t ∈ [T ]) = P(ϵ̂n+1(µ) f Q̂(1−³, µ)) g 1−³.
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A3. Algorithms

Algorithm A1 Model selection component of CAFHT

1: Input: A pre-trained forecaster ĝ producing one-step-ahead predictions; calibration trajectories D1
cal; a grid of candidate

learning rates {µ1, . . . , µL}.

2: for ℓ ∈ [L] do

3: Construct ĈACI(Y (i), µℓ) using ACI, for i ∈ D1
cal.

4: Evaluate ϵ̂i(µℓ) using (3), for i ∈ D1
cal.

5: Compute Q̂(1− ³, µℓ), the (1− ³)(1 + 1/|D1
cal|)-th quantile of {ϵ̂i(µℓ), i ∈ D1

cal}.

6: Construct Ĉ(Y (i), µℓ) = (Ĉ1(Y
(i), µℓ), . . . , ĈT (Y

(i), µℓ)) using (4) for i ∈ D1
cal.

7: end for

8: Pick µ̂ such that,

µ̂ := argmin
ℓ∈[L]

AvgWidth(C(Y (i), µℓ)). (A8)

9: Output: Selected learning rate parameter µ̂.

Algorithm A2 CAFHT - multiplicative scores

1: Input: A pre-trained forecaster ĝ producing one-step-ahead predictions; calibration trajectories Dcal; the initial position

Y
(n+1)
0 of a test trajectory Y

(n+1); the desired nominal level ³ ∈ (0, 1); a grid of candidate learning rates {µ1, . . . , µL}.

2: Randomly split Dcal into D1
cal and D2

cal.

3: Select a learning rate µ̂ ∈ {µ1, . . . , µL}, applying Algorithm A3 using the trajectory data in D1
cal.

4: Construct ĈACI(Y (i), µ̂) using ACI, for i ∈ D2
cal.

5: Evaluate ϵ̂i(µ̂) using (6), for i ∈ D2
cal.

6: Compute the empirical quantile Q̂(1− ³, µ̂).
7: for t ∈ [T ] do

8: Compute ĈACI
t (Y (n+1), µ̂) with ACI, using the past of the test trajectory (Y

(n+1)
0 , Y

(n+1)
1 , . . . , Y

(n+1)
t−1 ).

9: Compute a prediction interval Ĉt(Y
(n+1), µ̂) for the next step, using the multiplicative version of (4).

10: Observe the next step of the trajectory, Y
(n+1)
t .

11: end for

12: Output: An online prediction band Ĉ(Y (n+1)).

Algorithm A3 Model selection component of CAFHT - multiplicative scores

1: Input: A pre-trained forecaster ĝ producing one-step-ahead predictions; calibration trajectories D1
cal; a grid of candidate

learning rates {µ1, . . . , µL}.

2: for ℓ ∈ [L] do

3: Construct ĈACI(Y (i), µℓ) using ACI, for i ∈ D1
cal.

4: Evaluate ϵ̂i(µℓ) using (6), for i ∈ D1
cal.

5: Compute Q̂(1− ³, µℓ), the (1− ³)(1 + 1/|D1
cal|)-th quantile of {ϵ̂i(µℓ), i ∈ D1

cal}.

6: Construct Ĉ(Y (i), µℓ) = (Ĉ1(Y
(i), µℓ), . . . , ĈT (Y

(i), µℓ)) for i ∈ D1
cal, using the multiplicative version of (4).

7: end for

8: Pick µ̂ such that,

µ̂ := argmin
ℓ∈[L]

AvgWidth(C(Y (i), µℓ)). (A9)

9: Output: Selected learning rate parameter µ̂.
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A4. Parameter Tuning for CAFHT Without Data Splitting

Here, we outline an alternate implementation of CAFHT which, in contrast to the primary method described in Section 3.4,

obviates the need for additional subdivision of the calibration data in Dcal for selecting an optimal value of the ACI learning

rate parameter µ. In essence, this version of CAFHT employs the same calibration dataset Dcal for both choosing µ̂ and

calibrating the conformal margin of error via Q̂(1− ³′, µ̂). It does so by using a judiciously selected ³′ < ³ to compensate

for the selection step. Enabled by the theoretical results of Yang & Kuchibhotla (2021) and Liang et al. (2023), this method

is outlined below by Algorithms A4–A5 using additive conformity scores, and by Algorithms A6–A7 using multiplicative

conformity scores.

In the following, we will assume that the goal is for CAFHT to select a good µ̂ from a list of L candidate parameter values,

µ1, . . . , µL, for some fixed integer L g 1.

Using the DKW inequality, Yang & Kuchibhotla (2021) proves that, when calibrating at the nominal level ³, a conformal

prediction set Ĉ(n+1) constructed after using the same calibration set Dcal to select the best model among L candidates may

have an inflated coverage rate in the following form:

P(Y (n+1) ∈ Ĉ(n+1)) g
(

1 +
1

|Dcal|

)

(1− ³)−
√

log(2L)/2 + c(L)
√

|Dcal|
, (A10)

where c(L) is a constant that is generally smaller than 1/3 and can be computed explicitly,

c(L) =

√
2Le− log(2L)

√

log(2L) +
√

log(2L) + 4/Ã
.

This justifies applying CAFHT, without data splitting, using Q̂(1− ³′
DKW, µ̂) instead of Q̂(1− ³, µ̂), where

³′
DKW = 1− 1− ³+ err

1 + 1/|Dcal|
, err =

√

log(2L)/2 + c(L)
√

|Dcal|
.

A further refinement of this approach was proposed by Liang et al. (2023), which suggested instead using

³′ = max{³′
Markov, ³

′
DKW}, (A11)

where ³′
Markov is computed as follows. By combining the results of Vovk (2012) with Markov’s inequality, Liang et al.

(2023) proved the following inequality in the same context of (A10):

P(Y (n+1) ∈ Ĉ(n+1)) g I−1

(

1

bL
; |Dcal|+ 1− l, l

)

· (1− 1/b), (A12)

where I−1(x; |Dcal|+ 1− l, l) is the inverse Beta cumulative distribution function with l = +³(|Dcal|+ 1),, and b > 1 is

any fixed constant. Therefore, the desired value of ³′
Markov can be calculated by inverting (A12) numerically, with the choice

of b = 100 recommended by Liang et al. (2023). In particular, we generate a grid of ³̂ candidates, evaluate the Markov

lower bounds associated with each ³̂, and then return the largest possible ³̂ such that its Markov bound is greater than 1−³.

A potential advantage of the bound in (A12) relative to (A10) is that the [
√

log(2L)/2 + c(L)]/
√

|Dcal| term in the latter

does not depend on ³. That makes (A10) sometimes too conservative when ³ is small; see Appendix A1.2 in Liang et al.

(2023). However, neither bound always dominates the other, hence why we adaptively follow the tighter one using (A11).

The performance of CAFHT applied without data splitting, relying instead on the theoretical correction for parameter tuning

described above, is investigated empirically in Appendix A5.
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Algorithm A4 CAFHT (theory)

1: Input: A pre-trained forecaster ĝ producing one-step-ahead predictions; calibration trajectories Dcal; the initial position

Y
(n+1)
0 of a test trajectory Y

(n+1); the desired nominal level ³ ∈ (0, 1); a grid of candidate learning rates {µ1, . . . , µL}.

2: Select a learning rate µ̂ ∈ {µ1, . . . , µL}, applying Algorithm A5 using the trajectory data in Dcal.

3: Construct ĈACI(Y (i), µ̂) using ACI, for i ∈ Dcal.

4: Evaluate ϵ̂i(µ̂) using (6), for i ∈ Dcal.

5: Compute the empirical quantile Q̂(1− ³′, µ̂), where ³′ is defined in (A11).

6: for t ∈ [T ] do

7: Compute ĈACI
t (Y (n+1), µ̂) with ACI, using the past of the test trajectory (Y

(n+1)
0 , Y

(n+1)
1 , . . . , Y

(n+1)
t−1 ).

8: Compute a prediction interval Ĉt(Y
(n+1), µ̂) for the next step, using (4) with Q̂(1− ³′, µ̂).

9: Observe the next step of the trajectory, Y
(n+1)
t .

10: end for

11: Output: An online prediction band Ĉ(Y (n+1)).

Algorithm A5 Model selection component of CAFHT (theory)

1: Input: A pre-trained forecaster ĝ producing one-step-ahead predictions; calibration trajectories Dcal; a grid of candidate

learning rates {µ1, . . . , µL}.

2: for ℓ ∈ [L] do

3: Construct ĈACI(Y (i), µℓ) using ACI, for i ∈ Dcal.

4: Evaluate ϵ̂i(µℓ) using (3), for i ∈ Dcal.

5: Compute Q̂(1 − ³′, µℓ), the (1 − ³′)(1 + 1/|Dcal|)-th smallest value of {ϵ̂i(µℓ), i ∈ Dcal}, where ³′ is defined

in (A11).

6: Construct Ĉ(Y (i), µℓ) = (Ĉ1(Y
(i), µℓ), . . . , ĈT (Y

(i), µℓ)) using (4) for i ∈ Dcal.

7: end for

8: Pick µ̂ such that,

µ̂ := argmin
ℓ∈[L]

AvgWidth(C(Y (i), µℓ)). (A13)

9: Output: Selected learning rate parameter µ̂.

Algorithm A6 CAFHT (theory) - multiplicative scores

1: Input: A pre-trained forecaster ĝ producing one-step-ahead predictions; calibration trajectories Dcal; the initial position

Y
(n+1)
0 of a test trajectory Y

(n+1); the desired nominal level ³ ∈ (0, 1); a grid of candidate learning rates {µ1, . . . , µL}.

2: Select a learning rate µ̂ ∈ {µ1, . . . , µL}, applying Algorithm A7 using the trajectory data in Dcal.

3: Construct ĈACI(Y (i), µ̂) using ACI, for i ∈ Dcal.

4: Evaluate ϵ̂i(µ̂) using the multiplicative version of (4), for i ∈ Dcal.

5: Compute the empirical quantile Q̂(1− ³′, µ̂), where ³′ is defined in (A11).

6: for t ∈ [T ] do

7: Compute ĈACI
t (Y (n+1), µ̂) with ACI, using the past of the test trajectory (Y

(n+1)
0 , Y

(n+1)
1 , . . . , Y

(n+1)
t−1 ).

8: Compute Ĉt(Y
(n+1), µ̂) for the next step, using the multiplicative version of (4) with Q̂(1− ³′, µ̂).

9: Observe the next step of the trajectory, Y
(n+1)
t .

10: end for

11: Output: An online prediction band Ĉ(Y (n+1)).
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Algorithm A7 Model selection component of CAFHT (theory) - multiplicative scores

1: Input: A pre-trained forecaster ĝ producing one-step-ahead predictions; calibration trajectories Dcal; a grid of candidate

learning rates {µ1, . . . , µL}.

2: for ℓ ∈ [L] do

3: Construct ĈACI(Y (i), µℓ) using ACI, for i ∈ Dcal.

4: Evaluate ϵ̂i(µℓ) using the multiplicative version of (4), for i ∈ Dcal.

5: Compute Q̂(1− ³′, µℓ), the (1− ³′)(1 + 1/|Dcal|)-th quantile of {ϵ̂i(µℓ), i ∈ Dcal}, where ³′ is defined in (A11).

6: Construct Ĉ(Y (i), µℓ) = (Ĉ1(Y
(i), µℓ), . . . , ĈT (Y

(i), µℓ)) for i ∈ Dcal.

7: end for

8: Pick µ̂ such that,

µ̂ := argmin
ℓ∈[L]

AvgWidth(C(Y (i), µℓ)). (A14)

9: Output: Selected learning rate parameter µ̂.
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A5. Additional Experimental Results

A5.1. Synthetic Data

A5.1.1. MAIN RESULTS — COMPARING CAFHT TO CFRNN AND NCTP

AR data with dynamic noise profile. Firstly, we investigate the performance of the three methods considered in this paper,

namely CAFHT, CFRNN, and NCTP, using synthetic data from an AR model with dynamic noise profile. The default

settings of the experiments are as described in Section 4, but this appendix contains more detailed results.

Figure 3 and Table A1 report on the average performance on simulated heterogeneous trajectories of prediction bands

constructed by different methods as a function of the total number of training and calibration trajectories. The number of

trajectories is varied between 200 and 10,000. All methods achieve 90% simultaneous marginal coverage. As discussed

earlier in Section 4, these results show that our method (CAFHT) leads to more informative bands with lower average width

and higher conditional coverage.

Figure 4 and Table A2 show the performance of prediction bands constructed by different methods, as a function of the

prediction horizon, which is varied between 5 and 100. As the prediction horizon increases, the CFRNN method becomes

more and more conservative, while the CAFHT method can consistently produce small predicting bands while maintaining

relatively high conditional coverage.

Figure A1 and Table A3 report on the performance of all methods as a function of the dimensionality of the trajectories,

which is varied between 1 and 10. Again, the results show that the CAFHT method leads to more informative bands with

lower average width and higher conditional coverage.

Figure A2 and Table A4 report on the performances of these methods as a function of the proportion ¶ ∈ [0, 1] of hard

trajectories in the population. We assess these results at ¶ values of 0.1, 0.2, and 0.5. It is observed that when the dataset

contains a small number of hard-to-predict trajectories, the CAFHT method achieves superior conditional coverage and

yields a narrower prediction band compared to the NCTP method. As the fraction of difficult-to-predict trajectories increases,

the performance of NCTP improves (there would be no heterogeneity issue if all trajectories were “hard to predict”).

Nonetheless, the CAFHT method consistently produces the narrowest, and thereby the most informative, prediction bands

across the range of ¶ values considered.

Finally, Figure A3 and Table A5 investigate the robustness of all methods to distribution shifts. To this end, we kept the

proportion of difficult-to-predict trajectories at 0.1 in both the training and calibration datasets, but varied this proportion in

the test dataset, altering ¶ from 0.2 to 0.9 in the test set. Under these circumstances, as the calibration set and test set are

not exchangeable, no method can ensure marginal coverage at the intended 90% level. However, as shown in Figure A3

and Table A5, CAFHT, in practice, tends to achieve higher marginal coverage compared to NCTP. This is consistent with

the fact that CAFHT typically leads to higher conditional coverage in the absence of distribution shifts (Einbinder et al.,

2022). Additionally, the increasing width of the CAFHT prediction bands as the strength of the distribution shift grows

demonstrates its enhanced ability to accurately measure predictive uncertainty.

Simultaneous marginal coverage Simultaneous conditional coverage Average width
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Figure A1. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

data dimensionality. See Table A3 for more detailed results and standard errors.
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Table A1. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

See the corresponding plot in Figure 3.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.939 (0.007) 1.000 (0.000) 0.994 (0.001)

200 NCTP 0.687 (0.035) 0.260 (0.024) 0.992 (0.002) 0.919 (0.004)

200 CAFHT 0.202 (0.003) 0.704 (0.017) 0.944 (0.005) 0.920 (0.005)

500

500 CFRNN 2.000 (0.000) 0.969 (0.005) 1.000 (0.000) 0.997 (0.000)

500 NCTP 0.467 (0.021) 0.196 (0.019) 0.994 (0.002) 0.916 (0.003)

500 CAFHT 0.182 (0.002) 0.682 (0.016) 0.934 (0.003) 0.910 (0.004)

1000

1000 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.343 (0.018) 0.093 (0.012) 0.992 (0.001) 0.901 (0.003)

1000 CAFHT 0.174 (0.001) 0.679 (0.012) 0.934 (0.003) 0.908 (0.003)

2000

2000 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

2000 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)

2000 CAFHT 0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)

5000

5000 CFRNN 2.000 (0.000) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000)

5000 NCTP 0.244 (0.013) 0.033 (0.006) 0.997 (0.001) 0.900 (0.002)

5000 CAFHT 0.158 (0.001) 0.655 (0.007) 0.925 (0.002) 0.899 (0.002)

10000

10000 CFRNN 2.000 (0.000) 0.997 (0.002) 1.000 (0.000) 1.000 (0.000)

10000 NCTP 0.239 (0.033) 0.041 (0.015) 0.997 (0.001) 0.903 (0.003)

10000 CAFHT 0.151 (0.002) 0.675 (0.022) 0.931 (0.004) 0.906 (0.005)

Table A2. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See corresponding plot in Figure 4.

Simultaneous coverage

Prediction horizon Method Average width Conditional-hard Conditional-easy Marginal

5

5 CFRNN 0.484 (0.007) 0.408 (0.009) 1.000 (0.000) 0.942 (0.001)

5 NCTP 0.242 (0.011) 0.067 (0.009) 0.996 (0.001) 0.904 (0.002)

5 CAFHT 0.247 (0.005) 0.136 (0.011) 0.985 (0.001) 0.902 (0.003)

15

15 CFRNN 0.548 (0.007) 0.632 (0.011) 1.000 (0.000) 0.964 (0.001)

15 NCTP 0.277 (0.014) 0.067 (0.009) 0.995 (0.001) 0.903 (0.002)

15 CAFHT 0.227 (0.003) 0.249 (0.012) 0.976 (0.001) 0.904 (0.002)

25

25 CFRNN 2.000 (0.000) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000)

25 NCTP 0.286 (0.014) 0.064 (0.008) 0.997 (0.001) 0.906 (0.002)

25 CAFHT 0.212 (0.002) 0.396 (0.014) 0.957 (0.002) 0.902 (0.003)

50

50 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

50 NCTP 0.293 (0.015) 0.068 (0.010) 0.997 (0.001) 0.906 (0.002)

50 CAFHT 0.192 (0.002) 0.548 (0.015) 0.939 (0.002) 0.901 (0.002)

100

100 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

100 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)

100 CAFHT 0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)
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Table A3. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in

Figure A1.

Simultaneous coverage

Data dimensionality Method Average width Conditional-hard Conditional-easy Marginal

1

1 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

1 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)

1 CAFHT 0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)

2

2 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

2 NCTP 0.338 (0.015) 0.064 (0.008) 0.996 (0.001) 0.905 (0.002)

2 CAFHT 0.172 (0.001) 0.630 (0.009) 0.930 (0.002) 0.901 (0.002)

3

3 CFRNN 2.000 (0.000) 0.993 (0.002) 1.000 (0.000) 0.999 (0.000)

3 NCTP 0.349 (0.016) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

3 CAFHT 0.179 (0.001) 0.624 (0.012) 0.930 (0.002) 0.900 (0.002)

5

5 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

5 NCTP 0.378 (0.017) 0.066 (0.008) 0.996 (0.001) 0.904 (0.002)

5 CAFHT 0.188 (0.001) 0.619 (0.015) 0.931 (0.002) 0.900 (0.002)

10

10 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

10 NCTP 0.410 (0.020) 0.057 (0.008) 0.996 (0.001) 0.903 (0.002)

10 CAFHT 0.199 (0.001) 0.580 (0.013) 0.936 (0.002) 0.901 (0.003)
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Figure A2. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

proportion of hard-to-predict trajectories. See Table A4 for more detailed results and standard errors.

Table A4. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the

corresponding plot in Figure A2.

Simultaneous coverage

Proportion of

hard samples

(all data)
Method Average width Conditional-hard Conditional-easy Marginal

0.1

0.1 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

0.1 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)

0.1 CAFHT 0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)

0.2

0.2 CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.473 (0.004) 0.502 (0.008) 1.000 (0.000) 0.900 (0.002)

0.2 CAFHT 0.203 (0.001) 0.710 (0.007) 0.944 (0.002) 0.897 (0.003)

0.5

0.5 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)

0.5 NCTP 0.512 (0.004) 0.799 (0.004) 1.000 (0.000) 0.899 (0.002)

0.5 CAFHT 0.331 (0.002) 0.827 (0.005) 0.978 (0.001) 0.903 (0.003)
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Simultaneous marginal coverage Average width
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Figure A3. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A5 for more detailed

results and standard errors.

Table A5. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher

marginal coverage. See the corresponding plot in Figure A3.

Proportion of hard samples (test data) Method Length Marginal coverage

0.2

0.2 CFRNN 2.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.300 (0.016) 0.808 (0.003)

0.2 CAFHT 0.207 (0.002) 0.877 (0.003)

0.3

0.3 CFRNN 2.000 (0.000) 0.998 (0.000)

0.3 NCTP 0.315 (0.017) 0.716 (0.004)

0.3 CAFHT 0.250 (0.002) 0.849 (0.004)

0.4

0.4 CFRNN 2.000 (0.000) 0.997 (0.000)

0.4 NCTP 0.315 (0.016) 0.622 (0.004)

0.4 CAFHT 0.291 (0.003) 0.824 (0.004)

0.5

0.5 CFRNN 2.000 (0.000) 0.996 (0.000)

0.5 NCTP 0.316 (0.016) 0.530 (0.005)

0.5 CAFHT 0.334 (0.003) 0.795 (0.004)

0.6

0.6 CFRNN 2.000 (0.000) 0.996 (0.001)

0.6 NCTP 0.321 (0.016) 0.436 (0.006)

0.6 CAFHT 0.378 (0.003) 0.772 (0.004)

0.7

0.7 CFRNN 2.000 (0.000) 0.994 (0.001)

0.7 NCTP 0.310 (0.016) 0.341 (0.006)

0.7 CAFHT 0.422 (0.003) 0.743 (0.005)

0.8

0.8 CFRNN 2.000 (0.000) 0.994 (0.001)

0.8 NCTP 0.306 (0.017) 0.249 (0.008)

0.8 CAFHT 0.457 (0.004) 0.715 (0.005)

0.9

0.9 CFRNN 2.000 (0.000) 0.994 (0.001)

0.9 NCTP 0.301 (0.016) 0.152 (0.007)

0.9 CAFHT 0.500 (0.004) 0.692 (0.006)
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AR data with static noise profile. Next, we present the results based on data generated from the AR model with the static

noise profile.
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Figure A4. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

total number of training and calibration trajectories. See Table A6 for more detailed results and standard errors.

Table A6. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

See the corresponding plot in Figure A4.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.945 (0.006) 1.000 (0.000) 0.994 (0.001)

200 NCTP 0.927 (0.048) 0.251 (0.024) 0.990 (0.002) 0.916 (0.004)

200 CAFHT 0.311 (0.010) 0.434 (0.025) 0.968 (0.005) 0.914 (0.006)

500

500 CFRNN 2.000 (0.000) 0.972 (0.004) 1.000 (0.000) 0.997 (0.000)

500 NCTP 0.666 (0.031) 0.200 (0.020) 0.995 (0.002) 0.917 (0.003)

500 CAFHT 0.243 (0.005) 0.326 (0.017) 0.974 (0.003) 0.910 (0.004)

1000

1000 CFRNN 2.000 (0.000) 0.986 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.466 (0.030) 0.084 (0.011) 0.994 (0.001) 0.902 (0.002)

1000 CAFHT 0.227 (0.003) 0.289 (0.012) 0.976 (0.002) 0.906 (0.003)

2000

2000 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

2000 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

2000 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)

5000

5000 CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)

5000 NCTP 0.322 (0.024) 0.034 (0.006) 0.996 (0.001) 0.901 (0.002)

5000 CAFHT 0.194 (0.002) 0.263 (0.008) 0.973 (0.001) 0.902 (0.002)

10000

10000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

10000 NCTP 0.299 (0.089) 0.044 (0.023) 0.997 (0.002) 0.907 (0.005)

10000 CAFHT 0.180 (0.005) 0.270 (0.037) 0.966 (0.004) 0.901 (0.006)
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Figure A5. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

prediction horizon. See Table A7 for more detailed results and standard errors.
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Table A7. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See corresponding plot in

Figure A5.

Simultaneous coverage

Prediction horizon Method Average width Conditional-hard Conditional-easy Marginal

5

5 CFRNN 0.504 (0.009) 0.414 (0.010) 1.000 (0.000) 0.942 (0.001)

5 NCTP 0.246 (0.012) 0.067 (0.009) 0.996 (0.001) 0.904 (0.002)

5 CAFHT 0.260 (0.006) 0.110 (0.011) 0.987 (0.001) 0.901 (0.002)

15

15 CFRNN 0.688 (0.008) 0.624 (0.010) 1.000 (0.000) 0.963 (0.001)

15 NCTP 0.331 (0.018) 0.064 (0.008) 0.996 (0.001) 0.904 (0.002)

15 CAFHT 0.256 (0.004) 0.125 (0.011) 0.987 (0.001) 0.902 (0.002)

25

25 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

25 NCTP 0.368 (0.020) 0.067 (0.009) 0.996 (0.001) 0.905 (0.002)

25 CAFHT 0.241 (0.003) 0.144 (0.008) 0.984 (0.001) 0.902 (0.002)

50

50 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

50 NCTP 0.390 (0.023) 0.061 (0.008) 0.996 (0.001) 0.904 (0.002)

50 CAFHT 0.218 (0.002) 0.198 (0.010) 0.978 (0.002) 0.901 (0.002)

100

100 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

100 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

100 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)
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Figure A6. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

data dimensionality. See Table A8 for more detailed results and standard errors.
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Figure A7. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

proportion of hard-to-predict trajectories. See Table A9 for more detailed results and standard errors.
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Table A8. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in

Figure A6.

Simultaneous coverage

Data dimensionality Method Average width Conditional-hard Conditional-easy Marginal

1

1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

1 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)

2

2 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)

2 NCTP 0.475 (0.027) 0.059 (0.007) 0.996 (0.001) 0.903 (0.002)

2 CAFHT 0.210 (0.002) 0.195 (0.009) 0.981 (0.001) 0.904 (0.002)

3

3 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

3 NCTP 0.495 (0.028) 0.068 (0.009) 0.996 (0.001) 0.904 (0.002)

3 CAFHT 0.219 (0.003) 0.160 (0.011) 0.982 (0.001) 0.900 (0.002)

5

5 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

5 NCTP 0.529 (0.032) 0.066 (0.009) 0.997 (0.001) 0.906 (0.002)

5 CAFHT 0.234 (0.003) 0.152 (0.013) 0.985 (0.002) 0.903 (0.002)

10

10 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)

10 NCTP 0.615 (0.038) 0.061 (0.008) 0.997 (0.001) 0.904 (0.002)

10 CAFHT 0.267 (0.003) 0.212 (0.015) 0.978 (0.002) 0.902 (0.003)

Table A9. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the

corresponding plot in Figure A7.

Simultaneous coverage

Proportion of

hard samples

(all data)
Method Average width Conditional-hard Conditional-easy Marginal

0.1

0.1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

0.1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

0.1 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)

0.2

0.2 CFRNN 2.000 (0.000) 0.996 (0.001) 1.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.720 (0.006) 0.496 (0.008) 1.000 (0.000) 0.898 (0.002)

0.2 CAFHT 0.335 (0.005) 0.527 (0.011) 0.993 (0.001) 0.900 (0.003)

0.5

0.5 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)

0.5 NCTP 0.776 (0.005) 0.803 (0.003) 1.000 (0.000) 0.901 (0.002)

0.5 CAFHT 0.770 (0.007) 0.808 (0.004) 0.992 (0.001) 0.900 (0.002)
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Figure A8. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A10 for detailed

results and standard errors.
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Table A10. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher

marginal coverage. See the corresponding plot in Figure A8.

Proportion of hard samples (test data) Method Length Marginal coverage

0.2

0.2 CFRNN 2.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.437 (0.028) 0.811 (0.003)

0.2 CAFHT 0.284 (0.003) 0.832 (0.003)

0.3

0.3 CFRNN 2.000 (0.000) 0.998 (0.000)

0.3 NCTP 0.419 (0.027) 0.715 (0.004)

0.3 CAFHT 0.359 (0.004) 0.762 (0.004)

0.4

0.4 CFRNN 2.000 (0.000) 0.998 (0.000)

0.4 NCTP 0.432 (0.026) 0.619 (0.004)

0.4 CAFHT 0.438 (0.005) 0.689 (0.004)

0.5

0.5 CFRNN 2.000 (0.000) 0.997 (0.000)

0.5 NCTP 0.431 (0.027) 0.526 (0.005)

0.5 CAFHT 0.517 (0.006) 0.624 (0.005)

0.6

0.6 CFRNN 2.000 (0.000) 0.996 (0.001)

0.6 NCTP 0.451 (0.028) 0.438 (0.006)

0.6 CAFHT 0.598 (0.007) 0.552 (0.005)

0.7

0.7 CFRNN 2.000 (0.000) 0.996 (0.001)

0.7 NCTP 0.436 (0.027) 0.340 (0.006)

0.7 CAFHT 0.671 (0.008) 0.481 (0.006)

0.8

0.8 CFRNN 2.000 (0.000) 0.996 (0.001)

0.8 NCTP 0.437 (0.027) 0.252 (0.007)

0.8 CAFHT 0.746 (0.009) 0.414 (0.006)

0.9

0.9 CFRNN 2.000 (0.000) 0.995 (0.001)

0.9 NCTP 0.432 (0.027) 0.157 (0.007)

0.9 CAFHT 0.828 (0.010) 0.343 (0.007)
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A5.1.2. SUPPLEMENTARY RESULTS — COMPARING DIFFERENT VERSIONS OF CAFHT

In this subsection, we add different versions of CAFHT into comparison. We will separately analyze the CAFHT prediction

bands constructed using multiplicative conformity scores (6) and those constructed using additive conformity scores (3).

The conclusions from the results evaluated using synthetic data with the dynamic profile and with the static profile are very

similar. To save space, we only demonstrate the results using data with the static profile.

We consider the following implementations of CAFHT:

• CAFHT: the main method. It is the CAFHT method based on the ACI prediction band using the data splitting strategy;

see Algorithm A2.

• CAFHT - PID: the CAFHT method based on the conformal PID prediction band using the data splitting strategy. It can

be implemented simply by substituting ĈACI to ĈPID in Algorithm A2 wherever possible.

• CAFHT (theory): the CAFHT method based on the ACI prediction band after correcting the theoretical coverage; see

Appendix A4 and Algorithm A6.

• CAFHT (theory) - PID: the CAFHT method based on the conformal PID prediction band after correcting the theoretical

coverage. It can be implemented simply by substituting ĈACI to ĈPID in Algorithm A6 wherever possible.

CAFHT — MULTIPLICATIVE SCORES

The results of CAFHT with multiplicative conformity scores (6) are first presented.

Similar to what we have observed from the results in subsection A5.1.1, CAFHT outperforms the benchmark methods

(CFRNN and NCTP) across all configurations we considered. Generally, CAFHT produces narrower, more informative

bands with higher conditional coverage. Among the different versions of CAFHT, the prediction bands generated using the

theoretical correction approach (outlined in A4) tend to be more conservative compared to those from the data-splitting

approach. Additionally, in our experiments, the performance of prediction bands constructed by CAFHT with ACI is

empirically similar to those created using PID.
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Figure A9. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of the

total number of training and calibration trajectories. See Table A11 for detailed results and standard errors.
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Figure A10. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the prediction horizon. See Table A12 for detailed results and standard errors.
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Table A11. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

See corresponding plot in Figure A9.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.945 (0.006) 1.000 (0.000) 0.994 (0.001)

200 NCTP 0.927 (0.048) 0.251 (0.024) 0.990 (0.002) 0.916 (0.004)

200 CAFHT 0.311 (0.010) 0.434 (0.025) 0.968 (0.005) 0.914 (0.006)

200 CAFHT - PID 0.390 (0.022) 0.361 (0.027) 0.978 (0.004) 0.916 (0.006)

200 CAFHT (theory) 0.365 (0.009) 0.616 (0.016) 0.993 (0.001) 0.955 (0.002)

200 CAFHT (theory) - PID 0.525 (0.014) 0.700 (0.018) 0.998 (0.001) 0.968 (0.002)

500

500 CFRNN 2.000 (0.000) 0.972 (0.004) 1.000 (0.000) 0.997 (0.000)

500 NCTP 0.666 (0.031) 0.200 (0.020) 0.995 (0.002) 0.917 (0.003)

500 CAFHT 0.243 (0.005) 0.326 (0.017) 0.974 (0.003) 0.910 (0.004)

500 CAFHT - PID 0.335 (0.021) 0.237 (0.022) 0.983 (0.003) 0.910 (0.004)

500 CAFHT (theory) 0.358 (0.006) 0.717 (0.012) 0.997 (0.001) 0.970 (0.001)

500 CAFHT (theory) - PID 0.495 (0.009) 0.779 (0.013) 1.000 (0.000) 0.978 (0.001)

1000

1000 CFRNN 2.000 (0.000) 0.986 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.466 (0.030) 0.084 (0.011) 0.994 (0.001) 0.902 (0.002)

1000 CAFHT 0.227 (0.003) 0.289 (0.012) 0.976 (0.002) 0.906 (0.003)

1000 CAFHT - PID 0.303 (0.018) 0.149 (0.014) 0.988 (0.002) 0.903 (0.003)

1000 CAFHT (theory) 0.290 (0.004) 0.571 (0.013) 0.994 (0.001) 0.951 (0.002)

1000 CAFHT (theory) - PID 0.371 (0.007) 0.595 (0.014) 0.999 (0.000) 0.958 (0.002)

2000

2000 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

2000 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

2000 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)

2000 CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)

2000 CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)

2000 CAFHT (theory) - PID 0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)

5000

5000 CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)

5000 NCTP 0.322 (0.024) 0.034 (0.006) 0.996 (0.001) 0.901 (0.002)

5000 CAFHT 0.194 (0.002) 0.263 (0.008) 0.973 (0.001) 0.902 (0.002)

5000 CAFHT - PID 0.233 (0.015) 0.085 (0.009) 0.990 (0.001) 0.900 (0.002)

5000 CAFHT (theory) 0.217 (0.002) 0.409 (0.008) 0.991 (0.001) 0.933 (0.001)

5000 CAFHT (theory) - PID 0.231 (0.003) 0.351 (0.010) 0.998 (0.000) 0.934 (0.001)

10000

10000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

10000 NCTP 0.299 (0.089) 0.044 (0.023) 0.997 (0.002) 0.907 (0.005)

10000 CAFHT 0.180 (0.005) 0.270 (0.037) 0.966 (0.004) 0.901 (0.006)

10000 CAFHT - PID 0.140 (0.016) 0.076 (0.039) 0.989 (0.004) 0.903 (0.005)

10000 CAFHT (theory) 0.196 (0.005) 0.376 (0.033) 0.985 (0.002) 0.927 (0.006)

10000 CAFHT (theory) - PID 0.200 (0.008) 0.307 (0.045) 0.994 (0.001) 0.930 (0.004)
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Figure A11. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the data dimensionality. See Table A13 for detailed results and standard errors.
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Table A12. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in

Figure A10.

Simultaneous coverage

Prediction horizon Method Average width Conditional-hard Conditional-easy Marginal

5

5 CFRNN 0.504 (0.009) 0.414 (0.010) 1.000 (0.000) 0.942 (0.001)

5 NCTP 0.246 (0.012) 0.067 (0.009) 0.996 (0.001) 0.904 (0.002)

5 CAFHT 0.260 (0.006) 0.110 (0.011) 0.987 (0.001) 0.901 (0.002)

5 CAFHT - PID 0.190 (0.008) 0.098 (0.011) 0.991 (0.001) 0.903 (0.002)

5 CAFHT (theory) 0.406 (0.007) 0.444 (0.012) 0.998 (0.000) 0.944 (0.002)

5 CAFHT (theory) - PID 0.309 (0.005) 0.503 (0.014) 0.996 (0.001) 0.947 (0.002)

15

15 CFRNN 0.688 (0.008) 0.624 (0.010) 1.000 (0.000) 0.963 (0.001)

15 NCTP 0.331 (0.018) 0.064 (0.008) 0.996 (0.001) 0.904 (0.002)

15 CAFHT 0.256 (0.004) 0.125 (0.011) 0.987 (0.001) 0.902 (0.002)

15 CAFHT - PID 0.235 (0.014) 0.125 (0.012) 0.987 (0.002) 0.902 (0.003)

15 CAFHT (theory) 0.359 (0.005) 0.442 (0.012) 0.998 (0.000) 0.944 (0.001)

15 CAFHT (theory) - PID 0.304 (0.006) 0.483 (0.012) 0.999 (0.000) 0.948 (0.002)

25

25 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

25 NCTP 0.368 (0.020) 0.067 (0.009) 0.996 (0.001) 0.905 (0.002)

25 CAFHT 0.241 (0.003) 0.144 (0.008) 0.984 (0.001) 0.902 (0.002)

25 CAFHT - PID 0.247 (0.015) 0.129 (0.013) 0.987 (0.002) 0.903 (0.003)

25 CAFHT (theory) 0.321 (0.004) 0.442 (0.012) 0.998 (0.000) 0.944 (0.002)

25 CAFHT (theory) - PID 0.302 (0.005) 0.487 (0.011) 0.999 (0.000) 0.949 (0.001)

50

50 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

50 NCTP 0.390 (0.023) 0.061 (0.008) 0.996 (0.001) 0.904 (0.002)

50 CAFHT 0.218 (0.002) 0.198 (0.010) 0.978 (0.002) 0.901 (0.002)

50 CAFHT - PID 0.260 (0.017) 0.117 (0.014) 0.991 (0.001) 0.905 (0.003)

50 CAFHT (theory) 0.274 (0.003) 0.456 (0.011) 0.996 (0.000) 0.943 (0.002)

50 CAFHT (theory) - PID 0.296 (0.005) 0.494 (0.011) 0.998 (0.000) 0.949 (0.002)

100

100 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

100 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

100 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)

100 CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)

100 CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)

100 CAFHT (theory) - PID 0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)
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Figure A12. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the proportion of hard-to-predict trajectories. See Table A14 for detailed results and standard errors.
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Figure A13. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A15 for detailed

results and standard errors.
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Table A13. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in

Figure A11.

Simultaneous coverage

Data dimensionality Method Average width Conditional-hard Conditional-easy Marginal

1

1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

1 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)

1 CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)

1 CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)

1 CAFHT (theory) - PID 0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)

2

2 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)

2 NCTP 0.475 (0.027) 0.059 (0.007) 0.996 (0.001) 0.903 (0.002)

2 CAFHT 0.210 (0.002) 0.195 (0.009) 0.981 (0.001) 0.904 (0.002)

2 CAFHT - PID 0.283 (0.017) 0.110 (0.010) 0.988 (0.001) 0.902 (0.002)

2 CAFHT (theory) 0.253 (0.002) 0.485 (0.012) 0.993 (0.001) 0.943 (0.001)

2 CAFHT (theory) - PID 0.297 (0.004) 0.495 (0.012) 0.999 (0.000) 0.949 (0.001)

3

3 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

3 NCTP 0.495 (0.028) 0.068 (0.009) 0.996 (0.001) 0.904 (0.002)

3 CAFHT 0.219 (0.003) 0.160 (0.011) 0.982 (0.001) 0.900 (0.002)

3 CAFHT - PID 0.297 (0.018) 0.115 (0.012) 0.988 (0.001) 0.902 (0.002)

3 CAFHT (theory) 0.260 (0.003) 0.491 (0.012) 0.990 (0.001) 0.941 (0.001)

3 CAFHT (theory) - PID 0.312 (0.004) 0.470 (0.011) 1.000 (0.000) 0.947 (0.001)

5

5 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

5 NCTP 0.529 (0.032) 0.066 (0.009) 0.997 (0.001) 0.906 (0.002)

5 CAFHT 0.234 (0.003) 0.152 (0.013) 0.985 (0.002) 0.903 (0.002)

5 CAFHT - PID 0.323 (0.021) 0.093 (0.010) 0.991 (0.001) 0.903 (0.002)

5 CAFHT (theory) 0.271 (0.003) 0.522 (0.011) 0.992 (0.001) 0.946 (0.002)

5 CAFHT (theory) - PID 0.360 (0.004) 0.486 (0.012) 1.000 (0.000) 0.949 (0.002)

10

10 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)

10 NCTP 0.615 (0.038) 0.061 (0.008) 0.997 (0.001) 0.904 (0.002)

10 CAFHT 0.267 (0.003) 0.212 (0.015) 0.978 (0.002) 0.902 (0.003)

10 CAFHT - PID 0.372 (0.023) 0.076 (0.011) 0.993 (0.001) 0.902 (0.002)

10 CAFHT (theory) 0.303 (0.003) 0.498 (0.009) 0.995 (0.001) 0.946 (0.001)

10 CAFHT (theory) - PID 0.428 (0.003) 0.463 (0.012) 1.000 (0.000) 0.947 (0.001)

Table A14. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the

corresponding plot in Figure A12.

Simultaneous coverage

Proportion of

hard samples

(all data)
Method Average width Conditional-hard Conditional-easy Marginal

0.1

0.1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

0.1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

0.1 CAFHT 0.204 (0.002) 0.273 (0.008) 0.973 (0.002) 0.904 (0.002)

0.1 CAFHT - PID 0.270 (0.016) 0.122 (0.012) 0.989 (0.001) 0.904 (0.002)

0.1 CAFHT (theory) 0.243 (0.003) 0.487 (0.010) 0.994 (0.001) 0.944 (0.001)

0.1 CAFHT (theory) - PID 0.291 (0.004) 0.490 (0.011) 0.999 (0.000) 0.949 (0.002)

0.2

0.2 CFRNN 2.000 (0.000) 0.996 (0.001) 1.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.720 (0.006) 0.496 (0.008) 1.000 (0.000) 0.898 (0.002)

0.2 CAFHT 0.335 (0.005) 0.527 (0.011) 0.993 (0.001) 0.900 (0.003)

0.2 CAFHT - PID 0.388 (0.005) 0.528 (0.010) 0.993 (0.001) 0.899 (0.002)

0.2 CAFHT (theory) 0.404 (0.005) 0.721 (0.007) 0.996 (0.001) 0.940 (0.001)

0.2 CAFHT (theory) - PID 0.498 (0.005) 0.733 (0.007) 0.999 (0.000) 0.946 (0.001)

0.5

0.5 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)

0.5 NCTP 0.776 (0.005) 0.803 (0.003) 1.000 (0.000) 0.901 (0.002)

0.5 CAFHT 0.770 (0.007) 0.808 (0.004) 0.992 (0.001) 0.900 (0.002)

0.5 CAFHT - PID 0.694 (0.005) 0.796 (0.004) 1.000 (0.000) 0.898 (0.002)

0.5 CAFHT (theory) 0.858 (0.007) 0.880 (0.003) 0.998 (0.000) 0.939 (0.001)

0.5 CAFHT (theory) - PID 0.741 (0.005) 0.878 (0.003) 1.000 (0.000) 0.939 (0.002)
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Table A15. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher

marginal coverage. See the corresponding plot in Figure A13.

Proportion of hard samples (test data) Method Length Marginal coverage

0.2

0.2 CFRNN 2.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.437 (0.028) 0.811 (0.003)

0.2 CAFHT 0.284 (0.003) 0.832 (0.003)

0.2 CAFHT - PID 0.316 (0.018) 0.816 (0.003)

0.2 CAFHT (theory) 0.342 (0.005) 0.896 (0.002)

0.2 CAFHT (theory) - PID 0.411 (0.008) 0.896 (0.003)

0.3

0.3 CFRNN 2.000 (0.000) 0.998 (0.000)

0.3 NCTP 0.419 (0.027) 0.715 (0.004)

0.3 CAFHT 0.359 (0.004) 0.762 (0.004)

0.3 CAFHT - PID 0.353 (0.017) 0.728 (0.004)

0.3 CAFHT (theory) 0.434 (0.006) 0.844 (0.003)

0.3 CAFHT (theory) - PID 0.521 (0.010) 0.842 (0.003)

0.4

0.4 CFRNN 2.000 (0.000) 0.998 (0.000)

0.4 NCTP 0.432 (0.026) 0.619 (0.004)

0.4 CAFHT 0.438 (0.005) 0.689 (0.004)

0.4 CAFHT - PID 0.402 (0.017) 0.640 (0.005)

0.4 CAFHT (theory) 0.532 (0.007) 0.794 (0.003)

0.4 CAFHT (theory) - PID 0.639 (0.011) 0.788 (0.004)

0.5

0.5 CFRNN 2.000 (0.000) 0.997 (0.000)

0.5 NCTP 0.431 (0.027) 0.526 (0.005)

0.5 CAFHT 0.517 (0.006) 0.624 (0.005)

0.5 CAFHT - PID 0.448 (0.017) 0.552 (0.006)

0.5 CAFHT (theory) 0.628 (0.009) 0.746 (0.004)

0.5 CAFHT (theory) - PID 0.764 (0.013) 0.743 (0.005)

0.6

0.6 CFRNN 2.000 (0.000) 0.996 (0.001)

0.6 NCTP 0.451 (0.028) 0.438 (0.006)

0.6 CAFHT 0.598 (0.007) 0.552 (0.005)

0.6 CAFHT - PID 0.499 (0.020) 0.469 (0.007)

0.6 CAFHT (theory) 0.730 (0.011) 0.696 (0.005)

0.6 CAFHT (theory) - PID 0.883 (0.016) 0.693 (0.006)

0.7

0.7 CFRNN 2.000 (0.000) 0.996 (0.001)

0.7 NCTP 0.436 (0.027) 0.340 (0.006)

0.7 CAFHT 0.671 (0.008) 0.481 (0.006)

0.7 CAFHT - PID 0.531 (0.022) 0.376 (0.008)

0.7 CAFHT (theory) 0.819 (0.012) 0.644 (0.005)

0.7 CAFHT (theory) - PID 0.996 (0.019) 0.640 (0.007)

0.8

0.8 CFRNN 2.000 (0.000) 0.996 (0.001)

0.8 NCTP 0.437 (0.027) 0.252 (0.007)

0.8 CAFHT 0.746 (0.009) 0.414 (0.006)

0.8 CAFHT - PID 0.574 (0.023) 0.292 (0.008)

0.8 CAFHT (theory) 0.911 (0.013) 0.597 (0.005)

0.8 CAFHT (theory) - PID 1.094 (0.020) 0.589 (0.008)

0.9

0.9 CFRNN 2.000 (0.000) 0.995 (0.001)

0.9 NCTP 0.432 (0.027) 0.157 (0.007)

0.9 CAFHT 0.828 (0.010) 0.343 (0.007)

0.9 CAFHT - PID 0.606 (0.027) 0.205 (0.010)

0.9 CAFHT (theory) 1.006 (0.014) 0.548 (0.006)

0.9 CAFHT (theory) - PID 1.218 (0.023) 0.537 (0.009)
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CAFHT — ADDITIVE SCORES

Finally, the results of CAFHT with additive conformity scores (3) are presented.
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Figure A14. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. See Table A16 for detailed results and standard errors.

Table A16. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

See the corresponding plot in Figure A14.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.945 (0.006) 1.000 (0.000) 0.994 (0.001)

200 NCTP 0.927 (0.048) 0.251 (0.024) 0.990 (0.002) 0.916 (0.004)

200 CAFHT 0.388 (0.018) 0.290 (0.030) 0.982 (0.004) 0.913 (0.006)

200 CAFHT - PID 0.466 (0.026) 0.326 (0.031) 0.980 (0.004) 0.915 (0.006)

200 CAFHT (theory) 0.576 (0.015) 0.621 (0.023) 1.000 (0.000) 0.963 (0.002)

200 CAFHT (theory) - PID 0.614 (0.016) 0.620 (0.024) 1.000 (0.000) 0.962 (0.002)

500

500 CFRNN 2.000 (0.000) 0.972 (0.004) 1.000 (0.000) 0.997 (0.000)

500 NCTP 0.666 (0.031) 0.200 (0.020) 0.995 (0.002) 0.917 (0.003)

500 CAFHT 0.323 (0.013) 0.195 (0.023) 0.988 (0.003) 0.911 (0.004)

500 CAFHT - PID 0.399 (0.024) 0.190 (0.022) 0.988 (0.003) 0.910 (0.004)

500 CAFHT (theory) 0.572 (0.008) 0.762 (0.016) 1.000 (0.000) 0.977 (0.002)

500 CAFHT (theory) - PID 0.600 (0.009) 0.753 (0.015) 1.000 (0.000) 0.976 (0.001)

1000

1000 CFRNN 2.000 (0.000) 0.986 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.466 (0.030) 0.084 (0.011) 0.994 (0.001) 0.902 (0.002)

1000 CAFHT 0.289 (0.010) 0.115 (0.015) 0.993 (0.001) 0.904 (0.003)

1000 CAFHT - PID 0.362 (0.021) 0.119 (0.015) 0.993 (0.001) 0.904 (0.003)

1000 CAFHT (theory) 0.460 (0.006) 0.557 (0.015) 1.000 (0.000) 0.955 (0.002)

1000 CAFHT (theory) - PID 0.481 (0.006) 0.559 (0.013) 1.000 (0.000) 0.955 (0.002)

2000

2000 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

2000 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

2000 CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)

2000 CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)

2000 CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)

2000 CAFHT (theory) - PID 0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)

5000

5000 CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)

5000 NCTP 0.322 (0.024) 0.034 (0.006) 0.996 (0.001) 0.901 (0.002)

5000 CAFHT 0.214 (0.007) 0.035 (0.006) 0.994 (0.001) 0.899 (0.002)

5000 CAFHT - PID 0.260 (0.017) 0.040 (0.006) 0.994 (0.001) 0.899 (0.002)

5000 CAFHT (theory) 0.348 (0.003) 0.308 (0.008) 1.000 (0.000) 0.931 (0.001)

5000 CAFHT (theory) - PID 0.354 (0.003) 0.313 (0.009) 1.000 (0.000) 0.932 (0.001)

10000

10000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

10000 NCTP 0.299 (0.089) 0.044 (0.023) 0.997 (0.002) 0.907 (0.005)

10000 CAFHT 0.176 (0.023) 0.030 (0.025) 0.994 (0.002) 0.903 (0.004)

10000 CAFHT - PID 0.154 (0.026) 0.025 (0.023) 0.997 (0.001) 0.905 (0.005)

10000 CAFHT (theory) 0.315 (0.005) 0.296 (0.016) 1.000 (0.000) 0.933 (0.004)

10000 CAFHT (theory) - PID 0.319 (0.007) 0.284 (0.042) 1.000 (0.000) 0.932 (0.005)
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Figure A15. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the prediction horizon. See Table A17 for detailed results and standard errors.

Table A17. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in

Figure A15.

Simultaneous coverage

Prediction horizon Method Average width Conditional-hard Conditional-easy Marginal

5

5 CFRNN 0.504 (0.009) 0.414 (0.010) 1.000 (0.000) 0.942 (0.001)

5 NCTP 0.246 (0.012) 0.067 (0.009) 0.996 (0.001) 0.904 (0.002)

5 CAFHT 0.237 (0.008) 0.073 (0.009) 0.993 (0.001) 0.902 (0.002)

5 CAFHT - PID 0.195 (0.008) 0.096 (0.010) 0.990 (0.001) 0.902 (0.002)

5 CAFHT (theory) 0.436 (0.008) 0.463 (0.012) 1.000 (0.000) 0.947 (0.002)

5 CAFHT (theory) - PID 0.348 (0.008) 0.477 (0.012) 1.000 (0.000) 0.948 (0.002)

15

15 CFRNN 0.688 (0.008) 0.624 (0.010) 1.000 (0.000) 0.963 (0.001)

15 NCTP 0.331 (0.018) 0.064 (0.008) 0.996 (0.001) 0.904 (0.002)

15 CAFHT 0.263 (0.008) 0.084 (0.010) 0.992 (0.001) 0.902 (0.002)

15 CAFHT - PID 0.239 (0.014) 0.106 (0.010) 0.988 (0.002) 0.901 (0.002)

15 CAFHT (theory) 0.429 (0.006) 0.446 (0.012) 1.000 (0.000) 0.945 (0.001)

15 CAFHT (theory) - PID 0.333 (0.006) 0.460 (0.012) 1.000 (0.000) 0.947 (0.002)

25

25 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

25 NCTP 0.368 (0.020) 0.067 (0.009) 0.996 (0.001) 0.905 (0.002)

25 CAFHT 0.259 (0.008) 0.078 (0.010) 0.991 (0.001) 0.902 (0.002)

25 CAFHT - PID 0.253 (0.016) 0.115 (0.011) 0.989 (0.002) 0.904 (0.003)

25 CAFHT (theory) 0.409 (0.005) 0.430 (0.013) 1.000 (0.000) 0.944 (0.002)

25 CAFHT (theory) - PID 0.337 (0.006) 0.468 (0.013) 1.000 (0.000) 0.948 (0.002)

50

50 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

50 NCTP 0.390 (0.023) 0.061 (0.008) 0.996 (0.001) 0.904 (0.002)

50 CAFHT 0.247 (0.008) 0.070 (0.010) 0.993 (0.001) 0.902 (0.002)

50 CAFHT - PID 0.279 (0.019) 0.092 (0.014) 0.993 (0.001) 0.904 (0.003)

50 CAFHT (theory) 0.389 (0.004) 0.424 (0.013) 1.000 (0.000) 0.943 (0.002)

50 CAFHT (theory) - PID 0.368 (0.005) 0.450 (0.012) 1.000 (0.000) 0.946 (0.002)

100

100 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

100 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

100 CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)

100 CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)

100 CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)

100 CAFHT (theory) - PID 0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)
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Figure A16. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the data dimensionality. See Table A18 for detailed results and standard errors.
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Table A18. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the data dimensionality. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot in

Figure A16.

Simultaneous coverage

Data dimensionality Method Average width Conditional-hard Conditional-easy Marginal

1

1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

1 CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)

1 CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)

1 CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)

1 CAFHT (theory) - PID 0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)

2

2 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)

2 NCTP 0.475 (0.027) 0.059 (0.007) 0.996 (0.001) 0.903 (0.002)

2 CAFHT 0.247 (0.008) 0.067 (0.009) 0.993 (0.001) 0.902 (0.002)

2 CAFHT - PID 0.317 (0.020) 0.077 (0.011) 0.993 (0.001) 0.902 (0.002)

2 CAFHT (theory) 0.386 (0.003) 0.413 (0.011) 1.000 (0.000) 0.942 (0.001)

2 CAFHT (theory) - PID 0.392 (0.003) 0.440 (0.010) 1.000 (0.000) 0.945 (0.001)

3

3 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

3 NCTP 0.495 (0.028) 0.068 (0.009) 0.996 (0.001) 0.904 (0.002)

3 CAFHT 0.254 (0.008) 0.073 (0.010) 0.992 (0.001) 0.901 (0.002)

3 CAFHT - PID 0.323 (0.021) 0.073 (0.010) 0.993 (0.001) 0.902 (0.002)

3 CAFHT (theory) 0.390 (0.004) 0.412 (0.013) 1.000 (0.000) 0.942 (0.002)

3 CAFHT (theory) - PID 0.392 (0.004) 0.441 (0.012) 1.000 (0.000) 0.944 (0.002)

5

5 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

5 NCTP 0.529 (0.032) 0.066 (0.009) 0.997 (0.001) 0.906 (0.002)

5 CAFHT 0.267 (0.009) 0.084 (0.012) 0.993 (0.001) 0.904 (0.002)

5 CAFHT - PID 0.346 (0.024) 0.072 (0.010) 0.993 (0.001) 0.903 (0.002)

5 CAFHT (theory) 0.401 (0.004) 0.428 (0.012) 1.000 (0.000) 0.944 (0.001)

5 CAFHT (theory) - PID 0.411 (0.004) 0.449 (0.012) 1.000 (0.000) 0.946 (0.002)

10

10 CFRNN 2.000 (0.000) 0.994 (0.001) 1.000 (0.000) 0.999 (0.000)

10 NCTP 0.615 (0.038) 0.061 (0.008) 0.997 (0.001) 0.904 (0.002)

10 CAFHT 0.295 (0.009) 0.076 (0.011) 0.993 (0.001) 0.902 (0.002)

10 CAFHT - PID 0.389 (0.027) 0.078 (0.011) 0.994 (0.001) 0.903 (0.002)

10 CAFHT (theory) 0.435 (0.004) 0.425 (0.011) 1.000 (0.000) 0.943 (0.001)

10 CAFHT (theory) - PID 0.469 (0.004) 0.435 (0.011) 1.000 (0.000) 0.944 (0.001)
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Figure A17. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the proportion of hard-to-predict trajectories. See Table A19 for detailed results and standard errors.
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Figure A18. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. See Table A20 for detailed

results and standard errors.
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Table A19. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See the

corresponding plot in Figure A17.

Simultaneous coverage

Proportion of

hard samples

(all data)
Method Average width Conditional-hard Conditional-easy Marginal

0.1

0.1 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

0.1 NCTP 0.435 (0.024) 0.063 (0.008) 0.996 (0.001) 0.904 (0.002)

0.1 CAFHT 0.241 (0.008) 0.069 (0.010) 0.993 (0.001) 0.901 (0.002)

0.1 CAFHT - PID 0.306 (0.019) 0.081 (0.012) 0.994 (0.001) 0.904 (0.002)

0.1 CAFHT (theory) 0.393 (0.004) 0.434 (0.011) 1.000 (0.000) 0.944 (0.001)

0.1 CAFHT (theory) - PID 0.407 (0.004) 0.452 (0.011) 1.000 (0.000) 0.946 (0.001)

0.2

0.2 CFRNN 2.000 (0.000) 0.996 (0.001) 1.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.720 (0.006) 0.496 (0.008) 1.000 (0.000) 0.898 (0.002)

0.2 CAFHT 0.435 (0.004) 0.496 (0.010) 1.000 (0.000) 0.899 (0.002)

0.2 CAFHT - PID 0.453 (0.004) 0.488 (0.010) 1.000 (0.000) 0.897 (0.002)

0.2 CAFHT (theory) 0.497 (0.004) 0.712 (0.007) 1.000 (0.000) 0.942 (0.001)

0.2 CAFHT (theory) - PID 0.522 (0.004) 0.718 (0.006) 1.000 (0.000) 0.943 (0.001)

0.5

0.5 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)

0.5 NCTP 0.776 (0.005) 0.803 (0.003) 1.000 (0.000) 0.901 (0.002)

0.5 CAFHT 0.614 (0.004) 0.805 (0.005) 1.000 (0.000) 0.902 (0.002)

0.5 CAFHT - PID 0.657 (0.005) 0.803 (0.004) 1.000 (0.000) 0.901 (0.002)

0.5 CAFHT (theory) 0.659 (0.005) 0.888 (0.003) 1.000 (0.000) 0.944 (0.002)

0.5 CAFHT (theory) - PID 0.701 (0.005) 0.883 (0.003) 1.000 (0.000) 0.941 (0.002)
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Table A20. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods under distributional

shift. The results are shown as a function of the proportion of hard-to-predict trajectories in the test data. The red numbers indicate higher

marginal coverage. See the corresponding plot in Figure A18.

Proportion of hard samples (test data) Method Length Marginal coverage

0.2

0.2 CFRNN 2.000 (0.000) 0.999 (0.000)

0.2 NCTP 0.437 (0.028) 0.811 (0.003)

0.2 CAFHT 0.289 (0.010) 0.809 (0.003)

0.2 CAFHT - PID 0.333 (0.021) 0.810 (0.004)

0.2 CAFHT (theory) 0.438 (0.005) 0.886 (0.002)

0.2 CAFHT (theory) - PID 0.453 (0.005) 0.887 (0.003)

0.3

0.3 CFRNN 2.000 (0.000) 0.998 (0.000)

0.3 NCTP 0.419 (0.027) 0.715 (0.004)

0.3 CAFHT 0.324 (0.010) 0.717 (0.004)

0.3 CAFHT - PID 0.352 (0.020) 0.717 (0.005)

0.3 CAFHT (theory) 0.478 (0.005) 0.829 (0.003)

0.3 CAFHT (theory) - PID 0.492 (0.005) 0.829 (0.004)

0.4

0.4 CFRNN 2.000 (0.000) 0.998 (0.000)

0.4 NCTP 0.432 (0.026) 0.619 (0.004)

0.4 CAFHT 0.369 (0.010) 0.624 (0.005)

0.4 CAFHT - PID 0.382 (0.019) 0.622 (0.005)

0.4 CAFHT (theory) 0.524 (0.005) 0.773 (0.004)

0.4 CAFHT (theory) - PID 0.537 (0.005) 0.770 (0.004)

0.5

0.5 CFRNN 2.000 (0.000) 0.997 (0.000)

0.5 NCTP 0.431 (0.027) 0.526 (0.005)

0.5 CAFHT 0.417 (0.011) 0.532 (0.006)

0.5 CAFHT - PID 0.414 (0.018) 0.531 (0.006)

0.5 CAFHT (theory) 0.568 (0.005) 0.719 (0.005)

0.5 CAFHT (theory) - PID 0.581 (0.006) 0.718 (0.005)

0.6

0.6 CFRNN 2.000 (0.000) 0.996 (0.001)

0.6 NCTP 0.451 (0.028) 0.438 (0.006)

0.6 CAFHT 0.460 (0.012) 0.446 (0.008)

0.6 CAFHT - PID 0.441 (0.020) 0.444 (0.008)

0.6 CAFHT (theory) 0.616 (0.006) 0.665 (0.006)

0.6 CAFHT (theory) - PID 0.627 (0.006) 0.663 (0.007)

0.7

0.7 CFRNN 2.000 (0.000) 0.996 (0.001)

0.7 NCTP 0.436 (0.027) 0.340 (0.006)

0.7 CAFHT 0.497 (0.012) 0.347 (0.008)

0.7 CAFHT - PID 0.459 (0.020) 0.343 (0.008)

0.7 CAFHT (theory) 0.655 (0.007) 0.605 (0.007)

0.7 CAFHT (theory) - PID 0.667 (0.007) 0.607 (0.007)

0.8

0.8 CFRNN 2.000 (0.000) 0.996 (0.001)

0.8 NCTP 0.437 (0.027) 0.252 (0.007)

0.8 CAFHT 0.533 (0.012) 0.255 (0.009)

0.8 CAFHT - PID 0.484 (0.020) 0.253 (0.009)

0.8 CAFHT (theory) 0.697 (0.007) 0.553 (0.008)

0.8 CAFHT (theory) - PID 0.709 (0.007) 0.553 (0.009)

0.9

0.9 CFRNN 2.000 (0.000) 0.995 (0.001)

0.9 NCTP 0.432 (0.027) 0.157 (0.007)

0.9 CAFHT 0.578 (0.013) 0.168 (0.010)

0.9 CAFHT - PID 0.508 (0.022) 0.168 (0.011)

0.9 CAFHT (theory) 0.742 (0.007) 0.496 (0.009)

0.9 CAFHT (theory) - PID 0.754 (0.007) 0.493 (0.010)

36



Conformalized Adaptive Forecasting of Heterogeneous Trajectories

A5.2. Pedestrian Data

In this subsection, we present the experimental results of the pedestrian data described in 4. Recall that we preprocess the

dataset by adding heteroskedasticity such that 10% of the data are designed to be hard-to-predict by adding a random noise

follows N(0, Ã2
t ), where Ã2

t ∝ t · noise level. The easy-to-predict data are added a random noise with Ã2
t ∝ t. By default,

10% of the trajectories are set to be hard-to-predict.

Similar to the previous section, we first demonstrate the main result by using the CAFHT method with ACI and multiplicative

scores as the main method to be compared with the benchmark methods CFRNN and NCTP. The results after adding the

dynamic noise profile to the data are presented here for demonstrative purposes.

A5.2.1. MAIN RESULTS — COMPARING CFRNN, NCTP, AND THE MAIN IMPLEMENTATION OF CAFHT

Figure 5 and Table A21 show the average performance on pedestrian heterogeneous trajectories of prediction bands

constructed by different methods, as a function of the noise level. The noise level is varied from 1.5 to 5. All methods

achieve 90% simultaneous marginal coverage. Our method (CAFHT) leads to more informative bands with lower average

width and higher conditional coverage.

The results of another experiment in which 20% of the trajectories are hard-to-predict are presented in Figure A19 and

Table A22. Again, we observe that even though a larger percentage of hard trajectories on the pedestrian data can increase

the empirical conditional coverage of all methods, CAFHT maintains clear advantages relative to the baselines.

Additionally, Figure A20 and Table A23 present results for varying numbers of trajectories in the training and calibration

sets, from 200 to 1000, with the noise level set at 3 and the percentage of hard trajectories set to 10%. Again, CAFHT

outperforms the other benchmarks.

Simultaneous marginal coverage Simultaneous conditional coverage Average width

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.00

0.50

1.00

1.50

2.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Noise level for hard samples

Method

CFRNN

NCTP

CAFHT

Figure A19. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level. 20% of the trajectories are set to be hard-to-predict.
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Figure A20. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the total number of training and calibration trajectories.
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Table A21. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. 10% of the trajectories are

set to be hard-to-predict. See the corresponding plot in Figure 5.

Coverage

Noise level for hard samples Method Length Marginal Conditional-easy Conditional-hard

1

1.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1.0 NCTP 0.172 (0.001) 0.898 (0.003) 0.898 (0.003) 0.901 (0.006)

1.0 CAFHT 0.201 (0.001) 0.902 (0.003) 0.901 (0.003) 0.912 (0.005)

1.5

1.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1.5 NCTP 0.185 (0.002) 0.902 (0.003) 0.941 (0.002) 0.561 (0.011)

1.5 CAFHT 0.208 (0.001) 0.903 (0.003) 0.918 (0.003) 0.776 (0.009)

2

2.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.0 NCTP 0.204 (0.002) 0.903 (0.002) 0.973 (0.002) 0.296 (0.012)

2.0 CAFHT 0.216 (0.001) 0.903 (0.003) 0.932 (0.002) 0.649 (0.011)

2.5

2.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.5 NCTP 0.224 (0.003) 0.900 (0.003) 0.984 (0.001) 0.171 (0.011)

2.5 CAFHT 0.225 (0.001) 0.904 (0.003) 0.944 (0.002) 0.556 (0.013)

3

3.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.0 NCTP 0.247 (0.004) 0.900 (0.003) 0.989 (0.001) 0.125 (0.012)

3.0 CAFHT 0.232 (0.001) 0.903 (0.003) 0.949 (0.002) 0.492 (0.013)

3.5

3.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.5 NCTP 0.270 (0.005) 0.900 (0.002) 0.992 (0.001) 0.097 (0.011)

3.5 CAFHT 0.239 (0.002) 0.903 (0.003) 0.955 (0.002) 0.445 (0.014)

4

4.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.0 NCTP 0.295 (0.007) 0.900 (0.002) 0.993 (0.001) 0.089 (0.011)

4.0 CAFHT 0.244 (0.002) 0.902 (0.003) 0.958 (0.002) 0.411 (0.014)

4.5

4.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.5 NCTP 0.318 (0.008) 0.900 (0.002) 0.993 (0.001) 0.088 (0.011)

4.5 CAFHT 0.250 (0.002) 0.901 (0.003) 0.961 (0.002) 0.383 (0.014)

5

5.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

5.0 NCTP 0.341 (0.010) 0.900 (0.002) 0.993 (0.001) 0.092 (0.012)

5.0 CAFHT 0.257 (0.002) 0.901 (0.003) 0.963 (0.002) 0.364 (0.014)
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Table A22. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. 20% of the trajectories are

set to be hard-to-predict. See the corresponding plot in Figure A19.

Coverage

Noise level for hard samples Method Length Marginal Conditional-easy Conditional-hard

1.5

1.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1.5 NCTP 0.197 (0.002) 0.902 (0.003) 0.963 (0.002) 0.654 (0.010)

1.5 CAFHT 0.214 (0.001) 0.902 (0.003) 0.930 (0.003) 0.790 (0.007)

2

2.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.0 NCTP 0.239 (0.002) 0.905 (0.003) 0.992 (0.001) 0.552 (0.010)

2.0 CAFHT 0.228 (0.001) 0.897 (0.003) 0.948 (0.002) 0.695 (0.009)

2.5

2.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.5 NCTP 0.289 (0.002) 0.905 (0.002) 0.998 (0.000) 0.529 (0.011)

2.5 CAFHT 0.243 (0.001) 0.901 (0.003) 0.963 (0.002) 0.651 (0.010)

3

3.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.0 NCTP 0.341 (0.003) 0.906 (0.002) 0.999 (0.000) 0.527 (0.011)

3.0 CAFHT 0.258 (0.002) 0.899 (0.003) 0.969 (0.002) 0.620 (0.010)

3.5

3.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.5 NCTP 0.392 (0.003) 0.905 (0.002) 0.999 (0.000) 0.521 (0.011)

3.5 CAFHT 0.274 (0.002) 0.905 (0.003) 0.977 (0.001) 0.615 (0.011)

4

4.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.0 NCTP 0.442 (0.004) 0.905 (0.002) 0.999 (0.000) 0.522 (0.011)

4.0 CAFHT 0.286 (0.002) 0.903 (0.003) 0.979 (0.002) 0.596 (0.011)

4.5

4.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.5 NCTP 0.490 (0.004) 0.905 (0.002) 1.000 (0.000) 0.520 (0.011)

4.5 CAFHT 0.298 (0.002) 0.902 (0.003) 0.982 (0.001) 0.579 (0.012)

5

5.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

5.0 NCTP 0.537 (0.004) 0.905 (0.002) 1.000 (0.000) 0.522 (0.011)

5.0 CAFHT 0.307 (0.002) 0.901 (0.003) 0.984 (0.001) 0.562 (0.012)

Table A23. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as

a function of the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher

conditional coverage. See the corresponding plot in Figure A20.

Coverage

Sample size Method Length Marginal Conditional-easy Conditional-hard

200

200 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

200 NCTP 0.388 (0.009) 0.919 (0.004) 0.986 (0.002) 0.335 (0.023)

200 CAFHT 0.321 (0.006) 0.961 (0.004) 0.979 (0.003) 0.810 (0.018)

500

500 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

500 NCTP 0.308 (0.006) 0.912 (0.003) 0.989 (0.001) 0.241 (0.017)

500 CAFHT 0.249 (0.002) 0.921 (0.004) 0.961 (0.003) 0.572 (0.016)

1000

1000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1000 NCTP 0.247 (0.004) 0.900 (0.003) 0.989 (0.001) 0.125 (0.012)

1000 CAFHT 0.236 (0.002) 0.911 (0.003) 0.955 (0.002) 0.523 (0.014)
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A5.2.2. SUPPLEMENTARY RESULTS — COMPARING DIFFERENT CAFHT IMPLEMENTATIONS

CAFHT - MULTIPLICATIVE SCORES

The results of CAFHT with multiplicative conformity scores (6) are first presented in Figures A21–A22 and Tables A24–A25.
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Figure A21. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the total number of training and calibration trajectories.

Table A24. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as

a function of the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher

conditional coverage. See the corresponding plot in Figure A21.

Coverage

Sample size Method Length Marginal Conditional-easy Conditional-hard

200

200 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

200 NCTP 0.388 (0.009) 0.919 (0.004) 0.986 (0.002) 0.335 (0.023)

200 CAFHT 0.321 (0.006) 0.961 (0.004) 0.979 (0.003) 0.810 (0.018)

200 CAFHT - PID 0.266 (0.005) 0.956 (0.005) 0.980 (0.003) 0.741 (0.022)

200 CAFHT (theory) 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

200 CAFHT (theory) - PID 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

500

500 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

500 NCTP 0.308 (0.006) 0.912 (0.003) 0.989 (0.001) 0.241 (0.017)

500 CAFHT 0.249 (0.002) 0.921 (0.004) 0.961 (0.003) 0.572 (0.016)

500 CAFHT - PID 0.213 (0.003) 0.925 (0.004) 0.965 (0.003) 0.580 (0.018)

500 CAFHT (theory) 0.338 (0.004) 0.987 (0.001) 0.995 (0.001) 0.911 (0.008)

500 CAFHT (theory) - PID 0.284 (0.004) 0.989 (0.001) 0.998 (0.000) 0.910 (0.008)

1000

1000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1000 NCTP 0.247 (0.004) 0.900 (0.003) 0.989 (0.001) 0.125 (0.012)

1000 CAFHT 0.236 (0.002) 0.911 (0.003) 0.955 (0.002) 0.523 (0.014)

1000 CAFHT - PID 0.194 (0.001) 0.912 (0.003) 0.956 (0.002) 0.527 (0.017)

1000 CAFHT (theory) 0.272 (0.001) 0.962 (0.002) 0.986 (0.001) 0.751 (0.010)

1000 CAFHT (theory) - PID 0.222 (0.001) 0.964 (0.001) 0.987 (0.001) 0.765 (0.009)
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Figure A22. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level.
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Table A25. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot

in Figure A22.

Coverage

Noise level for hard samples Method Length Marginal Conditional-easy Conditional-hard

1

1.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1.0 NCTP 0.172 (0.001) 0.898 (0.003) 0.898 (0.003) 0.901 (0.006)

1.0 CAFHT 0.201 (0.001) 0.902 (0.003) 0.901 (0.003) 0.912 (0.005)

1.0 CAFHT - PID 0.159 (0.001) 0.906 (0.003) 0.906 (0.003) 0.909 (0.005)

1.0 CAFHT (theory) 0.226 (0.001) 0.955 (0.002) 0.955 (0.002) 0.959 (0.004)

1.0 CAFHT (theory) - PID 0.174 (0.001) 0.957 (0.002) 0.956 (0.002) 0.960 (0.004)

1.5

1.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1.5 NCTP 0.185 (0.002) 0.902 (0.003) 0.941 (0.002) 0.561 (0.011)

1.5 CAFHT 0.208 (0.001) 0.903 (0.003) 0.918 (0.003) 0.776 (0.009)

1.5 CAFHT - PID 0.168 (0.001) 0.909 (0.003) 0.927 (0.003) 0.754 (0.011)

1.5 CAFHT (theory) 0.235 (0.001) 0.956 (0.002) 0.964 (0.001) 0.884 (0.006)

1.5 CAFHT (theory) - PID 0.184 (0.001) 0.956 (0.002) 0.967 (0.001) 0.858 (0.008)

2

2.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.0 NCTP 0.204 (0.002) 0.903 (0.002) 0.973 (0.002) 0.296 (0.012)

2.0 CAFHT 0.216 (0.001) 0.903 (0.003) 0.932 (0.002) 0.649 (0.011)

2.0 CAFHT - PID 0.175 (0.001) 0.909 (0.003) 0.940 (0.002) 0.638 (0.015)

2.0 CAFHT (theory) 0.245 (0.001) 0.957 (0.002) 0.974 (0.001) 0.805 (0.008)

2.0 CAFHT (theory) - PID 0.197 (0.001) 0.949 (0.010) 0.965 (0.010) 0.807 (0.014)

2.5

2.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.5 NCTP 0.224 (0.003) 0.900 (0.003) 0.984 (0.001) 0.171 (0.011)

2.5 CAFHT 0.225 (0.001) 0.904 (0.003) 0.944 (0.002) 0.556 (0.013)

2.5 CAFHT - PID 0.183 (0.001) 0.905 (0.003) 0.944 (0.003) 0.563 (0.018)

2.5 CAFHT (theory) 0.257 (0.001) 0.958 (0.002) 0.981 (0.001) 0.759 (0.009)

2.5 CAFHT (theory) - PID 0.208 (0.001) 0.960 (0.001) 0.980 (0.001) 0.791 (0.008)

3

3.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.0 NCTP 0.247 (0.004) 0.900 (0.003) 0.989 (0.001) 0.125 (0.012)

3.0 CAFHT 0.232 (0.001) 0.903 (0.003) 0.949 (0.002) 0.492 (0.013)

3.0 CAFHT - PID 0.193 (0.002) 0.905 (0.003) 0.953 (0.003) 0.485 (0.018)

3.0 CAFHT (theory) 0.268 (0.001) 0.958 (0.002) 0.984 (0.001) 0.733 (0.010)

3.0 CAFHT (theory) - PID 0.218 (0.001) 0.960 (0.001) 0.985 (0.001) 0.741 (0.009)

3.5

3.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.5 NCTP 0.270 (0.005) 0.900 (0.002) 0.992 (0.001) 0.097 (0.011)

3.5 CAFHT 0.239 (0.002) 0.903 (0.003) 0.955 (0.002) 0.445 (0.014)

3.5 CAFHT - PID 0.204 (0.003) 0.908 (0.003) 0.963 (0.002) 0.429 (0.019)

3.5 CAFHT (theory) 0.278 (0.001) 0.959 (0.002) 0.987 (0.001) 0.717 (0.011)

3.5 CAFHT (theory) - PID 0.230 (0.001) 0.960 (0.001) 0.988 (0.001) 0.718 (0.010)

4

4.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.0 NCTP 0.295 (0.007) 0.900 (0.002) 0.993 (0.001) 0.089 (0.011)

4.0 CAFHT 0.244 (0.002) 0.902 (0.003) 0.958 (0.002) 0.411 (0.014)

4.0 CAFHT - PID 0.218 (0.004) 0.907 (0.003) 0.968 (0.002) 0.371 (0.019)

4.0 CAFHT (theory) 0.286 (0.002) 0.958 (0.002) 0.988 (0.001) 0.694 (0.012)

4.0 CAFHT (theory) - PID 0.242 (0.001) 0.960 (0.002) 0.991 (0.001) 0.692 (0.011)

4.5

4.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.5 NCTP 0.318 (0.008) 0.900 (0.002) 0.993 (0.001) 0.088 (0.011)

4.5 CAFHT 0.250 (0.002) 0.901 (0.003) 0.961 (0.002) 0.383 (0.014)

4.5 CAFHT - PID 0.229 (0.005) 0.902 (0.003) 0.970 (0.003) 0.309 (0.016)

4.5 CAFHT (theory) 0.295 (0.002) 0.958 (0.002) 0.990 (0.001) 0.677 (0.012)

4.5 CAFHT (theory) - PID 0.254 (0.002) 0.960 (0.002) 0.991 (0.001) 0.689 (0.013)

5

5.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

5.0 NCTP 0.341 (0.010) 0.900 (0.002) 0.993 (0.001) 0.092 (0.012)

5.0 CAFHT 0.257 (0.002) 0.901 (0.003) 0.963 (0.002) 0.364 (0.014)

5.0 CAFHT - PID 0.244 (0.007) 0.904 (0.003) 0.974 (0.002) 0.293 (0.017)

5.0 CAFHT (theory) 0.303 (0.002) 0.957 (0.002) 0.991 (0.001) 0.663 (0.011)

5.0 CAFHT (theory) - PID 0.266 (0.002) 0.958 (0.002) 0.993 (0.001) 0.656 (0.013)

CAFHT — ADDITIVE SCORES

The results of CAFHT with additive conformity scores (3) are presented in Figures A23–A24 and Tables A26–A27.
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Figure A23. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the total number of training and calibration trajectories.

Table A26. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as

a function of the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher

conditional coverage. See the corresponding plot in Figure A23.

Coverage

Sample size Method Length Marginal Conditional-easy Conditional-hard

200

200 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

200 NCTP 0.388 (0.009) 0.919 (0.004) 0.986 (0.002) 0.335 (0.023)

200 CAFHT 0.348 (0.009) 0.964 (0.003) 0.994 (0.001) 0.700 (0.024)

200 CAFHT - PID 0.278 (0.008) 0.961 (0.004) 0.991 (0.002) 0.699 (0.025)

200 CAFHT (theory) 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

200 CAFHT (theory) - PID 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

500

500 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

500 NCTP 0.308 (0.006) 0.912 (0.003) 0.989 (0.001) 0.241 (0.017)

500 CAFHT 0.246 (0.003) 0.919 (0.004) 0.982 (0.002) 0.366 (0.019)

500 CAFHT - PID 0.198 (0.002) 0.920 (0.004) 0.977 (0.002) 0.418 (0.018)

500 CAFHT (theory) 0.383 (0.005) 0.988 (0.001) 1.000 (0.000) 0.886 (0.010)

500 CAFHT (theory) - PID 0.304 (0.005) 0.987 (0.001) 1.000 (0.000) 0.876 (0.011)

1000

1000 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1000 NCTP 0.247 (0.004) 0.900 (0.003) 0.989 (0.001) 0.125 (0.012)

1000 CAFHT 0.228 (0.002) 0.912 (0.003) 0.983 (0.002) 0.296 (0.015)

1000 CAFHT - PID 0.185 (0.001) 0.911 (0.003) 0.974 (0.002) 0.357 (0.015)

1000 CAFHT (theory) 0.287 (0.002) 0.964 (0.002) 0.999 (0.000) 0.658 (0.013)

1000 CAFHT (theory) - PID 0.225 (0.002) 0.959 (0.002) 0.994 (0.001) 0.645 (0.013)
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Figure A24. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level.
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Table A27. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot

in Figure A24.

Coverage

Noise level for hard samples Method Length Marginal Conditional-easy Conditional-hard

1

1.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1.0 NCTP 0.172 (0.001) 0.898 (0.003) 0.898 (0.003) 0.901 (0.006)

1.0 CAFHT 0.180 (0.001) 0.907 (0.003) 0.907 (0.004) 0.907 (0.005)

1.0 CAFHT - PID 0.141 (0.001) 0.901 (0.003) 0.901 (0.003) 0.901 (0.006)

1.0 CAFHT (theory) 0.197 (0.001) 0.958 (0.002) 0.958 (0.002) 0.961 (0.003)

1.0 CAFHT (theory) - PID 0.158 (0.001) 0.955 (0.002) 0.954 (0.002) 0.957 (0.004)

1.5

1.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

1.5 NCTP 0.185 (0.002) 0.902 (0.003) 0.941 (0.002) 0.561 (0.011)

1.5 CAFHT 0.188 (0.001) 0.908 (0.003) 0.934 (0.003) 0.681 (0.010)

1.5 CAFHT - PID 0.150 (0.001) 0.903 (0.003) 0.926 (0.003) 0.703 (0.010)

1.5 CAFHT (theory) 0.208 (0.001) 0.960 (0.002) 0.975 (0.001) 0.827 (0.007)

1.5 CAFHT (theory) - PID 0.167 (0.001) 0.953 (0.002) 0.967 (0.001) 0.840 (0.007)

2

2.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.0 NCTP 0.204 (0.002) 0.903 (0.002) 0.973 (0.002) 0.296 (0.012)

2.0 CAFHT 0.199 (0.001) 0.906 (0.003) 0.957 (0.002) 0.463 (0.011)

2.0 CAFHT - PID 0.160 (0.001) 0.904 (0.003) 0.946 (0.002) 0.535 (0.012)

2.0 CAFHT (theory) 0.228 (0.001) 0.961 (0.002) 0.990 (0.001) 0.702 (0.011)

2.0 CAFHT (theory) - PID 0.182 (0.001) 0.955 (0.002) 0.980 (0.001) 0.737 (0.010)

2.5

2.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

2.5 NCTP 0.224 (0.003) 0.900 (0.003) 0.984 (0.001) 0.171 (0.011)

2.5 CAFHT 0.209 (0.001) 0.904 (0.003) 0.971 (0.002) 0.323 (0.013)

2.5 CAFHT - PID 0.170 (0.001) 0.901 (0.003) 0.959 (0.002) 0.397 (0.012)

2.5 CAFHT (theory) 0.254 (0.002) 0.961 (0.002) 0.996 (0.000) 0.645 (0.012)

2.5 CAFHT (theory) - PID 0.200 (0.001) 0.956 (0.002) 0.988 (0.001) 0.673 (0.010)

3

3.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.0 NCTP 0.247 (0.004) 0.900 (0.003) 0.989 (0.001) 0.125 (0.012)

3.0 CAFHT 0.222 (0.002) 0.907 (0.003) 0.981 (0.002) 0.259 (0.014)

3.0 CAFHT - PID 0.180 (0.001) 0.902 (0.003) 0.969 (0.002) 0.320 (0.014)

3.0 CAFHT (theory) 0.280 (0.002) 0.960 (0.002) 0.999 (0.000) 0.621 (0.013)

3.0 CAFHT (theory) - PID 0.219 (0.001) 0.955 (0.002) 0.993 (0.001) 0.615 (0.013)

3.5

3.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

3.5 NCTP 0.270 (0.005) 0.900 (0.002) 0.992 (0.001) 0.097 (0.011)

3.5 CAFHT 0.233 (0.002) 0.905 (0.003) 0.985 (0.002) 0.214 (0.014)

3.5 CAFHT - PID 0.191 (0.002) 0.902 (0.003) 0.975 (0.002) 0.271 (0.015)

3.5 CAFHT (theory) 0.305 (0.003) 0.959 (0.002) 0.999 (0.000) 0.605 (0.014)

3.5 CAFHT (theory) - PID 0.240 (0.002) 0.956 (0.002) 0.996 (0.001) 0.608 (0.013)

4

4.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.0 NCTP 0.295 (0.007) 0.900 (0.002) 0.993 (0.001) 0.089 (0.011)

4.0 CAFHT 0.246 (0.003) 0.904 (0.003) 0.986 (0.002) 0.188 (0.015)

4.0 CAFHT - PID 0.203 (0.003) 0.904 (0.003) 0.981 (0.002) 0.233 (0.015)

4.0 CAFHT (theory) 0.326 (0.003) 0.958 (0.002) 1.000 (0.000) 0.587 (0.015)

4.0 CAFHT (theory) - PID 0.261 (0.002) 0.958 (0.002) 0.998 (0.000) 0.603 (0.013)

4.5

4.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

4.5 NCTP 0.318 (0.008) 0.900 (0.002) 0.993 (0.001) 0.088 (0.011)

4.5 CAFHT 0.255 (0.004) 0.904 (0.003) 0.988 (0.002) 0.171 (0.016)

4.5 CAFHT - PID 0.213 (0.004) 0.901 (0.003) 0.982 (0.002) 0.192 (0.015)

4.5 CAFHT (theory) 0.351 (0.003) 0.958 (0.002) 1.000 (0.000) 0.588 (0.014)

4.5 CAFHT (theory) - PID 0.283 (0.002) 0.959 (0.002) 0.999 (0.000) 0.606 (0.014)

5

5.0 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

5.0 NCTP 0.341 (0.010) 0.900 (0.002) 0.993 (0.001) 0.092 (0.012)

5.0 CAFHT 0.269 (0.004) 0.904 (0.003) 0.989 (0.002) 0.168 (0.017)

5.0 CAFHT - PID 0.224 (0.004) 0.899 (0.003) 0.983 (0.002) 0.169 (0.016)

5.0 CAFHT (theory) 0.373 (0.003) 0.957 (0.002) 1.000 (0.000) 0.580 (0.014)

5.0 CAFHT (theory) - PID 0.304 (0.003) 0.958 (0.002) 0.999 (0.000) 0.596 (0.015)
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A5.3. Comparing ACI and CAFHT

As previously explained, the objectives of CAFHT and ACI are very different. CAFHT leverages information from multiple

exchangeable trajectories to construct prediction bands for a trajectories from the same population, ensuring simultaneous

coverage as per Equation (1). By contrast, ACI constructs an online prediction band for a single trajectory, aiming to achieve

long-term average coverage.

Consider a motion planning scenario: CAFHT’s objective is to maintain most vehicles within their predicted zones

throughout a specified period, ensuring a high probability of reaching their destinations without incident. On the other hand,

ACI aims for asymptotic average coverage, which tolerates frequent, albeit temporary, deviations from the predicted path

for each vehicle. In practical terms, this means each vehicle might exit and re-enter the ACI-predicted region numerous

times, spending about 90% of the time within the prediction band on average. If exiting these regions could lead to severe

accidents, CAFHT’s approach would ensure that 90% (or any pre-specified percentage) of vehicles safely arrive at their

destinations, whereas ACI’s approach could potentially result in none of the vehicles reaching their destinations safely.

This concept is demonstrated in Figure A25, which contrasts the prediction bands created using ACI and CAFHT for two

pedestrian trajectories. The figure clearly shows that ACI does not fully encompass the trajectories, thus failing to meet our

objective of achieving simultaneous coverage.

2 2 2 2

2

Figure A25. Forecasting bands constructed using ACI and CAFHT, for the heterogeneous pedestrian trajectories. Red circles indicate

scenarios where the real values exceed ACI prediction bands.

Figure A26 and Table A28 provide additional insight, reporting on experiments that replicate the analysis from Figure 3 but

include results from ACI. Unlike CAFHT and the two other benchmark methods, ACI is unable to meet the simultaneous

marginal coverage guarantee.
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Figure A26. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories.
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Table A28. Performance on heterogeneous pedestrian trajectories of conformal prediction bands constructed by different methods, as a

function of the noise level. The red numbers indicate smaller prediction bands or higher conditional coverage. See the corresponding plot

in Figure A26.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.939 (0.007) 1.000 (0.000) 0.994 (0.001)

200 NCTP 0.687 (0.035) 0.260 (0.024) 0.992 (0.002) 0.919 (0.004)

200 CAFHT 0.202 (0.003) 0.704 (0.017) 0.944 (0.005) 0.920 (0.005)

200 ACI 0.073 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

500

500 CFRNN 2.000 (0.000) 0.969 (0.005) 1.000 (0.000) 0.997 (0.000)

500 NCTP 0.467 (0.021) 0.196 (0.019) 0.994 (0.002) 0.916 (0.003)

500 CAFHT 0.182 (0.002) 0.682 (0.016) 0.934 (0.003) 0.910 (0.004)

500 ACI 0.069 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

1000

1000 CFRNN 2.000 (0.000) 0.992 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.343 (0.018) 0.093 (0.012) 0.992 (0.001) 0.901 (0.003)

1000 CAFHT 0.174 (0.001) 0.679 (0.012) 0.934 (0.003) 0.908 (0.003)

1000 ACI 0.065 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

2000

2000 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

2000 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)

2000 CAFHT 0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)

2000 ACI 0.063 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

5000

5000 CFRNN 2.000 (0.000) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000)

5000 NCTP 0.244 (0.013) 0.033 (0.006) 0.997 (0.001) 0.900 (0.002)

5000 CAFHT 0.158 (0.001) 0.655 (0.007) 0.925 (0.002) 0.899 (0.002)

5000 ACI 0.059 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

10000

10000 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)

10000 NCTP 0.235 (0.011) 0.026 (0.004) 0.998 (0.000) 0.900 (0.001)

10000 CAFHT 0.152 (0.001) 0.680 (0.007) 0.928 (0.001) 0.903 (0.002)

10000 ACI 0.057 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

A5.4. Comparing the Multiplicative Scores and the Additive Scores

The CAFHT prediction bands are constructed in two stages: initially, the underlying ACI bands are established, followed

by adding a conformalized correction term. When corrections employ the additive nonconformity scores specified in

Equation (A20), the heterogeneity of the trajectories is managed exclusively via the ACI bands. In contrast, using the

multiplicative scores from Equation (A23) allows both components to adapt to heteroscedasticity, though the primary

adjustment is through ACI.

More precisely, multiplicative scores impose proportionally wider margins of error on broader ACI intervals than on narrower

ones. Hence, while adjusting for heteroscedasticity is chiefly the responsibility of ACI, the use of multiplicative scores arises

from the recognition that ACI residuals might still display heteroscedastic traits. In such instances, multiplicative scores are

better suited to capturing this variability than their additive counterparts.

As shown in Figure A27, additive scores impose a constant correction term (the empirical quantile Q̂) on ACI intervals. In

comparison, multiplicative scores adjust the ACI bands by a non-constant amount (the empirical quantile Q̂ multiplied by

the size of the ACI bands).

In line with established conformal inference methodologies, we prefer to delegate the more complex “adaptability” func-

tions to the underlying machine learning model (in this case, the forecaster integrated with ACI). The next phase of

conformalization simply involves a clear, straightforward adjustment to secure the simultaneous marginal coverage guar-

antee. Nonetheless, future developments might introduce more intricate scoring designs, potentially enhancing empirical

performance but at the expense of simplicity in the methodology.

Figure A28 presents a side-by-side comparison of CAFHT using multiplicative scores, CAFHT using additive scores, NCTP,

and CFRNN for two example heterogeneous pedestrian trajectories. The plot demonstrates CAFHT, with both scoring

approaches, effectively manages heterogeneity, though the multiplicative scores offer superior adaptability. In contrast,

NCTP and CFRNN do not adjust to heterogeneity. The empirical quantile Q̂ for this experiment is recorded in Table A29.
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Figure A27. Forecasting bands constructed using ACI and CAFHT, for the heterogeneous pedestrian trajectories. Red circles indicate

scenarios where the real values exceed ACI prediction bands.
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Figure A28. Forecasting bands constructed using different methods for the heterogeneous pedestrian trajectories.

Table A29. Empirical quantiles obtained from each method in Figure A28.

Method Empirical quantile Q̂ Remark

CFRNN ∞ Q̂ = ∞ for every time step.

NCTP 0.5268
Q̂ is multiplied with the standard error at each time step

before adding or subtracting from the point prediction.

CAFHT - multiplicative 0.5883
Q̂ is multiplied with the width of the ACI bands at each

time step before adding or subtracting from the ACI bands.

CAFHT - additive 0.2058 Q̂ is directly added or subtracted from the ACI bands.

A5.5. Prediction Bands at Higher Coverage Levels

This section presents the results of additional experiments conducted using ³ = 0.05 and ³ = 0.01, seeking simultaneous

coverage at the 95% level and the 99% level respectively. We continue to use the main implementation of the CAFHT

method, which utilizes multiplicative scores based on the ACI algorithm and optimizes the learning rate through data

splitting.

When higher coverage levels are employed, it is necessary to increase the number of samples in the calibration data to ensure

that the adjusted empirical quantile level (1− ³)(1− 1/|Dcal|) remains below 1. In our experiments, we cap the adjusted

level at 1 whenever it exceeds this value.

EXPERIMENTS WITH 95% COVERAGE LEVEL

Figure A29 shows that all methods achieve 95% simultaneous marginal coverage. Our method (CAFHT) leads to more

informative bands with lower average width and higher conditional coverage.
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Figure A29. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories (25% are randomly assigned to calibration set). The target simultaneous marginal

coverage level is 95%. See Table A30 for detailed results and standard errors.

Table A30. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

Target simultaneous marginal coverage level is 95%. See corresponding plot in Figure A29.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.940 (0.006) 1.000 (0.000) 0.994 (0.001)

200 NCTP 1.129 (0.026) 0.770 (0.018) 1.000 (0.000) 0.978 (0.002)

200 CAFHT 0.255 (0.003) 0.816 (0.013) 0.978 (0.003) 0.962 (0.003)

500

500 CFRNN 2.000 (0.000) 0.976 (0.003) 1.000 (0.000) 0.998 (0.000)

500 NCTP 0.676 (0.010) 0.602 (0.018) 1.000 (0.000) 0.961 (0.002)

500 CAFHT 0.221 (0.002) 0.748 (0.013) 0.972 (0.002) 0.949 (0.003)

1000

1000 CFRNN 2.000 (0.000) 0.985 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.577 (0.007) 0.568 (0.014) 1.000 (0.000) 0.956 (0.002)

1000 CAFHT 0.209 (0.002) 0.745 (0.010) 0.973 (0.002) 0.950 (0.002)

2000

2000 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

2000 NCTP 0.516 (0.005) 0.511 (0.012) 1.000 (0.000) 0.950 (0.001)

2000 CAFHT 0.203 (0.001) 0.749 (0.009) 0.976 (0.001) 0.953 (0.002)

5000

5000 CFRNN 2.000 (0.000) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000)

5000 NCTP 0.460 (0.003) 0.496 (0.009) 1.000 (0.000) 0.949 (0.001)

5000 CAFHT 0.191 (0.001) 0.729 (0.008) 0.974 (0.001) 0.949 (0.001)

10000

10000 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)

10000 NCTP 0.433 (0.004) 0.513 (0.007) 1.000 (0.000) 0.951 (0.001)

10000 CAFHT 0.187 (0.001) 0.729 (0.007) 0.974 (0.001) 0.949 (0.001)

EXPERIMENTS WITH 99% COVERAGE LEVEL

When seeking a 99% coverage level, using a relatively small sample size will result in the adjusted level being very close to,

or equal to, 1, mapping the empirical quantile Q̂ to infinity. Consequently, as depicted in Figure A30, NCTP and CAFHT

generate regions that span the entire space [−1, 1] when the sample size is small. CAFHT requires slightly more calibration

samples than NCTP to produce practically useful prediction regions when employing a data-splitting strategy. When the

prediction bands are practically useful, CAFHT tends to produce narrower and thus more informative results compared to

NCTP while maintaining similarly high conditional coverage.
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Figure A30. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. Target simultaneous marginal coverage level is 99%. See Table A31 for detailed

results and standard errors.

Table A31. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

Target simultaneous marginal coverage level is 99%. See corresponding plot in Figure A30.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.940 (0.006) 1.000 (0.000) 0.994 (0.001)

200 NCTP 2.000 (0.000) 0.940 (0.006) 1.000 (0.000) 0.994 (0.001)

200 CAFHT 2.000 (0.000) 0.940 (0.006) 1.000 (0.000) 0.994 (0.001)

500

500 CFRNN 2.000 (0.000) 0.976 (0.003) 1.000 (0.000) 0.998 (0.000)

500 NCTP 2.000 (0.000) 0.976 (0.003) 1.000 (0.000) 0.998 (0.000)

500 CAFHT 2.000 (0.000) 0.976 (0.003) 1.000 (0.000) 0.998 (0.000)

1000

1000 CFRNN 2.000 (0.000) 0.985 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.846 (0.013) 0.950 (0.005) 1.000 (0.000) 0.995 (0.000)

1000 CAFHT 2.000 (0.000) 0.985 (0.002) 1.000 (0.000) 0.999 (0.000)

2000

2000 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

2000 NCTP 0.673 (0.008) 0.912 (0.005) 1.000 (0.000) 0.991 (0.001)

2000 CAFHT 0.325 (0.003) 0.914 (0.007) 1.000 (0.000) 0.991 (0.001)

5000

5000 CFRNN 2.000 (0.000) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000)

5000 NCTP 0.591 (0.005) 0.911 (0.004) 1.000 (0.000) 0.991 (0.000)

5000 CAFHT 0.300 (0.002) 0.907 (0.005) 1.000 (0.000) 0.990 (0.001)

10000

10000 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)

10000 NCTP 0.548 (0.005) 0.906 (0.005) 1.000 (0.000) 0.991 (0.000)

10000 CAFHT 0.293 (0.001) 0.901 (0.005) 1.000 (0.000) 0.990 (0.001)

A5.6. Comparisons with CopulaCPTS

For completeness, this subsection presents empirical results that compare our CAFHT method with CopulaCPTS (Sun

& Yu, 2023), which uses the copula of prediction residuals across the entire horizon. Similar to NCTP, CopulaCPTS

struggles with adaptability under heteroscedastic conditions and is thus expected to achieve conditional coverage akin to

that of NCTP. We conducted these comparisons using synthetic AR data with dynamic profiles. The CopulaCPTS method

is considered suitable only for situations with ample calibration data, as noted by Sun & Yu (2023). Accordingly, we

performed experiments with large datasets of 5,000 and 10,000 trajectories, designating 25% randomly for calibration and

the remainder for training. The findings were validated against an additional 100 independently generated test trajectories.

The results, displayed in Figures A31–A32 and Tables A32–A33, confirm the anticipated outcomes. CopulaCPTS delivers

results comparable to NCTP, while CAFHT surpasses the CopulaCPTS baseline by producing narrower prediction bands

and achieving higher conditional coverage.
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Figure A31. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the prediction horizon. See Table A32 for detailed results and standard errors.

Table A32. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function

of prediction horizon. The red numbers indicate smaller prediction bands or higher conditional coverage. See corresponding plot in

Figure A31.

Simultaneous coverage

Prediction horizon Method Average width Conditional-hard Conditional-easy Marginal

5

5 CFRNN 0.417 (0.006) 0.357 (0.010) 1.000 (0.000) 0.936 (0.001)

5 NCTP 0.185 (0.009) 0.033 (0.005) 0.996 (0.001) 0.901 (0.002)

5 CopulaCPTS 0.277 (0.006) 0.076 (0.009) 0.997 (0.001) 0.906 (0.002)

5 CAFHT 0.223 (0.004) 0.108 (0.009) 0.987 (0.001) 0.900 (0.002)

15

15 CFRNN 0.420 (0.005) 0.442 (0.009) 1.000 (0.000) 0.943 (0.001)

15 NCTP 0.197 (0.012) 0.027 (0.005) 0.996 (0.001) 0.898 (0.002)

15 CopulaCPTS 0.287 (0.005) 0.043 (0.006) 0.998 (0.001) 0.901 (0.002)

15 CAFHT 0.210 (0.002) 0.217 (0.009) 0.977 (0.001) 0.900 (0.002)

25

25 CFRNN 0.434 (0.005) 0.507 (0.010) 1.000 (0.000) 0.950 (0.001)

25 NCTP 0.218 (0.013) 0.034 (0.006) 0.996 (0.001) 0.898 (0.002)

25 CopulaCPTS 0.282 (0.006) 0.028 (0.006) 0.997 (0.001) 0.898 (0.002)

25 CAFHT 0.206 (0.001) 0.356 (0.010) 0.959 (0.002) 0.897 (0.002)

50

50 CFRNN 2.000 (0.000) 0.997 (0.001) 1.000 (0.000) 1.000 (0.000)

50 NCTP 0.236 (0.013) 0.036 (0.007) 0.997 (0.001) 0.905 (0.001)

50 CopulaCPTS 0.261 (0.007) 0.017 (0.004) 0.993 (0.001) 0.900 (0.002)

50 CAFHT 0.183 (0.001) 0.554 (0.013) 0.941 (0.002) 0.904 (0.002)

100

100 CFRNN 2.000 (0.000) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000)

100 NCTP 0.229 (0.013) 0.030 (0.006) 0.996 (0.001) 0.899 (0.002)

100 CopulaCPTS 0.218 (0.008) 0.003 (0.002) 0.991 (0.001) 0.892 (0.002)

100 CAFHT 0.156 (0.001) 0.676 (0.010) 0.927 (0.002) 0.902 (0.002)
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Figure A32. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the proportion of hard-to-predict trajectories. See Table A33 for detailed results and standard errors.
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Table A33. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the proportion of hard-to-predict trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage. See

corresponding plot in Figure A32.

Simultaneous coverage

Proportion of hard samples (all data) Method Average width Conditional-hard Conditional-easy Marginal

0.1

0.1 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)

0.1 NCTP 0.226 (0.011) 0.023 (0.004) 0.999 (0.000) 0.901 (0.001)

0.1 CopulaCPTS 0.239 (0.007) 0.007 (0.002) 0.995 (0.001) 0.896 (0.002)

0.1 CAFHT 0.151 (0.001) 0.665 (0.007) 0.927 (0.001) 0.900 (0.002)

0.2

0.2 CFRNN 2.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)

0.2 NCTP 0.415 (0.003) 0.515 (0.006) 1.000 (0.000) 0.903 (0.002)

0.2 CopulaCPTS 0.409 (0.003) 0.429 (0.006) 1.000 (0.000) 0.885 (0.002)

0.2 CAFHT 0.189 (0.001) 0.727 (0.005) 0.945 (0.001) 0.902 (0.002)

0.5

0.5 CFRNN 2.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

0.5 NCTP 0.457 (0.003) 0.804 (0.003) 1.000 (0.000) 0.902 (0.002)

0.5 CopulaCPTS 0.436 (0.003) 0.756 (0.003) 1.000 (0.000) 0.878 (0.002)

0.5 CAFHT 0.305 (0.002) 0.830 (0.003) 0.972 (0.001) 0.901 (0.002)
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A6. Extension to Multi-Step Forecasting

This section extends CAFHT to the multiple-step-ahead forecasting setting. Similar to section 2.1, consider a data set

containing n observations of trajectories of length T + 1, namely D := {Y (1), . . . ,Y (n)}. For i ∈ [n] := {1, . . . , n}, the

array Y
(i) = (Y

(i)
0 , . . . , Y

(i)
T ) represents T + 1 observations of some d-dimensional vector Y

(i)
t = (Y

(i)
t,1 , . . . , Y

(i)
t,d ) ∈ R

d,

measured at distinct time steps t ∈ {0, . . . , T +1}. Let g denote a trainable trajectory predictor that can make H-steps-ahead

forecasts.

Consider a new trajectory Y
(n+1) sampled exchangeably with D. Given the initial position Y

(n+1)
0 , at every time t for t ∈

{1, . . . , T}, the real value Y
(n+1)
t is revealed, and we aim to construct prediction regions (Ĉ1

t (Y
(n+1)), . . . , ĈH

t (Y (n+1)))

for (Y
(n+1)
t+1 , . . . , Y

(n+1)
t+H ) using the predictions (Ŷ

(n+1)
t+1 , . . . , Ŷ

(n+1)
t+H ) made by ĝ.

Let ĈÄ
t (Y

(n+1)) represent the Ä -th-step-ahead prediction band for Y
(n+1)
t+Ä output at time t from the CAFHT method. We

aim to achieve the marginal simultaneous coverage, similar to Equation (1):

P

[

Y
(n+1)
t+Ä ∈ ĈÄ

t (Y
(n+1)), ∀t ∈ [T ], ∀Ä ∈ [H]

]

g 1− ³. (A15)

Similar to the one-step-ahead setting, we first initialize the adaptive prediction bands by extending the original ACI method

to leverage the information of multi-step-ahead forecasting and to construct a multi-step-ahead prediction band. After that,

we will calibrate the initialized adaptive bands and perform data-driven parameter selection.

A6.1. Multi-Step-Ahead ACI

In this section, we explain how to extend the original one-step-ahead ACI to produce multi-steps-ahead prediction regions.

Although this approach is intuitive, it may be possible to improve it in the future.

Consider a similar online setting as in Gibbs & Candès (2021), where one observes covariate-response pairs {(Xt, Yt)}t∈N ¢
R

d × R in the sequential order. Denote the fitted model that can make H steps ahead predictions as ĝ. At each time step t,
assume that we observe pairs up until {(Xt, Yt)} and make H steps ahead forecasts (Ŷt+1, . . . , Ŷt+H) for the future values

(Yt+1, . . . , Yt+H) using ĝ. To construct the prediction regions for (Yt+1, . . . , Yt+H), consider running H many ACI in

parallel using the lagged nonconformity scores proposed by Dixit et al. (2023).

First, to construct the prediction region for a single time step Yt+Ä in the future for any Ä ∈ [H], we compute the lagged

nonconformity score, defined as:

SÄ
t (Xt, y) = ∥y − ĝ(Xt)∥ = ∥y − Ŷ Ä

t ∥. (A16)

Intuitively, this measures the distance between y and the prediction for Yt+Ä made at the current time. Then, the standard

split conformal prediction approach to construct the prediction region for Yt+Ä at miscoverage level ³ would become

ĈÄ
t (³) = {y : SÄ

t (Xt, y) f Q̂(1−³)}, where Q̂(1−³) = inf{s : (|Dcal|
−1

∑

(Xr,Yr)∈Dcal
1{Sτ

r−τ
(Xr−τ ,Yr)≤s}) g 1−³}.

To incorporate the core idea of ACI to continuously adapt the potential distribution changes within the time series, we run

the following modified ³-update rule:

³Ä
t+1 = ³Ä

t + µÄ (³− errÄt ), (A17)

where

errÄt =

{

1, if Yt /∈ ĈACI,Ä
t−Ä (³Ä

t−1),

0, otherwise.
, (A18)

Above, µÄ denotes the step size, which can be different for each Ä , and ĈACI,Ä
t−Ä (³Ä

t−1) is the prediction region constructed

for Yt at Ä steps ago as ĈACI,Ä
t−Ä (³Ä

t−1) = {y : SÄ
t−Ä (Xt−Ä , y) f Q̂t−Ä (1− ³t−1)}. Equivalently,

ĈACI,Ä
t−Ä (³t−1) = [ℓ̂ACI,Ä

t−Ä , ûACI,Ä
t−Ä ] = [Ŷ Ä

t−Ä − Q̂t−Ä (1− ³t−1), Ŷ
Ä
t−Ä + Q̂t−Ä (1− ³t−1)].

The prediction region of Yt+Ä is then formed by:

ĈACI,Ä
t (³Ä

t+1) = [Ŷ Ä
t − Q̂t(1− ³t+1), Ŷ

Ä
t + Q̂t(1− ³t+1)]. (A19)
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To construct multiple steps ahead prediction regions of (Yt+1, . . . , Yt+H) at time t, we run the above procedure for every

Ä ∈ [H], and form the prediction regions (ĈACI,1
t (³1

t+1), . . . , Ĉ
ACI,H
t (³H

t+1)); see Algorithm A8.

Algorithm A8 Multi-step-ahead ACI

1: Input: A pre-trained forecaster ĝ producing H-step-ahead predictions; current time t; time trajectory with observed

past values (Y1, . . . , Yt−1).
2: Observe the true value at current time Yt.

3: Make H-step-ahead predictions (Ŷt+1, . . . , Ŷt+H) for (Yt+1, . . . , Yt+H).
4: for Ä ∈ [H] do

5: Evaluate errÄt using Equation (A18).

6: Update ³Ä
t+1 using Equation (A17).

7: Construct prediction region ĈACI,Ä
t (³Ä

t+1) for Yt+Ä using Equation (A19).

8: end for

9: Output: Online multi-steps-ahead prediction regions (ĈACI,1
t (³1

t+1), . . . , Ĉ
ACI,H
t (³H

t+1)).

A6.2. Calibrating the Adaptive Prediction Bands

In the previous section, we discussed how to form multiple steps ahead prediction regions using ACI at every time t. We

now proceed to calibrate these regions to achieve simultaneous coverage guarantee (A15). For simplicity, we start by taking

the learning rate µÄ as fixed and constant for all Ä ∈ [H].

Different from the one-step-ahead setting, with multi-step-ahead ACI, at every time t we can construct H prediction regions

for the following H values. As we move on to observe the next trajectory value, we can update the future prediction regions

using the more recent information. In fact, at every t, we will have H − 1 different prediction regions, separately constructed

from H − 1, H − 2, . . . , 1 steps ago, denoted as ĈACI,H
t−H , . . . , ĈACI,1

t−1 . To perform calibration, we need to summarize the

information obtained from those into a single region, which we will explain next.

For any Ä ∈ [H], let ĈACI,Ä
t−Ä (Y (i), µ) = [ℓ̂ACI,Ä

t−Ä (Y (i), µ), ûACI,Ä
t−Ä (Y (i), µ)] denote the prediction band for Yt constructed at Ä

steps ago with learning rate µ. For each calibration trajectory i ∈ Dcal, CAFHT evaluates the nonconformity score ϵ̂i(µ)
using the following equation:

ϵ̂i(µ) := max
t∈{1,...,T}

{

max

{

[

max
Ä∈[H]

{

ℓ̂ACI,Ä
t−Ä (Y (i), µ)

}

− Y
(i)
t

]

+

,

[

Y
(i)
t − min

Ä∈[H]

{

ûACI,Ä
t−Ä (Y (i), µ)

}

]

+

}}

, (A20)

Intuitively, ϵ̂i(µ) measures the maximum absolute distance of Yt from the prediction regions constructed at different

historical time steps ĈACI,H
t−H , . . . , ĈACI,1

t−1 .

The remaining components of our method then follow the same logic as the one-step-ahead CAFHT. Let Q̂(1−³, µ) denote

the +(1−³)(1+ |Dcal|),-th smallest value of ϵ̂i(µ) among i ∈ Dcal. At every time step t ∈ [T ], CAFHT constructs H-steps

ahead prediction bands ĈÄ
t (Y

(n+1), µ), ∀Ä ∈ [H] using the following equation:

ĈÄ
t (Y

(n+1), µ) =

[

ℓ̂ACI,Ä
t (Y (n+1), µ)− Q̂(1− ³, µ), ûACI,Ä

t (Y (n+1), µ) + Q̂(1− ³, µ)

]

. (A21)

The next result establishes finite-sample simultaneous coverage guarantees for this method.

Theorem A1. Assume that the calibration trajectories in Dcal are exchangeable with Y
(n+1). Then, for any ³ ∈ (0, 1), the

prediction band output by the multi-step-ahead CAFHT, applied with fixed parameters ³, ³ACI, and µ, satisfies (A15).

Proof. The proof is very similar to the proof of Theorem 1, and it follows directly from the exchangeability of the conformity

scores. Denote ϵ̂n+1(µ) the conformity score of the test trajectory Y
(t+1) evaluated using Equation (A20). For any fixed

³ and µ > 0, we have that Y
(n+1)
t+Ä ∈ ĈÄ

t (Y
(n+1), µ) ∀Ä ∈ [H] ∀t ∈ [T ] if and only if ϵ̂n+1(µ) f Q̂(1 − ³, µ), where

Q̂(1− ³, µ) is the +(1− ³)(1 + |Dcal|),-th smallest value of ϵ̂i(µ) for all i ∈ Dcal. Since the test trajectory is exchangeable

with Dcal, its score ϵ̂n+1(µ) is also exchangeable with {ϵ̂i(µ), i ∈ Dcal}. Then by Lemma 1 in Romano et al. (2019), it

follows that P(Y
(n+1)
t+Ä ∈ ĈÄ

t (Y
(n+1), µ) ∀Ä ∈ [H] ∀t ∈ [T ]) = P(ϵ̂n+1(µ) f Q̂(1− ³, µ)) g 1− ³.
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A6.3. Data-Driven Parameter Selection

Similar to the one-step-ahead CAFHT, we can choose the step size parameter µ in a data-driven way. For simplicity, we

start by selecting among a grid of candidate {µ1, . . . , µL}, but assuming that the step size stays the same for every time step

Ä ∈ [H]. Later in the experiments, we discuss using alternative options, such as setting µ decaying as Ä increases, which is

more intuitive in practice as predictions made longer steps ahead are usually less reliable than the predictions made more

recently.

Algorithm A9 Model selection component of multi-steps-ahead CAFHT

1: Input: A pre-trained forecaster ĝ producing H-step-ahead predictions; calibration trajectories D1
cal; a grid of candidate

learning rates {µ1, . . . , µL}.

2: for ℓ ∈ [L] do

3: Construct ĈACI,Ä
t (Y (i), µℓ) ∀t ∈ [T ], ∀Ä ∈ [H] using Algorithm A8, for i ∈ D1

cal.

4: Evaluate ϵ̂i(µℓ) using (A20), for i ∈ D1
cal.

5: Compute Q̂(1− ³, µℓ), the (1− ³)(1 + 1/|D1
cal|)-th quantile of {ϵ̂i(µℓ), i ∈ D1

cal}.

6: Construct ĈÄ
t (Y

(i), µℓ) ∀Ä ∈ [H]∀t ∈ [H] using (A21) for i ∈ D1
cal.

7: end for

8: Pick µ̂ such that,

µ̂ := argmin
ℓ∈[L]

AvgWidth({CÄ
t (Y

(i), µℓ)}t∈[T ],Ä∈[H]). (A22)

9: Output: Selected learning rate parameter µ̂.

Algorithm A10 Multi-step-ahead CAFHT

1: Input: A pre-trained forecaster ĝ producing multi-step-ahead predictions; calibration trajectories Dcal; the initial

position Y
(n+1)
0 of a test trajectory Y

(n+1); the desired nominal level ³ ∈ (0, 1); a grid of candidate learning rates

{µ1, . . . , µL}.

2: Randomly split Dcal into D1
cal and D2

cal.

3: Select a learning rate µ̂ ∈ {µ1, . . . , µL}, applying Algorithm A1 using the trajectory data in D1
cal.

4: Construct ĈACI(Y (i), µ̂) using ACI, for i ∈ D2
cal.

5: Evaluate ϵ̂i(µ̂) using (A20), for i ∈ D2
cal.

6: Compute the empirical quantile Q̂(1− ³, µ̂).
7: for t ∈ [T ] do

8: Observe the current step Y
(n+1)
t .

9: Compute ĈACI,Ä
t (Y (n+1), µ̂) ∀Ä ∈ [H] with the multi-step-ahead ACI stated in Algorithm A8, using the past of the

test trajectory (Y
(n+1)
1 , . . . , Y

(n+1)
t ).

10: Compute prediction bands ĈÄ
t (Y

(n+1), µ̂), ∀Ä ∈ [H] for the next H steps, using (A21).

11: end for

12: Output: Online prediction bands Ĉ(Y (n+1)).

A6.4. Multi-step-ahead CAFHT using Multiplicative Scores

Similar to the one-step-ahead cases, we can utilize a multiplicative score for the multi-step-ahead settings. This can be

simply accomplished by replacing the nonconformity scores defined in (A20) with these:

ϵ̃i(µ) := max
t∈{1,...,T}

{

max

{

max
Ä∈[H]











[

ℓ̂ACI,Ä
t−Ä (Y (i), µ)− Y

(i)
t

]

+

|ĈACI,Ä
t−Ä (Y (i), µ)|











, max
Ä∈[H]











[

Y
(i)
t − ûACI,Ä

t−Ä (Y (i), µ)
]

+

|ĈACI,Ä
t−Ä (Y (i), µ)|











}}

, (A23)
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Figure A33. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the steps-ahead parameter H utilized by the forecaster. Other details are as in Table A34.

and the counterpart of Equation (A21) becomes

C̃Ä
t (Y

(n+1), µ) =

[

ℓ̂ACI,Ä
t (Y (n+1), µ)− Q̂(1− ³, µ) · |ĈACI,Ä

t (Y (i), µ)|,

ûACI,Ä
t (Y (n+1), µ) + Q̂(1− ³, µ) · |ĈACI,Ä

t (Y (i), µ)|

]

.

(A24)

A6.5. Numerical Experiments

We utilize the same synthetic settings as in Section 4, but modify the LSTM models so that they can make multiple steps

ahead of predictions. Again, we choose the ACI-based multiplicative scores as the main CAFHT method.

Figure A33 summarizes the performance of the three methods as a function of the number of steps ahead predictions made

by the forecaster, which is varied from 1 to 5. When number of steps is equal to 1, we recover the one-step-ahead CAFHT

results. In each case, 75% of the trajectories are used for training and the remaining 25% for calibration. Our method utilizes

50% of the calibration trajectories to select the ACI learning rate µ. The results are averaged over 500 test trajectories and

100 independent experiments.

As we can see, all methods attain 90% simultaneous coverage as defined in (A15). However, our method yields the most

efficient results in terms of obtaining the smallest size of the prediction band and higher conditional coverage than the NCTP

benchmark. See Table A34 for standard errors.

Table A34. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

See the corresponding plot in Figure A33.

Simultaneous coverage

Number of steps ahead Method Average width Conditional-hard Conditional-easy Marginal

1

1 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 1.000 (0.000)

1 NCTP 0.308 (0.014) 0.060 (0.008) 0.996 (0.001) 0.903 (0.002)

1 CAFHT 0.163 (0.001) 0.656 (0.010) 0.926 (0.002) 0.899 (0.003)

3

3 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

3 NCTP 0.475 (0.022) 0.071 (0.008) 0.996 (0.001) 0.906 (0.002)

3 CAFHT 0.208 (0.002) 0.572 (0.010) 0.938 (0.002) 0.902 (0.002)

5

5 CFRNN 2.000 (0.000) 0.995 (0.001) 1.000 (0.000) 0.999 (0.000)

5 NCTP 0.534 (0.025) 0.083 (0.010) 0.997 (0.001) 0.907 (0.002)

5 CAFHT 0.233 (0.002) 0.589 (0.012) 0.936 (0.002) 0.902 (0.002)

In another experiment, the steps-ahead parameter is fixed as H = 3, and the total number of trajectories in the training and

calibration sets are varied from 200 to 2000. Again, our method yields the most informative bands.
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Figure A34. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the number of trajectories in the training and calibration sets, made by the 3-steps-ahead forecaster. Other details are as in Table A35.

Table A35. Performance on simulated heterogeneous trajectories of prediction bands constructed by different methods, as a function of

the total number of training and calibration trajectories. The red numbers indicate smaller prediction bands or higher conditional coverage.

See the corresponding plot in Figure A34.

Simultaneous coverage

Sample size Method Average width Conditional-hard Conditional-easy Marginal

200

200 CFRNN 2.000 (0.000) 0.932 (0.008) 1.000 (0.000) 0.993 (0.001)

200 NCTP 1.012 (0.040) 0.284 (0.025) 0.997 (0.001) 0.925 (0.003)

200 CAFHT 0.261 (0.004) 0.623 (0.022) 0.942 (0.006) 0.909 (0.007)

500

500 CFRNN 2.000 (0.000) 0.979 (0.003) 1.000 (0.000) 0.998 (0.000)

500 NCTP 0.705 (0.030) 0.219 (0.021) 0.995 (0.002) 0.917 (0.003)

500 CAFHT 0.233 (0.002) 0.578 (0.016) 0.942 (0.003) 0.906 (0.004)

1000

1000 CFRNN 2.000 (0.000) 0.986 (0.002) 1.000 (0.000) 0.999 (0.000)

1000 NCTP 0.512 (0.027) 0.086 (0.012) 0.995 (0.001) 0.906 (0.002)

1000 CAFHT 0.216 (0.002) 0.561 (0.015) 0.937 (0.003) 0.900 (0.003)

2000

2000 CFRNN 2.000 (0.000) 0.993 (0.001) 1.000 (0.000) 0.999 (0.000)

2000 NCTP 0.475 (0.022) 0.071 (0.008) 0.996 (0.001) 0.906 (0.002)

2000 CAFHT 0.208 (0.002) 0.572 (0.010) 0.938 (0.002) 0.902 (0.002)
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