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Abstract

The EBOF (Ethernet-Bunch-Of-Flash) has emerged as an
enticing and promising disaggregated storage platform due to
its streamlined I/O processing, high scalability, and substan-
tial energy/cost-efficiency improvement. An EBOF applies a
smart-sender dumb-receiver design philosophy and provides
backward-compatible storage volumes to expedite system
deployment. Yet, the static and opaque internal I/O process-
ing pipeline lacks resource allocation, I/O scheduling, and
traffic orchestration capabilities, entailing bandwidth waste,
workload non-adaptiveness, and performance interference.

This paper presents the design and implementation of a dis-
tributed telemetry system (called shadow view) to tackle the
above challenges and facilitate the effective use of an EBOF.
We model an EBOF as a two-layer multi-switch architecture
and develop a view development protocol to construct the
EBOF running snapshot and expose internal execution statis-
tics at runtime. Our design is motivated by the observation
that fast data center networks make the overheads of inter-
server communication and synchronization negligible. We
demonstrate the effectiveness of shadow view by building a
block storage (dubbed Flint') atop EBOFs. The enhanced 1/0
data plane allows us to develop three new techniques—an elas-
tic volume manager, an elO scheduler, and a view-enabled
bandwidth auction mechanism. Our evaluations using the
Fungible FS1600 EBOF show that a Flint volume achieves
9.3/9.2 GB/s read/write bandwidth with no latency degrada-
tion, significantly outperforming the defacto EBOF volume. It
achieves up to 2.9 x throughput improvements when running
an object store. Flint is tenant-aware and remote target-aware,
delivering efficient multi-tenancy and workload adaptiveness.

1 Introduction

Storage disaggregation has gained increasing attraction in
the past few years because of its independent scaling, high
utilization, and cost-efficiency improvement. With the advent
of 400+GbE network and fast remote storage protocols, a

'Flint is available at https://github.com/netlab-wisconsin/F1i
nt.

remote storage server can deliver millions of IOPS at tens to
hundreds of microseconds, approaching the performance of a
direct-attached storage system. We have seen a rising number
of deployments [15,52,72,76] at public clouds, enterprise
on-premise clusters, and edge data centers.
Ethernet-Bunch-Of-Flash (EBOF) is an emerging disag-
gregated storage solution that packs an Ethernet switch with
NVMe drives into one system SoC (System-on-a-Chip). Com-
pared with today’s server JBOFs (Just-a-Bunch-Of-Flash), an
EBOF implements hardware-assisted remote I/O processing
pipelines, elides the power-hungry general-purpose CPUs on
the I/O path, and increases the I/O scalability by eliminat-
ing the DRAM and PCle subsystems, significantly improv-
ing the system energy efficiency. For example, the Fungible
FS1600 (our evaluation target) achieves 200K and 5.9K IOPS
per Joule for reads and writes, nearly outperforming existing
server storage appliances by one order of magnitude!
However, there is no well-trodden understanding of the
EBOF capabilities and limitations, hindering deploying this
new storage platform. An EBOF applies the smart-sender
dumb-receiver design philosophy and provides backward-
compatible volume-oriented storage functionalities. This sim-
plifies the system integration and expedites platform deploy-
ment but imposes several inefficiencies (§2.2). First, an EBOF
volume is statically mapped to an NVMe drive and embod-
ies location oblivious block placement, failing to harness
the massive internal I/O bandwidth. Second, an EBOF vol-
ume employs size-dependent bandwidth allocation, whose
performance only scales with the volume capacity, unadapted
to what the actual workload I/O needs. Third, an EBOF is
tenant-unconscious, unaware of the device condition, and in-
curs substantial interference among concurrent I/O streams.
The root cause is that its static I/O processing pipelines only
expose block read/write access interfaces, but lack resource al-
location, I/O scheduling, and traffic orchestration capabilities.
To address this, our idea is to develop a distributed telemetry
system (dubbed shadow view) that continuously monitors
the EBOF running condition. The shadow view serves as
the intermediate layer between an EBOF and storage clients,
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Figure 1: The system deployment and internal architecture of the Fungible FS1600 EBOF platform. (a) depicts our evaluation testbed.
(b)/(c) show the front/back panels of the chassis. (d) details the internal architecture of an FS1600.

which exposes the EBOF’s internal execution characteristics
and assists clients in making efficient I/O execution (such as
block placement, bandwidth allocation, and scheduling). The
key observation behind this is that the rising data center net-
work speeds make fast (single-digit microsecond) inter-server
communication and data synchronization possible. Such a
marginal latency to develop the shadow view will then have a
negligible impact on the storage applications.

Realizing this vision is non-trivial due to the inherent
opaqueness and non-programmable interface of EBOF in-
ternals. Towards this, we model an EBOF as a two-layer
multi-switch architecture that bridges frontend Ethernet ports
and backend NVMe drives. Based on the model, we develop
a view construction scheme by enabling performance moni-
toring at multiple vantage points along the I/O path, tracing
I/O execution from storage clients, and collectively analyz-
ing the performance characteristics of different components.
Our shadow view service runs at view agents (co-located
with clients) and a view controller, continuously synchro-
nized via a managed protocol to ensure an up-to-date view is
shared among clients. The view controller employs a back-
propagation bottleneck analysis mechanism to detect internal
EBOF congestions and affected storage streams.

We then build Flint-an elastic block storage for an EBOF-
atop the shadow view to demonstrate its effectiveness. With
the enhanced EBOF I/O data plane, Flint develops three tech-
niques leveraging the shadow view’s capabilities. The first one
is an elastic volume manager that places storage blocks across
all internal NVMe drives on-demand, guided by a runtime
EBOF execution profile. The second one is an elO scheduler
that dynamically computes per-10 priority as rank and uses it
to orchestrate concurrent I/O submission. The third one is a
view-enabled bandwidth auction mechanism, which partitions
available bandwidth among competing volumes in a max-min
fairness manner at fine granularity. In tandem, Flint achieves
high throughput with tolerable latency cost, maximizes device
utilization, and ensures efficient multi-tenancy.

We evaluate Flint on a real-system testbed comprising
commodity Dell servers and Fungible FS1600 EBOFs. Us-
ing FIO-based synthetic micro-benchmarks, we show that
one elastic volume over Flint achieves up to 9.3/9.2 GB/s
read/write bandwidth, outperforming the defacto EBOF vol-
ume by 14.5/13.6x, whose I/O latencies are similar. We fur-
ther configure various experiments and demonstrate that Flint

is tenant-aware and remote target-aware, which can mitigate
1/0O interference, deliver fair bandwidth allocation, and offer
workload adaptiveness. When deploying an object store over
Flint, one can achieve up to 2.9 x throughput improvements
with 66.4%/74.6% average read/write latency savings.

2 Understanding EBOF

This section provides some necessary background about
EBOFs and presents a characterization study.

2.1 Ethernet Bunch of Flash (EBOF)

EBOFs are an emerging disaggregated storage solution that
holds a number of NVMe drives using an Ethernet switch-
integrated SoC (System-on-a-Chip). Compared with today’s
server/SmartNIC-based JBOFs (Just-A-Bunch-Of-Flash), an
EBOF (a) increases the I/O scalability since it elides system-
level bottlenecks due to the constrained CPU processing
speeds and DRAM/PCle bandwidths; (b) improves the overall
resource utilization and mitigates the resource stranding issue
as it eschews the fixed ratio between CPU and SSDs induced
by the number of PCle lanes; (c) achieves high energy/cost-
efficiency because it eradicates the hefty computational re-
sources at the storage target. There are some early engineering
prototypes being developed, tested, and sampled, such as In-
grasys ES2000 [7] and Fungible FS1600 [5].

FS1600 EBOF. An EBOF is a standalone 2U chassis resem-
bling commodity servers in physical appearance (Figure 1-a).
Take the Fungible FS1600 EBOF as an example (which is our
development and evaluation target). It encloses 12x 100GbE
ports (Figure 1-c) and 24 NVMe drives (Figure 1-b), capable
of processing 1.2Tbps storage traffic, sustaining 15M IOPS
small random reads and 4.4M IOPS large sequential writes
at most, aggregated across all the drives. The typical active
power consumption is 750W (850W peak), translating to
200K and 5.9K IOPS per Joule for reads and writes, respec-
tively, significantly outperforming existing JBOF boxes.
Figure 1-d presents the FS1600’s internal architecture, con-
sisting of an integrated Ethernet switch, two I/O processing
pipelines, and 24 NVMe SSDs. First, the internal switch has
12 ports for external connectivity and delivers network traffic
to two pipelines based on the storage targets. Next, packets un-
dergo a sequence of processing stages along the pipeline:

e Stage 1: NVMe-oF protocol processing. This includes (i)
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Figure 2: Performance characteristics of EBOF volumes on FS1600. (a) compares the throughput of four I/0 workloads under five
logical volume configurations. Physical volumes are from different SSDs. A logical volume uses the striped type (with the 128KB stripe
size) where the striping width equals the number of physical volumes. We max out the bandwidth using multiple I/O streams with
adequate queue depth. RRD=Random Read. SRD=Sequential read. SWR=Sequential Write. (b) presents the latency-throughput of
4KB random reads and 4KB sequential writes for 400GB, 800GB, and 1600GB volumes, respectively. The y-axis is log scale. (c) shows
read/write throughput varying with the read ratio of a mixed workload. The 4KB 1/O runs over a clean drive, while the 256KB one
runs on a fragmented SSD (preconditioned with 128KB random writes).

networking stack handling and (ii) NVMe-oF capsules and
NVMe I/O commands conversion, which are executed over
a chain of specialized NVMe-oF cores;

o Stage 2: Per-10 acceleration. An EBOF is equipped with
several domain-specific accelerators for compute-intensive
tasks, such as compression, encryption, and erasure coding;

e Stage 3: I/O orchestration. It delivers I/O commands to
each SSD via a traffic control module. Akin to an Ethernet
switch, there is a traffic manager and a queueing subsystem
for both submission and completion.

Last, an EBOF usually supports NVMe drives in U.2 and the
emerging compacted EDSFF form factors [3].

EBOF Deployment. An EBOF imposes two differences
compared with deploying a traditional JBOF. First, it requires
several redundant dedicated servers (called composer nodes
in Figure 1-a) to hold the management plane, which (a) con-
figures the EBOF system (e.g., adding/removing forward-
ing rules for the internal switch, formatting the hot-plugged
NVMe drives); and (b) provides a remote control panel
for users. Clients interact with these composers on creat-
ing/deleting/modifying volumes, monitoring the EBOF run-
ning status, and alerting the health condition. Second, each
pipeline of an EBOF organizes its Ethernet ports (6 in our
case) as one trunk port, with a L3 IP address assigned. The
ToR switch, connecting to the EBOF, should then create
LACP (Link Aggregation Control Protocol) [6] trunk groups
for the corresponding ports, and configure the fallback mode.

An EBOF system provides the physical volume abstrac-
tion as today’s storage disaggregation solutions. To use it,
one should first create a fixed-sized physical volume, which
is mapped to one specific SSD. Clients then instantiate an
NVMe-oF session, mount the remote volume locally, and
make it an NVMe block device. Users can further create
logical volumes for capacity/bandwidth expansion and fault
tolerance. On our FS1600 testbed, a physical volume, con-
sisting of a sequence of extents, can also be compressed and
encrypted if enabled during the volume initialization phase.
It primarily supports the NVMe-over-TCP protocol [8].

2.2 Characterizing an EBOF

An EBOF system applies the smart-sender dumb-receiver de-
sign philosophy and provides backward-compatible volume-
oriented storage functionalities. It exposes physical volumes
with basic block I/O read/write capabilities, and delegates
advanced storage support (such as load balancing and repli-
cation) to clients. This drastically expedites the system inte-
gration and platform deployment because one can seamlessly
transition to an EBOF setup from traditional server-based
storage appliances. However, such simplicity comes at a cost.
Below we empirically characterize an EBOF and identify
several limitations that hinder its performance and efficacy.

Issue #1: Location oblivious block placement. An EBOF
volume is statically mapped to an NVMe drive and cannot
harness the massive internal I/O bandwidth. Its data place-
ment strategy is straightforward: (i) a newly created volume
is placed at one SSD with enough available space; (2) when
there are multiple candidates, it chooses one randomly. This
simplifies the hardware logic and reduces the in-memory
metadata footprint, but bounds the maximum performance of
a volume to just one drive, far below the bandwidth capac-
ity of an EBOF. As shown in Figure 2-a, the bandwidth of
random reads and sequential writes under large blocks of a
physical volume is capped at 2.1GB/s and 0.9GB/s, respec-
tively, approaching the NVMe SSD device limit.

A workaround solution is to create multiple physical vol-
umes (from different SSDs), combine them as a logical vol-
ume, and format it into the striped type. This could benefit
large sequential I/Os. For example, the 2MB sequential write
(Figure 2-a) achieves nearly twice the bandwidth when dou-
bling the number of physical volumes because each I/O hits
the strip group, yielding multiple concurrent I/Os to different
SSDs. However, for many other I/O profiles, one would ob-
serve marginal benefits because the inherent extent layout of
a logical volume is location oblivious, unable to harness the
parallel I/O paths. As depicted in Figure 2-a, the 4KB/128KB
random read maxes out with 4/8 physical volumes, achieving
3.2GB/s and 5.0GB/s. Similarly, the 2MB sequential read
shows inferior performance and only sustains 6.0GB/s, less



than one-fifth of the throughput in the 16-vol case.

Takeaways. Flexible and location-aware data placement is
essential to unleash the EBOF bandwidth capacity. Ideally, a
volume can distribute its extents to one or several bandwidth-
capable drives based on online profiling.

Issue #2: Size-dependent bandwidth allocation. The per-
formance of an EBOF volume only scales its capacity and is
inadaptable to the actual workload requirements. An EBOF
takes the JOPS/GB as the key metric when reserving per-
volume bandwidth on the control plane upon initialization.
The data plane then ensures that the actual bandwidth us-
age doesn’t exceed its allocated share. Such a design only
requires a static traffic policer installed at the processing
pipeline without employing some dynamic mechanisms like
the water-filling algorithm [66]. This completely moves the
I/O resource allocation and scheduling out of the performance
path, entailing a streamlined I/O pipeline. Take the FS1600 as

an example. It configures the QoS upper bound of a volume
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Figure 2-b depicts the latency-throughput of two workloads
running under different-sized volumes. The latency of 4KB
random reads (sequential writes) rises drastically when the
bandwidth approaches 472 (188) MB/s, 941 (378) MB/s, and
1760 (741) MB/s for 400GB, 800GB, and 1600GB volumes,
respectively. This matches the bandwidth upper bound pre-
scribed as above. Such a size-dependent EBOF volume, bene-
fits workloads embodying the same requirements on capacity
and throughput, but conversely, contradicts many other ap-
plication usage patterns. For example, a throughput-oriented
workload with a small size requirement, like a metadata ser-
vice in a distributed blob store [38,57,59], has to request a
large volume to ensure enough bandwidth is provisioned, en-
tailing storage capacity waste. Similarly, a capacity-oriented
application with low throughput needs, like a logging service,
allocates a high-capacity volume with excessive throughput
reserved implicitly, causing bandwidth waste.

Takeaways. Decoupling capacity allocation and bandwidth
reservation functionalities of an EBOF helps improve its effi-
ciency when holding I/O workloads with incongruent size and
throughput requirements. This necessitates the I/O processing
pipeline to control bandwidth on-demand at the data plane.

via

Issue #3: Interference heavy. An EBOF volume is tenant-
unconscious and device condition unaware, entailing great
interference among concurrent I/O streams. An EBOF sys-
tem enforces performance isolation at the volume granularity.
There is a per-volume rate limiter inside the traffic manager
that ensures a busy or noisy volume cannot exceed its band-
width share. This mechanism mitigates inter-volume I/O in-
terference when requests transmit within the pipeline, but
completely ignores interference at the NVMe drive. As an
example, we co-locate one victim volume with four adver-
sarial volumes on one SSD. The victim volume runs a 4KB
random read with QD (queue depth) =1, and we measure
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Figure 3: The hardware model of an EBOF and the performance
monitor domains of the shadow view.
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its latency. The rest volumes run other throughput-intensive
read/write streams. We observe that the P999 latency of the
victim volume increases from 169us to several milliseconds!

Further, intra-volume performance isolation is not sup-
ported on the EBOF. As shown in Figure 2-c, a 4KB read-only
stream achieves 439.0 MB/s higher bandwidth than the mixed
case with a 50/50 read/write ratio on a clean SSD. When the
drive becomes fragmented, even with a large 256KB block
size, it sustains 59.5% and 63.4% less read and write through-
put on average across all scenarios. The fundamental issue is
that an EBOF schedules I/Os without considering the request
cost and SSD condition, yielding inefficient multi-tenancy. As
shown in prior studies [11,37,50, 54,74], the per-1/O execu-
tion cost is determined by read/write mix ratio, I/O block size,
and I/O concurrency. When contention happens at the SSD
controller, the device queue, or NAND channels/chips/dies,
an I/0 would be stalled and incur a high execution cost. Cap-
turing the SSD condition is non-trivial because (a) the number
of clean flash pages and their location distribution hinge on
the previous write history, which is not exposed; (b) the SSD
internal parallelism is unknown due to the FTL mapping and
private proprietary internal architecture; (c) housekeeping
operations (like garbage collection and wear leveling) are un-
predictable and thereby consume a non-deterministic amount
of internal bandwidth when triggered.

Takeaways. Mitigating I/O interference requires an EBOF
to monitor its end-to-end bandwidth availability (including
network, I/O pipeline, and SSD) at the runtime and prudently
schedule individual IO in a tenant-aware manner.

3 Shadow View: A EBOF Telemetry System

This section introduces the shadow view, a distributed teleme-
try system that enhances the EBOF data-plane capabilities.

3.1 Key Idea

The root cause that yields EBOF inefficiencies is the static
I/O processing pipelines that only provide block read/write ac-
cess functionalities, but lack resource allocation, I/O schedul-
ing, and traffic orchestration capabilities. Our key observa-
tion is that the rising data center network speeds make fast
(single-digit microsecond) inter-server communication and
data synchronization possible. Such a marginal latency over-
head will have a negligible impact on the storage applications



because the per-1/0 latency is in the order of tens to hun-
dreds of microseconds. Therefore, our idea is to develop a
software-based telemetry system (called shadow view) that
continuously monitors the EBOF running condition. It serves
as an intermediate layer between an EBOF and storage clients,
which exposes EBOF runtime internal statistics and assists
clients in efficient I/O execution (including block placement,
bandwidth allocation, and scheduling).

3.2 Definition and Capabilities

The shadow view is a software-managed distributed telemetry
system that profiles and reports the computation and I/O re-
source availability of an EBOF at runtime. It decouples from
the EBOF hardware box and works as a standalone distributed
service, deployed over a bunch of general server hosts. The
key challenge to realizing it is the black box nature of EBOF
internals that exposes little interaction and programmable in-
terfaces. Hence, we develop a reactive approach that tracks,
collects, and analyzes the end-to-end per-1/O statistics from
all mounted volumes to construct an EBOF running snapshot.

To facilitate the view development, we model an EBOF as
a two-layer multi-switch architecture (Figure 3) that bridges
frontend Ethernet ports and backend NVMe drives.

o The upper half is a network switch, connecting N Ethernet
ports on one side and an equal amount of I/O backplane
ports on the other side, which forwards incoming/outgoing
Ethernet packets. The switch internally comprises N bidi-
rectional NetPipes. For each pipe, we associate a virtual
packet queue with each direction;

o The bottom half is a storage I/O switch that connects N I/O
ports and M NVMe drives. Except for the basic forwarding
functionality, it converts between NVMe-oF capsules and
NVMe commands and accesses the SSD drive. Similarly,
we model the switch as M bidirectional /OPipes, staying
close to the SSD, where each is equipped with a virtual /O
queue on the submission and completion paths.

Note that (a) unlike traditional Ethernet switches, both
switches are asymmetric with two distinct sets of operating
ports; (b) our hardware model is generic, only requiring mini-
mal knowledge (like port #) of the EBOF specification.
Based on the proposed hardware model, we then organize
the shadow view into three performance monitoring domains.
The first one is port statistics, where we capture the traffic
usage of Ethernet/IO backplane ports at packet/flow/session
granularities, including used/available bandwidth and size
distribution. The second one is pipe statistics that focus on
reporting the processing throughput and queueing delay of
NetPipes and IOPipes. We separate ingress and egress met-
rics to capture I/O submission and completion paths. The
last one is SSD statistics. Due to the inherent opaqueness,
except for the SSD’s available space, we estimate the avail-
able read/write bandwidth headroom, I/O delay, and NAND
fragment degree (an indicator to determine the I/O write cost)

View Agent
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[ - - NVMe-oF Completion - -

.
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1/0O Statistics ACK
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Figure 4: The view construction procedure.

following prior studies [11,37,50,54].

Akin to other telemetry systems, our shadow view behaves
as a database for an EBOF. It imposes two main capabilities.
One is the runtime statistics query in which one can flex-
ibly integrate the shadow view into a system and explore
EBOF-conscious optimizations. The other is event notifi-
cation, where applications can register callbacks to trigger
proactive resource management. We will show how to use the
shadow view to develop a block storage (§4).

3.3 View Construction

We construct the shadow view by tracing I/O execution from
storage clients, collectively analyzing the performance char-
acteristics of different components, and mapping them to
the underlying hardware model. Our shadow view service
is distributed across two entities: view controller and view
agent. The view controller is integrated into the central arbiter
and maintains the entire picture of an EBOF. It receives the
per-1/O running statistics from view agents, performs collab-
orative analyses, and exposes RPC interfaces for interaction.
The view agent, colocated with storage clients, monitors the
I/0 execution of its mounted block devices and only holds
a partial view of an EBOF. We employ a hybrid pull/push
approach to synchronize the view between these two (§3.4).

An EBOF embodies two types of execution paths, de-
scribed as follows: (a) NVMe-oF submission: Ethernet Port
= NetPipeingress = 1/0 Port = IOPipeingress = SSD; (b)
NVMe-oF completion: SSD = IOPipegress = 1/O Port =
NetPipegress = Ethernet Port. Based on this, we show how
the view is developed across the following two entities:

e View Agent. It takes the timestamp when submitting the
I/O request and receiving the response. By subtracting these
two, we know the end-to-end round-trip time (RTT), i.e., the
sum of NVMe-oF submission and NVMe-oF completion.
Upon completion (Figure 4), the agent (a) forwards the I/O
statistic vector—<NVMe-oF session, target SSD, 1/O type,
I/O size, RTT>—to the controller; (b) updates corresponding
metrics for its partial view. The I/O statistics vectors are
batched before sending to the controller to reduce network
communications. This indicates that the view development
process is out of the system’s performance path;

e View Controller. We maintain an in-memory represen-
tation of the hardware model (Figure 3) at the controller.
It covers all system components from three performance
domains. We employ a window-based approach to profile
each metric to report the current and EWMA (exponentially



weighted moving average) value. Upon receiving an I/O
vector message, the controller first dissects its traversed
path within an EBOF based on the NVMe-oF session and
target SSD, including NetPipe, IOPipe, and I/O Port. It
then updates the corresponding metrics of the full view.

Bookkeeping Statistics. Our agent and controller use the
same methods for aggregating running statistics. The packet
and I/O distribution are captured via a typical counting ar-
ray. Regarding bandwidth and throughput, we consider both
bit-per-second and packet (I/O)-per-second because the pro-
cessing capacity of an EBOF is size-dependent. Except
for the available capacity, SSD statistics are generally chal-
lenging to obtain due to the opaqueness. Following prior
work [37,54,70], we combine an offline profiling and an on-
line estimation strategy that uses the end-to-end I/O delay as
an indicator to decide the queueing delay at the controller and
bandwidth headroom. The fragment degree is approximated
using the dynamic write cost [54]. Due to the window-based
profiling scheme, the view service supports aging automati-
cally. Future commodity EBOFs could do fine-grained times-
tamping at different stages across the pipeline, which would
give us more internal execution visibility. Our shadow view
leaves the extension interface to integrate them later.

3.4 View Synchronization

The shadow view is collaboratively built by the view con-
troller and view agents. We develop a view synchronization
protocol to update and synchronize the view. Our design is in-
spired by prior distributed cache-coherence protocols [40,42].
The key idea is to use a monotonically increasing counter
to represent the view recency. Thus, each entity of the hard-
ware model (like port, pipe, and SSD) is assigned a dedicated
counter at both agent and controller. We don’t use a shared
counter because the view can be updated partially, i.e., an I/O
request only traverses a subset of an EBOF.

The view controller works as a serialization point of an
EBOF to order all issued I/Os. Upon receiving the statistic
vector of a completed I/O request, it performs three oper-
ations atomically: updates the corresponding view entries,
increments their counters by one, and returns an acknowl-
edgment message that attaches the changed counters for the
agent’s partial view (Figure 4). The controller also maintains
a directory of mounting storage clients who hold the partial
view. Next, when the view agent receives the response, it first
compares the attached counter (X*) with the previously held
one (X) to decide if the view is obsolete as follows:

e If IX’-X| = 1, this indicates the client is the latest EBOF
user and its partial view is update-to-date;

e IfIX’-XI> 1, it means there are multiple concurrent storage
clients issue I/Os and its partial view is outdated;

The view agent always overwrites the counter with the newly
received value because only the controller can update the
counter. A careful reader might notice that the message order

Algorithm 1 Back-propagation Bottleneck Analysis.

1: procedure ANALYZE_BOTTLENECK > Executed per-epoch
2 for SSD in all_SSDs do

3 if SSD.avail_bw < Threshold then

4: Congested_SSDs.add(SSD);

5: Congested_IOPipes.add(SSD.IOPipe);

6 for Session in all_NVMeoF_Sessions do

7 if Session.target _SSD in Congested_SSDs then
8 Congested_NetPipes.add(Session.NetPipe);
9 Victim_Sessions.add(Session);

10: for Session in all_NVMeoF_Sessions do

11: if Session.NetPipe in Congested_Net Pipes then
12: if Session not in Victim_Sessions then
13: Victim_Sessions.add(Session);

of the I/O statistics vector received by the controller might
be different from the I/O completion order of an EBOF. For
example, a client might complete an I/O request earlier than
another one, while its statistics update message comes late.
We resort to the EBOF timestamp information of the statistics
message to resolve the issue. Our controller connects to EBOF
composer nodes (§ 2.1) via the management network and has
time synchronized. When updating each component of the
shadow view, it uses the timestamp to decide if the statistics
stay within the profiling window.

Based on the above support, our shadow view service pro-
vides two types of synchronization. In the PUSH mode, the
view controller periodically publishes its latest shadow view
to its view agents. If a client registers a particular callback
function to monitor an event (such as if the SSD available
bandwidth has dropped to a threshold), the controller then
copies the view proactively. In the PULL model, the view
agent eagerly fetches its accessed partial view if its own is
obsolete. This is realized via the controller RPC.

3.5 Bottleneck Analysis

When an internal component of an EBOF reaches its process-
ing limit, one would observe queue buildup along the EBOF
I/0O processing pipeline, entailing head-of-line blocking and
jeopardizing I/O latency. The shadow view offers two pos-
sible solutions to identify the bottleneck: one is examining
the queueing delay at the NetPipe, IOPipe, and SSD; another
one is comparing the achieved bandwidth with the device
limit (obtained from the EBOF specification). Based on our
operating and development experience, we find that (a) SSDs
are always the first to hit the system bottleneck; (b) the pro-
cessing capability of the NetPipe and IOPipe is generally
over-provisioned. Because of the path symmetry between I/O
submission and completion within an EBOF, congestion only
happens at the ingress path, not egress.

The shadow view employs a back-propagation analysis
scheme to dissect the congestion region and identify victim
NVMe-oF sessions (ALG1). When an NVMe drive becomes
over-subscribed, the shadow view can quickly locate the af-
fected IOPipe because there is a 1-to-1 mapping between
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Figure 5: The system architecture of Flint.

IOPipe and SSD (ALGI LI1-5). Next, since the mapping
between NetPipe and IOPipe is n-to-m, to identify victim
NetPipes, we scan through active NVMe-oF sessions whose
destination is the congested SSD (ALG1 L6-9). Last, for each
victim Net Pipe, the algorithm reexamines all other NVMe-oF
sessions and finds out the ones that share the congested pipe
(ALGI L10-13). The bottleneck analysis process is launched
periodically at the end of each profiling epoch.

4 Flint: an Elastic Block Storage

This section presents Flint that overcomes the drawbacks
(§2.2) of existing EBOF volumes. Our design goals are:

Storage Clients (1...n)

o High throughput with tolerable latency cost. Massive I/O
bandwidth is the crucial capability of an EBOF compared
with conventional JBOFs. Flint aims to fully utilize the
storage bandwidth across all NVMe drives and eliminate
any potential I/O stalls along the pipeline;

o High utilization and deployment flexibility. The volume
provided by Flint should use any available space from any
SSDs, regardless of whether the storage blocks are con-
tinuous on one SSD or fragmented across multiple drives.
Its performance should scale with the application demands
instead of being determined by volume sizes;

o Efficient multi-tenancy. Flint should provide the max-min
fairness guarantee when partitioning bandwidth among co-
located volumes. It should estimate the device bandwidth
availability at runtime and admit the right amount of I/Os
to avoid oversubscription. The head-of-line blocking issue
should be tackled in an end-to-end fashion.

4.1 Overview

Flint comprises two types of nodes (Figure 5): storage client
and central arbiter, running atop the shadow view. The client,
co-locating with a view agent, allocates/deletes/manipulates
volumes, submits read/write I/Os, and orchestrates requests
through an eIO scheduler (§4.3 and §4.5) to mitigate the
head-of-line blocking. The central arbiter, cooperating with
a view controller, acts as the EBOF resource manager. It en-
closes two key system components: (1) an elastic volume
manager (§4.2), which places data blocks, maintains an ex-
tent mapping table, and serves volume management requests;
(2) a view-enabled bandwidth auction mechanism (§4.6),
partitioning available bandwidth among competing volumes
in a max-min fairness manner at the fine granularity. A volume
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can be replicated using chain replication for high availability
(§4.4). The arbiter is not replicated because it is not in the
data path and clients can continue performing I/Os on an open
volume even if the arbiter is down, although it can be made
reliable. All the cross-node communications are realized via
RPCs, and we implement them atop eRPC [35].

4.2 Elastic Volume and Volume Manager

Flint provides an elastic volume (eVol) to address the limi-
tations of the defacto EBOF volume. An eVol consists of a
sequence of fixed-sized extents (2MB in our case), spreading
across more than one SSD. To enable flexible data placement
over all EBOF drives, Flint employs a two-level hierarchical
volume manager at the arbiter. As depicted in Figure 6-a, the
bottom layer creates one mega-volume (MegaVol) for each
SSD covering the entire storage space through the default
EBOF control plane. The upper layer then performs block
allocation and places extents to different mega-volumes based
on the given policy. Each eVol has an extent mapping ta-
ble, where our volume manager uses an aggregated one for
the whole EBOF. Each mapping entry has 16 bytes with the
following format: SSD index, physical extent number, and
replication node. We implement the extent table using an in-
memory hashtable. It takes only 8MB to address a 1TB eVol,
which is feasible on commodity servers.

A storage client requests a new volume via the create_vol
APIL It takes the volume size and allocation policies as
parameters. We apply a lazy allocation scheme. Upon
the create_vol request, the volume manager only checks
whether there is enough capacity to hold the volume, reserves
the space, and sends back the acknowledgment. A success-
ful return doesn’t indicate the actual data placement is done.
When an I/O write happens and there is no corresponding
mapping entry in the local extent table, clients would interact
with our volume manager to allocate a new extent from one
SSD (mega-volume), and then update extent tables on both
sides. The extent tables are stored in RocksDB [1] backed by
a replicated file system (such as Ceph [77]), and all updates
are executed in a transactional manner.

We use a weighted score function to realize different data
placement policies. Under the extent allocation request from
an eVol, our volume manager calculates the intended score



for each SSD and chooses the one with the lowest score.
The function (shown below) balances a slew of factors: (a)
prior allocation history, i.e., how many extents have been
placed; (b) available capacity, where we aim to balance the
SSD utilization; (c) recent busy status from the bandwidth
perspective; (d) fragment (or wear-leveling) degree of the
SSD; (e) user-defined preferences. We obtain the parameters
of (¢) and (d) from the shadow view.

Score(eVol;,SSD ) = . x Extenty + B x Capacity,seq+
Y X Busygegree + OxF ragmentjegree +"M X Preference

The volume manager maintains a score matrix for each eVol
and updates it periodically. Clients set the initial placement
policy in create_vol and can alter the strategy on the fly via
update_vol. When a volume is destroyed (destroy_vol),
the volume manager frees the space, updates the metadata
from the extent table, and deletes the related score matrix.

4.3 1/0 Path

In Flint, a storage client submits I/O requests first to a co-
located block I/O scheduler, then to a per-thread io_uring
engine. We choose the io_uring interface [2, 10,22] due to
its efficient asynchronous support, rich feature set, and high
scalability. The I/O scheduler (§4.5) leverages the shadow
view to determine the I/O issuing order, mitigating the head-
of-line blocking. Finally, Flint uses the NVMe-over-TCP pro-
tocol [8] to carry I/O reads/writes between clients and an
EBOF. Figure 6-c depicts the lifetime of an I/O.

Flint introduces fast and slow paths when accessing the
EBOF because its bandwidth resources are managed by the
central arbiter (Figure 6-b). A read can be issued to the EBOF
directly only if the allocated bandwidth slice (§4.6) can hold
the request size (fast path). Otherwise, it should request a new
slice from the arbiter and then submit the I/O (slow pathl).
A write behaves similarly except that it may introduce one
more slow path—asking the arbiter to allocate a new extent.
However, in practice, we noticed that this extra RPC call
takes only a few hundred microseconds and incurs negligible
performance overhead, given that: 1) a typical write I/O to
consume an extent (2MB) takes thousands of microseconds;
2) this slow path can only happen for write I/Os; 3) write I/Os
are directed to the most performance-capable extent that is
dynamically allocated based on the current system condition.

4.4 Replication

Flint employs the chain replication [65] as an optional con-
figuration to improve system availability. It replicates data
blocks at the extent granularity. When enabled, given an ex-
tent allocation, the volume manager chooses three different
SSDs with the lowest scores for placement. Then in the extent
mapping table, each entry records all the replicas along with
the ordering in the replication chain.

Flint follows standard protocol execution logics as chain
replication prescribes. I/O writes are issued to the head, which

Algorithm 2 elO Scheduler.

1: procedure EIO_ENQUEUE

2 io = pending_queue.poll();
3 compute_rank(io);

4 sort_window.binary_insert(io);
5: procedure EIO_DEQUEUE
6: for io IN sort_window do
7

8

9

0

1

if i0.id == io.stream.sq.front().id then
i0.admit();
sort_window.remove(i);
io.stream.sq.pop();
aging(); break;

10:
11:

are then passed along the chain. We pass down commands in-
stead of actual updates because the target LBAs (logical block
addresses) are different. I/O reads are handled by the tail of
the chain. Chain replication achieves strong consistency natu-
rally because requests are ordered by the tail, which operates
as the primary in a traditional primary-backup system. There
are two ways to facilitate request passing over the chain. One
is using the EBOF’s recirculation capability, where a com-
pleted I/O can be reinserted into the I/O processing pipeline
with some modifications. Such an intra-EBOF coordination is
an ideal solution, reducing the replication latency and saving
external network bandwidth. The other one is implementing
the chain replication coordinator at the client host. Essentially,
after receiving the I/O completion from the predecessor, it
refabricates the I/O submission request and sends it to the
successor. This incurs multiple round trips between the client
and EBOF. Flint takes the latter approach because our FS1600
box doesn’t expose the recirculation directly. We are currently
working with the vendor on realizing the former approach.

4.5 IO PIFO Scheduler

Flint runs an I/O scheduler at each client to improve the eVol
performance. To capture the dynamic I/O execution cost and
mitigate the resulting head-of-line blocking, Flint develops
a priority-based I/O scheduler based on the ranking concept.
The rank of an I/O determines its issuing order.

Our elO PIFO scheduler uses a scheduling tree for the im-
plementation. It encompasses a priority queue for submission
and a FIFO queue for completion. Upon an incoming 1/O,
the scheduler computes its rank and inserts it into the cor-
responding location. Rank, representing the I/O cost, takes
I/O characteristics (size and type), queueing time, and allo-
cated bandwidth into account. A lower-ranked I/O would be
dequeued first. The completion side delivers I/O simply fol-
lowing the arrival order. When the client receives a bottleneck
report (§3.5), all victim I/Os will experience a rank increase
due to the rising cost, thereby hedged from submission.

Algorirthm 2 presents the pseudo-code of our elO sched-
uler. It polls I/Os issued from different threads, calculates
their ranks based on the current shadow view, and inserts
them into a binary search tree that is sorted using the rank
value. The sort_window uses binary search since requests



Algorithm 3 Client-Side Bandwidth Auction.

Algorithm 4 Arbiter-Side Bandwidth Auction.

1: procedure IO_SUBMISSION(io)

2: ssd_nqn = io.ssd_nqn;

3 avail_slices = shadow_view[ssd_nqn].avail_slices;
4: slice = avail_slices.back();

5: if slice.is_full() then

6 slot = RPC_request_slice(avail_slice);

7
8
9

slice.consume_io(io);

i0.admit();
: procedure IO_COMPLETION
10: slice = io.slice
11: slice.completes += 1;
12: if slice.is_full() AND slice.submits = slice.completes then
13: slice.close();

14: RPC_report_completion();

are sorted by their ranks. During dequeue, Flint iterates over
the sort_window until an I/O is in the front of the submission
queue of an I/O stream and admits it. Hence, Flint ensures: (1)
no I/O reordering happens within a stream, therefore follow-
ing their submission order; (2) requests belonging to different
streams are submitted following their ranks. Finally, we apply
aging for the pending requests to prevent starvation.

4.6 Bandwidth Auction

Flint allocates bandwidth fairly among competing storage
streams using an RTS/CTS-like mechanism [17]. An NVMe-
oF client can only issue an I/O when granted enough band-
width slices. Hence, each active client periodically asks the
arbiter for available bandwidth, and the arbiter sends back
grant messages after the auction. The challenge to realizing it
is that the bandwidth allocation of an EBOF should holisti-
cally consider each component between Ethernet ports and
SSDs, instead of only targeting one entity. For example, a
storage stream might receive adequate bandwidth from an
SSD but then be bottlenecked by the I/O processing pipeline
(like NetPipe), causing bandwidth waste.

Our arbiter combines deficit round-robin (DRR) [71] and
gang scheduling [23,24] techniques to address the issue. Each
active NVMe-oF session—that has issued a bandwidth alloca-
tion request—is assigned a three-tuple deficit counter vector,
representing resource requirements for NetPipe, IOPipe, and
SSD. We then divide all sessions into different groups based
on their target SSD. The shadow view reports the bandwidth
headroom of each component, which we translate to the to-
tal amount of I/Os that can be admitted. For each group, the
arbiter walks through its associated sessions whose deficit
counter vector is accumulated with a prescribed quantum
(whose value is in proportion to the session’s priority) at each
round. A bandwidth slice is granted when (a) all the deficit
counters of a session have reached their target thresholds, and
(b) there are adequate resources indicated by the shadow view.
After that, the deficit counter vector is reset and the session
waits for the next allocation. Users can specify their perfor-
mance targets and Flint will then calculate the quantum to

1: procedure ARBITER_BW_AUCT

2 while true do

3 epoch_advance(); estimate_avail_bw();
4: reassign_quota();

5: while not epoch_expired() do
6 refresh_drr_lists();

7 for tenant in active_list do

8 tenant.deficit += Quantum;

9: if tenant.deficit > DEF_THRESHOLD then
10: tenant.state = Idle; tenant.deficit = O;

11: idle_list.add(tenant);
12: active_list.remove(tenant);
13: reassign_quota();

ensure the total bandwidth of a SSD is partitioned accordingly.
By default the bandwidth is equally shared.

Algorithms 3 and 4 detail the bandwidth auction mech-
anism on the client and arbiter sides. When a client issues
an I/O, it looks up the current bandwidth slice from the lo-
cal shadow view and checks its availability. If the slice has
no room, it asks for a new one from the arbiter. The slice
consumes an I/O based on its weighted cost (profiled by the
shadow view) and then calls admit() to notify the I/O execu-
tors for submission (through the io_uring). Upon comple-
tion, the client reports the I/O latency to the arbiter. If the slice
becomes empty and there are no outstanding I/Os, it requests
for a new bandwidth slice, which is piggybacked through the
report RPC (ALG 3 L12-14).

On the arbiter’s side, there is a DRR routine running for
each SSD device. Each DRR routine maintains three different
lists: (a) an active list containing tenants that are actively
issuing I/Os, (b) a deferred list containing tenants that have
run out of the virtual slice quota, and (c) an idle list that
includes tenants that do not issue I/Os within a time window.
At the beginning of a new epoch, Flint estimates the available
bandwidth of the device and reassigns the bandwidth slices
to each tenant. Flint then runs the DRR loop until the current
epoch expires. In each loop, we refresh the lists in case their
states have changed and iterate tenants over the active_list to
increase their deficit value. If the deficit exceeds a threshold,
we set its state to Idle, update the corresponding lists, and
reassign quotas (ALG 4 L10-L13).

5 Evaluation

Our evaluations aim to answer the following questions:

e How does Flint perform compared with the default EBOF
block storage in terms of latency and throughput? (§5.2)

e How does Flint address the three performance inefficiencies
of an EBOF volume? (§5.3, §5.4, §5.5)

e What are the considerations when deploying Flint? (§5.6)
5.1 Experimental Methodology

Testbed. We evaluated Flint using a small-scale rack cluster,
comprising 2U commodity servers as storage clients, a Dell
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79264F-ON ToR switch (w/ 64x 100GbE ports), and the
Fungible FS1600 EBOF. Each server is a Dell R7525 box,
enclosing two AMD 7302 processors (running at 3.0GHz),
256GB DDR4 memory, a Broadcom 25GbE dual-port NIC,
a Mellanox 100GbE dual-port CX6 NIC, and two Samsung
NVMe SSDs. All clients run Ubuntu 22.04.

Experiment setup. We build Flint from scratch in about
7600 lines of C++ code. Flint provides eVol management
and both sync/async I/O interfaces to the client. We primarily
compared with the defacto volume service provided by EBOF.
Our experiments first use FIO-based synthetic workloads [4]
to explore the benefits of Flint proposed techniques and the ca-
pabilities of the shadow view. We then take an object store as
a storage application to showcase the overall benefits. We use
the YCSB benchmark [20] in this case. We report throughput
and average/tail per-1/O latencies as the performance metrics.

5.2 eVol Performance

We first examine the basic performance of an eVol. In terms
of small I/Os, when we increase the same queue depth for an
I/O stream, eVol achieves the same P50 latency as a physical
volume (Figures 7-a and b). This is because the majority of
I/Os traverse the fast path (§4.3), yielding one RTT between
the client and an EBOF. An eVol places data blocks over all
the SSDs in an EBOF. As a result, given the same queue depth,
each SSD will receive less amount of I/Os than the physical
volume. Thus, the eVol reduces the P99 latency by 48.1%
and 13.4% in terms of 4KB random read and 4KB sequential
write, respectively. Regarding large 1/Os, eVol can harness
the massive I/O bandwidth of an EBOF easily because of its
flexible data layout (Issue #1 in §2.2). As shown in Figure 7-
¢, it achieves 9.3/9.2 GB/s when running 128KB random
read/4KB sequential write, outperforming a logical volume
with 1, 2, 4, and 8 physical volumes by 14.5/13.6x, 5.9/5.3x,
2.6/2.3x, 1.2/1.3 x, respectively.

Replication. Flint uses chain replication (§4.4) to achieve
high availability. Figure 8 reports the P50 latency of I/O reads
and writes with the replication enabled/disabled. We use three
replicas in this experiment. For 4KB and 128KB random
reads, with replication, they achieve the same performance
as the disabled case when varying the queue depth because
requests are served by the tail node. However, in terms of
writes, since an I/O should pass through the chain from the
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Figure 8: Latency varying the I/O queue depth when enabling
and disabling the replication.

head to the tail, one would experience a considerable latency
increase. For example, on average across all cases, the P50
latency of a 4KB and 128KB write is worsened by 2.9x and
3.5x, respectively. With future EBOF recirculation support
(where a request can be reinjected into the I/O processing
pipeline), we expect the latency can be further reduced.

5.3 Flint Decouples Capacity and Bandwidth Allocation

Next, we evaluate how Flint addresses the second issue (§2.2)
via the bandwidth auction technique. We configure five scenar-
ios with two types of contending random /O streams, where
each is issued from different-sized volumes: W1 (16 x 4KB
reads v.s. 8 x 128KB reads), W2 (8 x 4KB reads v.s. 8 x 4KB
writes), W3 (8 x 4KB writes v.s. 8 x 128KB reads), W3 (8 x
4KB reads v.s. 8 x 4KB writes), W4 (8 x 128KB reads v.s. 8 x
128KB writes), and W5 (8 x 4KB 70/30 reads/writes v.s. 8 X
4KB 30/70 reads/writes). We max out the bandwidth of each
stream using a large queue depth (QD).

Figure 9-a reports their aggregated relative bandwidth ratio.
For all scenarios, Flint ensures I/O streams with the same
demand receive similar bandwidth regardless of their capacity.
This is because (a) our arbiter distributes equal bandwidth
slices to each active tenant in a deficit round-robin manner; (b)
a client can only submit an I/O when its granted slice still has
room. Thus, a small volume can still receive more bandwidth
if it has more pending I/Os, whereas a large volume cannot
take more than its (weighted) equal share. Under contention,
no matter how many outstanding I/Os a stream issued, it can
only receive more bandwidth when all contending streams
operate in a similar phase. When disabling our mechanism,
one can observe great unfair allocation. For example, in W3,
the 128KB read ones take 4 x more than the 4KB write ones.
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5.4 Flint Mitigates I/O Interference

This experiment demonstrates the effectiveness of the Flint
I/O scheduler. We set up two categories of I/O streams on one
SSD: the victim ones that issue 4KB read/write I/Os with a
small QD; and the background ones that send different types
of I/Os with a large QD. Because Flint computes the I/O rank
(priority) on the fly and dynamically determines the request
issuing order, a low-ranked I/O would then be inserted in the
front of the queue, which is dequeued first, mitigating the
head-of-line blocking issue. Figure 10 reports the average
P50/P99/P999 latency of the victim streams. When 4KB ran-
dom read co-locating with 128KB random read (Figure 10),
Flint helps reduce the P50, P99, and P99 latencies by 4.8,
2.6x%, and 7.5 %, respectively. We observe similar trends in
the other three cases. Under read/write mixed cases, the la-
tency savings are related to the write cost estimation, which
determines the accuracy of computing the write I/O rank. For
example, when 4KB writes interleave with 128KB writes, one
can achieve 36.4%, 17.7%, and 18.9% lower P50, P99, and
P999 latency when enabling Flint, respectively.

5.5 Flint Avoids Busy EBOF SSDs

Flint is conscious of the device running condition due to the
shadow view’s capabilities. To demonstrate this, we set up
an experiment that pollutes an EBOF SSD using 4 128KB
random reads/writes. We then create an eVol over the SSD
and launch a 32KB read, write, and mixed (70% read) stream.
We disable/enable the dynamic extent remapping technique
and I/O scheduler and measure the average latency when
increasing the QD. As shown in Figures 9-b and c, Flint
consistently reduces latency for scenarios because it eschews
the congested SSD and directs I/Os to others. For example,
under the read/write congestion, it reduces the average latency
by 40.1%/29.8%. Therefore, based on §5.4 and §5.5, one can
see that Flint is capable of tackling the third issue (§2.2) and
achieves effective multi-tenancy.

We also compare the performance of eVol and Logical Vol-
ume Management (LVM). Figure 7-d shows their bandwidth
under three different workloads, where some SSDs are con-
gested. Compared with the workload oblivious placement in
LVM, eVol is aware of the device’s runtime condition and
places extents in a less-loaded drive, yielding 2.3x, 3.0,
3.8 throughput improvement, respectively.
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Figure 10: Latency comparison when consolidating different
types of I/O streams. RD/WR=Read/Write.

Primitive Throughput (MRPS) P50 (us) P99 (us)
view_query 21.5 24 31
view_sync 5.8 38 67

Table 1: The shadow view performance on a storage client.
5.6 System deployment

Application integration. Flint is backward-compatible,
provides the volume interface, and supports different storage
workloads. As a case study, we deploy an object store [12,29]
over Flint and see how much benefits it can bring to the
application. We use one storage client in this experiment.
Figure 11 presents the latency v.s. throughput when run-
ning YCSB workloads. When running over an eVol, one can
achieve 2.8x, 2.8%, 2.9x throughput improvements, with
66.4(74.6)%, 63.7(73.8%), and 61.9% read(write) latency re-
duction for YCSB-A, YCSB-B, and YCSB-C, respectively.

Shadow view. view_query and view_sync are the two
major RPC primitives provided by our shadow view service.
Flint uses the Protobuf [9] for serialization, incurring some
data processing overheads on both the client and arbiter sides.
For example, as shown in Table 1, the average/tail latency of
a view_query is 24/31us, which could be optimized using
hardware-assisted serialization techniques [63].

6 Related Work

Block Storage. Researchers have built a plethora of dis-
tributed block storage systems in different settings. For exam-
ple, Petal [41] realizes an early vision of network-attached
disks through ATM networks that enable adaptive capac-
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Figure 11: Performance comparison between the EBOF volume (Baseline) and Flint when holding an object store. We use the YCSB
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ity/bandwidth scaling. Parallax [51] harnesses the characteris-
tics of a virtualized environment to implement advanced stor-
age features and provides a block interface over storage VMs.
Strata [21] develops a scalable storage system over network-
attached flash using global data address translation and SDN-
assisted storage protocol virtualization. Blizzard [53], built
atop FDS [59], provides a cloud-scale virtual drive with some
optimizations, such as nested striping and out-of-order write
commits. Decibel [58] exposes the dVols abstraction and em-
ploys a shared-nothing data-plane design, allowing efficient
sharing of disaggregated storage class memories (SCMs).

Object Storage. It organizes data as objects and uses a
global identifier for addressing. NASD (network-attached se-
cure disks) [27] builds an early version of object store and
enables scalable disk bandwidth. OceanStore [39] develops a
data object infrastructure that spans the globe and provides
continuous access to persistent information. Ceph [77] dis-
tributes data replication, failure detection, and recovery to
semi-autonomous object storage devices that run a special-
ized local object file system. Haystack [16] is an object store
for the Facebook’s photos application and changes costly
disk metadata operations into in-memory ones. FDS [59]
proposes locality-oblivious blobs over full bisection CLOS
networks. F4 [57] designs a hierarchical tier architecture and
improves the warm object access performance. Pocket [38] is
a distributed object store for serverless applications with fast
response, auto-scaling, and smart data placement capabilities.

Distributed File Systems. There is a long history of build-
ing distributed file systems. xFS [13] proposes a serverless
principle and distributes management and data access ser-
vices over multiple machines. Frangipani [75] takes a similar
design but relies on the underlying Petal [41] to improve
system scalability. GFS [26] is a fault-tolerant distributed
file system targeting large-scale data processing workloads.
pNFS [32] extends NFSv4 with a layout driver, an I/O driver,
and a file layout retrieval interface such that clients can per-
form direct access to remote storage. HDFS [73] serves as the
storage backend for the Hadoop data processing framework.
NOVA [78] optimizes the file system performance on hybrid
memory systems (DRAM+NVM) using a log-structured de-
sign. Assise [14] materializes the client-local persistent mem-
ory module as a linearizable and crash-recoverable cache and
improves the performance of distributed file systems.

Programmable Networks. An EBOF is partially moti-
vated by reconfigurable switches [18,31,44,48,68,69] and
SmartNICs [19,25,28,46,49,60-62,67], which realize some
functionalities of its data path (§3.2). Akin to an in-network
telemetry system, our shadow view captures EBOF runtime
statistics and serves as an assistant building block for others.

Storage Disaggregation. People have explored disaggre-
gated storage extensively given the rising networking band-
width and fast remote storage protocol [29, 33, 34, 36, 37,
43,45,47,54-56,64,79]. Ana Klimovic et al. characterize
the performance of iSCSI-based disaggregated storage [36].
Reflex [37] develops a customized kernel-bypass data-plane
for remote NVMe accesses. 110 [34] develops an efficient
in-kernel TCP/IP remote storage based on dedicated end-to-
end IO paths and delayed doorbell notifications. LeaplO [43]
unifies the address space across X86 CPUs and ARM copro-
cessors, exposing a virtual NVMe to an unmodified guest VM.
Researchers [30] also report the performance characteristics
of server-based NVMe-oF boxes. Gimbal [54] designs an ef-
ficient multi-tenancy mechanism to share a SmartNIC JBOF
via traditional networking techniques. LEED [29] builds a
fast and replicated key-value store over an array of SmartNIC-
based storage appliances to improve energy efficiency. Rack-
Blox [64] co-designs the software-defined networking and
storage stacks, dividing storage functionalities between the
programmable switch and the host I/O stack.

7 Conclusion

This paper explores how to use emerging EBOFs efficiently
to serve storage applications. The linchpin is a distributed
telemetry system (shadow view) that continuously monitors
and reports the EBOF running condition. It enhances the static
and opaque EBOF /O processing pipelines with performance
monitoring, resource accounting, and central and global coor-
dination capabilities. Using it, we then design and implement
an elastic block storage system over EBOFs and demonstrate
considerable benefits compared with defacto schemes from
performance, utilization, and multi-tenancy perspectives.
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