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ANALOG CATEGORY AND COMPLEXITY

BEN KNUDSEN AND SHMUEL WEINBERGER

ABsTrRACT. We study probabilistic variants of the Lusternik—Schnirelmann
category and topological complexity, which bound the classical invariants from
below. We present a number of computations illustrating both wide agreement
and wide disagreement with the classical notions. In the aspherical case, where
our invariants are group invariants, we establish a counterpart of the Eilenberg—
Ganea theorem in the torsion-free case, as well as a contrasting universal upper
bound in the finite case.

1. INTRODUCTION

In 1987, Smale launched a new approach to computational complexity
based on continuous mathematics, measuring the number of paths of computation
that a “real number” machine requires to find a polynomial root. Smale showed
that a certain amount of discontinuity is inevitable in any method of root finding
by bounding the Schwarz genus of the map from ordered to unordered configurations
in C using cohomology.

Building on Smale’s idea, Farber initiated the study of the topological
complexity of motion planning, a fundamental problem in robotics. As explained in
[Far06], this notion also admits an interpretation as a measure of the minimal level of
randomness in a motion planning algorithm. This model of randomness is “digital”
given a starting and ending point, the algorithm implements the motion labeled by
an element of {1,2,...,k} chosen randomly according to a fixed distribution.

In this paper, we allow algorithms with “analog” randomness. Consider the
round metric on RP?, in which every pair of points is joined by either one or two
shortest geodesics, and, when there is only one, the second shortest is the geodesic
in the reverse direction. We may choose between these two options according to
a distribution that interpolates continuously between the first case, where the two
options are distinguishable by length, and the second, where they are not (see
Proposition[6.9). Thus, with analog randomness, a robot on RP? needs only two
rules, a sharp contrast to the beautiful result of calculating the “digital”
topological complexity of RP? as its immersion dimension, which grows linearly in
d.

More formally, we define a notion of analog sectional category (Definition [5:1)
of a map by recording the minimal support of a continuous choice of fiberwise
probability measure. Specializing to path fibrations, we obtain invariants acat(X)
and ATC,(X) (Definition|6.1), analog counterparts of the Lusternik—Schnirelmann
category and 7th sequential topological complexity [Rud10]. Our main com-
putational result (Theorem [7.4] below) is the following.

Analog Eilenberg—Ganea theorem. For any torsion-free group G, we have the
equality acat(BG) = cd(G).
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In a striking departure from the classical setting, this equality fails for finite
groups; indeed, as shown in Theorem[7.2] the quantities ATC,.(BG) are all bounded
above by |G| — 1 for G finite.

Problem 1.1. Describe the group invariants ATC, (BG) algebraically.

The classical counterpart of this problem is regarded as perhaps the most dif-
ficult open problem in the study of (sequential) topological complexity |GLO13|
FO19,[FM20/ [EBFMO|, and even calculations for specific groups are often difficult
[CV17| [Knu22l |]AGGO22| [Knu|. Nevertheless, given thow much simpler some ana-
log calculations are (projective spaces, for example), there is reason to hope that
Problem [I.1]might be more tractable. If so, it may even shed light on the classical
problem, since the analog invariants bound the digital invariants from below.

In the final stages of this paper’s completion, there appeared the preprint [DJ],
which introduces the notions of “distributional” category and topological complex-
ity. Although the motivations differ, the basic idea seems very similar to ours. We
welcome their paper as evidence of the naturality of these ideas, and we recommend
it to the interested reader for a different selection of first calculations. We expect
the definitions to be very closely related.

Conjecture 1.2. The analog and distributional notions of category and topological
complexity coincide on the class of metrizable spaces.

The relevance of metrizability is that the distributional invariants are defined
using the Lévy-Prokhorov metric, requiring that the background space itself be
metrizable, which is avoided in our approach—see Remark[2.2]below. Consequently,
the analog invariants are defined on a much larger class of spaces. This technical-
ity becomes relevant when studying the particularly interesting class of aspherical
spaces—see Remark below.

1.1. Conventions. We use the following slightly non-standard notational conven-
tion for topological simplices:

An_l = {(tl,...,tn) S [O,l]n : itz = 1}
=1

We work in Steenrod’s convenient category of topological spaces [Ste67]—see Ap-
pendix [A]for a summary of relevant facts about these spaces. Topological spaces
are implicitly convenient, as are limits, including products, and mapping spaces.
Convenient colimits, when they exist, are the same as ordinary colimits. The adjec-
tive “compact” refers to the definition in terms of open covers. We denote diagonal
maps generically by §.

1.2. Acknowledgements. The first author thanks Matan Harel for helpful con-
versations.

2. PROBABILITY MEASURES WITH FINITE SUPPORT
We begin by introducing the space of greatest importance for our purposes.

Definition 2.1. Let X be a topological space. The space of probability measures
with finite support on X is the quotient space

X" x AT
- n|;|0 /N

2

P(X)



where the indicated equivalence relation is generated by the following three rela-
tions:
(1) (T1,y. ey Tnytey oo yly) ~ (Ig(l), s To(n)s to(l)s - - - ,tg(n)) for o € Xy
(2) (1. Ty by ey tn) ~ (X1, ooy Tty 1y ooy tne1 +En) if o1 = 25 and
(3) (l‘l,...,l'n,tl,...,tn) ~ (xl,...,xn_l,tl,...,tn_l) iftn =0.

Remark 2.2. When X is metrizable, more classical topologies are available on the
set P(X), e.g., the metric topologies induced by the Lévy—Prokhorov and Wasser-
stein metrics. We adopt this purely topological definition for two reasons: first,
as articulated in Theorem [Z.7] it carries numerous desirable technical properties;

second, our examples of greatest interest are typically non-metrizable, at least on
the nose (see Remark[7.1).

We think of the equivalence class of (z1,...,2n,t1,...,1,) as a convex linear
combination of point masses, denoting it accordingly by Z?:l ti0u;-

Lemma 2.3. Let X be a topological space. Every point of P(X) can be written
uniquely in the form Y. t;0,, subject to the following two conditions:
(1) t; >0 for 1 <i<mn; and
(2) @: # a; fori #J.
Thus, written in lowest terms, the coefficient of §, in pu € P(X) is well-defined
and denoted u(x).

Definition 2.4. Let X be a topological space. The support of p € P(X) is the
(finite) subset supp(u) = {x € X : p(z) # 0}. We write P,(X) C P(X) for the
subspace of probability measures p with |supp(u)| < n.

The definitions imply directly that P, (X) C P(X) is a closed subspace.

Example 2.5. The assignment x — 0, determines a continuous map nx : X —
P(X) restricting to a homeomorphism X = P;(X).

Example 2.6. If X is discrete, then the assignment p+— > ¢ p(x)z determines
a homeomorphism P(X) = AX | which identifies P, (X) with the (n — 1)-skeleton
of AX. Indeed, continuity is immediate from properties of the quotient topology,
and bijectivity is an easy exercise. When X is finite, the source is compact and the
target Hausdorff, so the claim follows; in the infinite case, both spaces carry the
colimit topology inherited from the finite subsets of X.

The construction X — P(X) extends canonically to an endofunctor on the cate-
gory of convenient spaces; given a continuous map f : X — Y, the maps f™ x A"~!
for varying n descend to a continuous map f. : P(X) — P(Y). Concretely, we have

[« (Z ti(sxi> = Zti(s.f(m)'
i=1 i=1

Concerning this functor, we have the following fundamental result, whose proof
is deferred to Section [S]

Theorem 2.7. The functor P is an endofunctor on the category of convenient
spaces, which preserves homotopy, sifted colimits, quotient maps, and closed em-
beddings.

In particular, the map f, is a homotopy equivalence whenever f is so.
3



3. EXTENDED FUNCTORIALITY

In addition to the functoriality articulated in the previous section, the construc-
tion P carries several pieces of algebraic structure that will be indispensable in our
later investigation.

Construction 3.1. We define a function kx : P(P(X)) — P(X) as follows. Given
pj € P(X) for 1 < j <k, write puj = 3217, ;64,,, and define

k k ny
RXx E demj = E E sjtijéxi]..
j=1

j=1i=1

It is easy to check that kx is well-defined. Notice that kx (P (P, (X))) C Prn(X)
by construction.

Proposition 3.2. The triple (P, x,n) is a monad.

Proof. The main point is to verify the continuity of kx for X fixed. We begin by
noting that the obvious map

k

LI L L []X™ x A= | x AL P(P(X))

k>0n>0n1+-4npg=n \j=1

is a quotient map (we use Proposition [A-4] Thus, continuity follows from commu-
tativity of the diagram

k k
<|_| an % Anj1> % Akfl ~ Xn % <|_| A’!le) % Ak71 X" x Anfl

T

P(P(X)) = P(X),

Jj=1

where the homeomorphism is the canonical one and the upper righthand horizontal
map is obtained by restricting a product of scaling maps on various Euclidean
spaces, hence continuous.

Naturality of n and &, and the two monad identities kx o (ux)« = kx o kx P(X)
and kx o (nx)« = idp(x) = kx © Np(x), are essentially immediate from the defini-
tions. (]

Using this structure, we obtain a certain limited contravariant functoriality.
Proposition 3.3. Let p: E — X be a degree k covering map. The assignment
1
p= Z ) Z (x)dz
w€supp(p) 2€p~1 ()

defines a continuous map p* : P(X) — P(E), which is a section of p..

Lemma 3.4. Let p : E — X be a degree k covering map. The assignment x +—>
p~(X) defines a continuous map p~' : X — Sym"(E).

Proof. Assume first that X is compact, so that F is as well. In this case, Sym" (E)

carries the quotient topology from the ordinary Cartesian power E¥. Fix 2 € X,

and choose an open neighborhood p~*(xy) € U C Sym”(E). Choosing an ordering
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p~'(z0) = {#;}F_,, continuity of the projection 7 : E¥ — Sym*(E) grants open
neighborhoods z; € U; C E such that 7(M¥_,U;) C U. Since p is a covering map,
we may assume without loss of generality that the U; are pairwise disjoint, that
V := p(U;) is independent of ¢, and that p|y, is a homeomorphism onto V' for each
1. Since V' is open, and since the function in question maps V into U, continuity
follows.

In the general case, writing X for the set of compact subsets of X, ordered by
inclusion, consider the following commutative diagram of continuous maps:

colimp e x p71

colimgeq K —————— colimg e Symk (r~'(K))

Since X is covenient, the lefthand vertical arrow is a homeomorphism. To see that
the righthand vertical arrow is so as well, we note that Symk preserves sifted, hence
filtered, colimits by Proposition[A.6] and that the natural map colimg e p~ 1 (K) —
E is a homeomorphism, since E is convenient and any compact subset of E lies in
one of the form p~1(K). Thus, the continuous dashed filler is determined, and it is
easy to check that it coincides with p~! as a set function. (|

Proof of Proposition[3.3} One checks easily that the function p* coincides with the
composite

P(X) LCHDEN P(Sym*(E)) = P(E* x5, AF 1) = P(P(E)) 25 P(E),

where the second arrow is induced by the inclusion of the barycenter. The first and
last arrows are continuous by Lemma and Proposition [3.2] respectively, and
the second and third are values of the functor P on continuous maps. Continuity
follows, and the identity p. o p* = idp(x) is immediate from the definition. (]

We note that, in the setting of Proposition[3.3] we have the inclusion p* (P, (B)) C

Prn(E).
There is also a kind of external product on measures.

Proposition 3.5. Let X and Y be topological spaces. The assignment

n p n p
Z tiami’ Z Sj(syj = Z Z tisja(wivyj)
i=1 j=1

i=1 j=1

defines a continuous map X : P(X) x P(Y) = P(X x Y), which admits a canonical
retraction.

Proof. Continuity is essentially immediate from properties of the quotient topology,
together with Proposition[A.4] and it is easily checked that a retraction is given by
the map P(X xY) — P(X) x P(Y) induced by the projections onto X and Y. O

4. RELATIVE PROBABILITY MEASURES

The invariants we wish to define are special cases of a general invariant of maps,
for which we require a relativization of the preceding ideas.
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Definition 4.1. Let f : X — Y be a continuous map with X convenient and Y
Hausdorff. The space of f-relative measures of finite support on X is the subspace

P(f) = {p € PX) = [f (supp(p))| = 1}

Although we do not require that Y be convenient in this definition, we may
always assume so; indeed, if f: X — k(Y) is the adjunct of f, then P(f) = P(f)
as subspaces of P(X).

Lemma 4.2. For any f: X — Y, the subspace P(f) C P(X) is closed.

Proof. Without loss of generality, we may take the target of f to be convenient, in
which case P(f) is the preimage under f, of the closed set P1(Y). 0

In particular, it follows that P(f) is always convenient. Our previous discussion
of functoriality implies immediately that the construction f +— P(f) extends to a
functor on the arrow category of convenient spaces, which sends relative homotopy
to relative homotopy. Likewise, there is the stratification P, (f) := P, (X) N P(f).
Note, moreover, that P1(f) = P1(X).

Lemma 4.3. Let f : X — Y be a continuous map. The assignment p —
f(supp(p)) defines a continuous map p: P(f) = Y.

Proof. From the definition of P(f) and the fact that 7y is a topological embedding,

the dashed filler exists in the following commuting diagram of continuous maps:
c
P(f) — P(X)
|
| lf*
¥ ny
Y ——PY)
Since this dashed filler coincides with the function in question, the claim follows. [J

This map, which we refer to generically as “the projection” is of fundamental im-
portance to us. Using it, we may formulate a relative external product of measures.

Proposition 4.4. Let f; : X; — Y be continuous maps and g : X1 Xy Xo = Y
the canomnical map. The formula of Proposition[3.5 defines a continuous map Ny :
P(f1) Xy P(f2) = P(g), which admits a canonical retraction.

Proof. Consider the following commutative diagram of continuous maps:

P(f1) xy P(fa) - — = = +P(g)

| E

P(f1) x P(f2) P(X1 xy Xa)

| |

?(Xl) X ?(Xg) l} ?(Xl X Xg)

As a product of embeddings, the bottom left map is also an embedding, and the

bottom right map is an embedding by Theorem [2.7] and Corollary [A_8] Thus, the

dashed filler, which is easily checked to be well-defined, is continuous. Similarly, it

is easily checked that the retraction of X constructed in Proposition maps the
6



image of the righthand vertical composite into the image of the lefthand vertical
composite, hence restricts to a retraction of Xy-. ([

Corollary 4.5. Let f: X =Y andi: A —Y be continuous maps with i injective.
There is a canonical natural homeomorphism A xy P(f) = P(fa) over A, where
fa:Axy X — A is the canonical map.

Proof. The assumption of injectivity implies that P(i) = P1(A) as subspaces of
P(A) and that P(g) = P(fa) as subspaces of P(A xy X). Thus, it suffices to
establish that the map Xy of Proposition [4.4] is bijective in this case, which again
follows easily from injectivity of 4. (Il

Corollary 4.6. Let m; : Y X Z — Y denote the projection onto the ith factor.
There is a canonical natural homeomorphism P(m1) 2Y x P(Z) over Y.

Proof. Tt is easy to check that X : P(Y) x P(Z) = P(Y x Z) maps P1(Y) x P(Z)
bijectively onto P(m1), so the claim follows from Proposition and fact that 7y
is a homeomorphism. ([

Using these results, we will be able to identify P(f) as bundle in many cases.

Definition 4.7. Let f : X — Y be a continuous. We say that f is a convenient
fiber bundle with fiber F' if there is an open cover {U,} of Y and a collection of
homeomorphisms U, xy X = U, X F over U,.

In this definition, the spaces X, Y, and F are required to be convenient, as are
the open neighborhoods U,, (note that convenience is not automatically inherited by
open subsets). The indicated limits are, as always, the convenient limits. The lan-
guage of transition functions, structure groups, and cocycles translates unchanged
to the convenient setting.

Combining Corollaries [£.5] and [£.6] we conclude the following.

Corollary 4.8. If f : X — Y is a convenient fiber bundle with fiber F and (dis-
crete) structure group G, then p: P(f) = Y is a fiber bundle with fiber P(F) and
structure group G. More specifically, if {gag} is a G-cocycle for f defined on the
trivializing cover {Uy}, then it is also a G-cocycle for p.

Remark 4.9. We restrict to discrete G in order to avoid the necessity of establishing
the promotion of P to a topologically enriched functor.

In many cases of interest, convenient fiber bundles are simply fiber bundles in
the ordinary sense.

Lemma 4.10. In either of the following situations, a map f : X —Y is a conve-
nient fiber bundle with fiber F if and only if it is a fiber bundle with fiber F:

(1) if Y is a CW complex and is F locally compact; or
(2) if Y is locally compact.

Proof. In the first case, the assumption on Y guarantees that every point has a
local basis of contractible, convenient open neighborhoods; in the second case, lo-
cal compactness guarantees that every open subset of Y is convenient. In both
cases, local compactness guarantees that the convenient and ordinary product and
pullback coincide. ([l



5. ANALOG SECTIONAL CATEGORY

We now define a general invariant of maps, of which the analog category and
analog topological complexity will be special cases.

Definition 5.1. Let f : X — Y be a continuous map. The analog sectional
category of f, denoted asecat(f), is the least n such that the projection P(f) =Y
admits a section with image lying in P41 (f).

As the following result shows, the analog sectional category is a homotopy in-
variant in an appropriate sense.

Proposition 5.2. Consider the following commutative diagram of continuous maps:

X", x

)

vy .y

If the vertical maps are fibrations and the horizontal maps homotopy equivalences,
then asecat(f) = asecat(f’).

Proof. Our assumptions imply that the natural map X’ — X xy Y’ is a fiber ho-
motopy equivalence over Y’, so we may choose a fiber homotopy inverse k. Writing
s:Y = P(f) for a section with image lying in P,4+1(f), consider the composite
v S, p(f) sy Y7L (f) xy P(h) 2 P(g),

where g : X xy Y’ — Y is the natural map. By inspection, this composite factors
through the subspace P(¢’) C P(g), where ¢’ : X xy Y’ — Y’ is projection onto
the second factor. Postcomposing with k. then yields a section Y’ — P(f’) with
image lying in P41 (f’), and it follows that asecat(f’) < asecat(f). After replacing
h and h by their homotopy inverses and using our assumption on f to strictify the
resulting homotopy commutative diagram, the reverse inequality follows from the
same argument. (I

Since replacements of maps by fibrations are unique up to fiberwise homotopy
equivalence, we conclude that what one might call the derived analog sectional
category is well-defined.

Corollary 5.3. Let f: X — Y be a map and f a weakly equivalent fibration. The

quantity acat(f) is independent of the choice of f.

It is easy to see that the analog sectional category of f is 0 if and only if f admits
a continuous section. More generally, we have the following.

Proposition 5.4. Let f : X — Y be a continuous map. If Y has an open cover
W= {U;}™4} such that

(1) f|f71(Ui) admits a continuous section for every 1 <i<mn-+1, and
(2) Y admits a partition of unity subordinate to U,

then asecat(f) < n.



Proof. Let {¢; ;z:+11 be a partition of unity subordinate to U and s; : U; — X a
continuous section of f|;-1(y,) for 1 <i < n+ 1. We will show that the function
s:Y — P(X) given by

n+1

S(y) = Z (pi(y)ési(y)
=1

is continuous. Since the s; are sections, the image of s lies in P(f), and it lies
in P,,+1(X) by inspection, so the claim will follow. Note that the condition that
Z;:ll ; = 1 necessary in order that s be well-defined.

Writing C(X) for the topological cone on X, define §; : ¥ — C(X) by the
formula

5ily) = (si(y), %i(y)) y U
* y €Y\ 1 (Rxo)

It is easy to check that this function is well-defined, and it is continuous on each
of its (open) domains of definition, hence continuous. These maps determine the
bottom map in the following diagram of continuous maps:

XnJrl x A"

l

Xt _ L p(X)

P
e
e
e
Ve

Y s o(x)n .

Here, we have written X *("*+1) for the iterated join of X, which carries the quotient
topology from the solid diagonal map, and which embeds in C(X)"*! as the sub-
space where the cone coordinates sum to 1 (we use our standing assumption that
X is convenient). The dashed fillers are well-defined as functions, hence continuous
by general properties of the subspace and quotient topologies. Since the composite
of the dashed arrows coincides with s as set functions, the claim follows. O

Corollary 5.5. Let f : X = Y be a continuous map. If Y is paracompact, then
asecat(f) < secat(f).

Remark 5.6. Alternatively, Corollary 5.5 follows from [JamT78| Prop. 8.1], together
with the observation that P, (f) is a quotient (over Y') of the n-fold fiberwise join
of f. Of course, James’ argument is no different from that of Proposition [5.4]

6. ANALOG CATEGORY AND ANALOG TOPOLOGICAL COMPLEXITY

We are now able to define our invariants. In the following definition, we remind
the reader of our standing convention that mapping spaces, topologized as in [Ste67)
§5], are convenient.

Definition 6.1. Let X be a path connected topological space.
(1) The analog category of X, denoted acat(X) or ATC;(X), is the analog
sectional category of the map

given by evaluation at 1, where z¢p € X is any basepoint.
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(2) For r > 1 the rth sequential analog topological complexity of X, denoted
ATC,.(X), is the analog sectional category of the map

w;( - x0A  xr

ATC(X) and refer to analog topologzcal complexity.

Note that, by fiberwise homotopy invariance, the analog category is independent
of the choice of basepoint.

Remark 6.2. Equivalently, by Corollary[5.3] acat(X) is the analog sectional category
of any replacement of the inclusion of the basepoint by a fibration, and ATC,.(X)
is the analog sectional category of any replacement of the diagonal § : X — X".

We record a few basic properties of these invariants.

Proposition 6.3. Let X be a topological space.

(1) If X =Y, then ATC,.(X) = ATC,.(Y) for every r > 0.

(2) The equality acat(X) = 0 holds if and only if X is contractible.
(8) If X is paracompact, then ATC,.(X) < TC,(X) for every r > 0.
(4) The inequality ATC,(X) < acat(X") holds.

Proof. In light of Remark [6.2] the fourth claim follows from Corollary[5.3] and the

commuting diagram

A X

The first and third claims are immediate from Propositionsand respectively.
For the second, we note that the equality acat(X) = 0 is equivalent to the existence
of a section of mx. Assuming such a section to exist, it follows that X is a retract
of a contractible space, hence contractible. Conversely, if X is a singleton, then 7x
is a homeomorphism, hence certainly admits a section, and the case of a general
contractible space follows by homotopy invariance. ([

This result yields an infinite family of examples for which category and analog
category coincide.

Corollary 6.4. For any 0 < d < oo, we have acat(S?) = 1.

Proof. The lower bound follows from Proposition [6.3[(1). The upper bound follows
from Proposition[6.3[2) and the classical calculation cat(S?%) = 1. O

We close this section by recording an important submultiplicative law for finite
covers. As we will see, this inequality produces strong divergence between our
analog invariants and their classical counterparts in many cases.

Proposition 6.5. Firr > 0. Ifp: E — X is a degree k covering map, then

ATC,(X) + 1 < k(ATC,(E) +1).
10



Proof. We prove the case r = 1, the case » > 1 being entirely analogous. Choose
a basepoint eg € p~1(x¢), and suppose that acat(E) = n, so that there is a section
s: E— P(ng) lying in P,,41 (7). Consider the composite map

X 55 Py(E) =5 Pi(Pryi(mr)) = Pr(Prsr(wx)) = Prgniny (x) € Plax),

where the unmarked arrow is induced by the morphism in the arrow category given
by the following commutative diagram:

(E7 eo)([O,lL{O}) m (X, xo)([o,u,{o})

E z X
A direct calculation reveals that this map is a section of the projection, implying
the claim. (]

Corollary 6.6. For anyr > 0, we have ATC,.(RP?) < TC,.(RP?) for all but finitely
many d.

Proof. Combining Corollary[6.4]and Propositions[6.3] and[6.5] we have
ATC,.(RP?) < 2(ATC,(S%) +1) — 1
<2(TC,(S%) +1) -1
<2r+41,

which is constant in d. On the other hand, we have TC,(RP?) > cat(RP%) = d,
implying the claim. (]

Remark 6.7. At the cost of some arithmetic, Corollary could be improved by
appealing to the lower bounds of [Dav18§].

Remark 6.8. Assuming Conjecture the value of acat(]R]P’d) is 1 independent of
d [DJ].

In the case r = 2, we have the following.
Proposition 6.9. For any d > 0, we have ATC(RP?) = 1.

Proof. Define 6 : RP? x RP? — R by setting 6(¢1, £2) to be the absolute value of
the dot product between unit vectors in ¢; and ¢5. The function 6 is well-defined
and continuous. Equip RP? with the metric induced by the standard metric on S¢,
and consider the two shortest geodesics from ¢; to ¢5. Contemplation of geodesics
on the sphere shows that these two geodesics have equal length precisely when
0(¢1,42) = 0. Away from this locus, we write 1 (¢1, £2) and ~2(¢1, £2) for the shortest
and second shortest geodesics, respectively; on this locus, we assign the labels 1 and
2 arbitrarily. Then the function £((146)71 + (1 — 6)72) is a continuous section of
wﬂépd. O

7. CALCULATIONS FOR ASPHERICAL SPACES

We turn now to the study of spaces whose fundamental groups dictate their
entire homotopy types. In this setting, the numerical invariants ATC, become
group invariants. More specifically, given a (discrete) group G, we write BG for

11



the geometric realization of the nerve of G. This space is a CW complex, hence
convenient.

Remark 7.1. If G is infinite, the CW complex BG is not locally finite, hence not
metrizable. If G is not finitely generated, then the same applies to any homotopy
equivalent CW complex. Thus, the definition of [DJ] does not apply directly in this
setting.

In the finite case, we have the following general upper bound.
Theorem 7.2. For any finite group G, we have ATC,.(BG) < |G| —1 forr > 0.

Proof. Applying Proposition [6.5] to the quotient map EG — BG, a degree |G|
cover, and invoking Proposition [6.3, we have

ATC,(BG) < |G|(ATC,(EG) +1) —1
< |G|(acat(EG") +1) — 1
=[Gl -1,
(|

Since RP> = B(5 is not contractible, Proposition implies the following
calculation.

Corollary 7.3. We have ATC,.(RP*) =1 for every r > 0.

In contrast, the Eilenberg—Ganea theorem implies that the category of BG is
infinite for G finite. In spite of this discrepancy, as the following result asserts, a
direct analogue of the Eilenberg—Ganea theorem holds in the torsion-free setting.

Theorem 7.4. For any torsion-free group G, we have acat(BG) = cd(G).

We first record the following well-known result. Write A for the simplex with
vertex set S.

Lemma 7.5. The group G is torsion-free if and only if the canonical action of G
on A% is free.

Proof. If ¢ € G has finite order, then g fixes the barycenter of the face of A“
spanned by the powers of g. Conversely, suppose that g has infinite order and fixes
x € AY. The point z lies in the face spanned by some finite subset {g1,...,g,} C G.
Writing (t1,...,t,) for its barycentric coordinates in this face, we may assume
without loss of generality that ¢; £ 0 for 1 < ¢ < n. After conjugating ¢ if need
be, we may further assume that g; = 1. Since g is nontrivial and fixes z, it follows
without loss of generality that go» = g and ¢; = t2. Continuing in this way, and using
our assumption that g has infinite order, it follows that x is the barycenter of the
simplex spanned by the set {1,g,¢% ...,9" '}. Using once more the assumption
that g fixes x, it follows that ¢g” lies in this set, a contradiction. (]

Proof of Theorem[7.4} In light of Corollary[5.3and Remark[6.2] it suffices to calcu-
late the analog sectional category of the covering map ¢ : FG — BG, a fiber bundle
with fiber G and structure group G. By Corollary[4.8]and Lemma[4.10] there is a
homeomorphism P(q) = EG xg A® over BG, under which (n + 1)st stage of the
cardinality filtration is identified with EG xg AS. Thus, we wish to calculate the
minimal n for which the bundle EG xg AS — BG admits a section.
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We now show that the bundle in question admits a section when n = c¢d(G) using
obstruction theory. Having constructed a section over the k-skeleton, the case k = 0
being trivial, the obstruction to extending this section, perhaps after adjustment
by a homotopy, lies in H**1(BG; 7, (AS)). If k < n, then 71, (A%) = 1 (AY) = 0;
and, if k > n = cd(G), then H*T1(BG; M) = 0 for every local coefficient system M.
In any case, the group containing the obstruction vanishes, so the section extends
to all of BG.

Finally, suppose for contradiction that a section exists when n = ¢d(G) — 1, and
note that EG xg AY ~ A% /G, since the action of G on A% is free by Lemmal[7.5]
In the case n = 0, we have A§ = G, and it follows that BG is a homotopy retract
of a point, hence contractible, so ¢cd(G) = 0, a contradiction. In the case n =1, it
follows that BG is a homotopy retract of a bouquet of circles, whence G is a retract
of a free group, hence free; therefore, we have cd(G) = 1, a contradiction. In the
case n > 1, choose a G-module M such that H""1(BG; M) # 0. Since n > 1,
the map EG xg AS — BG induces an isomorphism on fundamental groups, so M
defines a system of local coefficients on the source as well. A section induces the
second arrow in the factorization

H""YBG; M) — H" W (AS/G; M) — H" " (BG; M)

of the identity map. Since AS/G is a CW complex of dimension n, the middle
group is trivial, so the source is also trivial, a contradiction. O

Remark 7.6. Only the last paragraph of this proof uses our assumption that G is
torsion-free. In the presence of torsion, the argument shows that EG xg A% — BG
admits a section, which is obvious, since this map is a trivial fibration. In the finite
case, we obtain an alternative argument for Theorem [7.2]

For r > 1, the upper bound still holds.

Corollary 7.7. For any torsion-free group G and r > 1, we have ATC,(BG) <
cd(GT).

Proof. Since BG"™ = B(G"), the claim follows from Proposition and Theorem
74l O

Remark 7.8. Assuming Conjecture this inequality can be strict, even for free
products of free Abelian groups [DJ].

We close this section by identifying a potential cohomological avenue for inter-
rogating the inequality of Corollary [7.7] In what follows, we regard G as a right
G-set via the diagonal.

Theorem 7.9. Let G be a torsion-free group, fix r > 1, suppose cd(G") — 1 =
n>1, and let M be a G"-module such that H"*Y(BG"; M) # 0. The inequality of
Corollary [T is an equality provided the differential

dpi1 - HO (BG’”; H™(AG'/6, M)) — H™Y(BG™; M)

is nonzero in the Serre spectral sequence for the fibration EG™ X gr AST/G — BG".
13



Proof. In view of Corollary [5.3]and Remark[6.2] it follows from the commutative
diagram

ES/G

BGL BG EG" /G == EG" x¢- G" /G
WEGJ JJBG:BJG j{ l
BG" BG" BG" BG"

that it suffices to calculate the analog sectional category of the covering map g, :
EG" xgr G"/G — BG", a fiber bundle with fiber G"/G and structure group G".
Following the reasoning of Theorem[7.4] then, we wish to show that the fiber bundle
EG" xgr AST/G — BG" admits no section.

Since n > 1, the fundamental group of the total space is G", so we may con-
template the spectral sequence in question. By inspection, it is concentrated in the
strips ¢ = 0 and ¢ = n, so B0 = EZIll’O/im(dnH). Our assumption implies
that this quotient is nontrivial, and it follows by naturality of the Serre spectral
sequence that the homomorphism H™ 1 (BG™; M) — H™EG™ xgr AS /9 M)
induced by the projection is not injective. We conclude that this projection admits
no section. (]

8. PROOF OF THEOREM [2.7]

The space P(X) is the one of interest for our purposes, but it will be convenient
in establishing some of its properties to relate it to a larger space of measures of
finite support (which need not be probability measures), defined as the quotient

M(X) = n|;|0X xR,

by the same three relations as in Definition|[2.1] (note that we include the zero mea-
sure). The discussion in and around Lemma|2.3]and Definition[2.4]goes through un-
changed for the space M(X), as does the prolongation to a functor. The inclusions
of the various simplices induces a canonical continuous injection P(X) — M(X),
which we will show to be a closed embedding in the course of the proof of Theorem

21
Given a measure y and A C X, we write u(A) =3 ., u(x).

Lemma 8.1. The assignment p— u(X) defines a continuous map M(X) — Rxq.

Proof. This function is induced by the composite X™ x R%, — R%, — R>¢ of
projection and addition of real numbers, each of which is continuous. O

We write Ms(X) for the inverse image of [0,9) € R>g under the map of Lemma

1]

Construction 8.2. For every m,n > 0, we have the canonical homeomorphisms
m m n n = m-+n m—+n
X" X R x X" xRy — X x RS

Observing that these maps obviously respect the defining relations of M(X), we
obtain a (a priori discontinuous) function M(X) x M(X) — M(X), whose value on

(1, po) we denote pq + po.
As shown below in Corollary this map is continuous, but we do not need

this fact now.
14



Construction 8.3. Given k > 0, tuples U € Op(X)* and r € RY, and € > 0,
define M(U, r,e) C M(X) to be the set of measures p such that

(1) |w(U;) —rjl <eforl<j<k, and

(2) p(z)=0forz ¢, U;.
We further define M(U, r,€,d) = M(U, r,€) + Ms(X).

Lemma 8.4. Fach of the subsets M(U,r,€,8) C M(X) is open. If X is compact,
then the collection of all such forms a basis for the topology of M(X).

Proof. For the first claim, we are required to verify that g,,'M(U, 7, €, ) is open for
each m, where ¢, : X™ x R%; — M(X). is the projection. Now, if u = > | t;0,,,
then -

G (1) = S - ( U xmox [T Am (@) x {0} x Ha:&(m%)
mo+--F+mp=m =1 i=1

where A, : X — X is the diagonal and a, : R¢; — R>( is addition. Assuming

that pn € M(U, r,€,8), we may write ug = > .0, t:0,, and g = Z?:MH t;0,, such

that ; € |J; U; for i <no (without loss of generality), |u1(U;) —r;| < € for each j,

and po(X) < d. For each i, let

v = JMiwer, Ui i <mo
! otherwise.

For any &, > 0, the subset X0 x [T A, () x {0} ™0 < [TI, a1 (t;) is contained
in the open neighborhood

n n
xmosc JT Vi x [0,8)™ x [[ e (ti — & ti + ),
i=1 i=1
and the image of this open neighborhoo under g, lies in M(U, r, ¢, ) provided
we choose € < min; %ﬁ])_m and § < %. The claim follows.

For the second claim, we begin by noting that, since X and R>o are locally
compact Hausdorff, the convenient product X™ x RZ carries the ordinary product
topology by Proposition Choose an open subset V C M(X) and p € V,
writing g = > | #;0,, in lowest terms. The point (z,21,...,2,,0,¢1,...,t,) lies
in q;il(,u) for every x € X, so there exist open subsets x; € U; C X and sufficiently
small €, > 0 such that

n n
X x HUz X [0,6) X H(fi —€,t; +€) - q;_il_l(V)
i=1 i=1
(here we use the tube lemma, hence our assumption on X). It follows that V
contains M(U, t, ¢, 6), and the claim follows. O

Corollary 8.5. The space M(X) is convenient.

Proof. Tt suffices by Proposition[A.3]to show that M(X) is Hausdorff, which follows
from Lemma [8.4] since any two measures can be separated by sets of the form
M(U,r,¢€,0). O

WWe use that the topology of the convenient product is finer than the ordinary product
topology.
15



Corollary 8.6. The space P(X) is convenient.

Proof. 1t suffices by Proposition [A.3] to show that P(X) is Hausdorff, which is
immediate from Corollary[8.5]and the existence of the continuous injection P(X) —
M(X). O

We also record the following fact, which we do not use.

Corollary 8.7. Addition of measures equips M(X) with the structure of a unital
Abelian topological monoid.

Proof. The main point is that, since M(X) is convenient by Corollary[8.5] addition
of measures is continuous by Proposition |

Proof of Theorem[2.7. We have already established the claim of convenience. Given
a homotopy H : [0,1] x X — Y between f and g, Proposition[A.4]implies that the
composites

H™xid

12X, g 1] x X7 x An—t Ay An-

[0,1] x X™ x A"~
descend to a homotopy between f, and g..

Since colimits commute, and since convenient colimits are ordinary colimits,
the claim regarding sifted colimits is a standard consequence of the fact that the
convenient product distributes over colimits by Proposition [A.6] For the claim
regarding quotient maps, suppose that f: X — Y is a quotient map, and consider
the following commutative diagram:

|_| X" x A" |_| Y™ x A1
n>0 n>0

| !

PX)—— T (Y.
The vertical maps are quotient maps by definition, and the top horizontal map is
a quotient map by Proposition[A.4] It follows that the counterclockwise composite
is a quotient map, then that f, is so.

In order to establish the final claim regarding embeddings, we first show that the
canonical map P(X) — M(X) is a closed embedding. We first show that each of
the restrictions P, (X) — M, (X) is a closed embedding. If X is compact, then the
map in question has compact source and Hausdorff target by Corollary[8:5] and the
claim follows. In the general case, writing X for the collection of compact subsets
of X, partially ordered by inclusion, consider the commutative diagram

For the claim regarding embeddings, we first establish the corresponding claim
for M. Given a closed subspace A C X, note first that A is again convenient, so
M(A) is defined. Second, the induced map M(A) — M(X) is injective. Third, the
image of this map is closed, since the measure u lying outside the image is separated
from it by the open set M(X \ A, u(X \ A),¢,6) provided e < u(X \ A). It remains
to show that the map is a topological embedding.

Assume first that A is compact. Given a basis element M(U, r, €, §) for M(A) as
in Lemmal[8:4] choose open subsets 171 C X with [71- NA = U;. Then the intersection
of M(ﬁ,t,e,é) with the image of M(A) is precisely the image of M(U, t,¢,9). It
follows that the natural map M(A) — M(X) is an embedding.
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In the general case, writing X for the collection of compact subsets of X, partially
ordered by inclusion, consider the commutative diagram

colimg M(K n A) —— colimgex M(K)

| |

M(colimgex K N A) —— M(colimgex K)

| |

M(A) M(X).

Since X is a filtered, hence sifted, category, the top two vertical arrows are home-
omorphisms, and the bottom two vertical arrows are homeomorphisms by conve-
nience. Thus, it will suffice to show, given a closed set i : C' C M(A) and compact
j: K C X, that j 1. (C) is closed. By the previous case, the top horizontal arrow
in the commutative diagram

M(K N A) — M(K)

4| |

M(A) —— M(X)

is a closed embedding, the remaining arrows are injective, and the diagram is a
pullback at the level of sets, s0 j2 i, (C) = 1.(j.)~*(C) is closed, as desired.

To conclude, it suffices to establish that the canonical map P(X) — M(X) is a
closed embedding. By the same colimit-and-pullback argument as above, we may
assume that X is compact. In this case, each of the restrictions P, (X) — M, (X) is
a closed embedding, as it is a continuous injection with compact source and Haus-
dorff target. The claim then follows by another colimit-and-pullback argument,
where the colimit is taken over n. (]

APPENDIX A. CONVENIENT TOPOLOGY
Here we review the point set topological results from |Ste67| we require.

Definition A.1. We say that a topological space X is convenient if it is Hausdorff
and carries the weak topology with respect to its compact subsets.

Remark A.2. Convenient spaces are the same thing as compactly generated spaces
in the sense of [Ste67]. We avoid this terminology, as it has become fraught with
ambiguity through other usage.

According to [Ste67) 3.2], convenient spaces form a coreflective subcategory of
the category of all Hausdorff spaces; in particular, convenient colimits are ordinary
colimits. The value of the right adjoint £ on a Hausdorff space X is the same set
endowed with the weak topology with respect to the compact subsets of X. Since
k is a right adjoint and k2 is naturally isomorphic to the identity, convenient limits
are formed by applying k to the corresponding ordinary limit.

Proposition A.3 ([Ste67, 2.6]). Let ¢ : X — Y be a quotient map. If X is
convenient and Y Hausdorff, then Y is convenient.
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Proposition A.4 ([Ste67] 4.4]). The collection of quotient maps between conve-
nient spaces is closed under finite products.

Proposition A.5 ([Ste67) 4.3]). If X is locally compact Hausdorff and Y conve-
nient, then the topology on the convenient product X XY is the ordinary product
topology.

Proposition A.6 ([Ste67l 5.6]). The category of convenient topological spaces is
Cartesian closed.

Proposition A.7. The functor k preserves closed embeddings.

Proof. Without loss of generality, we may consider the inclusion i : A — X of a
closed subspace of a (not necessarily convenient) topological space X. Since A is
closed, the intersection of a compact subset of K with A is again compact; therefore,
a subset C' C A that is compactly closed in A is also compactly closed in X, which is
to say that k(i) is a closed map. Since k(7) remains injective, the claim follows. O

Corollary A.8. Given maps f; : X; = Y between convenient spaces for i € {1,2},
the canonical map X1 Xy Xo — X1 X X2 s a closed embedding.

Proof. As aright adjoint, the functor & preserves limits, so the pullback and product
in question are obtained by forming the respective ordinary limits in the category of
topological spaces and applying k. By Proposition[A.7] then, it suffices to establish
the corresponding claim for the map between ordinary limits. For this purpose, we
note that the pullback is the preimage under f; x fs of the diagonal in Y, which is
closed since Y is Hausdorf. (]
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