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Abstract. We propose an adaptation to the training of Vision Trans-
formers (ViTs) that allows for an explicit modeling of objects during
the attention computation. This is achieved by adding a new branch
to selected attention layers that computes an auxiliary loss which we
call the object-focused attention (OFA) loss. We restrict the attention to
image patches that belong to the same object class, which allows ViTs to
gain a better understanding of configural (or holistic) object shapes by
focusing on intra-object patches instead of other patches such as those in
the background. Our proposed inductive bias fits easily into the atten-
tion framework of transformers since it only adds an auxiliary loss over
selected attention layers. Furthermore, our approach has no additional
overhead during inference. We also experiment with multiscale masking
to further improve the performance of our OFA model and give a path
forward for self-supervised learning with our method. Our experimen-
tal results demonstrate that ViTs with OFA achieve better classification
results than their base models, exhibit a stronger generalization ability
to out-of-distribution (OOD) and adversarially corrupted images, and
learn representations based on object shapes rather than spurious corre-
lations via general textures. For our OOD setting, we generate a novel
dataset using the COCO dataset and Stable Diffusion inpainting which
we plan to share with the community.

Keywords: representation learning · vision transformers · attention
mechanism

1 Introduction

One of the key ideas of vision transformers (ViTs) is to update the representation
of a given patch p as a weighted sum of feature vectors from all image patches.
The weights, which are computed using the transformer attention mechanism,
are determined based on the feature similarity of p to other patches. This is
based on an implicit assumption that features of patches within the same object
should be more similar to each other than to features of other objects or of
the background. However, this assumption is often not satisfied, since different
parts of the same object may have very different appearances, and some object
patches may be more similar to the background or other object patches. This
fact limits learning efficiency and also the generalization ability on both in dis-
tribution and out of distribution samples. In addition, ViTs are susceptible to
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learning “shortcuts” [27] where rather than capturing the object focused seman-
tic meaning of an image, they capture spurious correlations with the background
or other image artifacts. For example, if all training images show a fox in the
forest, then a fox on a street may not be recognized. Currently, this problem is
alleviated with a large number of training images via datasets such as ImageNet
and heavy data augmentation. The hope is that the fox will appear on a large
variety of backgrounds, but the assurance of this fact comes only from a large
number of images, and it is hard to guess what other anomalies may be hidden
in the training images.

Our key contribution is to limit the attention of patches to patches of the
same object class only in a learned way. It can be viewed as refocusing the
attention on relevant image parts. As demonstrated in [31], such an approach
can lead to significant performance improvement. However, the focal modulation
in [31] is done outside the transformer framework, and it does not include any
inductive bias to focus on patches of the same object class, as proposed here.

Fig. 1. We restrict learning attention to objects of the same class.

We illustrate our idea on an example image in Fig. 1. We propose to limit the
attention of the green patch p inside the dog to patches inside the green mask.
Hence, the red patch in the background and the blue patch inside the cat in the
blue mask are excluded from computing the new weighted representation of the
green patch. Furthermore, our proposed restriction on the patch attention is not
hard coded but learned. This is achieved by adding a new branch to selected
attention layers that computes an auxiliary loss called object focused attention
(OFA) loss. To train ViTs with the proposed semantically focused attention, we
use datasets with semantic segmentation masks. Luckily there exists a plethora
of such datasets like the MS COCO dataset or PASCAL VOC 2012 dataset.
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In the absence of segmentation masks out of the box, we note the ability to
generate psuedo-segmentation masks via general purpose segmentation models
such as the Segment Anything Model (SAM) [13].

The proposed restriction of attention to patches within the same object
allows transformers to gain a better understanding of configural (or holistic)
object shapes since attention is trained to be learned within patches of the same
object class, hence the background is largely ignored. This also means better
generalization to out-of-distribution (OOD) images. We present an experimen-
tal evaluation to demonstrate these facts on multilabel classification tasks. As
our baseline model, we use the Musiq Transformer [12] and also show results
with strong out-of-distribution performance with the standard ViT [5]. We chose
Musiq Transformer due to its 2D positional encoding that is suitable for mul-
tiscale image representation. The original Musiq Transformer is developed for
image quality assessment, but we adopt it for other downstream tasks such as
multilabel classification. We note that our proposed OFA branch can be easily
added to the self-attention layer of any vision transformer variant.

2 Object Focused Attention

As outlined in Sect. 1, our key idea is to limit the attention of patches to patches
of the same class. Here we introduce our formal framework to implement this
idea.

For ViT and its variants, an input image I is first divided into N disjoint
square patches P = {p1, . . . , pN} of a fixed size. For simplicity of presentation,
we focus on a single encoder layer of Musiq [12] with one head. Let {x1, . . . ,xN}
be the set of input tokens representing the patches that were obtained by the
previous layer, where each token is a row feature vector xi ∈ R

d. Let X ∈
R

N×d be the matrix obtained by stacking vectors x1 . . .xN . The scaled attention
module of this layer first linearly projects the patch tokens to query, key, and
value matrices Q,K,V ∈ R

d×N , given by Q = XWQ, K = XWK , V = XWV ,
where WQ,WK ,WV ∈ R

d×d are learnable parameter matrices.
Next, we compute the attention weight matrix A that reflects the similarity

between the patches:

S =
QKT

√
d

and A = softmax(S) ∈ R
N×N . (1)

We call matrix S a scaled pre-attention matrix. The i-th row of S is denoted
as si ∈ R

1×N , and it indicates the attention of patch i to all other patches.
Finally, the output matrix is obtained as Y = AV ∈ R

N×d, where each row
yi of matrix Y is a new representation of patch xi as the sum of vectors in V
weighted by i-th row ai of attention matrix A. The new representation of the
i-th patch token is a weighted sum of all patch tokens.

The right branch of the diagram in Fig. 2 illustrates this process, which is
the standard attention computation as proposed in [28]. The left branch of the
diagram in Fig. 2 illustrates the proposed object focused attention (OFA) that
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aims at training matrix S to resemble a binary matrix B representing a focus
on patches within a given object. The left branch is devoted to computing OFA
loss. The matrix B and the process of computing OFA loss are defined below
(Fig. 3).

Fig. 2. The proposed object focused attention (OFA) as an extension of self-attention.
The arrows are labeled with the input/output matrices. The right part of the diagram is
based on the original self-attention paper [28]. The left branch computes the OFA loss.
The patch adjacency matrix (PAM) module is used to compute the patch adjacency
matrix B, which is then compared to the pre-attention matrix S.

Let R = {R1, . . . , Rr} be a semantic segmentation of image I into a set of
disjoint regions (object masks) such that their union covers the whole image. We
also assume that patch pi is contained in or intersects region Rj . Our training
procedure seeks to reduce the attention values of patches disjoint with region Rj

to zero in the pre-attention vector si. We note that simply setting these values
to zero for the training image I will not generalize to test images for which no
segmentation masks are given. Therefore, we propose to learn this behavior by
incorporating an auxiliary loss function to focus the attention of patch i only
on patches that also intersect region Rj . For this, we define a patch attention
matrix (PAM) B, which is a binary N ×N matrix. Ones in row bi of B represent
patches that intersect the same object mask as patch i. Formally, bik = 1 if both
patches pi and pk intersect the same object mask and zero otherwise. We use
here a simplified notation for clarity of presentation. In particular, patch pi may
intersect more than one object mask Rj , in which case more regions need to be
considered. To handle overlap patches, we use a simple heuristic where if any
part of a patch is part of an object, it is considered an object patch.

Then we apply row-wise softmax to B and obtain B′ = sofmax(B). Since
we want the patch cross attention to focus on foreground objects, we mask all
rows in B′ that represent background patches. We denote the new matrix B′′.
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Fig. 3. Data flow showing differences in training and inference. OFA is shown explicitly
as a training time method and thus can be used without any segmentation labels during
inference.

Similarly, we compute row-wise softmax to obtain S′ = sofmax(S). Followed
by setting to zero (masking) all rows in S′ that represent the background patches.
The resulting matrix is denoted with S′′. We use matrices S′′ and B′′ to define
the object focused attention (OFA) loss as their L2 distance:

LOFA = ||S′′ − B′′||2. (2)

This process is graphically illustrated in the left part of the diagram in Fig. 2.
We call the transformer trained with this auxiliary OFA loss OFAMusiq.

In order to explain the intuition behind OFA loss, let us assume that row i of
B represents an object patch and has k ones, meaning there are k other patches
that intersect the same region. Then sofmax(B) maps the ones in row i of B to
1/k in B′, and the same values will remain in B′′. Hence the L2 distance between
rows i of B′′ and S′′ pushes patch i to pay equal attention to the other k patches
of the same object and zero attention to all other patches. With reference to
Fig. 1, OFA loss forces the green patch inside the dog to pay attention only to
patches inside the green dog region.

Moreover, since the sum of each row of B′′ is one, the contribution of each
patch to OFA loss is equal. This means that a patch i that belongs to a small
object, and hence has fewer neighbors in its attention graph (fewer ones in i row
of B) is equally important as patches that belong to large objects.

The proposed OFA loss can be placed at any layer or at several layers at the
same time. In Sect. 6, we explore options for the best placement of the OFA loss.
Our overall loss function can be summarized as follows:

Ltotal = Ltask + α · LOFA, (3)
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where Ltask is a task-dependent loss, e.g., cross-entropy for classification, and α
is a hyperparameter that balances the two loss functions.

3 Self-supervised Option with MAE

Our method uses datasets with semantic segmentation masks to train vision
transformers with the proposed semantically focused attention. While there
exist many such datasets such as the MS COCO dataset, PASCAL VOC 2012,
or PACO [20], they are relatively small, so we explore the setting with self-
supervision which is useful in learning representations for low-data domains. For
this, we show experiments where we integrate OFA and Musiq Transformer with
Masked AutoEncoder (MAE) [11].

MAE uses self-supervised learning masking, where certain patches of an
image are masked, and the model is tasked with predicting the original con-
tent within those masked regions. This approach encourages the model to learn
meaningful representations by leveraging contextual information from the sur-
rounding visual context. The advantages of MAE lie in its ability to capture rich
contextual dependencies and learn robust visual representations. Training the
model to predict masked regions forces the model to understand and utilize the
relationships and patterns present in the small amount of labeled data.

To our knowledge, we are the first ones to extend MAE to multiscale masking
by utilizing Musiq positional encoding. Instead of performing masking directly
on image patches, we propose to perform masking on the cells of the reference
grid, which is then carried to tokens of images of different scales using a simple
geometric mapping of the cell grids to image patches, see Fig. 4. This mapping
is used by Musiq for positional encoding, but we extend it to also guide the
masking process.

Fig. 4. The multiscale masking is computed by masking the grid cells (left) and car-
rying over the masked cells to image patches that correspond to those cells.

4 Adjacency Regularization

Another way to view our OFA loss is through the lens of “adjacency regulariza-
tion” by enforcing a penalty on allowed states of connectivity. Vanilla transform-
ers such as ViT are known for their O(N2) quadratic complexity with respect to
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attention computation over the number of input patches. Cast in the language of
graphs, this is a complete graph (with self-loops) where every pair of vertices is
connected via an edge producing N ·(N+1)

2 edges of order O(N2). The adjacency
matrix, B, for such a graph can be described as Bij = 1 ∀i, j ∈ {0, . . . , N − 1},
where N is the number of vertices in the graph, or in the case of ViT, input
patches. By restricting the attention of each object patch to only patches of the
same object, we significantly reduce the number of edges in the attention graph
represented by matrix B. In particular for MS COCO [15], purely object based
connectivity creates a roughly 80% reduction in the number of edges. Only 20.7%
of edges from the standard fully-connected attention are used. The underlying
motivation behind training to decrease connectivity is to encourage a more par-
simonious attention matrix which is robust to spurious correlations and instead
can focus on semantic object information [14]. We show empirically in Sect. 6
that our model achieves such robustness.

5 Related Work

5.1 Transformers and Self-Attention

The transformer’s [28] self-attention mechanism offers a way for allowing every
token to model information over every other token. ViT [5] adapted the trans-
former for computer vision by converting an image to a set of patch tokens and
then using the standard transformer blocks.

There has been a considerable amount of work related to improving the self-
attention mechanism and augmenting the inductive biases in vision transformers.
One line of research has focused on modifying the self-attention mechanism to
better capture spatial information in images. For example, [4] suggests using
a mixture of local and global tokens in the input embedding to improve the
model’s ability to capture both local and global information in the image. Swin
transformer [18] utilizes a hierarchical structure analog to Convolutional Neural
Networks (CNNs) to improve ViT performance. Learning of attention has been
considered in [19], where it is applied to rectangular windows of patches. Since
the size of the windows is learned, the approach is called window-free multi-head
attention. In contrast to our work, all these approaches do not explicitly utilize
object mask knowledge in restricting or restructuring self-attention. Moreover,
many of them add computational overhead at the time of inference while our
approach keeps the original structure of the self-attention layer during the infer-
ence.

5.2 Holistic Shape Representation

According to [1], objects have both local and configural shape properties. Local
shape properties can be important for recognition. For example, ears alone may
be sufficient to identify a rabbit but often are not discriminative enough. A con-
figural shape property is a function not just of one or more local features (parts)
but also of their arrangement meaning it provides a holistic shape representation.
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Vision transformers, like other deep learning models, can learn to attend to
different features of an image, including both texture and shape. However, it has
been observed that their attention is more focused on texture than shape, in
particular, they fail to capture the configural nature of shapes in images, which
means they are not able to adequately learn a holistic shape representation [1].
There have also been several studies on CNNs that demonstrated that they
tend to attend more to texture than shape in natural images, e.g., [2,9,10]. We
demonstrate in Sect. 6 that the proposed refocusing of attention within objects
contributes to a better understanding of the holistic shape of objects.

5.3 Multi-label Classification

In many classification tasks, class labels are mutually exclusive such as when an
image contains just one object. In multi-label classification, we predict mutually
non-exclusive class labels, such as when an image may contain more than one
object or concept. Multilabel classification is a challenging problem in computer
vision due to the high dimensionality of the label space and potential correlations
between labels. The label space can contain a large number of labels, and each
label can be associated with multiple instances in the dataset. Furthermore, the
labels can be highly correlated, meaning that the presence of one label in an
image can increase the likelihood of other labels being present as well.

One of the first transformer networks applied to multilabel classification is
[3], where windows partitioning, in-window pixel attention, and cross-window
attention are used for improving the performance of multi-label image classi-
fication tasks. One of the best-performing multilabel classification method is
ADDS [30], where ADDS stands for Aligned Dual moDality ClaSsifier. It includes
a dual-modal decoder that performs alignment between visual and textual fea-
tures. In contrast, we only use visual features.

6 Experimental Evaluation

Across our experiments, we use both single-scale and multi-scale MUSIQ trans-
formers [12], denoted MUSIQ-single and MUSIQ-multi. The single-scale resizes
images so that the longer side has length 512 while preserving the aspect ratio
(ARP). The multi-scale uses the full-size image and two ARP resized inputs 384
and 224. It, therefore, uses three-scale input. In addition, we investigate the influ-
ence of self-supervised learning using MAE masking as a further enhancement of
our methods. We also show that OFA is much more robust to background per-
turbations than standard ViTs by evaluating on our Stable Diffusion inpainted
dataset. We use α = 0.7 across our experiments unless otherwise stated. Finally,
we present an interesting finding via patch shuffling showing that ViTs don’t
grasp the overall shape of objects well compared to models equipped with OFA.



Learning Object Focused Attention 299

6.1 Multi-label Classification on MS-COCO and Pascal Voc2012

MS COCO (Microsoft Common Objects in Context) is a large-scale image recog-
nition dataset containing 80 different object categories. Multilabel classification
uses the same train/val splits as for the object detection task. The training set
contains 118,287 images with annotations, while the validation set contains 5,000
images, which are used for testing. All the training images also contain seman-
tic segmentation masks so that we can use them in our framework. We use the
standard definition given by the COCO dataset of thing and stuff. From the
COCO homepage we quote: “Things are objects with a specific size and shape,
that are often composed of parts. Stuff classes are background materials that
are defined by homogeneous or repetitive patterns of fine-scale properties, but
have no specific or distinctive spatial extent or shape.” Put simply the COCO
dataset defines segmentation masks directly for object classes and background
classes.

Pascal VOC 2012 [6] contains objects grouped into 20 classes. The stan-
dard train/val set for the multilabel image classification/detection task has
11,540 images. However, since we need semantic segmentation masks, we train
on train/val 2,913 images that are usually used for the image segmentation task.
We test on the standard Pascal VOC 2012 test set composed of 10,991 images.
Following other methods, we use mean average precision (mAP) in evaluating
multilabel classification performance.

We experiment with computing the OFA loss over multiple attention layers
of MUSIQ, which has 14 attention layers. Table 1 compares two settings for
positioning the OFA loss: at the first and last layers [1, 14] and at layers [1, 7, 14].
Since placing OFA loss at layers [1, 7, 14] performs the best across all the settings,
this model is used in all our further experiments. As for our weighting schema, we
progressively weight the contributions of each attention block with later layers
getting more weight with a factor of 0.9. The loss at layers [1, 7, 14] is weighted
as:

OFAtotal =
1
3
(0.9 · OFA14 + 0.92 · OFA7 + 0.93 · OFA1) (4)

The loss at layers [1, 14] is weighted as:

OFAtotal =
1
2
(0.9 · OFA14 + 0.92 · OFA1) (5)

Table 2 shows multilabel classification results of MUSIQ transformer trained
on MS COCO. We evaluate it on MS COCO and on Pascal VOC2012. The
results on Pascal VOC2012 can be interpreted as zero-shot since do not train
the model on this dataset and instead just fine-tune a classification head. We
only benefit from the fact that the 20 classes of Pascal VOC2012 are a subset of
the 80 classes of MS COCO. However, these datasets are composed of disjoint
images, and MS COCO images are very different from Pascal VOC2012 images.
Hence the excellent performance of MUSIQ-multi + MAE + OFA gives an initial
result showing out-of-distribution (OOD) generalization ability of our approach.



300 V. Trivedy et al.

Table 1. mAP multi-label classification results for placement of the OFA across layers.
Placing OFA loss at layers [1, 7, 14] performs the best across all MUSIQ settings and
so is used in further experiments. We add ViT and note that we use layer 12 instead
of 14 as ViT-Base has 12 layers.

Methods MS COCO PASCAL VOC2012

[1,14] [1,7,14] [1,14] [1,7,14]

MUSIQ-single + OFA 88.3 89.0 87.8 88.4

MUSIQ-multi + OFA 89.4 89.9 89.3 90.1

MUSIQ-single + MAE + OFA 91.3 91.7 90.8 91.5

MUSIQ-multi + MAE + OFA 91.6 92.1 91.2 91.9

ViT-Base + OFA 88.2 89.0 - 87.8

Table 2. mAP multilabel classification results on the MS COCO and Pascal VOC2012
datasets. All models are trained and evaluated on MS COCO. They are then applied
on Pascal VOC2012 without any finetuning besides the linear head.

Methods MS COCO zero-shot VOC2012

ViT-Base 86.6 81.7

ViT-Base + OFA 87.3 87.8

MUSIQ-single 87.5 89.7

MUSIQ-multi 88.0 90.2

MUSIQ-single + OFA 89.0 90.9

MUSIQ-single + MAE 89.7 92.3

MUSIQ-multi + OFA 89.9 93.2

MUSIQ-multi + MAE 91.6 93.6

MUSIQ-single + MAE + OFA 91.7 94.7

MUSIQ-multi + MAE + OFA 92.1 95.4

In Table 3, we compare our methods to other multi-label classification meth-
ods on MS COCO, most with more complex architectures. We find that our
method which adds an auxiliary loss to MUSIQ transformers outperforms other
SOTA methods. We do not compare against multimodal methods such as [23,30]
since we only use visual features.

In Fig. 5, we visualize the final-layer attention maps of the baseline MUSIQ
and MUSIQ + OFA for some test examples. We find that MUSIQ + OFA quali-
tatively attends to object shapes more consistently and produces reasonable seg-
mentation maps in comparison to MUSIQ. This finding is consistent across small-
single label images, large single-label images, multi-label images, and multi-label
multi-object images. MUSIQ often attends more greatly to the background and
finds spurious correlations through attention while the OFA loss has a significant
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Table 3. Comparison to other methods on MS COCO. Our approach is SOTA against
other methods and a MUSIQ-multi baseline. Combining multi-scale training and OFA
gives better performance even at lower resolutions.

Methods Resolution mAP

IDA-R101 [16] 576 86.3

TResNet-XL [22] 640 88.4

TResNet-L-V2 [21] 640 89.8

MlTr-XL [3] 384 90.0

IDA-SwinL [16] 384 90.3

Q2L-SwinL [17] 384 90.5

MLD-TResNet-L-AAM [26] 640 91.3

Q2L-CvT [17] 384 91.3

MUSIQ-multi (full,384,224) 88.0

MUSIQ-multi + MAE + OFA (full,384,224) 92.1

Table 4. Results of multilabel classification over 20 classes on Pascal VOC2012.

Method mAP

VGG-16 [25] 79.3

Swin-B [18] 84.9

Deit-B [29] 83.0

ViT-B [5] 81.7

PF-DLDL [7] 92.4

MCAR [8] 94.3

MUSIQ-multi 90.2

MUSIQ-multi + MAE + OFA 95.4

impact in focusing the attention computation on objects and greatly reducing
attention to the background.

Table 4 compares the performance of zero-shot MUSIQ-multi + MAE + OFA
(trained on MS COCO), to recent SOTA transformers: ViT-B [5], Swin (Swin-B)
[18], DeiT with iRPE-K (DeiT) [29], PF-DLDL [7], MCAR [8] and to VGG-16
[25]. Our model exhibits the best performance and significantly outperforms the
other methods (Table 6).

6.2 Out-of-Distribution Background Corruption with Stable
Diffusion

In Fig. 6, we show selected examples of our new dataset for evaluation of OFA on
OOD samples with adversarially corrupted backgrounds. We use Stable Diffusion
inpainting [24] to replace backgrounds in each of the MS COCO test images with
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Fig. 5. Comparison of attention maps of proposed MUSIQ + OFA and baseline
MUSIQ.

Table 5. mAP results on MS COCO test data with background in-painted by Stable
Diffusion [24]. We show the performance on the original test set and the degradation
on our inpainted dataset. The OFA model is more robust to background perturbations.
The result implies that OFA is more focused on learning semantic information about
the objects rather than spurious correlations to the background.

Base Model Resolution Baseline ViT ViT+OFA

ViT-Base-Patch16 (1k) 224 73.9 (−7.0) 78.6 (−2.2)

ViT-Base-Patch16 (21k) 224 73.6 (−9.3) 81.7 (−2.2)

ViT-Large-Patch16 (21k) 384 79.0 (−6.9) 83.7 (−3.0)

five new background categories: ocean, desert, forest, meadow, and beach. We use
the mask information for each image to set boundaries for parts of the image that
are inpainted. We inpaint the background of each image while leaving the object
area unaltered, effectively superimposing each object onto a new background. To
decide on the inpainting domain we use the simple prompts to guide the diffusion
process. We use 5 prompts for each validation image resulting in an overall set of
5 × 5000 = 25, 000 images. We then test models trained on MS COCO without
any finetuning. Table 5 clearly shows the robustness of OFA to OOD images
with respect to background perturbations. We find that ViTs are susceptible to
background perturbations showing a significant decrease in performance while
the OFA model is more robust to background swapping.
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Fig. 6. Example images generated by Stable Diffusion inpainting on MS COCO.

Fig. 7. Example shuffle operation applied to a varying number of patches. For humans
the objects in a shuffled grid with 4 patches already seem unrecognizable.

Fig. 8. The mAP over 20 classes on PASCAL VOC2012 when patches are shuffled.
While the classification performance of ViT + OFA drops significantly, those of ViT
hardly drops.
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Table 6. Ablation of computing OFA loss on multiple attention blocks in ViT+OFA
using the ViT-Base-Patch16 (21k) on a subset of MS COCO.

OFA at Different Layers (40% data) 1 2 3 4 5 6 7 8 9 101112mAP

[12] � 83.5

[1] � 83

[1,12] � � 83.6

[1,6,12] � � � 83.7

[1,3,7,10,12] � � � � � 84.0

[1,3,5,7,9,11] � � � � � � 83.7

[all] ���������� � � 83.6

6.3 Learning Shape Representations over Textures

We demonstrate that the arrangement of object parts is not well represented by a
standard ViT and is aided by using OFA. We divide an input image into patches
by imposing a grid structure of different sizes and then randomly permute the
position of patches. Figure 7 shows samples of this shuffle operation applied
to PASCAL VOC 2012 images [6]. As illustrated by the blue dashed curve in
Fig. 8, the multilabel classification performance of ViT remains nearly constant
if 4 patches and 16 patches are permuted. However, as can be seen in Fig. 7,
already the objects in the images with 4 permuted patches seem unrecognizable
to a human. If ViT possessed an understanding of the configural shape, we
should see a significant performance drop. In contrast, the performance of ViT
+ OFA drops significantly (red dashed curve). This demonstrates that it gained
at least a rough understanding of configural object shapes due to the object-
focused attention loss. We used ViT as the baseline model in this experiment
to eliminate any influence of multi-scale and aspect ratio preserving since ViT
takes a single-scale, square image of size 256 × 256 as input.

7 Discussion and Future Work

We introduce a simple yet effective method for object-centered learning in the
vision transformer framework. The proposed object focus attention loss is easily
integrated into the self-attention module. Our trained model does not introduce
any computational overhead at inference and still outperforms SOTA transform-
ers. Moreover, it generalizes better to out-of-distribution examples and corrupted
examples with respect to background and object shape. Finally, we show SOTA
results when our approach is combined with multi-scale representation and MAE,
offering a potential avenue for more exploration. We are interested in scaling our
method to larger data using models that generate pseudo-segmentation masks
such as SAM. We will explore this option in our future work. As shown in
[2,9,10], deep learning models tend to focus on texture rather than on the shape
of objects. Our experimental results demonstrate that the proposed refocusing
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of attention on segmentation masks contributes to a better understanding of
holistic object shapes. We speculate that this fact makes our model more robust
to adversarial attacks. In order to refine the learned attention, we will also con-
sider learning attention based on instance segmentation as well as on panoptic
segmentation data.
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