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Abstract

Consider a general-sum N -player linear-quadratic (LQ) game with stochastic dynamics over a finite
time horizon. It is known that under some mild assumptions, the Nash equilibrium (NE) strategies
for the players can be obtained by a natural policy gradient algorithm. However, the traditional
implementation of the algorithm requires the availability of complete state and action information
from all agents and may not scale well with the number of agents. Under the assumption of known
problem parameters, we present an algorithm that assumes state and action information from only
neighboring agents according to the graph describing the dynamic or cost coupling among the
agents. We show that the proposed algorithm converges to an e-neighborhood of the NE where the
value of € depends on the size of the local neighborhood of agents.

Keywords: Linear quadratic games, multi-agent systems, learning in games, Nash equilibria.

1. Introduction

Multi-agent systems with self-interested agents interacting through coupled dynamics, costs, or
constraints are crucial in various fields. This work focuses on linear-quadratic (LQ) games, an
extension of the classical LQ regulator and cooperative distributed LQ regulator problems. LQ
games involve a linear time-invariant system controlled by all agents, where each agent aims to
minimize its own quadratic cost. For foundational assumptions and theory behind equilibria in LQ
games, including the conditions for the uniqueness and existence of Nash equilibria (NE), we refer
the reader to Basar and Olsder (1999).

Designing optimal equilibrium strategies in multi-agent systems is challenging. The field of
learning in games, particularly with advancements in multi-agent reinforcement learning (MARL),
provides a robust framework for this task. The literature in this field is far too numerous to be
summarized. However, for comprehensive overviews, we point to surveys such as Busoniu et al.
(2008); Li et al. (2022); Yang and Wang (2021); Zhu et al. (2024); Zhang et al. (2021); Canese
et al. (2021). As representative examples, policy gradient methods in MARL has shown great
success. For instance, in two-player, zero-sum stochastic games Daskalakis et al. (2021), natural
policy gradient for constrained nonconcave maximization problems Panageas et al. (2019), neural
fictitious play for approximating Nash equilibria in games with imperfect information Heinrich and
Silver (2016), and gradient-based learning methods for differentiable games Balduzzi et al. (2018).
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In the specific context of LQ games that we consider with known system matrices, one class of
algorithms is based on iteration of non-linear equations. For LQ differential games, Riccati-based
methods converge to local open-loop and feedback NE in two-player and N-player settings Scarpa
and Mylvaganam (2023); Scarpa et al. (2024); Sassano et al. (2025), with reduced complexity in
potential games Scarpa and Mylvaganam (2023). Extensions include iterative, data-driven Lya-
punov and Riccati-based algorithms for nonzero-sum LQ games in infinite-horizon, discrete-time
settings under specified assumptions Nortmann et al. (2024); Nortmann and Mylvaganam (2023);
Monti et al. (2024). With unknown system matrices, MARL-based methods are more suitable, such
as policy optimization for zero-sum LQ games Zhang et al. (2019), nonzero-sum games with struc-
tured interactions Roudneshin et al. (2020), and gradient ascent for general-sum games Song et al.
(2019). Additionally, LQ games with a large number of agents are often modeled as continuous-time
LQ mean-field games Wang et al. (2021).

This paper focuses particularly on natural policy gradient methods, known for their good con-
vergence rate and applicability across discrete and continuous state and action spaces Kakade and
Langford (2002); Kakade (2001); Mnih et al. (2015); Agarwal et al. (2020). In LQ games, pol-
icy gradient methods can fail to reach Nash equilibria in general-sum games under deterministic
dynamics Mazumdar et al. (2020), but natural policy gradient converges under stochastic dynam-
ics Hambly et al. (2023).

Natural policy gradient algorithms, like many MARL methods, has the underlying assumption
that the states and actions of all agents are available at every other agent, which might not be scalable
for large scale systems. If agents instead access only their neighbors’ states and actions (defined by
a coupling graph of dynamics and costs), they can still converge to a neighborhood of equilibrium
policies since they should have access to the ‘most important information’ for the design of their
local policies. However, a precise characterization of this intuition has only now begun to arise.
In networked Markov decision processes with finite state-action spaces, exponential decay property
that quantifies how the effect of distant agents on each other diminishes with their graph distance
allows MARL algorithms to rely on local neighborhood information Qu et al. (2020b,a), converging
to a neighborhood of the equilibrium policies Shibl and Gupta (2024). Similar results hold for
networked systems with spatially decaying dynamics where the effect of a control action decays
exponentially with distance Shin et al. (2022, 2023) and cooperative LQ setups (where agents are
not self-interested but wish to minimize a team cost function) Olsson et al. (2024).

In this paper, we seek to answer whether such a result is possible for natural policy gradient
algorithm in general-sum N-player LQ games with restricted availability of state and action infor-
mation to be from a neighborhood according to a coupling graph. We redesign the algorithm to
ensure agent policies converge to an e-neighborhood of the Nash equilibrium (NE) for scalability
as the number of agents grows. Key contributions include developing a scalable distributed policy
learning algorithm in LQ games, leveraging local observability, proving convergence to a neighbor-
hood around a NE, and bounding the size of the neighborhood in terms of the problem parameters.

The paper is organized as follows. Section 2 introduces the model used. Our algorithm is pro-
posed and analyzed in Section 3. Section 4 applies the algorithm to a numerical example. Section 5
concludes the paper with some future directions.

Notation: R and I denote the set of real numbers and the set of integers, respectively. A € R"*"™
denotes a real matrix A of dimensions n X n, while x € R"™ denotes a real n-dimensional column
vector . We denote A(i,7) as the i-th block row and j-th block column of A, where the block
dimensions are clear from the context. Apart from this usage, superscripts will be used to denote
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the agent index, and subscripts will be used to denote time. Vector 2-norms and induced 2-norms of
matrices are denoted by || - ||. A > B indicates that A — B is positive definite, and A > B indicates
that A — B is positive semidefinite. 77(A) denotes the trace of matrix A. o(A) and opin(A)
denotes the singular values of A and the smallest singular value of A, respectively. For any L > 0
and o € [0,1), a matrix ® is (L, o)-stable if | ®°| < Lo’ fort > 0. The matrix 0 denotes the zero
matrix and I denotes the identity matrix with dimensions clear from context. A graph G = (V,€)
is a pair of a node set VV and an (undirected) edge set £. The distance between ¢ and j on graph G,
denoted by d(i, 7), is the number of edges in the shortest path connecting i and j, where i, j € V. E
denotes the expectation operator. We define Ij; j := {1,2,..., N}. Finally, we denote .7; as a time
varying set.

2. Model

2.1. N-Player General-Sum Linear-Quadratic Games

We consider a non-cooperative, finite-horizon, general sum LQ game with N agents. Associate
each agent with a node in a graph G = (N, &) in which N := {0,1,..., N — 1} is the node set
and £ C N x N represents the set of undirected edges. An edge (i,5) € & indicates the coupling
between agents ¢ and j through their dynamics and/or cost as defined below. For each agent i,
denote the state by 2 € R™" and the control input by u* € R*". The state of each agent i evolves as

N-1 N—-1
Tier = Y AT + Y B j)ul + wj, b, 1)
=0 =0

where w! is the process noise. Non-zero matrices A(7,5) and B(i, j) represent the dynamics cou-
pling between agents 7 and 7. We can stack the agent states, control inputs, and process noises into
system state, control, and process noise vectors z; € R™, u; € R¥, and w; respectively. By con-
sidering A (4, j) and B(i, j) as the (7, j)-th blocks of a matrix, we can define the system transition
matrices A € R™*", B* € R™**' and B € R™**. We make the following assumption.

Assumption 1 The initial condition xq is a zero-mean Gaussian variable with positive definite
covariance matrix E[zox]| = 0. Further, the process noise vectors {w;}L_, are independent and
identically distributed zero-mean Gaussian random variables with positive definite covariance ma-
trix W = E[wtth] > 0 and independent from xg, fort =0,1,...,T.

The per time step cost of interest to each agent ¢ is given by

@)

T ) ) Qlzy + (ul) TR ift # T,
T,u) = , )
! a:tTQth ift =T,

for cost parameterization matrices Q° and R satisfying Q° > %I and R’ > 71, where L and
o are defined in Assumption 2, and y € (0, 1). If the appropriate block Q'(7, ) and / or R¥(4, 7)
(defined in the same manner as the blocks of A and B) is non-zero, we say that the agents ¢ and j are
coupled through their cost functions. The objective function for agent 7 is to minimize the expected

finite horizon sum defined in (3), where the expectation is taken over the system noise and initial
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state distribution.

T
Objective function for agent i: minimize [E [Z Ji(x, u)]
t=0
N-1 3)
subjectto  wpy1 = Axy + Z Bluj + wy.
=0

The following definitions will be used in the paper.

Definition 1 Consider a linear time-invariant system with system matrices A and B. For any L > 0
and o € [0,1), (A, B) is (L, «)-stabilizable if IK : ||K|| < L and A — BK is (L, «)-stable. Further,
(A, B) is (L, o)-detectable if(AT, B") is (L, o)-stabilizable.

Definition 2 (Definition 3.3 in Shin et al. (2022)) Consider a matrix ® € R™*"™, a graph G :=
(V, &), and index sets T := {I;}iey, J = {Ji}iey that partition Iy ), 111 ), respectively. We
say ® induced by (G,Z,J) has bandwidth B, if B is the smallest non-negative integer satisfying
®(1;,J;) = 0 for any i,j € V with distance d(i, j) > B.

We make the following assumptions that are standard in the LQ games setting.

Assumption 2 Fori = 0,1,...,N — 1, we assume that ||A||, ||B’||, |Q||, ||R!|| < L. This helps in
limiting natural system growth and ensures effective and non-excessive control authority. Further,
we assume that the system is stabilizable considering u as the control input in that (A, B) is (L, ov)-
stabilizable. Finally, we assume that the pair (A, (Q%)'/?) for each i is (L, a)-detectable.

While L and « are not unique, there are unique minimum values L,in and apin. Our results
hold for any valid L and «a; however, the tightest bounds result from Ly, and apin. Also, it is
noteworthy to mention that we do not assume that L., is less than 1.

Assumption 3 We assume that for i = 0,1, ..., N — 1 there exists a unique solution {K:* tT;()l, to

the following discrete algebraic Riccati equations:

N
, , N R o
Ky = (R'+ (B)PLLB)  (BYPR, [A- Y BIK ), )
=1
where {P*}L_ are obtained recursively backwards from

T

N N
Py = Q'+ (K)TRK] + (A=Y B'K" | Pry (A= BK] |, (5)
j=1 J=1

with terminal condition Pi;,f =0

In general, an LQ game may have multiple NE. Lemma 3 provides a sufficiency condition for
the existence of the unique solution in Assumption 3 that will be referred to as the NE in the sequel.
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Lemma 3 (Remark 6.5 and Corollary 6.4 in Basar and Olsder (1999)) For the problem posed
above, define the block matrix ®4, for t = 0,1,...,T — 1, with the (i,1)-th block given by R* +
(B")"Py \B' and the (i, j)-th block (i # j) given by (B")"Py* B, fori,j € {0,1,...,N — 1},
and with Péj_l defined in Assumption 3. Then, a sufficient condition for the existence of a unique
solution of (4) is the non-singularity of the block matrix ®y, fort = 0,1, ..., T — 1. Further, if such
a unique solution exists, then there is a unique NE for the LQ game with

u%* :_th:*xt7 \V/t:071,...7T_].,

where Ki* is defined in (4). At this NE, the cost (3) for agent i is given by E[xg 6*x0 + Né*], where
{Pi*}I_, are defined in (5) and

with terminal condition N}* =0.

This result implies that to obtain the NE of the LQ game, we can focus on linear feedback
policies u} = —K'x¢, Vi = 0,1, ..., N — 1, for the time-invariant case, which means that A, B, Q,
and R are not time dependent.

2.2. Natural Policy Gradient Algorithm

In order to obtain the optimal K*, we assume that all agents utilize natural policy gradient algorithm
(Algorithm 1 in Hambly et al. (2023)), which is known to converge to the NE in general sum N-
player LQ games, under Assumption 4 for the system noise Hambly et al. (2023). Assumption
4 intuitively means that the system requires a certain level of noise for exploration. It should be
mentioned that natural policy gradient algorithm in Hambly et al. (2023) is the only algorithm that
has guaranteed convergence in the general sum /N-player stochastic LQ game setting.

Assumption 4 (Assumption 3.3 in Hambly et al. (2023)) The system parameters satisfy the fol-
lowing inequality for some small constant § > 0 and initial controller gain K (0.

(@0° | go(n - )27y, (18) (max{C(KT)} + 6)F (”2T = 1>2,

e o3 71

where oy := min{omin(E[z07] ]), min(W)}, g = ming{omin (@9}, og := min;{omm (R},
S i= o Bt ()] v i= maxi{ B}, 5 o= maxc {||4 — SN BE||, 1+ 8} +
N~p % + 5572 CHK) = E [ tT;[)l (2] Q'zy + (K'zy) "R (K'zy)) + x;QixT}, and 6 =
max; {C* (K0 K=7) — C/(K*)}.

3. Proposed Algorithm

The natural policy gradient algorithm in Hambly et al. (2023) assumes that all agents have access
to the states and actions of all other agents, which may not be feasible for large scale problems. In
Algorithm 1, we propose an algorithm where each agent only has access to the states and actions
of agents within its x-hop neighborhood, N/, according to the graph G. The x-hop neighborhood
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consists of agents whose graph distance to agent ¢ is less than or equal to . This means that agent
i’s control input at time ¢ depends on the states and actions of agents j such that d(i, j) < x. Thus,
the natural policy gradient algorithm must be modified to rely solely on local information. To ensure
the error from using only local data is bounded, we show that the dependency of agent 7 on the states
and actions of distant agents decays exponentially with increasing graph distance, which is known
as the exponential decay property. Theorem 4 formalizes this exponential decay property for the
LQ game controller gain.

Theorem 4 For the problem formulation in Section 2, it holds that |K™* (i, j)|| < B¢%5459) for
1,7 € N, where 3, 1, M, n, and ¢ are defined below. Based on their definitions, 3 > 1 and
¥ € (0, 1), which satisfies the exponential decay property.

_M s M _ L3(1+L?
/B_Ew , w_m, M—maX(2L+1,w)7
M?2LA L)? —a)?
(BEEGELE 4 et 1 02) 1201+ 1y
a (1-a)? ’
-1
b= 4L4(1 + L)? (1 N SML*(1+ L)% 16M2L3(1 + L)4> M(1+nM)(1 - a)?
T\ 0—ax (1—a)2y (1—a)i? 2+ )

Algorithm 1 Scalable Natural Policy Gradient Algorithm for N-player LQ Games

1: Input: Number of iterations M, time horizon T, initial policies K 0 — (K 1’(0), KN ’(0)),
step size 7, model parameters {A} !, (B} ', {Q'}],, and {R'} ' (i = 0,..., N — 1).

2: form € {1,...,M} do

32 forte{T—1,..,0}do

4: fori € {1,...., N} do
5: Calculate the matrix P/ 7 Wwith PYKZ( " = Qi by
Pg(mm — Q' 4 (KH(m—D)TRIKHM=1) | (A _ Z BiKi,(m_l))TPEFYZm ' (A _ Z BiKi,(m—l))_
' ieNF iENS
6: Calculate the matrix E} by
Et{{i(mfl) — RiKi,(m—l) o (Bi)TPg—(l”:’;fl) (A _ Z BiKi7(m_1)) )
iENT
7: Update the policies using the natural policy gradient updating rule:
1 1 — (m—1)
Ky = Ky oK™ ©6)
8: end for
9:  end for
10: end for

11: Return the iterates K (M) = (Kl’(M), ...,KN’(M)).

To prove Theorem 4, we need the supporting lemma shown below. We define G* € R(Z+)ntTk x(T+1)n+Tk'

and F' € RT+Unx(T+D)ntTk pelow, Also, we define MY as the KKT matrix for the equality-
constrained quadratic optimization program in (3).
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Q 0 0 I 0 0 0 0
. 0 KR 0 - |-A -B' 1 0 0 , i (piyT
G' = JF' = M= [Gi (F) ]
0 0 . 0 0 0 i .0 0 L
o o0 --- Q 0 0 .- —-A B 1
Lemma 5 (adapted from Shin et al. (2023)) Consider a matrix Z induced by the graph (G =
WN,E),T = {Z},e NS =T }ien), according to Deﬁnition 2, with bandwidth not greater than
(1-a)? TG (1-a)?y
ml N'G'N > ml where

N is the null space ofFZ. Further, ¢ < 0( ) S M, and |Z7 (i, §)|| < B9 for i, j € N,
where M, ¢, B, and v are defined in Theorem 4, and L and o are defined in Assumption 2.

Proof for Theorem 4: Consider a time-varying graph G; = (N3, &;). Note that, by construction,
N; and &; define the nodes and coupling of the graph at the ¢-th time step that allow the correct par-
titioning for the respective time step of the time-dependent structures of F? and G*. Thus, the KKT
matrix M’ has a bandwidth not greater than 1 induced by G = (N7, &7), Ir = { T} iﬂ OTT] ,Ip =

{Ig}igf[g TT]. Under Assumption 3, it suffices to show that ||(M?)~1(4, 7)|| < B1%-%49) to show that

1K™ (i, )| < BO-543) . By Assumption 2 and Lemma 5, we have ||(M?)~1(i, j)| < By0-540d)
fori,7 € Np. Lastly, ¢ € (0,1) and 8 > 1 follow directly from the definitions using the facts that
¢ <land M > 1. [ |

Lemma 6 Consider the problem formulation in Section 2. Under Assumptions 1, 2, 3 and 4, Algo-
rithm 1 converges to a neighborhood of the optimal solution with a linear convergence rate.

Proof The proof of convergence follows from standard arguments as in Theorem 3.5 from Hambly
et al. (2023) that introduced the original natural policy gradient algorithm for general sum /N -player
LQ games. |

Furthermore, Theorem 7 bounds the error between the true optimal controller gain (K™*) and
the truncated optimal controller gain (K"*). We define a sub-exponential function f(d) that satisfies

{i e N :d(i,j) = d}| < f(d).

Theorem 7 Consider the problem formulation in Section 2, natural policy gradient algorithm in
Hambly et al. (2023) for K**, and Algorithm 1 for K**. Under Assumption 2 and 3, |K** — K| <

QU", where ) = (Supdeﬂ>O f(d)(ﬁ)ﬁﬂ%, U= %, and ) is defined in Theorem 4.

Proof for Theorem 7: We know that ;¢ \n\ /= 1K (i, 7)™ < >ge,iq Bf(d) and ( )d\I/d

(supger., f (d)(%)d)lﬁ_—\ﬂ,\l/“ for any ¢ € N. The first inequality follows from the definition
of the sub-exponential function f(d). The second inequality follows since the product of a sub-
exponential and exponentially decaying functions is bounded. Further, the supremum is bounded
since the product of a sub-exponential function and an exponentially decaying function converges.
The effect of multiple nodes being more than x hops away is exponentially small in x due to the
fact that the exponential decay is stronger than the sub-exponential increase. |
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Finally, we state our main result which bounds the difference in the costs from using the com-
plete state and action information and using the local state and action information.

Theorem 8 Consider the problem formulation in Section 2, the natural policy gradient algorithm
in Hambly et al. (2023) for J*, and Algorithm 1. Under Assumptions 2 and 3, and Theorem 7,
|J* — JE| < AUF ||z ||%, for all i and k,

where A = L) (1)> (%) . ((1 + L4(1+L2)) (2L5(1+L2) + Q) + M)

17(# 1—a? v(1—a?) 1—a?

Proof for Theorem 8: From Theorem 7, we know the following holds:
g(x) = (u" () "R (u™(2)) — (u"*(x)) "R (u"*(x))
= (u"(2) + u™ (2)) "R (u™(2) — u™* ()
< LQ(QB + Q) || 2]|2.
This implies that:
h(z) == J*((A — BEK™)z) — J%((A — BIK"*)z) < Q8y (2 +28+ Q)xmmy?.

From the definition of J¥*(-) and J(-), we know that J* (2 (t)) — J* (2*(t)) = J* (2" (t+1)) —
JE (@ (E+ 1) + g(2" (1)) + h(z"(2)).
Summing up this equality from¢ =0tot =T — 1, we get:

J" (o) — I (o) = J"(@"(T)) = ™ (@(T) + Y g(="(1)) + ) h(a"(t))

From Assumption 2, J*(z"(T")) — 0 and J™*(2*(T)) — 0 as T — oo. Also, we have

2% o 28+un 82
19 15 287(2+26+8)
09 (1) < Sy el and S h(0) < ST ol
2432 2532
Thus, taking T — oo, we get the required bound. |

In this result, based on the exponential decay property of the controller gain matrix, we have
shown that the norm of the error of the controller gain matrix and the error of the cost from utilizing
local neighborhood information only are bounded. This means that Algorithm 1 converges to a
bounded neighborhood of the true NE.

4. Numerical Example

We consider a finite horizon, time invariant LQ game. The problem formulation is outlined below,
and we consider a linear communication graph with 11 agents. The graph consists of 11 agents.
The complete state and action information corresponds to £ = 10. The time horizon, step size, and
number of iterations are set to 7' = 5, n = 0.003, and I = 3000, respectively. The state transition
matrices A and {B?}1%, the cost parameterization matrices {Q}1% and {R?}1°,, and the system
noise covariance matrix W are defined below.
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[0.08 0.02 0.01 0.08 0.09 0.06 0.09 0.07 0.04 0.02 0.09
0.06 0.00 0.03 0.02 0.04 0.06 0.01 0.10 0.08 0.03 0.07
0.09 0.07 0.04 0.03 0.04 0.09 0.09 0.08 0.05 0.08 0.03
0.01 0.01 0.07 0.08 0.04 0.05 0.02 0.06 0.07 0.05 0.03
0.04 0.00 0.03 0.08 0.09 0.07 0.09 0.01 0.07 0.05 0.00
A=10.02 0.07 0.09 0.00 0.05 0.04 0.03 0.06 0.01 0.03 0.05
0.06 0.04 0.05 0.06 0.06 0.10 0.08 0.02 0.07 0.03 0.07
0.01 0.02 0.09 0.01 0.04 0.04 0.02 0.07 0.04 0.07 0.02
0.10 0.09 0.09 0.04 0.02 0.02 0.08 0.02 0.07 0.00 0.08
0.06 0.04 0.04 0.07 0.02 0.00 0.01 0.06 0.08 0.02 0.03
0.06 0.00 0.07 0.05 0.09 0.01 0.00 0.10 0.03 0.05 0.10

[0.03 0.09 0.03 0.06 0.05 0.06 0.07 0.04 0.10 0.00 0.02]
0.03 0.09 0.08 0.06 0.09 0.04 0.01 0.01 0.08 0.00 0.04
0.07 0.02 0.06 0.08 0.02 0.02 0.02 0.09 0.07 0.05 0.01
0.06 0.08 0.00 0.03 0.02 0.08 0.06 0.06 0.03 0.10 0.07
0.02 0.10 0.08 0.04 0.03 0.07 0.07 0.03 0.03 0.05 0.06
B=|0.10 0.02 0.07r 0.08 0.09 0.04 0.03 0.09 0.04 0.09 0.05
0.07 0.01 0.05 0.05 0.07 0.05 0.08 0.00 0.07 0.07 0.05
0.01 0.02 0.01 0.08 0.05 0.05 0.01 0.05 0.07 0.05 0.06
0.09 0.07 0.04 0.01 0.06 0.08 0.05 0.02 0.04 0.08 0.04
0.07 0.05 0.04 0.04 0.10 0.05 0.01 0.02 0.10 0.06 0.07
0.01 0.00 0.00 0.09 0.02 0.04 0.01 0.05 0.03 0.05 0.09

(0.1 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.01]
0.01 0.2 0.01 0.01 0.01 001 0.01 0.01 0.01 0.01 0.01
0.02 0.01 0.1 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
0.01 0.01 0.02 0.2 0.02 001 0.02 0.01 0.02 0.01 0.01
0.02 0.01 0.01 0.02 0.1 0.01 0.01 0.01 0.01 0.01 0.01
W= (001 001 0.02 0.01 0.01 0.2 0.01 0.02 0.01 0.02 0.02
0.02 0.01 0.01 0.02 0.01 0.01 0.1 0.01 0.02 0.01 0.01
0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.2 0.01 0.01 0.01
0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.1 0.02 0.01
0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.2 0.02
0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01

Q' =02-LR =05fori=0,1,...,10.

The initial states are sampled from a Gaussian distribution with the means and variances shown
below, and the initial controller gains {K'}1%, are set as shown below.

a) =23 = xd =2 = 25 =2 = ) = N(0.3,0.2); 2 = 23 = f = 2’ = N(0.2,0.3);

K’ =K3 =K’ =K’ = (0.35,0.01,0.1,0.35,0.01,0.1,0.35,0.01,0.1,0.35, 0);
K!' =K' =K' =K' = (-0.3,-0.2,0,-0.3,-0.2,0, —0.3, —0.2,0, —0.3, 0);
K? =K’ =K® = (-0.3,0.1,0,-0.3,0.1,0, —0.3,0.1,0, —0.3, 0).
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Player 1 Player 2 Player 3

s s s =y
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Figure 1: Convergence Results of Scalable Natural Policy Gradient for 11-Player LQ Game for
Different Values of x

Figure 1 shows the convergence results of the scalable natural policy gradient for the synthetic
11-player LQ game across different values of k. The algorithm converges for all players with
minimal error. As k increases, the normalized error decreases, as indicated by the red gradient color
code, due to the increased availability of state and action information, leading to more accurate
policy approximations.

Figure 2 shows the cost error due to incomplete state and action information using scalable
natural policy gradient for the synthetic 11-player LQ game across different values of x. As k
increases, the cost error decreases for all players as expected. The figure also demonstrates the
algorithm’s feasibility in converging to a bounded e-neighborhood of the NE, with a maximum cost
error of 0.009. At xk = 10, all agents have complete information, resulting in zero cost error.

0.01
= Player 1
s Player 2
» Player 3
g 0.008 ——Player 4
w === Player 5
B - Player 6
= 0.006 ——Player 7
g —— Player 8
5 ———Player 9
= Player 10
g 0.004 ——Player 11|
£
]
= 0.002

Figure 2: Cost Error for 11-Player LQ Game for Different Values of x
5. Conclusion & Future Work
We considered policy gradient algorithm in a general-sum LQ game. The traditional implementation
requires state and action information from all other agents which may not be scalable. Instead, we

proposed and analyzed an algorithm that converges to an e-neighborhood of the NE with local
information. Future work could extend this method to the setting with unknown system parameters.
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