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Abstract
The rising deployment of massive MIMO coupled with the
wide adoption of virtualized radio access networks (vRAN)
poses an unprecedented computational demand on the base-
band processing, hardly met by existing vRAN hardware sub-
strates. The single-node supercomputer, an emerging comput-
ing platform, offers scalable computation and communication
capabilities, making it a promising target to hold and run the
baseband pipeline. However, realizing this is non-trivial due to
the mismatch between (a) the diverse execution granularities
and incongruent parallel degrees of different stages along the
software processing pipeline and (b) the underlying evolving
irregular hardware parallelism at runtime.

This paper closes the gap by designing and implementing
MegaStation1–an application-platform co-designed system
that effectively harnesses the computing power of a single-
node supercomputer for processing massive MIMO baseband.
Our key insight is that one can adjust the execution granularity
and reconstruct the baseband processing pipeline on the fly
based on the monitored hardware parallelism status. Inspired
by dynamic instruction scheduling, MegaStation models the
single-node supercomputer as a tightly coupled microproces-
sor and employs a scoreboarding-like algorithm to orchestrate
"baseband processing" instructions over GPU-instantiated
executors. Our evaluations using the GigaIO FabreX demon-
strate that MegaStation achieves up to 66.2% lower tail frame
processing latency and 4→ higher throughput than state-of-the-
art solutions. MegaStation is a scalable and adaptive solution
that can meet today’s vRAN requirements.

1 Introduction
Massive MIMO (multiple-in multiple-out)–equipping a base
station with an array of radio antennas to serve many users
simultaneously–has become the essential wireless technology
in modern cellular networks such as 5G. It boosts spectral
efficiency via multi-antenna techniques and increases network

1MegaStation is available at https://github.com/netlab-wiscons
in/MegaStation.

coverage, capacity, and throughput, which many 5G mid-band
deployments have adopted [3–5, 12, 14, 38].

RAN virtualization has gained significant traction. It has
been employed by many mobile network operators [11, 15,
35,43,50–53] and strongly advocated by industry players [36,
118]. It replaces specialized RAN hardware with general-
purpose commodity servers or programmable accelerators for
baseband signal processing, entailing a slew of benefits, such
as mitigating vendor lock-in, offering better inter-operability
and operational visibility, reducing the total cost of ownership,
and improving network management agility.

However, realizing massive MIMO under vRAN is chal-
lenging due to the high computational demands and single-
digit millisecond processing deadline of its baseband process-
ing. It consists of a pipeline of non-trivial matrix manipu-
lation tasks–like FFT/IFFT, equalization, and en(de)coding–
and converts between radio bits and data packets for each
antenna-user pair at every subcarrier frequency. The com-
pounding effect of continuously massive MIMO dimensional
scaling [63, 64, 117], the rising number of subcarrier frequen-
cies, increasing radio units being deployed at a cell site, and
stringent performance requirements [18] necessitate enor-
mous execution parallelism and computing power, which are
hardly met by today’s vRAN computing substrates.

People have tackled this problem by either building rack-
scale distributed baseband processing systems [71, 121] or
developing specialized accelerator-based platforms [28, 58,
79, 100]. For example, Hydra [71] splits the frame processing
pipelines [65] over multiple X86 servers and designs efficient
synchronization to minimize the data shuffling overheads.
When scaling, one has to use multiple servers, adding capi-
tal/operational costs and taking more physical space, which is
a key concern for future Telco site infrastructures [6, 39].
LuMaMi [100] develops a bespoke testbed using 50 Xil-
inx Kintex-7 FPGAs and supports one modest-sized MIMO
(100→10) configuration. The system is not flexible and re-
quires relaying out the software-defined radio array and parti-
tioning symbol processing paths when updating the MIMO
settings or accommodating user traffic vagaries. Therefore,
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prior solutions struggle to provide adequate computing paral-
lelism with flexible programmability at an acceptable cost.

Empowered by recent cluster interconnects (like Routable
PCIe [2] and UALink [54]), infrastructure composability be-
comes possible, and an emerging computing platform–called
single-node supercomputer (SNC) [44]–receives great at-
tention and interest. It is a physically compacted testbed, com-
prising one server host and a composable GPU pool (enclos-
ing tens of GPUs in standalone chassis), connected through
backplane or external fabric switches, such as the GigaIO
SuperNODE [44]. An SNC (a) holds substantial execution
parallelism where remote GPUs behave as local ones and
run host-native system stacks, (b) provisions adequate and
consistent bandwidth for host-GPU and GPU-GPU communi-
cation, and (c) allows incrementally on-demand GPU scaling,
making it a promising target for running highly parallel and
compute-intensive applications, like AI/HPC.

In this paper, we design and implement MegaStation that
harnesses the computing power of an SNC to process the base-
band for vRAN-based massive MIMO. This is challenging
because of the mismatch between the application software
parallelism and the underlying hardware computing paral-
lelism. The MIMO baseband processing pipeline comprises a
sequence of stages that run at different execution granulari-
ties (such as antenna, user, and subcarrier) with incongruent
parallel degrees. State-of-the-art solutions [65, 71, 100, 121]
parallelize the pipeline at the frame, symbol, or task level.
They are all suboptimal and would gradually make the under-
lying hardware parallelism irregular, adversely affecting the
baseband processing performance (§3). Thus, without care-
ful coordination and scheduling, one would experience radio
bandwidth drops, frame processing deadline violations, and
computing resource waste.

MegaStation addresses the challenge by revamping the
baseband processing pipeline and applying techniques from
the computer architecture field. Our key idea is to model
the single-node supercomputer as a tightly coupled micro-
processor and employ a scoreboarding-like scheme [115] to
schedule "baseband processing" instructions based on GPU
hardware status. MegaStation comprises four software mod-
ules: (a) an instruction unit that translates frame sequences
to task instructions and analyzes their data dependency and
structural hazards; (b) processing function units, which holds
baseband processing instructions and runs over GPUs; (c) the
scoreboarding, a centralized bookkeeper that continuously
tracks the execution status of inflight instructions and per-
forms resource accounting of the GPU pool, serving as the ba-
sis for other components; (d) a pipeline scheduler, orchestrat-
ing instruction execution via a new algorithm (called LROC)
that sparingly synthesizes the least slack time scheduling
with instruction reordering, over-commitment, and coalesc-
ing techniques. Therefore, MegaStation adjusts the execution
granularity and reconstructs the baseband processing pipeline
on the fly based on the dissected hardware parallelism status.
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Figure 1: Frame structure and baseband processing pipeline.

We built MegaStation atop Agora [65] and Nvidia Aerial
SDK [30] and evaluated it over the GigaIO FabreX platform.
Compared with three state-of-the-art solutions [65, 71, 100,
121], MegaStation achieves up to 66.2% lower tail frame pro-
cessing latency for the 256→128 MIMO setting. MegaStation
effectively harnesses any available computing power of the
GPU pool and schedules suitable baseband processing jobs
without overloading the GPU. Further, we empirically demon-
strate the scalability and adaptiveness of MegaStation under
different vRAN settings. For example, our system can support
8 RUs under the 128→64 MIMO setting on 6 GPUs with up
to 4→ higher throughput than other approaches.

2 Background and Motivation
We provide the necessary background about massive MIMO
baseband processing, introduce the single-node supercom-
puter, and show its potential for vRAN acceleration.

2.1 Baseband Processing of Massive MIMO

In massive MIMO, the multi-antenna radio unit (RU) receives
wireless signals combining multiple users’ transmissions,
where each antenna digitizes these signals into per-subcarrier
(i.e., frequency) in-band and quadrature (IQ) samples and
encapsulates these IQ samples as packets. The baseband pro-
cessing unit (or BBU)–exchanging IQ sampled packets with
an RU via a fronthaul link–performs a series of pipelined
tasks to recover the bits from radios and then delivers them to
the mobile core, and vice versa.

Take a typical M →K MIMO configuration as an exam-
ple that serves K users concurrently via M antennas. Mas-
sive MIMO uses frequency canceling to support different
users on the same frequency. We represent the signal streams
transmitted by K user antennas for a given subcarrier as a
XK→1 vector. An RU then receives YM→1 signal, modeled as
YM→1 = WM→K →XK→1, where W is the computed precoder,
i.e., Wi, j capturing the wireless channel status between an an-
tenna i and a user j. The baseband processing is responsible
for converting between the signals Y from all RU antennas
and the users’ signals X . The processing granularity is a time
frame (Figure 1-a), whose length depends on user and cell
configuration, lasting up to a few milliseconds. Each frame
is further divided into a few to tens of symbol durations (14
in a typical case). The beginning of a frame is a Pilot symbol
that encodes the channel state information (CSI) and allows
the BBU to estimate the channel matrix WM→K . The rest are
non-Pilot data symbols, carrying one block of transmitted or
received modulated data bits for all users on each subcarrier.
Processing Pipeline. Massive MIMO generally comprises



an uplink and a downlink processing pipeline inside its BBU
(Figure 1-b), each consisting of multiple stages. Take the up-
link one as an example. First, it transforms the time-domain
IQ samples into frequency-domain samples for each antenna
through FFT. Second, the pipeline obtains the channel matrix
(W ) from the pilot symbol, and then uses the zero-forcing (ZF)
technique [56, 123] to compute the precoder via the pseudo-
inverse of the matrix W , i.e., H = (W ↑W )↓1W ↑. Third, for
non-pilot symbols, the BBU performs equalization to recover
user signals (X) by computing H →Y . Fourth, it applies de-
modulation to extract information bits from complex numbers.
Finally, the BBU performs decoding using a forward error
correction (FEC) scheme to generate and verify the user bits.
Akin to prior studies [65, 71], we use the low-density parity-
check (LDPC) algorithm [70]. The downlink pipeline works
in the opposite way, where each task performs the reverse
functionality as the one in the uplink.

2.2 High Computing Demand under vRAN

RAN virtualization realizes the BBU’s functionalities using
commodity servers or programmable engines instead of pro-
prietary and specialized boxes [42, 46, 47, 49]. Even though
this entails many benefits (e.g., cost efficiency, management
agility, and operational visibility), vRAN drastically increases
the computing demand, especially under massive MIMO.

There are three reasons. First, the baseband processing in-
cludes a pipeline of computing-intensive and highly parallel
tasks (§2.1). For example, FFT and IFFT are parallelized at
the antenna level, whose computing complexities depend on
the number of subcarriers. Equalization, precoding, demod-
ulation, and modulation tasks are subcarrier-parallel. Each
requires non-trivial matrix calculations, and their dimensions
depend on the number of subcarriers and users. The paral-
lelism of en(de)coding hinges on the number of users. Such
non-consistent parallel degrees indicate that data shuffling is
required when crossing different execution stages [71].

Second, the MIMO is scaling up with an increasing num-
ber of antennas and users to satisfy future communication
demands, such as XL-MIMO [63, 64, 117]. Third, cellular
networks impose stringent requirements from data rate and
latency perspectives. For example, only considering a band-
width of 100MHz [18], the peak downlink/uplink spectral
efficiency is 30/15 bps/Hz, translating to a maximum data
rate of 3/1.5 Gbps. Further, 5G requires single-digit mil-
lisecond transmission latency between a user and a base sta-
tion [17, 18] for two types of communication: ultra-reliable
and low-latency communications (URLLC) and enhanced mo-
bile broadband (eMBB). In the worst case (if an irrecoverable
bit error happens), the BBU should send a downlink NACK to
the user within four time slots (a few to 10s of milliseconds).

2.3 Prior Solutions

The de facto hardware substrate for deploying vRAN is com-
modity servers, starting from a pioneering effort–Sora [114].
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Figure 2: The hardware testbed and system architecture of a
single-node supercomputer based on the GigaIO’s platform.

It processes the 802.11 a/b/g protocol using an Intel Core 2
processor (with SIMD extensions). BigStation [121], built
atop Sora, realizes a distributed processing pipeline for multi-
user MIMO (MU-MIMO) by parallelizing frames over mul-
tiple PCs. Regarding massive MIMO, Agora [65] is the first
system that implements the baseband processing pipeline over
an Intel Skylake processor by exploring data parallelism at the
task level, supporting small-scaled massive MIMO (64→16).
Hydra [71] scales up the massive MIMO capacity by dis-
tributing uplink/downlink pipelines to multiple X86 servers.
It follows the BigStation architecture but designs efficient syn-
chronization to minimize inter-stage data shuffling. Server-
based solutions offer general-purpose computing and simplify
software updates, but suffer from high TCO (total cost of
ownership) and physical space constraints, especially when
scaling the massive MIMO because more servers are required.

People also develop hardware-accelerated solutions to
satisfy computing demands. Industry vendors build spe-
cialized BBUs (baseband processing units)–such as Nokia
AirScale Baseband Module [47], Huawei BBU5900 [46],
H3C BBU5200 [45]–and use ASIC DSP blocks to process
the uplink and downlink pipelines. Atomix [58] takes pro-
grammable DSPs and builds a modular development frame-
work for implementing wireless protocols and applications.
FlexCore [79] parallelizes the detection of large numbers
of mutually interfering information streams over GPUs. In-
tel’s FlexRAN [28] provides a development SDK to build
FPGA-accelerated vRAN stacks. LuMaMi [100] develops
a specialized distributed FPGA testbed (connected via PCIe
switches) and can handle 20 MHz bandwidth under a 100→10
sized MIMO. Albeit providing better energy/cost efficiency,
such systems generally fall short in programmability, oper-
ability, and maintenance. For example, LuMaMi necessitates
reconfiguring the FPGA array and partitioning the symbol
handing path to accommodate MIMO and traffic changes.

2.4 Single-Node Supercomputer
Empowering by emerging load/store cluster interconnects [2,
40], infrastructure composability has become a new hardware
architecture property [7–10, 13]. It transparently expands the
server’s computing capacity and improves the overall system
cost efficiency. This yields a new and powerful computing
platform called Single-Node Supercomputer (SNC).

Take the GigaIO’s FabreX and SuperNODE testbed [8] as
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an example, which is our prototype and evaluation target. As
shown in Figure 2-b, the platform consists of (1) host adapters
(i.e., FA400X [23, 24]) that extend the host server’s PCIe sub-
tree; (2) standalone chassis boxes (i.e., RB4082 [33]), where
each encloses endpoint adapters with up to 8 GPUs per ap-
pliance, connected through a PCIe backplane; (3) an external
fabric switch (i.e., RS4024 [25, 34]), which connects host
servers and chassis via SFF-8644 [37] copper/optical cables.
In the current generation, the SuperNODE can attach up to
32 GPUs to a single server host. FabreX and SuperNODE are
built atop routable PCIe 3.0/4.0 [2], and are under upgrading
to other interconnects [40,54]. Thus, a single-node supercom-
puter is one commodity server equipped with tens of GPUs,
all of which stay under the server’s PCIe root complexes.

The platform has several features. First, each remote GPU
appears as a local PCIe device, which is directly accessed
from host applications through existing driver and system
stacks. This differs from today’s distributed GPU clusters in
the HPC and data centers, where a GPU access should traverse
the message passing layer and networking stack [48,68,72,76,
81, 99, 119], entailing communication overheads. Second, all
GPUs are located under a multi-rooted tree topology inherited
from PCIe, where host-GPU and GPU-GPU communications
are provisioned with adequate bandwidth (e.g., →16 lanes).
Third, the platform can be scaled incrementally, where one
can add/remove GPUs on demand without considering the
available PCIe slots and power of the host server, simplifying
infrastructure planning and management. Besides, the system
is physically compacted (4U in our lab setup) with air cooling
in the remote chassis. A single-node supercomputer resembles
an NVIDIA DGX platform [31, 32]. However, it is loosely
coupled physically with less GPU-GPU bandwidth (compared
with NVLink 3.0/4.0) but has a higher GPU consolidation
ratio and better infrastructure flexibility.

We believe that SNC is a promising vRAN substrate, espe-
cially when handling the dynamic high computing demand of
massive MIMO. This is because (a) it encloses high comput-
ing density (GPU #) without bandwidth oversubscription in
a single server, alleviating the need to handle the cross-node
communication complexity in distributed systems; (b) it is
a physically compact setup and has better space efficiency
when scaling than today’s rack-scale vRAN infrastructures;
(c) GPUs can be added/removed on-demand flexibly via the
PCIe hotplug without changing the underlying computing
setting, whose management cost is less than dealing with the
addition and removal of standalone GPU servers.

3 Understanding the Execution Parallelism
To effectively use SNC for baseband processing, this section
characterizes the impact of different execution parallelism.

3.1 Types of Software and Hardware Parallelism
SW Parallelism. As described in §2.1, the baseband pro-
cessing pipeline encloses a sequence of stages that exhibit
different execution granularities and incongruent parallel de-
grees. There are three ways to parallelize it (Figure 3).
• Frame Level. The first is a coarse-grained approach that

concurrently processes a window of consecutive frames,
which has been explored in LuMaMi [100]. Since the com-
puting intensity is inconsistent across different stages, it is
challenging to do resource provisioning;

• Symbol Level. The second one is to parallelize symbol
processing within a frame, such as Hydra [71]. Except for
the pilot symbol (§2.1), other symbol handling can happen
concomitantly. It is finer-grained than the first case but
requires tracking execution dependency at runtime;

• Task Level. The third strategy is to schedule computations
at the finest granularity (like BigStation [121]) that har-
nesses the available parallelism at best. We define a task as
a MIMO processing stage as in Figure 1. However, this ap-
proach complicates the pipeline design because one should
not only track dependent tasks, but also introduce the syn-
chronization barrier (through shuffle) when the parallel de-
gree across different phases changes, e.g., FFT (antenna#)
↔ EQ/DEM (subcarrier#) ↔ DEC (user#).

HW Parallelism. We quantify the available parallelism as the
number of GPU’s streaming processors (SM), denoted as P.
These SMs could come from one or several GPUs. We then
represent the adequate parallelism (SM #) to run a job in our
baseband processing as Q. Thus, we categorize the hardware
parallelism scenarios as follows:
• Full Parallelism, where P ↗ Q and P SMs ↘ 1 GPU . The

job can be placed in one GPU with no performance loss;
• Fragmented Parallelism, where P ↗ Q and P SMs ↘

x GPUs and x > 1. Even though there are enough par-
allel engines, the job needs to be partitioned across several
GPUs, and data shuffle would be required for synchroniza-
tion when crossing different stages, hurting performance;

• Partial Parallelism, where 0<P<Q and P SMs↘ x GPUs
and x ↗ 1. There is inadequate parallelism to run the job
and one would see performance interference due to GPU
sharing. The problem becomes even worse when the avail-
able SMs are from different GPUs;

• Delayed Parallelism, where P = 0. This indicates all SMs
are busy. A job has to be queued first and be awakened
when one of the above three types of parallelism emerges.

The Dilemma. Ideally, we should devise an execution strat-
egy that always makes the baseband processing job run in
full parallelism mode. To satisfy the stringent performance
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Figure 4: Baseband processing performance at three execution
granularities varying the partial degree. We report the frame
processing latency and throughput in all three cases.
requirements and high computing demand of massive MIMO,
one should fully exploit the parallelism across three levels,
i.e., parallelizing frame, symbol, and task processing as much
as possible. As a result, the irregular software parallelism will
gradually make fragmented, partial, and delayed hardware
parallelism appear frequently, adversely impacting pipeline
performance. We aim to characterize this dilemma and un-
derstand how different parallel executions perform under the
above hardware parallel scenarios. Our experimental setup is
described in §5.1 and the MIMO configuration is 128→32.

3.2 Partial Parallelism

Setup. We configure the partial parallelism by co-locating the
target baseband processing task with a persistently running
background job (which spawns a number of busy polling
threads to consume the SM resources). We vary the number
of occupied SMs and explore how it impacts three execution
granularities. We define the partial degree as P

Q .
Results. The three software parallelisms can tolerate a modest
to high partial degree. As shown in Figure 4, when half of
the SMs are occupied, we observe up to 7.3% performance
drop in all three cases. This is because the parallelism of
the baseband processing pipeline is determined by its most
computing-intensive phase. Other tasks requiring fewer SMs
can still run in full parallelism when the partial degree is high.
Thus, the performance-affected parts due to inadequate SMs
would only contribute to a small portion of the total execution
according to Amdahl’s Law. Symbol/Task-level parallelism
outperforms the frame-level one by 56.9%/60.4% in terms of
uplink/downlink frame processing latency on average across
all cases. This is because finer-grained execution parallelizes
different symbols and tasks within a frame over multiple SMs.
In contrast, frame-level execution cannot fully utilize the GPU
for a single frame, resulting in a higher per-frame latency but
allowing more frames to be scheduled concomitantly. As a
result, all three software parallelism methods achieve similar
throughput. We further explore an extreme scenario that only
configures 1 SM (1.0% partial degree). Regardless of running
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Figure 5: Baseband processing perf. at three granularities vary-
ing the fragment degree. We measure the per-(frame | symbol |
task) throughput (K frames per second).
at which granularity, the performance is reduced by more than
10→, indicating that a heavily-loaded GPU can easily violate
the performance requirements of baseband processing.
Takeaways. Partial parallelism with modest/high partial de-
gree exhibits marginal performance degradation. However,
as shown in Figure 4, the baseband processing performance
drops significantly if a GPU has less than 20.0% free SMs.
Therefore, one should carefully estimate the partial degree be-
fore allocating tasks to GPUs. Even though all three software
parallelism options deliver similar throughput, frame-level
parallelism presents the worst processing latency, making it
ill-suited for an execution scenario with stringent deadlines.

3.3 Fragmented Parallelism

Setup. We provision required parallelism (Q SMs) from two
composable GPUs and define the ratio of two GPUs’ SMs as
the fragment degree, i.e., GPU1 SM#

GPU2 SM# . The number of SMs is
controlled via the same synthetic background job used in the
partial parallelism section. We then examine how different
execution granularities of the baseband processing behave
when gradually varying the fragment degree.
Results. At the frame level, the pipeline proportionally sched-
ules frames to two GPUs based on the number of SMs in a
round-robin fashion. As shown in Figure 5, frame parallelism
can tolerate high fragment degree. Compared to zero frag-
ment degree, the throughput of the uplink/downlink increases
by 34.1%/30.6% when fragment degree reaches 100.0%. The
reason is that a single GPU exposes the FIFO queue struc-
ture [55, 105], limiting the number of concurrent scheduled
frames. With one more GPU, the number of frames that can be
scheduled simultaneously increases, causing overall through-
put improvement. Although resources are split between two
GPUs, each individual GPU exhibits partial parallelism. As
shown in the partial parallelism, a slight reduction in the num-
ber of SMs can still be accommodated. This indicates that
partitioning would not lead to a significant performance drop.

The execution strategy at the symbol level is similar; how-
ever, symbols (other than pilot) cannot run before the com-
pletion of the pilot symbol in each frame. If symbols do not
stay within the same GPU as the pilot, extra data shuffling is
required for another GPU to synchronize results. Also, sym-
bols show up to 25.1%/65.1% increase under low fragment
degrees (from 0.0% to 44.0%/16.0% fragment degree for
uplink/downlink) thanks to the increasing hardware request
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Figure 6: Baseband processing perf. at three granularities vary-
ing background jobs #. We measure the per-(frame | symbol |
task) throughput (K frames per second).
queue. It even outperforms the frame-level parallelism (up
to 17.8%/33.3% higher) due to the fine-grained execution.
This provides a GPU with a wider range of options for select-
ing smaller jobs to run when there are limited SMs, yielding
higher utilization and performance improvement. Conversely,
coarse-grained large kernels offer less flexibility, resulting in
an inefficient use of fragmented resources. Nevertheless, sym-
bol parallelism underperforms the frame case when the frag-
ment degree exceeds 70.0%. At 100.0% fragment degree, we
observe a 14.5%/17.4% uplink/downlink performance drop.
The reason is that extra data shuffling required for symbol-
level scheduling cannot be hidden by computation under a
high fragment degree (discussed in Appendix A.1).

When parallelizing at the task granularity, we also par-
tition tasks proportionally to two GPUs. A key challenge
is to minimize data shuffling overheads. We follow the Hy-
dra [71] approach that only synchronizes when the parallelism
changes. This indicates that equalization and demodulation
(precoding and modulation) tasks across the uplink (down-
link) pipeline run in the same GPU. Task level experiment per-
forms worst according to Figure 5, presenting a 48.2%/52.2%
uplink/downlink throughput drop. In contrast to the symbol
case that only synchronizes pilot computation once per frame,
tasks synchronize data between every two stages for non-pilot
symbol processing, resulting in 13 times of synchronization
(excluding pilot) per frame in a typical 14-symbol frame.
Takeaways. Fragmented parallelism, albeit providing enough
SMs, should carefully divide jobs based on the underlying
GPU’s computing capability to mitigate jeopardy. Finer-
grained execution at the symbol level helps utilize the avail-
able SMs in each GPU. But one would see diminishing returns
when synchronization overheads dominate. There is a trade-
off between execution granularity and data shuffle frequency.

3.4 Delayed Parallelism

Setup. We design the delayed parallelism experiment by inter-
leaving the target baseband processing job with special back-
ground kernels. They run large-scale GEMM (General Matrix
Multiplication) tasks, where M→N→K = 1280→1024→512,
consuming as many available SMs as possible. A bunch of
such kernels is being pushed to the GPU consistently one
after another. We investigate how the GPU internal scheduler
affects different-sized baseband processing jobs.
Results. We find that the frame-based execution adapts to
delayed parallelism the best, followed by symbol and then

task granularity. For example, when there are 100 inter-
leaved kernels, the uplink/downlink frame pipeline observes
23.5%/30.9% degradation while uplink/downlink symbol
is dropped by 47.2%/60.8%, and uplink/downlink task is
60.0%/74.7% lower. The key reason is that GPUs employ
a strict FCFS scheduling policy with a limited amount of
hardware execution queues [55,105,106], providing little fair-
ness guarantees. When execution contention happens, coarse-
grained scheduling submits a sequence of jobs in batches and
thus would receive more GPU computing cycles. Besides, fre-
quent kernel launches and completions at a finer granularity
cause more GPU interruptions and jeopardize performance.
Takeaways. The impact of delayed parallelism stems from
how the computing resource of a GPU is shared among com-
peting kernels. The inherent FCFS policy and kernel-agnostic
partition make inefficient multi-tenancy support on the GPU.
Thus, when determining the execution granularity under GPU
contention, one should collaboratively consider the kernel
size distribution of co-located baseband processing jobs.

3.5 Summary
There is no one-size-fits-all execution granularity that allows
the baseband processing pipeline to accommodate different
irregular hardware parallelism. Therefore, an ideal baseband
processing solution over an SNC should be execution adap-
tive, aware of the underlying target status at runtime, and
collectively consider co-located kernels. None of the prior
solutions [28, 30, 58, 65, 71, 100, 114, 121] can achieve this.

4 MegaStation: Design and Implementation
This section describes MegaStation and shows how we ad-
dress the above dilemma. Our system design goals are:
• Delay deadline. MegaStation should satisfy the processing

latency requirements of each time frame. It should ensure
the average/tail delay stays within the constraint;

• High utilization. MegaStation should fully harness the
available hardware parallelism (no matter which type) and
minimize stalled or idle GPU cycles. It should strive to con-
solidate baseband processing tasks on just enough GPUs
without over- or under-subscriptions;

• Adaptability. MegaStation makes no assumption about the
frame structure and can handle different uplink/downlink
frames. It should automatically adapt its processing capa-
bility to the target spectrum, and client rate.

4.1 Key Idea and System Overview
Key Idea. MegaStation effectively leverages the massive
parallelism of a single-node supercomputer to process data
frames. Our key insight is that one can adjust the execution
granularity and reconstruct the baseband processing pipeline
on the fly based on the hardware parallelism status. We are in-
spired by the dynamic instruction scheduling [115, 116] from
computer architecture field. Dynamic instruction scheduling
reorders instructions to prevent stalls by scheduling indepen-



(b). Instruction transation and dependency analysis 

Frame 1

Frame n

……
Frame 2 <Frame i, Symbol 0, PilotFFT>

……
<Frame i, Symbol 0, ZF>

<Frame i, Symbol j, FFT>
<Frame i, Symbol j, EqDemodul>

<Frame i, Symbol j, Decode>
……

Frame i
……

Instruction Stream
L:exe

L:exe L:exe

L:exe L:exe

opcode i
OpcodeInfoTable

Lat.
InstStatusTable

inst j

GPUStatTable
GPU k Est. 1

Res. Vector
opcode i+1 Lat. Res. Vector
opcode i+2 Lat. Res. Vector

Exec. TS Comt. TS
inst j+1 Exec. TS Comt. TS
inst j+2 Exec. TS Comt. TS

Est. Lifetime Completion Flags

… Est. n Flag 1
GPU k+1 Est. 1 … Est. n Flag 1
GPU k+2 Est. 1 … Est. n Flag 1

RUs (1…n)

The Scoreboarding

GPUs (1…n)

exe exe exe

exe exe exe

Fram
e 1

Fram
e n

…
…

Fram
e 2

Instructions Executors

Fram
e 1

Fram
e n

…
…

Fram
e 2

Fram
e 1

Fram
e n

…
…

Fram
e 2

(a). MegaStation System Architecture

Instruction 
U

nit

GPU1
GPU2
GPUn

(c). Tables maintained by the scoreboarding

Pipeline 
Schedulers

Issue. TS
Issue. TS
Issue. TS

Exe 1 … Exe n
Exe 1 … Exe n
Exe 1 … Exe n

Planed Executors

…
…
…

Flag n
Flag n
Flag n

GPU k

Figure 7: (a) provides an overview of MegaStation. (b)/(c) depict the details of the instruction unit and scoreboarding.

dent instructions when the execution engine is free. We view
the baseband processing task on GPUs as instructions and ap-
ply dynamic scheduling. This flexible approach allows us to
make real-time adjustments to the software parallelism based
on the status of the GPUs. Hence, we model the single-node
supercomputer as a tightly coupled microprocessor and em-
ploy a scoreboarding-like algorithm to schedule “baseband
processing” instruction streams over the composable GPU
pool. MegaStation continuously bookkeeps the occupancy
of the GPU’s computing resources (e.g., SMs, registers, and
shared memory), and issues an instruction when it is ready.
Within the frame deadline, MegaStation coalesces one or
several instructions with data locality to maximize the prob-
ability of full parallelism, mitigates the fragmented/partial
parallelism via instruction reordering, and tackles the delayed
parallelism via managed over-commitment.
System Overview. MegaStation comprises four components
(Figure 7-a): (a). Processing Functional Units or Executors
(§4.3), running baseband processing tasks over the GPU SMs;
(b). Instruction Unit (§4.4), which takes data frame sequences
as inputs, translates them into instructions, and places them
into an instruction queue; (c). The Scoreboarding (§4.5), a
centralized bookkeeper that continuously tracks the execution
status of inflight instructions and performs resource account-
ing of the GPU pool, serving as the basis for other system
components; (d). Pipeline Scheduler (§4.6), which orches-
trates instruction execution, determines what and how to run
the next tasks based on committed status. MegaStation can
support one or multiple radio units concomitantly [62, 71].

4.2 Baseband Processing Tasks as Instructions

MegaStation models a baseband processing task as an in-
struction, represented as ≃Opcode, Operand1src, Operand2src
(optional), Operanddst⇐. Our current design uses 4 bits to de-
note an opcode and supports 11 different opcodes (Table 1
in Appendix A.2), i.e., Data load & store, PilotFFT, UpFFT,
iFFT, zero-forcing (ZF), equalization + demodulation (EqDe-
modul), modulation (Modul), precode, decode, and encode.
Among them, equalization and precoding take three operands,
the second source operand being a beamforming matrix, while
the rest require two. An operand is mostly a pointer to the data
input/output location. Thanks to the local view of GPUs on
a single-node supercomputer, multiple GPUs share a unified
memory address space when presenting a src/dst operand.

The lifecycle of an instruction comprises three basic ex-
ecution stages: ISSUE, EXEC, and COMMIT. First, the

instruction unit conducts dependency analyses of each en-
queued instruction and marks it ready for issuing when data
and executor are in place. Next, an instruction is scheduled
and inserted into the request queue of a GPU executor. A
functional unit processes requests following its prescribed
order. Finally, upon completion, commit notification is broad-
cast to other architectural components (like the scoreboard),
pushing the pipeline forward. At the beginning of each stage,
We collect the timestamps TSissue, TSexec, TScommit.

4.3 Baseband Processing Executors over GPUs

MegaStation instantiates GPU-based task executors on de-
mand and uses them to model instruction running on GPUs.
Since a GPU does not expose any internal resource usage
primitives at run-time, an executor is not a physical com-
puting entity but a logical representation that describes its
required resources. We use a tuple ≃CTA #, Warp #, Regs
#, SMem Bytes⇐ to represent the executor. Table 1 presents
the executor information in our design for a 128→32 MIMO
configuration. Warp #, Regs #, SMem Bytes information can
be obtained from the compiler or profiler; while CTA # is
specified at the kernel launch based on the MIMO settings.
MegaStation uses this resource to provision executors when
planning to make the computation placement decision, while
the actual allocation happens after instructions are loaded.
Executor Planning. MegaStation preallocates executors
when the instruction unit has generated instructions for an
incoming frame. We provision executors for all the enqueued
instructions. This is a typical bin-packing problem [82, 122],
whose goal is to find the minimal amount of GPUs to hold a
list of executors without exceeding the capacity of any com-
puting resources of a GPU. Since (a) the GPU pool keeps fluc-
tuating with instructions issued and retired; (b) this process
happens pre-execution; (c) resource allocation and partition-
ing inside GPU is a blackbox, finding an optimal allocation
using an ILP (Integer Linear Programming) like solution is
unnecessary. MegaStation resorts to an approximate approach
following the first-fit strategy [67]. For each instruction, we
first search the in-use GPUs and then the unoccupied ones
to hold the executor such that the total amount of CTAs (or
SMs), warps, registers, and shared memory of the candidate
GPU stays within the device limit. This step updates the
GPUStatTable of the scoreboarding (Figure 7-c).

Different GPU architectures exhibit diverse computing ca-
pacities [41]. Newer GPUs could hold more executors simul-
taneously with more CTAs and global memory. An executor’s



Algorithm 1 Structural Analysis.
1: Inst_DAG: the DAG within the instruction unit
2: function PLAN_INST_EXECUTOR(cur_inst)
3: preced_insts ⇒ preced_nodes(Inst_DAG, cur_inst)
4: est_time ⇒ ESTIM_TIME(cur_inst, preced_insts)
5: if est_time.start↓TScurrent > 2Tframe then return Resched.
6: pred_GPU, pred_SM ⇒ MAX_SM(preced_GPUs, est_time)
7: if pred_SM > ! pred_GPU.total_SM then
8: return pred_GPU ω Full/Partial Parallelism
9: max_GPU, max_SM ⇒ MAX_SM(all_GPUs, est_time)

10: if max_SM < ! max_GPU.total_SM then
11: return delayedQ.push(cur_inst) ω Delayed Parallelism
12: if pred_GPU.wait < data.copy then ω Fragmented Para.
13: return pred_GPU
14: else /* including pred_GPU = NULL */
15: return max_GPU
16: function ESTIM_TIME(cur_inst, preced_insts)
17: if cur_insts = frame_start then
18: return ESTIM_FRAME(Tframe)
19: else if cur_insts = symbol_start then
20: return ESTIM_SYMBOL(Tsymbol)
21: else
22: return ESTIM_INST(Tinst)

resource tuple may vary depending on the GPU architecture
it is compiled for. These all require us to keep track of the
instructions’ behavior in different GPUs (OpcodeInfoTable)
and monitor the device limit and planned executors of a GPU
(GPUStatTable), used by our scoreboarding scheme (§4.5).
The scheduler (§4.6) then consults the scoreboarding to de-
cide which instructions run next on which GPUs at runtime.

4.4 Instruction Unit

MegaStation receives IQ samples from the fronthaul link and
delivers them to the instruction unit. It performs three tasks:
instruction translation, dependency graph construction, and
structural analysis. As shown in Figure 7-b, we first decode
the frame structure, parse each pilot/uplink/downlink symbol,
and then generate instructions for the pipelined tasks. MegaS-
tation attaches a prefix to each instruction to facilitate later
analysis: ≃Frame i, Symbol j⇐+Inst.

Next, the instruction unit builds the directed acyclic graph
(DAG) among pending instructions to capture the execution
dependency. MegaStation explores this from both data and
structural perspectives. Regarding data dependency, we con-
struct the DAG graph by analyzing the RAW (read-after-write)
relation, where the source operand of instruction I2 depends
on the destination operand of instruction I1. For example,
an Inst[equalization] can be executed when it receives the
beamforming matrix from the preceding Inst[zero-forcing]
and the output of Inst[FFT]. In our case, WAR (write-after-
read) and WAW (write-after-write) rarely happen because
the destination operands of subsequent tasks along the base-
band processing pipeline differ from the source or destination
operands of precedent tasks. Since time frames are indepen-
dent, the DAG is per-frame, whose size is bounded.

For structural analysis, MegaStation analyzes each GPU
status to determine its hardware parallelism. According to
this analysis, MegaStation decides the GPU on which the
executor of instruction should run. Unlike microprocessors,
our functional units are the SMs of each GPU and are not
fixed. This indicates that an instruction could have multiple
executor candidates (§4.3) based on the runtime hardware
occupancy. As runtime information fluctuates frequently with
instructions being submitted and committed, merely obtaining
the latest GPU status at runtime is insufficient. There exists
a time gap between when an instruction is issued and when
it actually runs on GPUs. In order to predict the GPU status
at the time when the instruction is running, we maintain a
GPUStatTable with the status of all the planned executors
(§4.5), which is used to estimate the lifetime of an instruction.

ALG1 dispatches instruction executor to different GPUs
based on hardware parallelism within instruction’s running
time range. To enhance estimation accuracy, MegaStation
only schedules instructions that are set to begin within a two-
frame time window. MegaStation employs a top-down ap-
proach, initially finding a fit for the entire frame before mov-
ing on to symbol and then instruction (ALG1: ESTIM_TIME).
We prioritize GPUs with input locality, coalescing instructions
with dependency. If the minimum number of available SMs
during the instruction’s running time range is less than thresh-
old partial degree ! times the total number of SMs of the
GPU (indicating full or partial parallelism), we could safely
schedule the instruction to that GPU (ALG1:L7-8). ! is GPU
architecture-dependent and profiled offline. When adding a
new GPU architecture (discussed in §3.2), we vary the par-
tial degree under three execution granularities, measure the
uplink/downlink performance (Figure 4), and empirically de-
termine ! which yields marginal performance drops (10%).

When there are insufficient SMs in the GPU of precedent
nodes or there are no precedent nodes (i.e., a new frame is
received), we search for a GPU with the maximum number
of free SMs within the instruction’s time range. If the newly
searched GPU exhibits an adequate number of SMs, it indi-
cates fragmented parallelism. Based on the findings in §3.3,
the algorithm must consider the wait time due to the SM
scarcity and data transfer time between the GPUs (ALG1:
L12-L13). For new incoming frames (no precedent GPUs),
we always choose one GPU with the lowest occupancy.

When the newly searched GPU still lacks SM (ALG1: L10-
L11), suggesting delayed parallelism, we enqueue the instruc-
tion to a delay priority queue where frames are sorted based
on their deadlines. All incoming and unscheduled frames are
redirected to the delayed queue until there are sufficient avail-
able SMs and the delayed queue is empty. Instructions in the
delayed queue are assigned to the GPU with minimal occu-
pancy at the frame level granularity and labeled as "delayed".
When the frame’s processing deadline is violated, it indi-
cates that the incoming baseband processing load exceeds the
MegaStation’s capacity. All the obsolete frames are discarded



and MegaStation sends back a customized NACK signal that
triggers load balancing (4.7). If a consistently heavy load is
observed, we would add more GPUs from the current SNC
(if there are free ones) or redirect traffic to another SNC.

4.5 The Scoreboarding

MegaStation bookkeeps execution statistics for instructions
and GPU hardware using a scoreboarding mechanism. In
terms of instruction tracking, as depicted in Figure 7-c, we
introduce two tables. One is the OpcodeInfoTable that
stores executor information regarding each instruction op-
code. Each entry in this table contains the resource vector
of its corresponding executor for each type of GPU and the
average execution latency within a calibrating window. The
resource vector of each opcode’s executor is obtained from
the compiler or profiler prior to MegaStation initialization
and remains static unless a new type of GPU is added. In
such cases, the resource vector is profiled for that type of
GPU before executors can be scheduled to the GPU. Upon
completion of an instruction, the execution time is calcu-
lated as Tinst = TScommit↓max(TSpreced_commit, TSexec), where
TSpreced_commit denotes the commit timestamp of instruction’s
precedent instruction. The execution time (Tinst) is averaged
within a calibrating window to mitigate fluctuations. Along
with the execution time of each instruction, MegaStation also
maintains the average execution time of each category of
frame (Tframe) and symbol (Tsymbol), and the average schedul-
ing time in pipeline scheduler Tsched = TSexec ↓ TSissue in
OpcodeInfoTable. The other is the InstStatusTable that
keeps track of timestamps in the ISSUE, EXEC, and COM-
MIT stages for each instruction. When the instruction unit
plans the executor, it records TSissue. Upon submission of
the executor by the pipeline scheduler, TSissue is measured.
Finally, when the GPU signals completion, TScommit is stored.

Regarding monitoring the utilization of GPU hardware,
as shown in Figure 7-c, we maintain a data structure called
GPUStatTable for each GPU to track the status of each in-
struction executor deployed to that GPU. This table comprises
(a) the number of SMs used by each executor; (b) the esti-
mated start and end timestamp for each executor; and (c) a
completion flag indicating the retirement of the executor. The
SM usage of an executor is determined by CUDA’s occupancy
calculator [19], which considers warp, register, and shared
memory information to calculate the number of CTAs that
an SM can hold. This information helps obtain the number
of SMs needed to execute a given instruction. The planned
executor is inserted by the instruction unit with the estimated
timestamp. The scoreboarding actively queries GPUs about
the status of each executor and updates the completion flag.

4.6 Pipeline Scheduler

The pipeline scheduler instructs what to run next in each GPU
with a finer granularity than ALGO1. It consults the score-
boarding (§4.5), fetches instructions (baseband processing

tasks) from the instruction unit, and deploys them over its
GPU, which adjusts the software execution granularity to the
dynamic hardware parallelism adaptively at runtime. Each
scheduler traverses its instruction queue (§4.4) (Figure 7-
a) and fires out instructions using a new algorithm, called
LROC (ALG2, Appendix A.2)–a careful synthesis of Least
Slack Time First (LSTF) scheduling along with instruction
Reordering, Over-commitment and Coalescing techniques.
LSTF Scheduling. As described before, the baseband pro-
cessing of massive MIMO has stringent performance require-
ments, especially per-frame processing delay. Thus, we apply
the LSTF scheduling discipline to prioritize task execution.
MegaStation implements the instruction queue using a red-
black tree with a list of keys. The first key is slack timestamp,
which is computed with two factors: frame-induced hard dead-
line (TSddl), reserved executing time of the instruction and its
succedents in the frame along the depth of the DAG (dubbed
as ∀Depth Tinst), where Tinst is acquired from the scoreboarding
(§4.5) and calibrated online. TSslack = TSddl ↓∀Depth Tinst.
Reordering. As discussed before (§3), the baseband process-
ing performance is affected by the amount of execution par-
allelism, parallelism distribution, and data movement over-
heads. When planning (§4.4), MegaStation predetermines the
executor of an instruction based on overall available resources
across GPUs. When executing, it adjusts the instruction order
with runtime status of the local GPU for performance max-
imization. The second key of the instruction queue is SM
usage of each instruction. Our algorithm prioritizes schedul-
ing instructions with the least SM usage to greedily occupy
the remaining GPU resources after handling urgent instruc-
tions. In this way, it opportunistically reorders instructions
with no dependency to improve GPU utilization.
Over-commitment. MegaStation strives to keep the GPU
busy (i.e., work-conserving) and reduce the idle cycles when
waiting for the host to launch CUDA kernels if the GPU’s SMs
become available. Our scheduler thus allows computation
overloading, inevitably introduces delayed parallelism, and
resolves it through the stream priority mechanism provided
by CUDA. After the GPU is full, MegaStation schedules
an instruction labeled as "delayed" and submits it to a low-
priority CUDA stream. This allows the instruction to run
whenever the GPU has available resources without interfering
with higher-priority normal instructions.
Coalescing. To avoid the synchronization gap between GPU
completion and CPU being signaled, MegaStation provision
instruction scheduling with the help of the sequential property
within a single CUDA stream. If an instruction has precedent
instructions on the local GPU that require a larger resource
than the current instruction’s executor, we preemptively sub-
mit the current instruction to the same CUDA stream with
the precedent instructions without waiting for the comple-
tion signal. This preemptive submission has minimal impact
on future scheduling, as the current instruction can inherit
resources reserved by the precedent executor on the GPU.



4.7 Deployment and Failure Handling

Fault tolerance is crucial in practice. We apply Slingshot’s
approach [89] to handle failures, i.e., treating short-term loss
of frames as bad signal quality effects in the wireless environ-
ment and recovering them through inherent cellular network
impairments. All discarded frames in MegaStation are han-
dled similarly to Slingshot [89]. Since frames are independent,
some frame loss would not affect other frames’ processing.

There are three failure domains in MegaStation: server
host, interconnect fabric, and GPU pool. When the host fails,
MegaStation enters fail-stop mode. All pending frames are
discarded and incoming frames should be reissued to another
backup vRAN server. For the interconnect failure, MegaSta-
tion loses connection with all the GPUs. One option is to use
the same solution as host failure, or alternatively fall back to
a CPU-only mode with a slower frame processing rate.

MegaStation depends on GPU drivers to detect GPU failure.
If a GPU malfunctions, device exceptions are raised when
trying to submit instructions or query instruction status, caus-
ing it to be excluded from the scoreboard. Any running and
pending (uncommitted) instructions on the GPU are moved
to the instruction queues for rescheduling. In the meantime,
a daemon continuously monitors PCIe device lists for new
GPUs. Once a new functional GPU is detected, it is installed
by MegaStation to the scoreboard for instruction scheduling.

4.8 Implementation Details

We implement MegaStation atop Agora [65] and NVIDIA
Aerial SDK [30] in C++ with 8372 LOC and CUDA with
2147 LOC. Regarding the baseband processing instruction,
MegaStation uses CUTLASS [22] and cuSOLVER [21] when
computing the CSI matrices, and cuFFT [26] for FFTs. For
LDPC encoding and decoding, we use the NVIDIA Aerial
SDK [30] and enhance it with inline data copy. We reimple-
ment precoding, equalization, modulation, and demodulation
functions in CUDA following Agora’s algorithms. Our execu-
tors leverage the GPU hardware features. For example, we
use tile-based iterators [120] to fuse data transformation into
the data loading and storing stage. We develop a lightweight
mechanism for instruction synchronization, where each in-
struction allocates a flag on GPUs. These flags are manipu-
lated via CUDA stream operation [20] on GPU side and are
synchronized via GDRCopy [27] to CPU side. MegaStation
employs a master-slave architecture. A master thread realizes
the instruction unit, where per-GPU slave threads run the
pipeline scheduler. Each slave thread also manages a pool
of memory blocks, which translates the operand label to the
actual memory pointer. Appendix A.3 presents more details.

5 Evaluation
5.1 Experimental Methodology

Hardware testbed. We use the GigaIO FabreX-based Su-
perNODE [8, 44] as the single-node supercomputer target.
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(a) Uplink average latency.
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(b) Downlink average latency.
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(c) Uplink tail latency.
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(d) Downlink tail latency.
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(e) Uplink throughput.
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(f) Downlink throughput.

Figure 8: Average/tail uplink/downlink per-frame processing
latency and throughput comparing five MIMO settings.
The host server is a 2U Dell R740 box, consisting of two 32-
core Intel Xeon Gold 6248 processors (running at 2.5GHz),
192GB DRAM, and 1.92TB HDD. The load/store fabric uses
routable PCIe [2], whose details are described in §2.4. We
use NVIDIA V100 and A100 GPUs in the composable pool.
Comparison baselines. We compare MegaStation with three
baselines: LuMaMi [100], Hydra [71], BigStation [121].
Since none of these prior systems target the GPU pooling, we
develop the baseline over our target following their proposed
design. The first one (LuMaMi-GPU) performs frame-level
parallel execution and distributes frames to available GPUs
in a work-conserving manner. The second one (Hydra-GPU)
parallelizes the pipeline at the symbol level. Akin to Hy-
dra [71], we place dependent stages in the same GPU to mini-
mize the cross-GPU communication overheads. The third one
(BigStation-GPU) implements task-level parallelism, where
tasks are distributed to different executors.
Workload. We use the Agora [65] traffic generator to emulate
an RU (radio unit). It applies the Rayleigh fading channel and
transmits time-domain IQ samples. Our experiments use 2048
subcarriers and consider different MIMO configurations.

5.2 End-to-end Performance

We set up 1 RU under 5 massive MIMO configurations
(i.e., 64→32, 128→32, 128→64, 256→64, 256→128) and
launched the experiment over just one chassis box with A100
GPUs. We measure the average and P9999 (tail) process-
ing latency, and overall throughput for both 1ms uplink and
downlink frames. As shown in Figure 8, MegaStation meets



0 100 200 300

Latency (us)

64x32

128x32

128x64

256x64

256x128

M
IM

O
 C

o
n
fi
g
u
r
a
t
io

n

PilotFFT

ZF

UpFFT

EqDemodul

Decode

(a) Breakdown on uplink path.

0 20 40 60 80

Latency (us)

64x32

128x32

128x64

256x64

256x128

M
IM

O
 C

o
n
fi
g
u
r
a
t
io

n

Encode

Modulation

Precode

iFFT

(b) Breakdown on downlink path.

Figure 9: Latency breakdown for five MIMO settings.
the deadline requirements, with P9999 latency ranging from
1.2 to 3.6 ms for uplink frames, and 1.2 to 3.5 ms for down-
link frames across different MIMO settings. We satisfy the
stipulated 4m deadline for 1ms frames.

Across 5 MIMO cases, MegaStation achieves 50.6/58.9%,
12.2/46.9%, 53.7/66.2% lower average/tail latency on average
for the uplink frames compared with LuMaMi-GPU, Hydra-
GPU, and BigStation-GPU approaches, and 45.2/57.1%,
9.5/41.6%, and 47.9/61.9% for the downlink ones, respec-
tively. For throughput, MegaStation performs 10.7/12.2%,
25.3/22.7%, and 44.9/41.8% better than three baselines on
average for the uplink/downlink frames. MegaStation outper-
forms BigStation-GPU the most because the latter incurs too
much cross-task synchronization. LuMaMi-GPU and Hydra-
GPU perform suboptimally mainly because (a) their coarse-
grained execution cannot fully leverage all available SMs
promptly, especially when the GPU parallelism becomes ir-
regular; (b) the scheduling mechanism is workload-agnostic,
ignoring data locality and deadlines. Both are captured in our
structural analysis, which places executors on suitable GPUs,
and pipeline scheduler, which reorders instructions based on
slack time and coalesces them with data locality.

5.3 Uplink/Downlink Pipeline Latency Breakdown

We break down the uplink and downlink processing latency of
MegaStation (Figure 9). Overall, zero-forcing is the most ex-
pensive stage, consuming 36.3% of the whole pipeline on aver-
age across five MIMO cases. However, it only happens for the
pilot symbols which could be amortized by uplink/downlink
symbols. The next time-consuming stage is EqDemodul of
the uplink path and Precoding of the downlink path, which
spends 44.2% and 42.7%. We also compare the GPU executor
with the CPU one (Agora [65]). Our experiment chooses the
64→16 MIMO, the largest one supported by Agora [65]. The
CPU one uses 60 cores, while we use a single V100 GPU
in MegaStation. The results (Figure 13 in Appendix A.4)
demonstrate that the GPU can achieve an average speedup of
10→ compared to the CPU due to its massive parallelism.

5.4 Scalability

We increase the number of A00 GPUs on the SNC and analyze
scalability in two dimensions: (a) how MegaStation performs
as the number of RUs increases, and (b) how MegaStation
scales with an increasing number of GPUs.
RU Scalability. We gradually increase the number of RUs
from 1 to 8 under 128 → 64 MIMO for both uplink and
downlink frames. Figure 10 presents the throughput per-
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Figure 10: We report the frame throughput as increasing the
number of consolidated RUs for the 128→64 MIMO.
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Figure 11: We adjust the number of GPUs from 5 to 2 and back
to 5 every 300 ms while measuring the throughput every 10 ms.
formance of four approaches. MegaStation scales the best
and can harvest all the available SMs for frame process-
ing. Over uplink/downlink frames, MegaStation achieves
1.5/1.4→, 1.8/1.6→, 3.2/2.6→ higher performance compared
with LuMaMi-GPU, Hydra-GPU, and BigStation-GPU. They
scale poorly due to the emergence of irregular hardware par-
allelism when more RUs send frames concurrently, yielding
inefficient parallel execution and lower performance. MegaS-
tation scales nearly linearly with the number of RUs regarding
throughput. This is because MegaStation uses scoreboard-
ing to track the real-time status of each GPU, allowing our
scheduler to allocate tasks based on GPU availability and
effectively manage congestion. Also, the over-commitment
technique further helps exploit GPU computing power in the
delayed parallelism and minimizes GPU idle cycles.

The number of RUs cannot be scaled infinitely. It is bottle-
necked by the fabric interconnect between the host and chassis.
The maximum number of RUs is theoretically bounded by
F→S→RU#

B < T , where F is frame rate (frames per second), S
is frame size (bytes per frame), B is the bandwidth of inter-
connect (bytes per second), and T is frame duration (seconds).
When the interconnect saturates, adding more GPUs would
not help. One could load balance traffic among multiple SNCs
via a fronthaul switch to solve this problem [89].

GPU Scalability. We add the number of GPUs from 1
to 5 under 3 RRUs under a 128→ 64 MIMO (Figure 14 in
Appendix A.4). MegaStation achieves 1.9/1.8→ speedup for
uplink/downlink frames. However, LuMaMi-GPU, Hydra-
GPU, and BigStation-GPU only gain 1.3/1.2→, 0.9/1.0→, and
0.6/0.7→ improvement, respectively. The performance drop
of LuMaMi-GPU is attributed to its coarse-grained execu-
tion granularity, which fails to fully utilize the increasing
SM resources. Hydra-GPU and BigStation-GPU exhibit lim-
ited speedups due to higher communication overhead intro-
duced by distributing symbols or tasks across more GPUs.
MegaStation addresses these problems by (a) scheduling at



task-level granularity, which is the finest granularity in base-
band processing; (b) in structural analysis, taking data transfer
time into consideration when distributing instructions with
dependency to different GPUs; (c) implementing coalescing
technique to avoid GPU waiting for instructions.

5.5 MegaStation Drill-Down

We evaluate each system component in MegaStation via in-
struments and report their CDF. As shown in Figure 15 (Ap-
pendix A.4), we find that 90% of the instruction unit (IU)
execution takes less than 12 µs, indicating that it is not the
system bottleneck even if it is single-threaded. The per-GPU
pipeline scheduler (PS) is 1.3→ more costly than IU because
it interacts with the CUDA driver on submitting instructions.

The pilot symbol processing is the most consuming part
(Figure 15-b/c), where 90% of the execution takes 0.3ms
to compute zero forcing and 0.12ms to transfer the zero-
forcing (ZF) results to other GPUs. To accelerate ZF under
large MIMO, we split the ZF instruction into multiple sub-
instructions based on frequency bins and distribute them to
multiple GPUs. Subsequent instructions would then have a
dependency on the sub-instructions, captured in the DAG.
To amortize large GPU-GPU communication, we balance ir-
regular parallelism-induced waiting time and data shuffling
overheads when copying tasks to idle GPUs.

5.6 Discussion

Reliability. There are three failure domains in MegaStation
(§4.7). We manually toggle GPU availability in the GigaIO
FabreX control panel to observe system response to the GPU
fluctuation. We alternate between enabling and disabling
GPUs, transitioning from 5 to 2 and back to 5 every 300
milliseconds. We configure 3 RRUs under the 128→64 and
128→ 32 MIMO and measure the throughput every 10 ms.
The system throughput decreases with the number of GPUs,
but returns to its original level when GPUs are restored to the
initial setting (Figure 11). The scoreboarding scheme allows
monitoring the status of each GPU in real time, preventing
further scheduling instructions on unavailable GPUs.
Heterogeneous GPUs. We examine how performance is
affected when utilizing heterogeneous GPUs. We compare
A100+V100 GPUs vs. A100-Only. We show that LuMaMi-
GPU, Hydra-GPU, and BigStation-GPU experience a 23.1%,
30.7%, and 32.8% average latency increase (Appendix A.4),
respectively, while MegaStation only observes a 16.1% in-
crease. Our method could handle heterogeneity better for two
reasons. First, MegaStation takes different GPU architectures
into account and dynamically adjusts its scheduling policy
based on the available SMs. Second, MegaStation could cap-
ture the increased data movement overhead during profiling
and rebalance the waiting and communication overhead.

In Appendix A.4, we show how MegaStation executes un-
der small MIMOs, operates under other GPUs, and tackles
the fragmented parallelism issue.

6 Related Work
Quantum Acceleration. Researchers have explored using
quantum computing to tackle the high computing demand of
massive MIMO. QuAMax [86] leverages quantum annealing
to build the Sphere Decoder-based maximum likelihood (ML)
MIMO decoders/detectors. HyPD [83] develops a hybrid
classical-quantum decoder for polar error correction codes,
where it employs CMOS processing for the decoder’s binary
tree traversal and quantum annealing processing for the polar
decoder. Minsung Kim et al. [85] investigate a spin-level
preprocessing approach for fine-grained decomposition that
enables flexible parallel quantum signal processing.
Infrastructure Composability. Emerging high-bandwidth
networks [1,16] and cluster interconnects [2,40,54,78] enable
physical resource pooling. For example, [91,94,101,113,125]
develop object/paging-based remote memory over CXL mem-
ory expanders. [57, 74, 80, 87, 88, 92, 96, 102–104, 126] build
disaggregated storage. Researchers also develop composable
accelerators [29, 59, 60] and explore efficient host-accelerator
collaborated computation. The single-node supercomputer is
another composable platform and we use it for accelerating
the baseband processing of massive MIMO.
Network Function. Our work benefits from prior pioneer-
ing efforts of accelerating networking functions. Route-
Bricks [66] parallelizes router functionalities across multiple
servers and multiple cores within a single server. Packet-
Shader [75] examines using a commodity GPU to build a
software router. NBA [84] introduces system techniques to
optimize NF workloads on a CPU-GPU heterogeneous sys-
tem. [61, 69, 73, 77, 90, 93, 95, 97, 98, 107–112, 124] offload
networking functions onto reconfigurable switches and Smart-
NICs. MegaStation follows the past strategy and dynamically
exploits the GPU’s hardware parallelism at a fine granularity.

7 Conclusion
This paper makes a case for using an emerging single-node
supercomputer for the massive MIMO baseband processing.
We build MegaStation, an application-platform co-designed
system that dynamically adjusts the execution granularity and
reconstructs the baseband processing pipeline on the fly to
accommodate the irregular underlying hardware parallelism.
We model the single-node supercomputer as a tightly coupled
microprocessor and employ a scoreboarding-like scheme to
orchestrate baseband processing computations. Real system-
based evaluations show that MegaStation outperforms compa-
rable state-of-the-art approaches considerably and can fully
leverage the capabilities of this new computing platform.
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pute-Cluster-Product-Brief-v1.0.pdf, 2023.

[10] H3’s Falcon System. https://www.h3platform.
com/solution/composable-ai, 2023.

[11] Introducing Azure Operator Nexus.
https://techcommunity.microsoft.com/t5/
azure-for-operators-blog/introducing-azu
re-operator-nexus/ba-p/3753393, 2023.

[12] KDDI kicks off deployment of 5G Open vRAN sites
in Japan. https://www.datacenterdynamics
.com/en/news/kddi-kicks-off-deployment-o
f-5g-open-vran-sites-in-japan/, 2023.

[13] Liqid’s SmartStack System. https://www.liqid.
com/products/gpu-on-demand, 2023.

[14] T-Mobile’s 5G network gets capacity boost from
MU-MIMO: report. https://www.fiercewirele
ss.com/tech/t-mobiles-5g-network-gets-cap
acity-boost-mu-mimo-report, 2023.

[15] The 5G vRAN solution from Fujitsu. https:
//www.fujitsu.com/global/about/resources/n
ews/press-releases/2023/0220-01.html, 2023.

[16] Ultra Ethernet. https://ultraethernet.org/
wp-content/uploads/sites/20/2023/10/23.07.
12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf,
2023.

[17] 3GPP Release 17. https://www.3gpp.org/spe
cifications-technologies/releases/release
-17, 2024.

[18] 5G UE Data Rate. https://devopedia.org/5g-u
e-data-rate, 2024.

[19] CUDA Occupancy Calculator. https:
//docs.nvidia.com/nsight-compute/Nsigh
tCompute/index.html#occupancy-calculator,
2024.

[20] CUDA Stream Memory Operations.
https://docs.nvidia.com/cuda/cuda-dri
ver-api/group__CUDA__MEMOP.html, 2024.

[21] cuSOLVER. https://docs.nvidia.com/cuda/c
usolver, 2024.

[22] CUTLASS 3.5. https://github.com/NVIDIA/cu
tlass, 2024.

[23] FA4003–FabreX PCIe Gen3 Adapter. https:
//gigaio.com/wp-content/uploads/2022/02/GI
O_NetworkAdapterCard_G3-V4-2.pdf, 2024.

[24] FA4004–FabreX PCIe Gen4 Adapter.
https://gigaio.com/products/fabrex-net
work-adapter-card/, 2024.

[25] FabreX Gen3 Top of Rack PCIe Switch
Hyper-Performance Network. https:
//gigaio.com/wp-content/uploads/2022/
02/GIO_FabreX_TOR-Gen3-V4-1.pdf, 2024.

[26] Fast Fourier Transform for NVIDIA GPUs. https:
//developer.nvidia.com/cufft, 2024.

[27] GDRCopy. https://github.com/NVIDIA/gdrc
opy, 2024.

https://ethernettechnologyconsortium.org/wp-content/uploads/2021/10/Ethernet-Technology-Consortium_800G-Specification_r1.1.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2021/10/Ethernet-Technology-Consortium_800G-Specification_r1.1.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2021/10/Ethernet-Technology-Consortium_800G-Specification_r1.1.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2021/10/Ethernet-Technology-Consortium_800G-Specification_r1.1.pdf
https://gigaio.com/wp-content/uploads/2021/02/FabreX-PCIe-network-fabric-a-primer-1.pdf
https://gigaio.com/wp-content/uploads/2021/02/FabreX-PCIe-network-fabric-a-primer-1.pdf
https://gigaio.com/wp-content/uploads/2021/02/FabreX-PCIe-network-fabric-a-primer-1.pdf
https://www.huawei.com/en/news/2021/9/ubiquitous-gigabit-5g-indoor-dmm-wins-award
https://www.huawei.com/en/news/2021/9/ubiquitous-gigabit-5g-indoor-dmm-wins-award
https://www.huawei.com/en/news/2021/9/ubiquitous-gigabit-5g-indoor-dmm-wins-award
https://www.lightreading.com/open-ran/mavenir-and-nec-deploy-massive-mimo-in-france
https://www.lightreading.com/open-ran/mavenir-and-nec-deploy-massive-mimo-in-france
https://www.lightreading.com/open-ran/mavenir-and-nec-deploy-massive-mimo-in-france
https://www.lightreading.com/open-ran/mavenir-and-nec-deploy-massive-mimo-in-france
https://www.nokia.com/about-us/news/releases/2022/02/28/nokia-and-att-collaborating-to-improve-5g-uplink-with-distributed-massive-mimo-mwc22/
https://www.nokia.com/about-us/news/releases/2022/02/28/nokia-and-att-collaborating-to-improve-5g-uplink-with-distributed-massive-mimo-mwc22/
https://www.nokia.com/about-us/news/releases/2022/02/28/nokia-and-att-collaborating-to-improve-5g-uplink-with-distributed-massive-mimo-mwc22/
https://www.nokia.com/about-us/news/releases/2022/02/28/nokia-and-att-collaborating-to-improve-5g-uplink-with-distributed-massive-mimo-mwc22/
https://www.nokia.com/about-us/news/releases/2022/02/28/nokia-and-att-collaborating-to-improve-5g-uplink-with-distributed-massive-mimo-mwc22/
https://www.telit.com/blog/5g-networks-guide-to-small-cell-technology/
https://www.telit.com/blog/5g-networks-guide-to-small-cell-technology/
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://blog.enfabrica.net/press-release-enfabrica-raises-125-million-series-b-to-fuel-ramp-of-ai-infrastructure-networking-a8a0b21653d2
https://gigaio.com/products/fabrex-system-overview/
https://gigaio.com/products/fabrex-system-overview/
https://groq.com/wp-content/uploads/2022/10/GroqRack%C3%A2%C2%84%C2%A2-Compute-Cluster-Product-Brief-v1.0.pdf
https://groq.com/wp-content/uploads/2022/10/GroqRack%C3%A2%C2%84%C2%A2-Compute-Cluster-Product-Brief-v1.0.pdf
https://groq.com/wp-content/uploads/2022/10/GroqRack%C3%A2%C2%84%C2%A2-Compute-Cluster-Product-Brief-v1.0.pdf
https://www.h3platform.com/solution/composable-ai
https://www.h3platform.com/solution/composable-ai
https://techcommunity.microsoft.com/t5/azure-for-operators-blog/introducing-azure-operator-nexus/ba-p/3753393
https://techcommunity.microsoft.com/t5/azure-for-operators-blog/introducing-azure-operator-nexus/ba-p/3753393
https://techcommunity.microsoft.com/t5/azure-for-operators-blog/introducing-azure-operator-nexus/ba-p/3753393
https://techcommunity.microsoft.com/t5/azure-for-operators-blog/introducing-azure-operator-nexus/ba-p/3753393
https://www.datacenterdynamics.com/en/news/kddi-kicks-off-deployment-of-5g-open-vran-sites-in-japan/
https://www.datacenterdynamics.com/en/news/kddi-kicks-off-deployment-of-5g-open-vran-sites-in-japan/
https://www.datacenterdynamics.com/en/news/kddi-kicks-off-deployment-of-5g-open-vran-sites-in-japan/
https://www.liqid.com/products/gpu-on-demand
https://www.liqid.com/products/gpu-on-demand
https://www.fiercewireless.com/tech/t-mobiles-5g-network-gets-capacity-boost-mu-mimo-report
https://www.fiercewireless.com/tech/t-mobiles-5g-network-gets-capacity-boost-mu-mimo-report
https://www.fiercewireless.com/tech/t-mobiles-5g-network-gets-capacity-boost-mu-mimo-report
https://www.fujitsu.com/global/about/resources/news/press-releases/2023/0220-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2023/0220-01.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2023/0220-01.html
https://ultraethernet.org/wp-content/uploads/sites/20/2023/10/23.07.12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf
https://ultraethernet.org/wp-content/uploads/sites/20/2023/10/23.07.12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf
https://ultraethernet.org/wp-content/uploads/sites/20/2023/10/23.07.12-UEC-1.0-Overview-FINAL-WITH-LOGO.pdf
https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.3gpp.org/specifications-technologies/releases/release-17
https://www.3gpp.org/specifications-technologies/releases/release-17
https://devopedia.org/5g-ue-data-rate
https://devopedia.org/5g-ue-data-rate
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#occupancy-calculator
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEMOP.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEMOP.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEMOP.html
https://docs.nvidia.com/cuda/cusolver
https://docs.nvidia.com/cuda/cusolver
https://github.com/NVIDIA/cutlass
https://github.com/NVIDIA/cutlass
https://gigaio.com/wp-content/uploads/2022/02/GIO_NetworkAdapterCard_G3-V4-2.pdf
https://gigaio.com/wp-content/uploads/2022/02/GIO_NetworkAdapterCard_G3-V4-2.pdf
https://gigaio.com/wp-content/uploads/2022/02/GIO_NetworkAdapterCard_G3-V4-2.pdf
https://gigaio.com/products/fabrex-network-adapter-card/
https://gigaio.com/products/fabrex-network-adapter-card/
https://gigaio.com/products/fabrex-network-adapter-card/
https://gigaio.com/wp-content/uploads/2022/02/GIO_FabreX_TOR-Gen3-V4-1.pdf
https://gigaio.com/wp-content/uploads/2022/02/GIO_FabreX_TOR-Gen3-V4-1.pdf
https://gigaio.com/wp-content/uploads/2022/02/GIO_FabreX_TOR-Gen3-V4-1.pdf
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://github.com/NVIDIA/gdrcopy
https://github.com/NVIDIA/gdrcopy


[28] Intel FlexRAN Reference Architecture for Wireless
Access. https://www.intel.com/content/www/
us/en/developer/topic-technology/edge-5g
/tools/flexran.html, 2024.

[29] Leo CXL Smart Memory Controllers.
https://www.asteralabs.com/products/leo/
leo-cxl-memory-connectivity-controllers/,
2024.

[30] NVIDIA Aerial SDK. https://developer.nvid
ia.com/aerial-sdk, 2024.

[31] NVIDIA DGX Platform. https://www.nvidia.c
om/en-us/data-center/dgx-platform/, 2024.

[32] NVIDIA HGX AI Supercomputer. https://www.nv
idia.com/en-us/data-center/hgx/, 2024.

[33] RB4082–Accelerator Pooling Appliance.
https://gigaio.com/products/accelerato
r-pooling-appliance/, 2024.

[34] RS4024–Top of Rack PCIe Switch (Gen 4).
https://gigaio.com/products/top-of-rack-p
cie-switch/, 2024.

[35] SoftBank Corp., NEC and Broadcom Jointly Val-
idate RAN Modernization with Virtualization by
Unifying O-RAN Architecture and Telco Cloud.
https://www.broadcom.com/company/news/prod
uct-releases/61881, 2024.

[36] The O-RAN Alliance. https://www.o-ran.org,
2024.

[37] The SFF-8644 connector. https://cs-electroni
cs.com/sff-8644/, 2024.

[38] Verizon advances O-RAN technology by deploy-
ing 130,000 new O-RAN capable radios in its net-
work. https://www.verizon.com/about/news/v
erizon-advances-o-ran-technology, 2024.

[39] 5G Sites infrastructure. https://www.ericsson.c
om/en/ran/5g-sites-infrastructure, 2025.

[40] Computer Express Link Specification. https://
computeexpresslink.org/cxl-specification/,
2025.

[41] CUDA Compute Capabilities. https:
//docs.nvidia.com/cuda/cuda-c-programmi
ng-guide/index.html#compute-capabilities,
2025.

[42] Ericsson Antenna System. https://www.ericsson
.com/en/portfolio/networks/ericsson-radio
-system/antenna-system, 2025.

[43] Ericsson Cloud RAN. https://www.ericsson.c
om/en/ran/cloud, 2025.

[44] GigaIO SuperNODE. https://gigaio.com/super
node/, 2025.

[45] H3C BBU5200 Baseband Unit. https:
//www.h3c.com/en/Products_and_Solutions
/InterConnect/Moblie_Communication/Product
s/Access/BBU/BBU5200/, 2025.

[46] Huawei DBS5900 Distributed Base Stations.
https://e.huawei.com/en/products/wireless/
base-station/dbs5900, 2025.

[47] Nokia AirScale Baseband Solutions.
https://www.nokia.com/networks/mobile-n
etworks/airscale-radio-access/baseband/,
2025.

[48] NVIDIA GPUDirect: Enhancing Data Movement and
Access for GPUs. https://developer.nvidia.c
om/gpudirect, 2025.

[49] Samsung Baseband Unit. https://www.samsung.
com/global/business/networks/products/radi
o-access/baseband/, 2025.

[50] The Intel vRAN Solution. https://www.intel.co
m/content/www/us/en/wireless-network/5g-n
etwork/radio-access-network.html, 2025.

[51] The Open Virtualized RAN from Mavenir.
https://www.mavenir.com/portfolio/mavair/r
adio-access/vran/, 2025.

[52] The Samsung vRAN Solution. https:
//www.samsung.com/global/business/networ
ks/products/radio-access/virtualized-ran/,
2025.

[53] The Software-Defined Virtualized RAN
(vRAN) from Parallel Wireless. https:
//www.parallelwireless.com/products/so
ftware-defined-virtualized-ran/, 2025.

[54] Ultra Accelerator Link. https://www.ualinkcons
ortium.org, 2025.

[55] Tanya Amert, Nathan Otterness, Ming Yang, James H.
Anderson, and F. Donelson Smith. GPU Scheduling on
the NVIDIA TX2: Hidden Details Revealed. In 2017
IEEE Real-Time Systems Symposium (RTSS), pages
104–115, 2017.

[56] Aslan, Yanki and Roederer, Antoine and Fonseca, Nel-
son JG and Angeletti, Piero and Yarovoy, Alexander.

https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.intel.com/content/www/us/en/developer/topic-technology/edge-5g/tools/flexran.html
https://www.asteralabs.com/products/leo/leo-cxl-memory-connectivity-controllers/
https://www.asteralabs.com/products/leo/leo-cxl-memory-connectivity-controllers/
https://www.asteralabs.com/products/leo/leo-cxl-memory-connectivity-controllers/
https://developer.nvidia.com/aerial-sdk
https://developer.nvidia.com/aerial-sdk
https://www.nvidia.com/en-us/data-center/dgx-platform/
https://www.nvidia.com/en-us/data-center/dgx-platform/
https://www.nvidia.com/en-us/data-center/hgx/
https://www.nvidia.com/en-us/data-center/hgx/
https://gigaio.com/products/accelerator-pooling-appliance/
https://gigaio.com/products/accelerator-pooling-appliance/
https://gigaio.com/products/accelerator-pooling-appliance/
https://gigaio.com/products/top-of-rack-pcie-switch/
https://gigaio.com/products/top-of-rack-pcie-switch/
https://gigaio.com/products/top-of-rack-pcie-switch/
https://www.broadcom.com/company/news/product-releases/61881
https://www.broadcom.com/company/news/product-releases/61881
https://www.broadcom.com/company/news/product-releases/61881
https://www.o-ran.org
https://cs-electronics.com/sff-8644/
https://cs-electronics.com/sff-8644/
https://www.verizon.com/about/news/verizon-advances-o-ran-technology
https://www.verizon.com/about/news/verizon-advances-o-ran-technology
https://www.ericsson.com/en/ran/5g-sites-infrastructure
https://www.ericsson.com/en/ran/5g-sites-infrastructure
https://computeexpresslink.org/cxl-specification/
https://computeexpresslink.org/cxl-specification/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://www.ericsson.com/en/portfolio/networks/ericsson-radio-system/antenna-system
https://www.ericsson.com/en/portfolio/networks/ericsson-radio-system/antenna-system
https://www.ericsson.com/en/portfolio/networks/ericsson-radio-system/antenna-system
https://www.ericsson.com/en/ran/cloud
https://www.ericsson.com/en/ran/cloud
https://gigaio.com/supernode/
https://gigaio.com/supernode/
https://www.h3c.com/en/Products_and_Solutions/InterConnect/Moblie_Communication/Products/Access/BBU/BBU5200/
https://www.h3c.com/en/Products_and_Solutions/InterConnect/Moblie_Communication/Products/Access/BBU/BBU5200/
https://www.h3c.com/en/Products_and_Solutions/InterConnect/Moblie_Communication/Products/Access/BBU/BBU5200/
https://www.h3c.com/en/Products_and_Solutions/InterConnect/Moblie_Communication/Products/Access/BBU/BBU5200/
https://e.huawei.com/en/products/wireless/base-station/dbs5900
https://e.huawei.com/en/products/wireless/base-station/dbs5900
https://e.huawei.com/en/products/wireless/base-station/dbs5900
https://www.nokia.com/networks/mobile-networks/airscale-radio-access/baseband/
https://www.nokia.com/networks/mobile-networks/airscale-radio-access/baseband/
https://www.nokia.com/networks/mobile-networks/airscale-radio-access/baseband/
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://www.samsung.com/global/business/networks/products/radio-access/baseband/
https://www.samsung.com/global/business/networks/products/radio-access/baseband/
https://www.samsung.com/global/business/networks/products/radio-access/baseband/
https://www.intel.com/content/www/us/en/wireless-network/5g-network/radio-access-network.html
https://www.intel.com/content/www/us/en/wireless-network/5g-network/radio-access-network.html
https://www.intel.com/content/www/us/en/wireless-network/5g-network/radio-access-network.html
https://www.mavenir.com/portfolio/mavair/radio-access/vran/
https://www.mavenir.com/portfolio/mavair/radio-access/vran/
https://www.mavenir.com/portfolio/mavair/radio-access/vran/
https://www.samsung.com/global/business/networks/products/radio-access/virtualized-ran/
https://www.samsung.com/global/business/networks/products/radio-access/virtualized-ran/
https://www.samsung.com/global/business/networks/products/radio-access/virtualized-ran/
https://www.parallelwireless.com/products/software-defined-virtualized-ran/
https://www.parallelwireless.com/products/software-defined-virtualized-ran/
https://www.parallelwireless.com/products/software-defined-virtualized-ran/
https://www.ualinkconsortium.org
https://www.ualinkconsortium.org


Orthogonal versus zero-forced beamforming in multi-
beam antenna systems: Review and challenges for fu-
ture wireless networks. IEEE Journal of Microwaves,
1(4):879–901, 2021.

[57] Wei Bai, Shanim Sainul Abdeen, Ankit Agrawal, Kr-
ishan Kumar Attre, Paramvir Bahl, Ameya Bhagat,
Gowri Bhaskara, Tanya Brokhman, Lei Cao, Ahmad
Cheema, Rebecca Chow, Jeff Cohen, Mahmoud Elhad-
dad, Vivek Ette, Igal Figlin, Daniel Firestone, Mathew
George, Ilya German, Lakhmeet Ghai, Eric Green,
Albert Greenberg, Manish Gupta, Randy Haagens,
Matthew Hendel, Ridwan Howlader, Neetha John, Ju-
lia Johnstone, Tom Jolly, Greg Kramer, David Kruse,
Ankit Kumar, Erica Lan, Ivan Lee, Avi Levy, Marina
Lipshteyn, Xin Liu, Chen Liu, Guohan Lu, Yuemin
Lu, Xiakun Lu, Vadim Makhervaks, Ulad Malashanka,
David A. Maltz, Ilias Marinos, Rohan Mehta, Sharda
Murthi, Anup Namdhari, Aaron Ogus, Jitendra Padhye,
Madhav Pandya, Douglas Phillips, Adrian Power, Suraj
Puri, Shachar Raindel, Jordan Rhee, Anthony Russo,
Maneesh Sah, Ali Sheriff, Chris Sparacino, Ashutosh
Srivastava, Weixiang Sun, Nick Swanson, Fuhou Tian,
Lukasz Tomczyk, Vamsi Vadlamuri, Alec Wolman,
Ying Xie, Joyce Yom, Lihua Yuan, Yanzhao Zhang, and
Brian Zill. Empowering Azure Storage with RDMA.
In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’23), pages 49–67,
2023.

[58] Manu Bansal, Aaron Schulman, and Sachin Katti.
Atomix: A Framework for Deploying Signal Process-
ing Applications on Wireless Infrastructure. In 12th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI’15), 2015.

[59] Ankit Bhardwaj, Todd Thornley, Vinita Pawar, Reto
Achermann, Gerd Zellweger, and Ryan Stutsman.
Cache-coherent accelerators for persistent memory
crash consistency. In Proceedings of the 14th ACM
Workshop on Hot Topics in Storage and File Systems
(HotStorage’22), page 37–44, 2022.

[60] Boles, David and Waddington, Daniel and Roberts,
David A. Cxl-enabled enhanced memory functions.
IEEE Micro, 43(2):58–65, 2023.

[61] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu
Ma, Kun Qian, Lingjun Zhu, Chao Shi, Yin Zhang,
Ming Liu, et al. Demystifying datapath accelerator
enhanced off-path smartnic. In 2024 IEEE 32nd Inter-
national Conference on Network Protocols (ICNP’24),
pages 1–12, 2024.

[62] Yongce Chen, Y. Thomas Hou, Wenjing Lou, Jeffrey H.
Reed, and Sastry Kompella. O-M3: Real-Time Multi-
Cell MIMO Scheduling in 5G O-RAN. IEEE Journal

on Selected Areas in Communications, 42(2):339–355,
2024.
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Figure 12: Symbol-level parallelism under frag-
mented parallelism with different fragment degrees.
P/U/D=Pilot/Uplink/Downlink.

Executors CTAs (#) Warps (#) Regs (#) SMem (Byte)
PilotFFT 128 4 56 8448
UpFFT 128 4 56 8448
iFFT 128 4 56 8448
ZF 4864 32 30 8448

EqDemodul 1216 1 30 0
Modul 1216 1 18 0

Precode 4864 1 30 0
Decode 32 4 168 14144
Encode 32 8 56 843

Table 1: Resource tuples of MegaStation executors in a 128→32
MIMO configuration. We use NVIDIA terminology. CTAs=The
number of cooperative thread array (i.e., thread block) per ker-
nel. Warps=The number of warps per CTA. Regs=The number
of registers per thread. SMem=Shared memory size per CTA.

A Appendix

A.1 More Fragmented Parallelism Discussion

Under a low fragment degree (Figure 12-a), GPU0 (with the
pilot symbol) has more symbols than GPU1 due to the round-
robin strategy. GPU0’s computation time exceeds the aggre-
gated execution cost of data copying and GPU1’s computation.
As the fragment degree increases (Figure 12-b), symbol dis-
tribution becomes more balanced. GPU0 becomes idle during
non-overlapping time intervals when its computing phase
interleaves with the data copy and execution phase on GPU1.

A.2 MegaStation Details

Table 1 displays the logical representation of executors. The
values for Wraps #, Regs #, and SMem are compiler-specific
and remain constant regardless of kernel runtime. However,
CTAs # is determined at runtime based on MIMO configura-
tion. MegaStation calculates CTAs # and pass it to the kernel
when kernel is launching.

The LROC algorithm described in ALG 1 illustrates the
scheduling process in our pipeline scheduler. It starts by pri-
oritizing the most urgent instructions. When there is available
space left in the GPU, it continues by reordering instructions
whose precedents have been completed. Once the GPU is
fully utilized, the algorithm assigns instructions marked as
"delayed" to a lower priority stream. Additionally, the algo-
rithm takes advantage of opportunities to combine instruc-
tions with dependencies if precedent instructions have already
allocated larger GPU resources.

Algorithm 2 LROC Algorithm.
1: procedure LROC_SCHEDULER
2: min_inst = instQ.min();
3: while min_inst.TSslack ↓TScur < Tthr do ω LSTF
4: SUBMIT(min_inst, preced_stream(min_inst))
5: min_inst = instQ.next_min()
6: for inst ↘ instQ do ω Reorder
7: if GPU.avail_SM ⇓ 0 then break
8: if pred_insts.finish & inst.SM ⇓ GPU.avail_SM then
9: SUBMIT(inst, pred_insts.stream)

10: for inst ↘ instQ do ω Over-commit
11: if inst.label = delayed then
12: SUBMIT(inst, low_prior_stream)
13: break
14: for inst ↘ instQ do ω Coalesce
15: if pred_insts.running & inst.SM ⇓ pred_insts.SM then
16: SUBMIT(inst, pred_insts.stream)

A.3 More MegaStation Implementation

To take advantage of GPU’s shared memory and reduce the
number of CUDA kernels within instructions, we use tile-
based iterators [120] to fuse data transformation into the data
loading and storing stage of a kernel computation. In this way,
intermediate results are not written back to the global memory
and thus data read/write round trips are reduced.

We develop a lightweight mechanism for instruction syn-
chronization. We register and manage a 64KB buffer inside
each GPU and map it to host memory. Upon an incoming
frame, MegaStation allocates a free array (sizeof (array) =
instruction#_in_frame→4B) from the buffer, where the CPU
actively fetches the array via GDRCopy [27] during the frame
execution. Each element in the array is a completion flag of
the instruction. When an instruction is finished, we use the
CUDA stream operation [20] (cuStreamWriteValue) to sig-
nal the completion by writing the completion status word to
the corresponding place. To enforce the execution order of
two dependent instructions in two different CUDA streams,
we insert cuStreamWaitValue before the second instruction
to wait for the completion of the first one without blocking
the GPU execution engine.

MegaStation employs a master-slave architecture. A mas-
ter thread realizes the instruction unit, where per-GPU slave
threads run pipeline scheduler and track the status of instruc-
tions. To minimize allocation overhead, MegaStation reserves
memory for every type of operand in each GPU and manages
them in a free list on the host side. Similar to the idea of reg-
ister renaming, our memory manager translates the operand
labels to the actual memory pointer before submitting the
instruction to GPU. An exception will be triggered when the
free list is empty, where we either allocate a new chunk or
signal the scheduler to block.

A.4 More MegaStation Evaluation

GPU v.s. CPU Executor. Figure 13 compares the perfor-
mance between GPU executors (MegaStation) and CPU ex-
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Figure 13: Latency breakdown comparing MegaStation (GPU)
and Agora [65] (CPU).
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Figure 14: We report the frame throughput as increasing the
number of GPUs for 3 RUs (128→64 MIMO).
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Figure 15: Performance of different components in MegaSta-
tion under the 128→ 32 MIMO setting. IU=Instruction Unit.
PS=Pipeline Scheduler.
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Figure 16: Average/Tail Latency for small MIMOs.
ecutors (Agora [65]).
GPU Scaling. Figure 14 explores how MegaStation scales
with an increasing number of GPUs.
MegaStation Drill-down. Figure 15 reports the CDF of dif-
ferent system components in MegaStation.
Small MIMOs. We investigate the performance of MegaS-
tation under small MIMO configurations (32→ 8, 64→ 16
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Figure 17: Average/Tail Latency on V100/A100.
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Figure 18: Performance drop on V100+A100 with respect to
results on two A100s
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Figure 19: Throughput varying the fragment degree.

MIMO). Using the same hardware setup described in §5.2,
we depict the average and tail latency of five different meth-
ods in Figure 16. Our results show that in contrast to large
MIMO scenarios, Hydra-GPU performs the best. Compared
with MegaStation, it achieves a 20.1%/15.6% improvement
on average in average/tail latency due to the lower schedul-
ing overhead of static methods. Hydra-GPU outperforms
LuMaMi-GPU/BigStation-GPU because of the finer-grained
execution and fewer data synchronizations, respectively.

V100 GPUs. We examine the performance when running
MegaStation on different types of GPUs. Specifically, we
compare 2 V100 GPUs in a single chassis with two A100
GPUs and report overall average and tail latency. As shown
in Figure 17, we observe that the A100 GPUs outperform
the V100 GPUs by 27.2%. This is due to higher FLOPS
and a greater number of SMs in the A100 GPUs (108 SMs
compared to 80 SMs in the V100, which is 25.9% higher).

Tackling Fragmented Parallelism. While developing
MegaStation, we find that fragmented parallelism happens
frequently. Accurate computing resource accounting and care-
ful scheduling are essential to ensure minimal frame pro-
cessing deadline violation. We then revisit how MegaStation
addresses the fragmented parallelism, where resources are
partitioned among multiple GPUs and we should trade off
communication overhead with executor distribution.



Similar to the characterization setup (§3.3), we evaluate
the performance of these four approaches as the fragment
degree increases under 128 → 64 MIMO with half uplink
and half downlink symbols in one frame. As previously dis-
cussed, symbol-level execution granularity (Hydra-GPU) out-
performs frame-level (LuMaMi-GPU) at low fragment de-
grees because data copying is hidden by computation. How-
ever, at high fragment degrees, frame-level execution performs
better than symbol-level, as data copying cannot be over-
lapped with computation. Taking the data shuffling overhead
into consideration in structural analysis, MegaStation lever-
ages the benefits of both execution granularities, as illustrated
in Figure 19. MegaStation employs a top-down approach that
first selects a GPU for one frame and then assigns its symbols
to that GPU. If the GPU reaches its capacity, MegaStation
trade-offs between finding a new GPU (i.e., introducing com-
munication overhead) or waiting for the current one to become
capable. By dynamically adapting the execution granularity
based on the fragment degree, MegaStation is able to achieve
high performance across all fragment degrees.
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