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ABSTRACT

Visual navigation takes inspiration from humans, who navigate in previously un-
seen environments using vision without detailed environment maps. Inspired by
this, we introduce a novel no-RL, no-graph, no-odometry approach to visual nav-
igation using feudal learning to build a three tiered agent. Key to our approach is
a memory proxy map (MPM), an intermediate representation of the environment
learned in a self-supervised manner by the high-level manager agent that serves
as a simplified memory, approximating what the agent has seen. We demonstrate
that recording observations in this learned latent space is an effective and efficient
memory proxy that can remove the need for graphs and odometry in visual nav-
igation tasks. For the mid-level manager agent, we develop a waypoint network
(WayNet) that outputs intermediate subgoals, or waypoints, imitating human way-
point selection during local navigation. For the low-level worker agent, we learn
a classifier over a discrete action space that avoids local obstacles and moves the
agent towards the WayNet waypoint. The resulting feudal navigation network of-
fers a novel approach with no RL, no graph, no odometry, and no metric map; all
while achieving SOTA results on the image goal navigation task.

1 INTRODUCTION

Visual navigation is motivated by the idea that humans likely navigate without ever building detailed
3D maps of their environment. In psychology, the concept of cognitive maps and graphs Tolman
(1948); Chrastil & Warren (2014); Peer et al. (2021); Epstein et al. (2017) formalizes this intuition,
and experiments have shown the validity of the idea that humans build approximate graphs of their
environment, encoding relative distances between landmarks. In vision and robotics, these ideas
have translated to the construction of topological graphs and latent maps based primarily on visual
observations. These visual navigation paradigms seek new representations of environments that
are rich with semantic information, easy to dynamically update, and can be constructed faster and
more compactly than full 3D metric maps Gupta et al. (2017); Savinov et al. (2018); Chaplot et al.
(2020b); Mirowski et al. (2018); Chen et al. (2019a); Gervet et al. (2023).

In this work, we focus on visual navigation in environments where odometry information is not
readily available, which limits the efficacy of current SOTA work that assumes access to noise-less
GPS+compass sensors as in popular image-goal navigation challenges Yadav et al. (2023). This lack
of odometry data also limits the efficacy of SLAM based methods that require the camera pose to be
known Kwon et al. (2023); Chaplot et al. (2019), graph based methods that rely on distance to define
edge features Kim et al. (2023), and reinforcement learning (RL) methods which use distance-based
rewards Wijmans et al. (2019). Inspired by NRNS Hahn et al. (2021), which questions the necessity
for RL and simulation to create an effective visual navigation agent, this work leverages feudal
learning and latent maps as a memory proxy to show that it is possible to create a performant visual
navigation agent that uses no odometry, no RL, no training in simulators, no graphs, and no metric
maps.

To do this, we take advantage of a three-tiered, feudal learning network structure and show its ben-
efits under supervised and self-supervised learning paradigms. Feudal learning Vezhnevets et al.
(2017) decomposes a task into sub-components, providing performance advantages that we find
particularly well-suited for visual navigation. The feudal framework identifies workers and man-
agers, and allows for multiple levels of hierarchy (ie. mid-level and high-level managers). Each of

*Corresponding author: faith.johnson@rutgers.edu
T Rutgers University, § Stony Brook University, I Georgia State University



these entities observes different aspects of the task and operates at a different temporal or spatial
scale. For navigation in unseen environments, this dichotomy is ideal to make the overall task more
manageable. The worker-agent can focus on local motion, while manager-agents direct navigation
and assess when to move to new regions.

Key to our approach is representing the traversed environment with a learned latent map (instead
of a graph) that acts as a sufficient memory proxy during navigation. This memory proxy map
(MPM) is obtained using self-supervised learning. The high-level manager of our feudal learning
agent maintains the MPM as the agent navigates in novel environments, and the MPM’s density
is used to determine when a region is well-explored, and it’s time to move away from the current
region. A second key aspect to our approach is a waypoint network (WayNet) for the middle-level
manager which outputs waypoints (visible sub-goals that act as stepping stones towards a certain
goal) for the worker agent to move towards. We train WayNet to imitate human exploration policies
in a supervised manner using point-click navigation trajectories from the LAVN dataset Johnson
et al. (2024). The intuition is that when humans navigate a simulated environment using point-click
teleoperation, they use the skill of choosing a single point in the observation to move toward. For
example, the chosen point may be toward the end of a hallway, toward a door, or further into a
room. We demonstrate that this skill is easily learnable and generalizes to new environments with
zero-shot transfer. Finally, we train a low-level worker to choose actions that avoid obstacles in the
environment while following this point-wise navigation supervision. We show SOTA performance
on the image-goal navigation task in previously unseen Gibson environments Xia et al. (2018) in
Habitat Al Savva et al. (2019) (a simulation environment comprised of scans of real scenes).

Our contributions are fourfold: 1) A self-supervised memory proxy map (MPM) that enables lean,
no-odometry, no-graph, no-RL navigation, 2) A waypoint network (WayNet) for local navigation
through supervised learning of human exploration policies, 3) A hierarchical navigation framework
using agents operating at different spatial scales, and 4) SOTA performance on the image-goal task
in Habitat indoor environments (testing and training on different environments).

2 RELATED WORK

Visual Navigation Visual navigation aims to build representations that incorporate the rich infor-
mation of scenes by injecting image-based learning into traditional mapping and planning naviga-
tion frameworks Gupta et al. (2017); Chaplot et al. (2019); Devo et al. (2020); Shah et al. (2021a);
Seymour et al. (2021). Early work focused on creating full metric maps of a space using SLAM
augmented by images Chaplot et al. (2019; 2020b). While full metric maps can be ideal, especially
if the space can be mapped before planning, the representations are computationally complex. Topo-
logical graphs and maps can lighten this load and provide image data at nodes and relative distances
at edges Savinov et al. (2018); Chen et al. (2019b). While easier to build, these methods require
odometry to be readily available and have the potential for large memory requirements, especially if
new nodes are added every time an agent takes an action Shah et al. (2021a; 2022); He et al. (2023).
One solution to this problem is sparser topological graphs Hahn et al. (2021); Shah et al. (2021b)
where visual features of unexplored next-nodes are sometimes predicted or hallucinated He et al.
(2023). Some methods go a step further by pairing semantic labels with the graph representation
Kim et al. (2023); Chang et al. (2023). However, these methods break down in environments that
are sparse or featureless, have many duplicate objects, or contain uncommon objects that may not
appear in popular object detection datasets. Another solution is to only use graphs during training
to build 2D embedding space representations of environments, i.e. potential fields or functions, that
preserve important physical Morin et al. (2023); Ramakrishnan et al. (2022); Bono et al. (2023b),
visual Henriques & Vedaldi (2018); Bono et al. (2023a); Ramakrishnan & Nagarajan (2022), or se-
mantic Georgakis et al. (2021); Chaplot et al. (2020a); Al-Halah et al. (2022) relationships between
regions in the environment. Our method more closely aligns with this line of work, but we do not use
any graph networks or graph inference and instead build our 2D latent map using self-supervised
contrastive methods. dditionally, unlike many of the methods above, we do not require the agent
to have information about the test environment (odometry) before deployment, do not use RL or
graphs, or learn 3D metric maps.

Feudal Learning Feudal learning originated as a reinforcement learning (RL) framework Dayan
& Hinton (1992); Vezhnevets et al. (2017). Researchers have explored RL for the image-goal visual
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Figure 1: Method Overview 1: A subset of trajectories of point-click and observation-image pairs
are selected from the LAVN dataset Johnson et al. (2024) for learning a latent space for the memory
proxy map and training WayNet. We test our method on a separate set of environments. 2: Images
from these pairs are clustered based on feature similarity, and cluster members form positive pairs
used for contrastively learning a latent space. 3: The learned latent space is used to build a mem-
ory proxy map where the high level manager (HLM) records a history of agent locations. 4: The
waypoint network (Waynet) is trained to provide subgoals (points) for navigation based on visual
observations, imitating human teleoperation via point-clicks. 5: Based on this point-click guidance
and depth map input, the low-level worker predicts to either more forward, left, or right in order to
move towards the subgoal (point) and avoid obstacles. 6: During test time, these low level actions
guide agent movement and produce new observations as input for the upper levels of the hierarchy.

navigation task Zhu et al. (2017), most notably using external memory buffers Kumar et al. (2018);
Fang et al. (2019); Beeching et al. (2020); Mezghan et al. (2022). However, it still suffers from
several issues such as sample inefficiency, handling sparse rewards, and the long horizon problem
Fujimoto & Gu (2021); Le et al. (2018). Feudal reinforcement learning, characterized by its compo-
sition of multiple, sequentially stacked agents working in parallel, arose to combat these issues using
temporal or spatial abstraction, mostly in simulated environments Vezhnevets et al. (2017) where its
effects can be more easily compared to other methods. Some of these task hierarchies are hand
defined Vezhnevets et al. (2020), while others are discovered dynamically with Chen et al. (2020)
or without Li et al. (2020) human input. The feudal network paradigm has been adopted by other
learning schemas outside of RL in recent years, as the hierarchical network structure provides ben-
efits to other methodologies outside of RL. In navigation, hierarchical networks are commonly used
to propose waypoints as subgoals during navigation Chane-Sane et al. (2021), typically working in
a top-down view of the environment Xu et al. (2021) with only two levels of agents Wohlke et al.
(2021). Our work uses multiple agent levels, operates in the first person point of view for predicting
waypoints, and reaps the benefits of this feudal relationship without using reinforcement learning.

3 METHODS

High-Level Manager: Memory We contrastively learn a latent space that is used to build an ag-
gregate memory proxy map (MPM) that serves as a memory module for our feudal navigation agent.
This self-supervised latent space is learned using Synchronous Momentum Grouping (SMoG) Pang
et al. (2022) which combines instance level contrastive learning and clustering methods. This model
is chosen for its momentum grouping, which enables it to perform both instance-level and group-
level contrastive learning simultaneously. We demonstrate empirically that this model improves the
quality of the learned latent space comprising the MPM (in Section 6). Instead of using typical data
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Figure 2: [llustration of the memory proxy map (MPM) during navigation. Row 1: RGB observation
images along a trajectory are shown with a diagram of the agent’s corresponding location in an
environment. The colored circles (blue/green) represent the traveled path. Row 2: The MPM with
guassian-weighted occupancy markers corresponding to each observation image. The map is local,
of fixed size, and cropped around the most recently added latent map position. In this manner,
the agent marks locations in the latent space (not a metric space) corresponding to recently viewed
images, thus remembering when observations repeat. Similar observation images cluster together (in
blue) until the next view is significantly different in appearance and a new group begins (in green).
The MPM is a convenient no-graph mechanism to remember previously visited regions, effective
and efficient in the image-goal navigation task to quantify the amount of exploration in a given area
of the environment.

augmentations (e.g. rotation, scale, shift) to determine positive pairs for contrastive learning, we dy-
namically build clusters of images observed along the training trajectories based on visual similarity
determined by Superglue Sarlin et al. (2020) robust keypoint matching and use these clusters to de-
fine positive and negative pairs during training. This step is vital for the success of the agent as using
this positive pair definition creates a latent space that preserves the relative distance between images
without the need for ground truth odometry data. For each trajectory in the training data, the first
image observation is chosen to represent the first cluster center. Each successive image along the
trajectory is compared to a memory bank of previously seen cluster centers as the agent travels along
its trajectory. If the confidence «.. of these keypoint matches is high, the current image is added to
the corresponding cluster. Otherwise, it is used as a new cluster center. We build these clusters per
environment for all training trajectories and randomly sample images from the same cluster to act
as positive pairs to contrastively train the network.

During inference, observation images are dynamically placed in this contrastively learned latent
space to build a memory proxy map (MPM) of previously visited locations on the fly as the agent
navigates in novel environments. For greater interpretability, our approach is to build an “isomap
imitator network™ for a 2D interpretable projection. We train an MLP to map the learned SMoG
feature space (128 dim) to a 2D map representation. Specifically, we compute isomap 2D embed-
dings for the learned SMoG features for all of the training data to reduce the dimensionality of the
data while preserving the relative feature distances. Because isomap produces different embedding
coordinates each time it is run, a simple MLP network (isomap imitator) is trained to reproduce
the isomap embeddings from the SMoG features. To update the MPM during inference, a gaussian
weighted circular window with o = 1 is added to the corresponding predicted 2D location in the
map from the isomap imitator for each image observation, thus creating a density map with values
corresponding to the amount of exploration that has occurred in each location. The more an area in
an environment is explored, the larger the region in the MPM corresponding to this area, providing
valuable information for downstream networks. This allows the agent to roughly localize itself in
its environment with respect to its previous observations as well as providing a signal to quantify
the amount of exploration that has taken place in a given area. Using this approach allows for adept
navigation without the need for graphs or SLAM, resulting in a demonstrably effective and efficient
approach via this memory proxy.



Mid-Level Manager: Direction For the mid-level manager, we leverage human knowledge to
learn optimal navigation and exploration policies directly from demonstrations collected in a human
navigation dataset. The intuition is that the human point-click navigation decisions in the LAVN
dataset Johnson et al. (2024) are learnable and generalize to new environments with zero-shot trans-
fer. For each trajectory in LAVN, we use the HLM to create a memory proxy map. Then, using the
RGBD observations from the dataset and the corresponding crops of the MPM centered around the
agent’s current location as input, we finetune Resnet-18 He et al. (2016) to predict a pixel coordinate
directing the navigation agent’s motion in the environment. To make the feudal agent goal-directed
(which is necessary for the image-goal task used for evaluation), keypoint matches between the cur-
rent observation and a goal image are computed by Superglue Sarlin et al. (2020). If the confidence
oy, of this keypoint match is high, the average of the matched keypoints is used in the navigation
pipeline instead of the waypoint prediction for the mid-level manager. In this manner the agent
mimics human navigation in novel environments while checking if the goal location has been found.
While the high-level manager reasons about the navigation task at a more global view with a coarser
grained spatial scale, the mid-level manager (WayNet) has a first person, fine-grained view of the
environment. Breaking the problem into these two scales introduces spatial abstraction which al-
lows these two networks to work in tandem and compound their solutions to smaller pieces of the
overall problem to perform more efficiently than an end-to-end implementations (see Section 5).
This simplification also allows for faster training with smaller amounts of data (see Section 4).

Low-Level Worker: Action The low level worker agent takes actions in the environment based
on the current depth map and the waypoint predicted by WayNet. We define the following action
space in accordance with other SOTA methods Hahn et al. (2021); Yadav et al. (2022); Wasserman
et al. (2023): “turn left 15°”, “turn right 15°”, and “move forward 0.25m”. Although an RL agent
is typically used for this type of task, we find an MLP classifier works well to enable effective
navigation. This classifier is trained to learn a mapping between the human-chosen action from the
LAVN dataset Johnson et al. (2024) and the corresponding depth map and waypoint input. The agent
chooses to stop navigation when the confidence threshold «,, for matching goal image features to
the current observation is high and either the agent’s depth measurement indicates it is sufficiently
close to the goal location (< 1m) or the ratio v of the area of the matched keypoints to the total
image size is relatively large.

4 EXPERIMENTS

Image-Goal Navigation Task We test the performance of our method (FeudalNav) using the pro-
cedure outlined in NRNS Hahn et al. (2021) on the image-goal task in previously unseen Gibson
Xia et al. (2018) test environments. To start, the agent is placed in an environment and given RGBD
image observations of the first person view of their surroundings and a goal location. All images
are 480 x 640 pixels with 120° field of view. A trial terminates if the agent stops within 1m of the
location of the goal image or the agent takes 500 actions in the environment. Each agent trajectory
is evaluated on success rate (whether or not the goal has been reached) and SPL (success weighted
by inverse path length), defined as

1 l;
PL = — v 1
5 N;SZmaX(liapi) M

where N is the total number of trajectories considered, .S; is an indicator variable for success, [; is
the optimal (shortest) geodesic path length between the starting location and the goal, and p; is the
actual path length the agent traveled.

Training and Testing Procedure We train our method with the LAVN Johnson et al. (2024)
human navigation dataset, using a subset of 117 trajectories with a total of 36834 frames. The
average number of contrastive learning training data clusters per trajectory is 23 (median 25). We
train all models on either a GTX TITAN X or RTX 2080 Ti using a learning rate of le-4. The
confidence thresholds «., o, and «,, are chosen empirically to be 0.7, and 1) is similarly chosen
as 0.85. The isomap imitator network used to make the MPM is a two layer MLP with ReLU
activations trained for 2000 epochs with batch size= 32, and we train SMoG Pang et al. (2022) for
50 epochs with batch size = 16. We use the current observation and a 480 x 640 pixel crop of



the MPM centered around the agent’s current observation as input to WayNet, which is a modified
Resnet-18 He et al. (2016) that accepts 7 channel input trained for 250 epochs with batch size = 16.
The classifier network for the low-level worker is a four layer MLP with PReL.U activations where
the depth map and waypoint input have distinct projection heads trained for 2 epochs with batch
size = 128. In total, our entire method trains in 3M iterations. Compare this to other SOTA that uses
RL and simulators and trains for anywhere from 10-100M iterations Wijmans et al. (2019); Al-Halah
et al. (2022); Hahn et al. (2021) (or even 50 GPU days Yadav et al. (2022)) using anywhere from
14.5-500M frames on up to 64 GPUs. We use several orders of magnitude less data, significantly
less GPUs, and a fraction of the total iterations to train our network compared to other SOTA.

We test our network using the testing procedure and baselines outlined in NRNS Hahn et al. (2021).
Testing trajectories come from a publicly available set of Gibson Xia et al. (2018) environments
listed in Hahn et al. (2021). They consist of approximately 6/ point pairs (start and goal loca-
tions) that are uniformly sampled from fourteen environments and divided between two curvatures
(straight/curved) and three goal distances (1.5 — 3m, 3 — 5m, 5 — 10m). We compare our method
performance against flat RL DD-PPO Wijmans et al. (2019) trained for varying lengths of time ,
behavior cloning (BC) with a resnet-18 backbone and either a GRU or a metric map from Hahn
et al. (2021), NRNS Hahn et al. (2021) with and without noise, ZSEL Al-Halah et al. (2022), OVRL
Yadav et al. (2022), and NRNS and OVRL enhaced by SLING Wasserman et al. (2023). These
methods are either trained directly in a simulator or for extended periods of time (ie. 100M time
steps, 53 GPU days), require odometry, or use graphs in their implementations. There are other
recent works that test on the image-goal task that require testing in previously seen environments,
full scene reconstruction Kwon et al. (2023), or full panoramic or semantic images Kim et al. (2023)
that are very reliant of the fixed spacing or semantic contextual information of residential dwellings.
These are excluded as unfair comparisons since our method does not assume prior knowledge of
semantic context (since it is not readily available in many applications).

Figure 3: (Best viewed zoomed) We show qualitative results for the waypoints predicted by WayNet
(blue) shown with the ground truth human click points from the LAVN dataset Johnson et al. (2024)
(orange). Note that the majority of the samples show high overlap between the two. When they
diverge, the WayNet waypoints still lead to navigably feasible areas in each observation, showing
that our network sufficiently learns an acceptable navigation policy.

5 RESULTS

Mid-Level Manager Accurately Mimics Human Navigation Figure 3 shows qualitative exam-
ples of the mid-level manager’s predicted waypoints (blue) shown with the human ground truth point
clicks (orange) from the LAVN dataset Johnson et al. (2024). For the majority of the points, both the
predictions and the ground truth lie in the same area or on the same object. When this is not the case,



Model Easy Medium Hard Average
Succt | SPLT | Succt | SPLT | Succt | SPLY || Succt | SPLY
DDPPO (10M steps) * 10.5 6.7 18.1 16.2 11.8 10.9 13.5 11.2
DDPPO (extra data + S0M | 36.3 34.9 35.7 34.0 6.0 6.3 26.0 25.1
steps) *
DDPPO (extra data+100M | 43.2 38.5 36.4 35.0 7.4 7.2 29.0 26.9
; steps) *
o | BC w/ ResNet + Metric | 24.8 24.0 11.5 11.3 1.4 1.3 12.6 12.2
— | Map
< | BC w/ ResNet + GRU 34.9 334 17.6 17.1 6.1 5.9 19.5 18.8
ﬁ NRNS w/ noise 64.1 55.4 479 39.5 25.2 18.1 45.7 37.7
va | NRNS w/out noise 68.0 61.6 49.1 44.6 23.8 18.3 47.0 41.5
NRNS + SLING 85.3 74.4 66.8 49.3 41.1 28.8 64.4 50.8
OVRL + SLING * 71.2 54.1 60.3 444 43.0 29.1 58.2 425
FeudalNav (Ours) 82.6 75.0 71.0 574 49.0 34.2 67.5 55.5
DDPPO (10M steps) * 7.9 33 9.5 7.1 55 4.7 7.6 5.0
DDPPO (extra data + S0M | 18.1 15.4 16.3 14.5 2.6 2.2 12.3 10.7
steps)*
DDPPO (extra data+100M | 22.2 16.5 20.7 18.5 4.2 3.7 15.7 12.9
steps)*
A | BC w/ ResNet + Metric 3.1 2.5 0.8 0.7 0.2 0.2 1.4 1.1
m | Map
> | BC w/ ResNet + GRU 3.6 2.9 1.1 0.9 0.5 0.4 1.7 1.4
& | NRNS w/ noise 273 10.6 23.1 10.4 10.5 5.6 20.3 8.8
= | NRNS w/out noise 355 18.4 239 12.1 12.5 6.8 24.0 12.4
©| zsEL* 41.0 28.2 27.3 18.6 9.3 6.0 259 17.6
OVRL* (53 GPU days) 53.6 31.7 47.6 30.2 35.6 21.9 45.6 28.0
NRNS + SLING 58.6 16.1 47.6 16.8 24.9 10.1 43.7 14.3
OVRL + SLING * Wasser- | 68.4 47.0 57.7 39.8 40.2 25.5 55.4 37.4
man et al. (2023)
FeudalNav (Ours) 72.5 51.3 64.4 40.7 43.7 253 60.2 39.1

Table 1: We show competitive results on the image goal task following the evaluation protocol from
NRNS Hahn et al. (2021) in previously unseen Gibson environments Xia et al. (2018). The top re-
sults are bolded for each category in this quantitative comparison between our method (FeudalNav),
baselines (DDPO Wijmans et al. (2019), NRNS Hahn et al. (2021)), and SOTA methods (ZSEL
Al-Halah et al. (2022), OVRL Yadav et al. (2022), SLING Wasserman et al. (2023)). (* denotes the
use of a simulator during training)

it is important to note that there may be multiple “correct” exploration waypoints in a given scene
(ie. with a T junction or a hallway with multiple doors). When the mid-level manager’s predicted
waypoints diverge from the human point clicks, they still lead to feasibly navigable areas such as
doorways or further into rooms or hallways, thus demonstrating that the network successfully mim-
ics human point-click teleoperation and learns a useful policy for exploration.

FeudalNav Outperforms Baselines and SOTA We show performance on the image-goal task as
detailed in section 4 for our feudal navigation agent (FeudalNav) and SOTA in Table 1. We also
report performance averaged across the easy, medium, and hard trials, which we use to conduct
comparisons of model performance. Our method has shown a significant improvement in success
rate performance of 108% (straight) and 283% (curved) over all DDPO Wijmans et al. (2019) base-
lines and 208% (straight) and 3380% (curved) over both behavior cloning (BC) methods Hahn et al.
(2021) while using no RL, learning no metric map, and not training directly in a simulator. We
achieve a 5% increase in performance on average success rate over NRNS+SLING Wasserman
et al. (2023) and a 16% increase over OVRL+SLING Wasserman et al. (2023) on straight trajecto-
ries. We make larger improvements to SPL performance as well (9% and 31% over NRNS+SLING
and OVRL+SLING respectively), despite not using odometry, not explicitly parsing semantics, not
utilizing a graph, and only using ~ 37K images for training (compared to the 3.5 million used by
NRNS and 14.5 million used by OVRL). This trend of performance improvement continues for the
curved case where FeudalNav has a 9% increase on average success rate over NRNS+SLING and
38% over OVRLA+SLING. This corresponds with a 173% and 5% increase in SPL against these two
methods respectively. In the real world, it is less likely that a robot will be tasked to find an object
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Figure 4: Distance matrices showing a heatmap of metric distances between each pair of images in
a single trajectory (450 image sequence). (Left) Ground truth distance matrix (brighter is farther
away) of the locations of each image in the simulated environment. Compare this to each of the
image feature-distance matrices (computed using MSE) for the same images pairs using features
from the following (from left to right after GT distance): SMoG Pang et al. (2022), MocoHe et al.
(2020), Resnet He et al. (2016), and Swav Caron et al. (2020). The more the feature distances
resemble the ground truth metric distances, the more effective the features will be at encoding a
proxy for relative distance between real world observations. We choose SMoG for feature detection
in our high-level manager because its feature distance matrix most closely resembles the ground
truth distances heatmap.

within a straight line of sight from itself. For this reason, performance on the curved trajectory case
gives a more realistic prediction of real world performance.

6 ABLATION STUDY

Different Network’s Effects on the Memory Proxy Map We test the effectiveness of using mul-
tiple real world views as a contrastive learning augmentation. In order for this to occur, we postulate
that the image feature distances between two points must be highly correlated with the ground truth
distances between those points. In Figure 4, the ground truth distances between pairs of obser-
vations for a single trajectory from the LAVN dataset Johnson et al. (2024) using the Copemish
Gibson environment are compared to the distance between predicted image features for our high
level manager network, which utilizes SMoG Pang et al. (2022). For baselines, we also compare the
inter-observation feature distance matrices for Moco He et al. (2020), Resnet-18 He et al. (2016),
and SwavCaron et al. (2020). In the figure, lower distances are darker/purple and higher distances
are lighter/yellow. The more a latent space mimics geometric distances between image features,
the more it should resemble the first square showing the distance matrix created using ground truth
distances.

Swav Caron et al. (2020) learns highly diverse features (large distances between the learned fea-
tures), while Resnet He et al. (2016) has the reciprocal issue (highly similar features for all of the
images in the trajectory) as shown in Figure 4. This is understandable because the diversity between
separate views of an indoor scene is relatively small compared to the diversity of samples used to
train Resnet. However, this means that both of these methods’ features are unsuitable for navigation
because they do not provide a useful distance proxy. Moco He et al. (2020) begins to mimic the
ground truth distance matrix, but still learns features that are largely similar to each other. Validat-
ing our intuition, SMoG Pang et al. (2022) learns the most distance preserving latent space due to its
ability to optimize inter-sample and inter-cluster distances simultaneously, making it the most useful
for navigation purposes.

Full Hierarchy’s Effect on Image-Goal Task Performance We also provide an ablation study
to show how important each level of hierarchy is to our overall results in Table 2. We incrementally
add each piece of our architecture together and report the image-goal task results for the same
experiment listed in Section 4. In the table, the second column indicates whether or not the high level
manager’s memory proxy map (MPM) is included in the feudal navigation agent. Networks without
this module are denoted by —. C denotes a binary representation of the map where M (x,y) = 1 for
a circular region around previously seen cluster centers where the radius () of the circular region
grows linearly with respect to the frequency of visitation. A denotes the binary map where r is fixed
and all observations are added to the map, and H denotes the MPM as detailed in Section 3. For the
mid-level manager, we test versions of WayNet that take in a single RGB, RGBD, or RGBD-MPM



Easy Medium Hard Average
MPM | WayNet | LLW} queet | 'SPLt | Sucet | SPLY | Sucet | SPLt || Succt | SPL?
RGB | Det | 48.00 | 3028 | 37.00 | 21.75 | 2457 | 1321 || 3632 | 21.75
- RGBD | Det | 4820 | 31.70 | 39.40 | 21.50 | 24.94 | 12.99 || 37.51 | 22.06
- | 3RGBD | Det | 5020 | 31.19 | 3860 | 21.24 | 2072 | 9.16 || 36.51 | 20.53
S| € | RGBD-M | Det | 6140 | 5181 | 5030 | 40.10 | 3102 | 2333 || 4573 | 37.69
T| C | 3RGBD-M | Det | 65.90 | 48.50 | 51.00 | 2922 | 3362 | 1449 || 50.17 | 30.74
| A | RGBD-M | Det | 57.90 | 50.35 | 44.80 | 37.70 | 30.52 | 24.98 || 44.41 | 37.68
<| A | 3RGBD-M | Det | 6590 | 4926 | 51.00 | 20.98 | 27.17 | 13.75 || 48.02 | 31.00
“| H | RGBD-M | Det | 7200 | 64.55 | 6040 | 50.96 | 4132 | 3401 || 5791 | 49.84
7| H | 3RGBD-M | Det | 775 | 6453 | 62.50 | 42.18 | 4429 | 24.50 || 61.43 | 43.74
H | RGBD-M | Cl | 82.60 | 74.95 | 71.00 | 57.40 | 49.01 | 34.20 || 67.54 | 55.52
H | 3RGBD-M | Cl | 73.60 | 73.05 | 37.10 | 3566 | 9.18 | 895 | 39.96 | 39.22
- RGB | Det | 34.70 | 11.20 | 32.60 | 13.02 | 1820 | 7.24 || 285 | 1049
- RGBD | Det | 36.60 | 1155 | 30.00 | 11.86 | 1830 | 7.72 || 283 | 1037
- | 3RGBD | Det | 39.50 | 11.91 | 32.80 | 11.75 | 15.70 | 5.65 || 29.33 | 9.7
~| € | RGBDM | Det | 4130 | 1951 | 32.60 | 17.10 | 18.60 | 1088 || 3083 | 15.83
2| C | 3RGBD-M | Det | 5640 | 21.37 | 44.10 | 17.41 | 21.00 | 7.30 || 4050 | 15.36
>| A | RGBD-M | Det | 3570 | 18.44 | 31.10 | 19.00 | 1720 | 11.16 || 28.00 | 16.2
| A | 3RGBD-M | Det | 56.60 | 22.19 | 4330 | 1599 | 19.8 | 7.39 || 39.90 | 15.19
S| H | RGBD-M | Det | 53.80 | 27.91 | 42.60 | 25.00 | 2720 | 17.01 || 412 | 2331
©| H | 3RGBD-M | Det | 68.60 | 28.93 | 5640 | 26.06 | 32.40 | 1444 || 5247 | 23.14
H | RGBD-M | CI | 72.50 | 51.26 | 64.40 | 40.73 | 4370 | 25.32 || 602 | 39.11
H | 3RGBD-M | Cl | 59.00 | 5552 | 1550 | 1458 | 1.50 | 1.45 || 2533 | 23.85

Table 2: An ablation study showing the effect of each module in FeudalNav on overall image-goal
task performance. For the second column, — denotes a network without the MPM from the high-level
manager, C denotes the use of an MPM where only the cluster centers are plotted in RGB, A denotes
an MPM where all observations are plotted in RGB, and H denotes the MPM described in section 3.
For Waynet, we use RGB or RGBD input with the MPM (denoted by the -M) or without the MPM,
either of a single observation or of three historical observations. For the low-level worker, “Det”
refers to a worker that deterministcally maps waypoint locations to actions, and “Cl1” refers to the
classification network specified in section 3. The official FeudalNav implementation is bolded.
Notice the performance gains attributed to the MPM, specially gaussian weighted MPM (denoted
by H).

(denoted RBGD-M in the table) input and versions that take in three historical timesteps worth
of each of these respective inputs (3 RGBD and 3 RGBD-M). We test two versions of the low-
level worker: one that deterministically maps waypoint image coordinate predictions to environment
actions (“Det”) and one that follows the classifier approach detailed in Section 3 (“Cls”).

For the networks without the MPM, we found that WayNet using RGB input performed qualitatively
worse than using RGBD input, despite their similar performance, because depth information allowed
the agent to avoid obstacles more efficiently. There is a 25% increase in performance when the MPM
is added to our network. This shows that the memory component is crucial to image-goal navigation
success. However, the form this memory module takes is also an important factor. We see a 28%
increase in performance between the gaussian heatmap (“H”) and the binary heat maps (“C” and
“A”). Furthermore, we find that a learning-based approach performs best for obstacle avoidance
with a 10% increase from the deterministic (“Det”) to the classification (“Cls”) low-level worker.

7 CONCLUSION

Our work extends prior research on visual navigation for the image goal task by providing a high
performance, no-RL, no-graph, no-odometry solution.! The resulting methodology is efficient,
lightweight and demonstrably effective. Our frameworks accomplishes this by putting emphasis on
building representations for agent memory, i.e. the memory proxy map (MPM). Such an emphasis is
critically important for no-graph solutions and can be extended for new paradigms of visual naviga-
tion that include continual learning. With the ubiquity of advanced SLAM algorithms, the questions

!Code released upon publication.



arise: If SLAM is solved, why learn?, and why use visual navigation instead of building a metric
map? Certainly, there are many applications where SLAM is the best solution. But, SLAM is typi-
cally computationally intensive and requires considerable development time and compute resources
since each new environment requires management of a large-scale optimization problem. Visual
navigation holds the promise of a lightweight solution, suitable for select applications. Addition-
ally, visual and learning-based navigation enables systems to learn about the dynamic environments
agents are charged with navigating, including learning the nuances of navigating in social spaces.
Visual navigation also holds the promise of a low-cost, low-latency solution suitable for small mo-
bile agents at an accessible price point. In the long term, visual navigation applications with positive
societal impact can enable intelligent navigation agents for applications in unseen environments
such as disaster assessment, environment monitoring in hazardous areas (volcanic, subterranean),
and indoor navigation of previously unmapped buildings.
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