
Understanding and Profiling CXL.mem Using PathFinder
Xiao Li1,3, Zerui Guo1, Yuebin Bai3, Mahesh Ketkar2, Hugh Wilkinson2, Ming Liu1

1.University of Wisconsin-Madison 2.Intel 3.Beihang University

Abstract
CXL.mem and the resulting memory pool are promising and gain-
ing great attention. Unlike local memory, CXL DIMMs stay at the
I/O subsystem, whose inferior performance can easily impact the
processor pipeline and memory subsystem, yielding performance
interference, hardware contention, obscure behaviors, and under-
utilized communication and computing resources. However, our
community lacks a tool to understand and pro!le the CXL.mem
protocol execution end-to-end between CPU and remote DIMM.

This paper !lls the gap by designing and implementingPathFinder1,
a systematic, informative, and lightweight CXL.mem pro!ler. PathFinder
leverages the capabilities of existing hardware performance moni-
tors (PMUs) and dissects the CXL.mem protocol at adequate granular-
ities. Our key idea is to view the server processor and its chipset as
a multi-stage Clos network, equip each architectural module with
a PMU-based telemetry engine, track di"erent CXL.mem paths,
and apply conventional tra#c analysis techniques. PathFinder per-
forms snapshot-based path-driven pro!ling and introduces four
techniques, i.e., path construction, stall cycle breakdown, interfer-
ence analyzer, and cross-snapshot analysis. We build PathFinder
atop Linux Perf and apply it to seven case studies.

CCS Concepts
• Networks → Network performance analysis; •Hardware →
Buses and high-speed links; • Software and its engineering
→ Abstraction, modeling and modularity;

Keywords
CXL, Memory Pooling, Performance Pro!ling

ACM Reference Format:
Xiao Li1,3, Zerui Guo1, Yuebin Bai3, Mahesh Ketkar2, Hugh Wilkinson2,
Ming Liu1. 2025. Understanding and Pro!ling CXL.mem Using PathFinder.
In ACM SIGCOMM 2025 Conference (SIGCOMM ’25), September 8–11, 2025,
Coimbra, Portugal. ACM, New York, NY, USA, 22 pages. https://doi.org/10.
1145/3718958.3750479

1 Introduction
CXL-based memory disaggregation [6, 10, 15, 16, 19–21, 24, 25] has
gained signi!cant traction recently due to independent resource

1PathFinder is available at https://github.com/netlab-wisconsin/PathFinder.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci!c permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 979-8-4007-1524-2/2025/09. . . $15.00
https://doi.org/10.1145/3718958.3750479

scaling, high utilization, and cost e#ciency. We have seen a grow-
ing interest in deploying CXL memory pooling in data centers,
enterprise clusters, and edge clouds. With the next-generation CXL
fabric and the capability to build multi-tiering fabric switching [18],
a disaggregated memory pool can provide tens to hundreds of
terabytes of capacity at the bandwidth close to local DIMMs.

The key technology enabler is the CXL.mem protocol [18] that
allows host processors to issue load/store instructions directly to
remote DIMMs. A memory request traverses the processor pipeline,
served by its local memory hierarchy !rst (L1D, L2, and LLC) and
then forwarded to the CXL DIMM via the FlexBus. The data re-
sponse is then delivered to the memory subsystem and resumes
the stalled pipeline execution. Load/store commands traverse over
the underlying fabric as $its, completely transported to the host.
The remote memory usually exposes itself as a CPUless NUMA
node, facilitating building memory tiering and object-based remote
memory solutions [46, 66, 79, 100, 108]. This signi!cantly simpli!es
porting existing applications and developing new ones.

However, unlike local memory, accessing CXL memory is inher-
ently slow because requests must traverse the system bus or even
cluster interconnect in a switched pooling case. This not only slows
down the application execution, but more importantly, stalls the
processor pipeline and changes the memory subsystem’s access
characteristics. For example, some micro-architecture components
(like line !ll bu"er) would be congested, blocking local memory
requests. The data locality and application working set become
unpredictable when switching from local to CXL memory because
read/prefetch-induced CXL loads take longer to fetch data, whereas
more local requests are issued, competing for the available slots in
di"erent caching layers. Besides, one would experience underuti-
lized communication and computing resources because there might
exist some contention along the CPU pipeline, stymying from sub-
mission of more memory commands. Until now, our community
lacks a systemic pro!ling tool to understand and analyze the CXL.mem
protocol execution and unearth the root causes of the above scenarios.

Building such a utility is non-trivial and entails three challenges.
First, CXL.mem has multiple non-transparent data paths (§2.2) be-
tween cores and o"-chip memory, whose execution characteristics
hinge on compute, memory, and I/O substrate. Second, CXL.mem
load/store instructions are tightly coupled with the deep and out-
of-order processor pipeline, which runs at the nanosecond-scale
granularity and exposes fewer interfaces to query its execution sta-
tus. Third, the overlapping and intertwining nature between local
and CXL memory streams makes it hard to isolate individual behav-
iors. Today, people mostly tackle this issue in an ad-hoc manner, i.e.,
combining a list of pro!ling tools from micro-architecture [1, 3],
memory subsystem [13, 43, 80], and PCIe levels [55, 69, 86], with
no end-to-end diagnostic capability.

We !nd that the performance monitor unit (PMU) on commodity
servers is powerful and provides a variety of counters to track

https://doi.org/10.1145/3718958.3750479
https://doi.org/10.1145/3718958.3750479
https://github.com/netlab-wisconsin/PathFinder
https://doi.org/10.1145/3718958.3750479

di"erent CXL.mem data paths. We explore a slew of PMUs across the
core, uncore, interconnect, system bus, and CXL DIMM modules,
empirically explore their capabilities and limitations, and identify
232 counters to dissect the CXL.mem protocol execution (§3).

We then design and implement the PathFinder utility to system-
atically characterize and analyze CXL.mem. Our key idea is to view
the server processor and its chipset as a multi-stage Clos network,
equip each architectural module with a PMU-based telemetry en-
gine, track di"erent CXL.mem paths, and apply conventional tra#c
analysis techniques [23, 32, 36, 44, 60, 103]. PathFinder performs
snapshot-based path-driven pro!ling–it takes time series snapshots,
classi!es CXL.mem transactions based on paths, and examines how
concurrent paths interleave over each on-path hardware module.
PathFinder comprises four techniques: (a) PFBuilder, constructing
the CXL data path map via synthesizing di"erent PMU counters
(§4.3); (b) PFEstimator, which employs a back-propagation algo-
rithm that gradually attributes the CXL-induced stall cycles in
a bottom-up fashion to the CPU pipeline (§4.4); (c) PFAnalyzer,
zooming each architectural component via white-box modeling
and exploring how concurrent CXL and non-CXL streams inter-
fere with each other (§4.5); (d) PFMaterializer, which introduces
an internal time-series database, takes a per-snapshot digest as
inputs, and identi!es consistent execution characteristics, such as
data locality, contention, and resource under-utilization (§4.6). In
sum, PathFinder dissects CXL.mem accesses and associated applica-
tions across the entire server system from the temporal and spatial
dimensions at the required granularity.

We build PathFinder atop the Linux Perf and evaluate it on two
types of machines: (1) an Intel Sapphire Rapids (SPR) server with an
Intel Agilex-based CXL DIMM; (b) an Intel Emerald Rapids (EMR)
server with Micron CZ120 CXL DIMMs. Using 77 applications (i.e.,
SPEC CPU 2017 [17], PARSEC [35], SPLASH-2x [105], GAP [33],
and Redis [14]), we demonstrate the e"ectiveness of PathFinder
via seven cases: classifying di"erent CXL.mem-induced paths, break-
ing down the CPU stall cycles, analyzing the interference between
local and CXL memory streams, locating elephant CXL $ows, un-
derstanding bandwidth allocation among current CXL memory
streams, analyzing the data locality, and applying PathFinder for
performance optimization. PathFinder is open-source, and we will
keep working with the community to improve it.

2 Background and Motivation

2.1 CXL.mem Protocol

CXL [18] is a high-speed interconnect technology based on mem-
ory semantics. It is built atop the physical layer of PCI Express
(PCIe) [22] and provides the load/store interface for remote memory
and accelerator communications. CXL exposes root access points to
the host processor via the Flex Bus I/O architecture [18]. It encloses
three types of protocols: (a) CXL.cache that enables device data
coherence via a processor snoop !lter mechanism; (b) CXL.mem that
allows direct device memory access from host CPUs via load/store
instructions; (c) CXL.io, similar to PCIe with some enhancements,
like up to 32 lanes and non-coherent data read/write.

This work focuses on CXL.mem and Type-3 host managed device
memory, the basis for memory pooling [34, 45, 46, 65, 66, 72]. In

Core 1

L1D
LFB
L2

SB

CHA 1

Mesh Interconnect

FlexBus MCcxl DIMMDIMMMClocal

LLCslice CCD
CHA M

LLCslice CCD

Core 2

L1D
LFB
L2

SB
Core N

L1D
LFB
L2

SB…DRd

……

DWr

W
riteBack

RF
OSW

/H
W

 P
F

Figure 1: Four CXL.mem data paths on an Intel SPR/EMR processor.
SB=Store Bu!er. LFB=Line Fill Bu!er. CCD=Cache-Coherent Direc-
tory. CHA=Caching and Home Agent.

this mode, the coherence engine runs in the host processor, oper-
ating as a master, whereas the remote memory device works as a
subordinate. There are (a) two CXL.mem request transactions from
a master to a subordinate (M2S): Request without data (Req) for
read and Request with Data (RwD) for write; (b) two response ones
in the reverse direction (S2M): Data Response (DRS) and No Data
Response (NDR) for the corresponding read and write return. Upon
receiving an M2S request, the device memory controller parses the
command, reads/writes to the memory media, and returns an S2M
data or completion. Note that CXL.mem (1) supports the 68B, 268B,
and PBR (Port-Based Routing) $it modes; (2) allows other coherent
models (like device-managed coherence via back-invalidation).

2.2 CXL.mem Data Path

A CXL memory behaves similarly to the local memory and is ac-
cessed via load/store instructions from the host processor. In a
typical memory subsystem, a memory request is !rst served from
L1, L2, and L3/LLC caches, and then queries the DIMMwhenmissed
from the cache hierarchy. Generally, there are four types of architec-
tural requests yielding 𝐿𝑀𝑁.𝑂𝑃𝑂 transactions (Figure 1): demand
data read (DRd), demand data write (DWr), read for ownership
(RFO), and hardware/software prefetching (HW/SW PF). Below, we
take the Intel scalable processor as an example for description.
• #1: DRd → CXL.mem load. A demand read request !rst looks

up the L1D cache, then submits to the line !ll bu"er (LFB) when
there is a miss. LFB is a per-core hardware FIFO queue with
tens of cacheline-sized entries, bu"ering read responses from its
home core. It can serve a DRd when there is a hit and is sent
to L2 when missed. The per-core L2 cache works similarly to
an L1D and forwards missing DRds to a shared exclusive LLC.
An LLC usually comprises a series of equal-sized slices. Each
slice is coupled with a cache coherence directory–called Snoop
Filter (SF) [9], where both co-locate in a designated Caching and
Home Agent (CHA) hardware module. Intel processors run a
MESIF-like cache coherent protocol [51]. An LLC hit returns
data directly, whereas a miss might trigger either (1) a local
snoop to other CHAs within the processor or (2) a cross-socket
remote snoop depending on the coherent directory information
maintained [12] in the SF. When the DRd cannot be served from
caches, it is routed to a local or remote memory controller (MC)

via a mesh interconnect [84, 85]. AnMC comprises one or several
channels that map to an individual DIMM. The CXL memory
device connects to the host through the FlexBus I/O subsystem.

• #2: DWr → RFO → CXL.mem load/store. A demand write hits
the store bu"er (SB) !rst, a specialized FIFO queue with dozens of
entries to decouple instruction execution from retirement. Next,
it is sent to the L1D cache. Depending on the coherent state, if
the data entry is the shared (S), invalid (I), or forward (F) state,
a read for ownership (RFO) coherent message is triggered to
gain exclusive access (discussed next). The actual CXL.mem store
happens when a writeback is issued from L1D, L2, or LLC.

• #3: RFO → CXL.mem load. An RFO request follows the same
path as a DRd, except originating from the L1D, L2, or LLC. The
requesting core would load a data copy with an exclusive (E)
state from the other core’s caches or main memory.

• #4: HW/SW PF → DRd/RFO → CXL.mem load. Data prefetch-
ing is a widely used latency-hiding technique. Explicit software
prefetching, guided by programs, preloads data from memory,
bene!ting irregular data structure traversal. Hardware prefetch-
ing instead fetches future data implicitly by analyzing and pre-
dicting the memory access pattern, performed on a dedicated
hardware engine. As shown in Figure 1, Intel processors support
L1, L2, and even L3 HW prefetcher (since Sapphire Rapids [4]).
Both HW/SW prefetching happens asynchronously and would
trigger DRd and RFOs depending on the cache coherence state,
causing CXL.mem load transactions for later execution.

2.3 Problem, Challenges, and Prior Solutions

Problem. Unsurprising, the CXL Type-3 memory underperforms
local ones. For example, on our SPR server (§5.1), when running
the Intel MLC utility [7], the local memory’s random access latency
and bandwidth are 103.2ns and 131.1GB/s, whereas a NUMA node
sustains at 163.6ns and 94.4GB/s. However, a remote CXL DIMM
only achieves 355.3ns access latency and 17.6GB/s bandwidth. Such
a performance discrepancy not only slows down application execu-
tion but, more importantly, stalls the processor pipeline frequently
and alters the memory subsystem access characteristics. Speci!-
cally, several issues arise (§5). First, it would congest several queue-
based architectural components (like SB, LFB, and CHA), where the
contention is back-propagated along the CXL.mem data path (§2.2),
further a"ecting other applications accessing local memory. Second,
it implicitly changes the application’s data locality and working set,
especially whenmultiple CXL and local memory $ows co-exist. This
is because read/prefetch-induced CXL loads take longer to fetch
data into the caching hierarchy. In contrast, more local memory
requests are issued concomitantly, competing for available slots at
di"erent caching layers. Third, fewer data movements are scheduled
due to CPU backpressure and limited memory-level parallelism,
even though ample bandwidth is available at the interconnect and
system bus, entailing resource underutilization and reduced com-
puting throughput. Therefore, it is pivotal to characterize how CXL
memory $ows traverse di"erent architectural components end-to-
end, localize the system bottlenecks, and generate optimization
insights for operators and developers.
Challenges.However, achieving this entails three challenges. First,
CXL.mem has several non-transparent data paths (§2.2), originating

from core or caches, traversing a chain of on-chip hardware mod-
ules non-deterministically (depending on data locality), and !nally
hitting an o"-chip memory device, whose execution characteristics
hinge on compute, memory, and I/O substrates. Second, CXL.mem
load/store instructions are tightly coupled with the processor exe-
cution, which has multiple deep and out-of-order pipelines, runs
at the nanosecond-scale granularity, and only exposes a few pro-
grammable interfaces to query the execution telemetry information
online. Any proactive tracing and instrumental mechanisms are
infeasible and prohibitively expensive. Third, the local and CXL
memory $ows share the underlying hardware, whose data paths
are overlapped and intertwined. It is hard to isolate their executions,
separate their architectural behaviors and performance impacts,
and determine whether CXL memory access is the culprit.
Inadequacies of Prior Solutions. People have tackled this issue
by collaboratively applying pro!ling utilities from di"erent hard-
ware components, carefully synthesizing empirical observations,
and approximately inferring the root causes. For example, at the pro-
cessor level, one would employ micro-architectural pro!lers (like
Intel VTune [1] andAMDuProf [3]) based on awell-established Top-
Down Analysis (TMA) technique [104]. It divides the CPU pipeline
into the frontend and backend, constructs the instruction execution
graph, and uses performance counters to locate the pipeline bottle-
neck hierarchically. Though e"ective, these tools focus on on-chip
pro!ling and cannot associate core-level ine#ciencies with o"-
chip CXL memory access. Regarding memory subsystems, existing
tools [13, 43, 80] examine the latency-bandwidth curve under di"er-
ent memory loads and access patterns. They report how workloads
use CXL DIMMs from the performance aspect, but fail to diagnose
the pathological scenarios caused by a CXL $ow, such as stalling the
processor, causing head-of-line blocking to local memory requests,
or squandering the CXL link bandwidth. In terms of interconnect
or system bus, there are benchmarking frameworks [55, 69, 86]
to characterize intra-host ongoing NoC events and PCIe transac-
tions, but they barely capture how these data movements a"ect the
source (core) and destination (memory). Thus, we lack a system-
atic and end-to-end pro"ling tool to understand and analyze
CXL.mem-based systems and applications.

3 Dissecting CXL.mem Execution
We delve into the processor performance monitor unit (PMU), ex-
plore a variety of counters, and use them to characterize the execu-
tion of di"erent CXL.mem paths (§2.2).
3.1 PMU Overview

A PMU is a specialized hardware module that monitors the proces-
sor execution characteristics. It exposes a programmable interface
for developers to select and con!gure monitored event registers,
and generates running statistics for people to tune and optimize
system software, compiler, and application performance. Generally,
there are three categories of performance counters. The !rst one
captures processor events, counting the frequency that a prescribed
event has occurred at which micro-architecture components during
the pro!ling period, such as issued/retired instructions, cache/bu"er
hit/miss, coherent messages, etc. The second one focuses on core
execution and measures the pipeline stall cycles under what condi-
tions, for example, the bu"er full, credit starvation, or incomplete

 0

 5

 10

 15

 20

PAR BWA PER ROMS CAC MCF

S
B

 S
ta

ll
C

yc
le

s
(e

+
8
)

Applications

Local (RD+WR)
CXL (RD+WR)

Local (WR-Only)
CXL (WR-Only)

(a) Stall Bu!er.

 0

 2

 4

 6

 8

 10

 12

DEEP XZ GCC ROMS MCF BWA

C
yc

le
s

d
u
e
 t
o
 M

is
s

(e
+

9
)

Applications

Local (Response Wait Cycle)
CXL (Response Wait Cycle)
Local (Pipeline Stall Cycle)
CXL (Pipeline Stall Cycle)

(b) L1D Execution.

 0

 2

 4

 6

 8

 10

Local
GCC

CXL Local
MCF

CXL Local
OMN

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

9
) DRd+RFO_Hit

DRd+RFO_Miss
Eviction

(c) L1D Operation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

IMA OMN XZ BLE X264 LBM LEE

L
F

B
 C

o
u
n
te

r
(e

+
8
)

Applications

Local (Stall Cycle)
CXL (Stall Cycle)

Local (Hit)
CXL (Hit)

(d) Line Fill Bu!er.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

ROMS CAC

C
yc

le
s

d
u
e
 t
o
 M

is
s

(e
+

9
)

Applications

Local (Pipeline Stall)
CXL (Pipeline Stall)

Local (DRd)
CXL (DRd)

Local (RFO)
CXL (RFO)

Local (HW PF)
CXL (HW PF)

(e) L2 Execution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Local
ROMS

CXL Local
CAC

CXL Local
PAR

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

9
) HW_PF_Hit

HW_PF_Miss
DRd_Hit

DRd_Miss

RFO_Hit
RFO_Miss

Retire_DWr_Hit

(f) L2 Operation.

Figure 2: We compare core performance counters when running in
the local and CXL memory cases. §5.1 describes our experimental
setup. (a) reports the core stall cycles of six applications when the
store bu!er becomes full under the read/write mixed and write-only
cases. (b) and (c) present the L1D characteristics from the execution
and operation perspectives. (d) shows the LFB counter statistics. (e)
present the core stall cycles and data responses under L2 misses,
while (f) depicts the L2 operation breakdown.

read. The third one centers around the data feeding pipeline, count-
ing the time it takes to fetch a data response from the destination
to the current position, e.g., demand read response waiting cycles
at L1D. A PMU counter usually operates in two modes: (a) con-
tinuously pro!ling, reporting the total amount until receiving the
stop/reset signal; (b) sampling, !ring an over$ow interrupt when
the counter reaches a prede!ned threshold.

Based on our CXL.mem data path analysis, we divide PMUs into
four parts, i.e., core, CHA/LLC, Uncore, and CXL device. We com-
pare applications running atop local versus CXL memory and see
how the performance counters are a"ected. When drilling down
the results, our goals are (a) examining microarchitectural pipeline
behaviors in the case of slow CXL memory accesses; (b) identifying
and mapping performance counters to di"erent data paths; and (c)
understanding the counter capabilities and limitations.

3.2 Core PMU

The core PMU can capture the origins of four CXL.mem data paths
and indicate how load/store instructions are issued. We further
break it down into SB, LFB, L1D, and L2.
Stall Bu!er. It has two counters (Table 1 in Appendix), measuring
stalled cycles due to SB full under read/write mixed and write-
only (no ongoing loads) scenarios. Using these two, one could
quantify the impact of write intensity at the individual core, i.e.,
how exorbitant writes block the pipeline. As shown in Figure 2,
compared with local memory, accessing the slow CXLDIMM causes
stalled cycles to increase by 1.9↑ and 2.0↑ on average across six

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

GCC BWA OMN DEE ROM XZ

L
L
C

 S
ta

ll
C

yc
le

s
(e

+
9
)

Applications

Local (Pipeline Stall)
CXL (Pipeline Stall)

Local (DRd)
CXL (DRd)

(a) Core LLC Execution.

 0

 0.5

 1

 1.5

Local
PAR

CXL Local
ROMS

CXL Local
MCF

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

9
) HW_PF_Hit

HW_PF_Miss
DRd_Hit

DRd_Miss

RFO_Hit
RFO_Miss

DWr

(b) Core LLC Hit/Miss Breakdown.

 0

 0.5

 1

 1.5

 2

DRd RFO
MCF-Local

HW_PF DRd RFO
MCF-CXL

HW_PF

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

8
) Local_Memory

SNC_LLC
SNC_Memory

Remote_LLC
Remote_Memory

CXL_Memory

(c) Core LLC Miss Serve Target.

1

102
104
106
108

1010
1012
1014

MCF CAC PAR

O
cc

u
p
a
n
cy

Applications

Local (DRd)
CXL (DRd)

Local (RFO)
CXL (RFO)

Local (HW PF)
CXL (HW PF)

Local (DWr)
CXL (DWr)

(d) CHA LLC Hit Occupancy.

1

102
104
106
108

1010
1012
1014

MCF CAC PAR

O
cc

u
p
a
n
cy

Applications

Local (DRd)
CXL (DRd)

Local (RFO)

CXL (RFO)
Local (HW PF)
CXL (HW PF)

(e) CHA LLC Miss Occupancy.

 0

 1

 2

 3

 4

 5

 6

Local
MCF

CXL Local
CAC

CXL Local
PAR

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

7
) HW_PF_Hit

HW_PF_Miss
DRd_Hit

DRd_Miss

RFO_Hit
RFO_Miss

WB_Hit
WB_Miss

(f) CHA LLC Operation.

Figure 3: We compare CHA PMU when running in the local and CXL
memory. (a) reports the core LLC stall cycles. (b) presents the LLC
hit/miss breakdown. (c) shows where the missed LLC requests are
served. (d)/(e) report the occupancy of LLC hits andmisses. (f) depicts
the LLC operation breakdown. The y-axis of (d)/(e) is log-scale.

applications in the RD+WR and WR-only cases, respectively. This
is because store-induced cache writebacks take longer to commit.
L1D Cache. The core PMU introduces 12 performance counters for
L1D. We chose !ve representative ones (Table 1): three counting
L1D hits, misses, and evictions, and the rest measuring execution
stall cycles and data response time under L1D miss. This allows us
to analyze execution statistics, understand the L1D locality, and
track DRd, RFO, and SW PF paths. As depicted in Figure 2-b, when
running applications over CXL memory, we observe 2.1↑ higher
pipeline stall cycles on average than the local one, along with 1.4↑
longer response wait time. Even though workloads in both local or
CXL memory scenarios issue the same amount of loads and stores,
as CXL slows down the pipeline, data locality is inherently a"ected.
As shown in Figure 2-c, on average across three workloads, 22.8%
fewer DRd and RFO hits happen under CXL, indicating that cached
entries bene!t little for future requests, and the L1D e#ciency
is reduced. Note that under an L1D miss, a cache entry is !lled
or replaced depending on the cache replacement policy and how
multi-level caches are structured (i.e., inclusive or exclusive).
Line Fill Bu!er. There are two LFB-related counters (Table 1) that
report the number of demand load hits and the number of stall
cycles when LFB is full (unavailable). Akin to SB, they characterize
the load intensity of DRd and RFO paths after missing from L1D. As
shown in Figure 2-d, CXLmemory changes the data locality. Among
7 applications, 519.lbm_r and 541.leela_r see an 88.5% and 12.0%
hit increase, yielding 15.4% and 54.6% stall reduced, respectively.
However, the rest experience a 14.2% hit decrease and a 59.2% more
stall cycles. The longer data response under CXL would bene!t
applications whose temporal access locality is a little farther apart,
i.e., long data reused distance [41].

L2 Cache. The core PMU provides 44 performance counters, and
we select 25 for analysis (Table 1). Among them, there are (1) 18
event counters to track the hit and miss information of retired and
speculative instructions for DRd, RFO, DWr, and HW PF paths; (2)
7 cycle counters measuring the pipeline stall and data response
time of each path. Software prefetching (SW PF) is merged into
the DRd path after missing from L1D. As shown in Figures 2-e/f,
using these counters, we can learn L2-induced pipeline stalls due to
memory loads/stores, their data response time, and the frequency
of di"erent L2 events. For example, compared with local memory,
we observe the core stall cycles are increased by 2.7↑ on average
when running over CXLmemory, along with 1.2↑, 1.7↑, 1.1↑ longer
data response for HW PF, DRd, and RFO requests. However, similar
to what we discussed before, the data locality is changed in the
CXL case, indicating that some data paths might become faster, e.g.,
554.roms_r and 507.cactuBSSN_r achieving 9.4% and 20.5% lower
data feed waiting cycles on the HW PF and RFO paths, respectively.
Further, comparing CXL and local memory, we !nd that the number
of HW PF hits, HW PF misses, DRd hits, DRd misses, RFO hits,
RFO misses, and DWr hits is reduced by 0.7%, 27.5%, 33.3%, 11.5%,
18.4%, 0.6%, and 25.8% on average, respectively. Such a trend is not
consistent across all applications. For example, 507.cactuBSSN_r
sees a 2.0↑ and 1.5↑ increase in HW PF hit and RFO miss. More
speculative load/store-related instructions (i.e., 46.3% on average)
are issued in the CXL case due to longer execution. Thus, with these
counters, one can monitor the per-core L2 data locality and zoom
in on the DRd, RFO, and HW PF request execution.

3.3 CHA PMU

The CHA maintains cache coherence and provides LLC monitoring
counters at the core/socket level (Table 2 in Appendix).
Core LLC. The core-level CHA provides 81 counters and we choose
60. Speci!cally, there are (a) 2 cycle counters measuring the DRd-
induced core stall and data response; (b) 10 event counters mon-
itoring cache coherence; (c) 48 counters reporting the access hit
and miss for DRd, RFO, and L1D/L2 HW PF paths. CHA o"ers
adequate counters to demystify the tra#c load of di"erent paths.
For example, under an LLC hit, based on the HitM bitmap, it can
show if the data is served from the local-core LLC slice, cross-core
local-chiplet LLCs, cross-chiplet LLCs, or a snoop response. For
an LLC miss, it tracks where the data is served, e.g,. local DRAM,
cross-chiplet DRAM, remote (cross-socket) cache, and remote/CXL
DRAM. The CHA further introduces an occupancy counter for a
request type, measuring how many such requests are missed per
CPU cycle, indicating the missing degree.

We observe that accessing CXL memory causes 2.1↑ more stall
cycles and 1.8↑ higher DRd response time on average across six ap-
plications when compared with the local case (Figure 3-a). Memory
access pattern also changes in the CXL case. As shown in Figure 3-b,
the number of LLC hits is reduced by 46.5%, 41.3%, and 62.2% across
the DRd, RFO, and HW PF paths on average, while the total LLC
misses is raised by 4.2↑, 4.0↑, and 5.3↑, respectively. The missed
LLC requests are served from six locations (as discussed above).
In the non-CXL case, most DRds, RFOs, and HW PFs (more than
99.0%) are served from the local DIMM. However, when running
under CXL, we !nd that 38.4%, 4.1%, and 49.2% of the misses can be

 0

 0.5

 1

 1.5

 2

 2.5

X264 CAC PAR OMN XZ MCF

O
cc

u
p
a
n
cy

 (
e
+

9
)

Applications

Local (RPQ)
CXL (RPQ)

Local (WPQ)
CXL (WPQ)

(a) Queueing Occupancy.

 0

 0.5

 1

Local
X264

CXL Local
CAC

CXL Local
PAR

CXL

L
D

/S
T

 B
re

a
kd

o
w

n
 (

e
+

8
) LD ST

(b) Load/Store Breakdown.

Figure 4: We compare Uncore PMU of applications running in the
local and CXL cases. (a) reports the channel occupancy of RPQ and
WPQ. (b) breaks down the load and store commands.

directly served by the cross-chiplet/socket remote cache via snoop-
ing, then followed by the CXL DIMM. This indicates that longer
memory access latency increases the core LLC cache locality.
Socket LLC and CCD Counters. The CHA PMU provides 686
counters at the socket/CCD level to monitor how LLC slices serve
requests from all cores. We choose 108 counters, including 39 event
and 69 cycle counters to track (a) LLC cache coherence state ma-
chines (like E!F/I, M!E/I, and S!I); (b) cross-core snoop !lters;
(c) hit, miss, and occupancies across DRd, RFO, and HW PF paths;
and (d) the destination distribution of socket-level LLC misses. As
shown in Figures 3-d/e, compared to the local memory case, access-
ing CXL memory reduces the hit occupancy of DRd, RFO, HW PF,
and DWr on average by 86.3%, 50.0%, 84.6%, and 29.5%. Concomi-
tantly, the miss occupancy is increased by 4.8↑, 1.3↑, 1.1↑, and 3.0↑.
This is due to the longer uncore data path. We further break down
the tra#c load of DRd, RFO, HW PF, and DWr paths (Figure 3-f)
and !nd that their hits under CXL memory are reduced by 55.4%,
48.0%, 59.4%, and 44.2% compared to accessing local memory.

3.4 Uncore PMU

The Uncore PMU captures the mesh interconnect and FlexBus I/O
behaviors (Table 3 in Appendix). We divide it into two parts: IMC
(integrated memory controller) and M2PCIe. The IMC also partici-
pates in the CXL context, serving as a host-side agent to streamline
CXL memory transactions [84, 85].
IMC. It provides 54 performance counters, among which we select
18 for data and write paths analysis. An IMC monitors the memory
module and exposes two virtual channels, where each features 9
counters. Speci!cally, there are (a) 4 cycle counters tracking the
number of cycles and occupancy when the Read Pending Queue
(RPQ) and Write Pending Queue (WPQ) are not empty; (b) 3 event
counters to capture CAS (column address strobe) commands; and
(c) 2 counters tracking the queue slot allocation in RPQ and WPQ.
We notice that in the case of CXL, because the CXL DIMM also
encloses device-side command queues, unlike the local memory,
little queueing happens inside the IMC (Figure 4-a). Thus, one can
ignore the IMC impact when analyzing CXL-only memory streams.
This also indicates that under mixed memory streams, the local
DIMM-induced queue at IMC could potentially block CXL accesses.
M2PCIe. It provides 34 performance counters to track FlexBus I/O,
from which we select 4 counters to monitor the CXL load/store
transactions. Among them, two report the number of entries in-
serted into theM2PCIe ingress queue from themesh and the number
of cycles during which the ingress queue is non-empty. The rest two
counters track the number of CXL memory acknowledgments sent
from the M2PCIe egress queue to the mesh and the number of cache
line data transferred. These counters are per endpoint (per DIMM),

showing the actual CXL tra#c. Figure 4-b compares the load/store
in the local DIMM (using IMC) and CXL DIMM (using M2PCIe).
The total memory accesses are roughly the same. However, since
CXL accesses are slow, the average load/store amount in the same
pro!ling cycle is 36.7% lower compared with the local scenario.

3.5 CXL PMU

The CXL Type-3 device de!nes 56 counters (Table 4 in Appendix),
where 8 are used for performance diagnostics of M2S Red/RwD
and S2M DRs/NDR (§2.1). These include (a) 6 counters to monitor
the ingress packing bu"ers, i.e., tracking the number of inserts, the
number of cycles during which the bu"ers are non-empty, and the
number of cycles when the bu"ers are full for both the Mem Data
packing bu"er and the Mem Request packing bu"er; (b) 2 counters
track the number of inserts in the Mem Data egress packing bu"er
and the Mem Request egress packing bu"er. These are used to
derive the QoS telemetry for memory (i.e., light load, optical load,
moderate overload, and severe overload), o#cially introduced in
the CXL speci!cation 3.0/3.1 [18]. However, existing CXL DIMMs
(like AMD CZ120/CZ122, Smart Modular CMM-E3S, and Samsung
CMM-B/CMM-H) are not supported. We’ll explore it in the future.

3.6 PMU Generality

The above characterizations (§3.2–§3.4) are performed on an In-
tel SPR machine. Next, we show that these PMUs are generally
available and applicable to another Intel EMR server.
Core PMU. We observe consistent core PMU counter behaviors
when accessing CXL memory. As shown in Figure 14 (Appen-
dix A.1), compared to local memory, accessing the slower CXL
DIMM (a) results in 1.3↑ more SB stalled cycles on average across
six applications in both RD+WR and WR-only scenarios; (b) leads
to an average of 1.3↑ higher pipeline stall cycles and 1.2↑ longer
response wait times on L1D; (c) causes 2.7% fewer DRd and RFO hits
on L1D; (d) increases the LFB stall cycles by 1.3↑with little changes
in LFB hit rate; (e) yields 1.5↑ more L2 stall cycles on average, with
HWPF, DRd, and RFO requests experiencing 1.1↑, 1.3↑, and 1.2↑
longer data response times; (f) reduces RFO misses, HWPF hits, and
HWPF misses by 10.8%, 1.5%, and 4.3%. The EMR machine exhibits
smaller increases in stall cycles, and less variation in hit and miss
counts, bene!ting from the larger LLC size, but basically shows the
same trend as SPR when accessing CXL memory, with an increase
in stall cycles and a decrease in request frequency.
CHA PMU. These counters are also applicable on the EMR server.
As shown in Figure 15 (Appendix A.1), compared to local memory,
accessing CXL memory (a) leads to 2.1↑ more stall cycles and 2.2↑
higher DRd response time on LLC on average across six applications
compared to the local memory case; (b) decreases the number of
LLC hits for DRd, RFO, and HWPF requests by 6.3%, 16.3%, and 5.6%
on average; (c) causes a 1.1↑ and 1.3↑more LLC misses for DRd and
RFO, while HWPF misses are dropped by 20.5%; (d) increases the
DRd, RFO, and HWPF miss occupancy by 1.5↑, 1.3↑, and 1.6↑; (e)
yields a 2.2%, 1.8%, 3.6%, and 4.3% hit decrease for DRd, RFO, HWPF,
and DWr, along with a 2.3%, 6.8%, 5.2%, and 3.4% miss reduction.
Uncore PMU.We also validate that the functionality and e"ective-
ness of the uncore PMU on an EMR server are similar to that of the
SPR one. Figure 16-a (Appendix A.1) is consistent with Figure 4-a,

con!rming that the CXL memory access bypasses IMC and is man-
aged by a device-side MC. Akin to Figure 4-b, Figure 16-b compares
the load and store tra#c between local and CXL DIMMs, providing
DIMM tra#c ground truth information.

By comparing PMU counters when accessing local and CXL
memory on both the SPR and EMR machines, we demonstrate that
our PMU-based characterizations and experimental observations
are generally applicable. Further, a large LLC on the EMR platform
helps reduce the core stall cycles and L1D/L2/LLC misses.

3.7 Summary

PMU counters allow us to (a) investigate the impact of slow CXL
memory accesses on microarchitectural pipeline behaviors; (b) clas-
sify and quantify di"erent CXL.mem data paths. Among these PMUs,
CHA, M2PCIe, and CXL PMUs o"er ground-truth information on
CXL read/write memory tra#c and capture its e"ects at the uncore
level. Core PMUs enable analyzing CXL memory characteristics
of di"erent paths (i.e., DRd, DWr, RFO, and HW/SW PF) from the
uncore and core private cache to the processor pipeline.

4 PathFinder: a CXL.mem Pro"ler
Our characterizations (§3) have unearthed the PMU capabilities of
di"erent hardware components across CXL.mem data paths. This
section describes how we build PathFinder using them to address
the above challenges (§2.3). Our system design goals are:
• End-to-end. PathFinder should provide adequate running sta-

tistics about all application-induced CXL.mem data paths and an-
alyze how CXL memory accesses impact the processor pipeline,
cache hierarchy, and FlexBus I/O;

• Pro"ling-rich. PathFinder should report multifaceted execution
telemetry, including stall cycle, queueing occupancy, and data
locality, at a given epoch, based on the pro!ling speci!cation;

• Lightweight. CXL.mem transactions run at nanosecond granu-
larity across tens of GB to several TB address spaces. It is pivotal
to ensure that PathFinder incurs minimal system overheads with
a marginal impact on the pro!led applications;

4.1 Key Idea and System Overview

Our key idea is to view the server processor and its chipset as a
multi-stage Clos network [30, 38], identify di"erent CXL.mem data
paths, and apply conventional tra#c analysis techniques. In the
request direction, the ingress stage is processor cores that feed
load/store instructions into the network, while the egress stage
is CXL DIMMs that serve requests and perform data reading and
writing. The response direction operates vice versa. The middle
stage is each on-path architecture module, working as a switch that
forwards data based on memory addresses. However, in our case, a
middle stage can also become an ingress or egress one when hard-
ware prefetching or caching happens. This indicates that our Clos
network has several sub-Clos networks with non-consistent stages
for di"erent CXL.mem paths. Next, we develop an in-band tra#c
telemetry engine for each stage hop to capture aggregated running
statistics using its PMU. Last, we employ networking telemetry tech-
niques, like traceroute [23], reverse traceroute [60], delay-based
analyses [32, 36, 44], and network snapshot [103], and tailor them
to the CXL.mem context to achieve our goals.

(a
).

Pr
ofi

lin
g

Ta
sk

Sp

ec
.

Profiled Application
▪ PID, co-located aplications

Running Environment
▪ Pinned cores and mnodes

Profiler Configuration
▪ Mode, granularity, res. max

Report Specification
▪ Collected statiatics, etc.

Co
re

PT
E

SB

L1
D

LF
B

Un
co

re

Fl
ex

Bu
s

DI
M

M

Co
re

 PT
E

mFlow 1 Path 1 (DRd)

Inter-Snapshot Analysis

App …
…

mFlow n

mFlow 2

Stage 1

PT
E

PT
E

L2 PT
E

CH
A

PT
E

CH
A

PT
E

CH
A

PT
E Un

co
re

PT
E

PT
E

PT
E

DI
M

M
PT

E

Fl
ex

Bu
s

PT
E

PT
E

SB

L1
D

LF
B

PT
E

PT
E

L2 PT
E

Co
re

PT
E

SB

L1
D

LF
B

PT
E

PT
E

L2 PT
E

DI
M

M
PT

E

Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9
St

ep
 1

:
PF

Bu
ild

er
Path i

Path j

Path 2 (HW PF)
Path i (RFO)

Path n (DRd)

St
ep

 2
:

PF
Es

tim
at

or

…… St
ag

e
i St
ag

e
j

St
ag

e
kSt

al
l St

al
l

St
ep

 3
:

PF
An

al
yz

er

St
al

l St
ep

 4
:

PF
M

at
er

ia
liz

erPath i

Path j

Path k
Snapshot Snapshot Snapshot

Tasks

Time-Series Database

Queries

Intra-Snapshot Analysis

(c
).

Pa
th

Fi
nd

er

W
or

kfl
ow

(b
).

Sy
st

em
 M

od
el

Culprit path v.s.
Victim path

Figure 5: The system overview of PathFinder. (a) shows the pro"ling task speci"cation. (b) depicts the system model, and (c) illustrates the
PathFinder work#ow. PTE=PMU-based Telemetry Engine.

PathFinder is a system utility facilitating CXL development. Its
inputs (Figure 5-a) encompass (1) application programs, where we
support single/multi-tenant pro!ling; (2) running environments,
such as pinned cores andmapped memory nodes; (3) pro!ler speci!-
cations, which set up the pro!ling mode (continuous or aggregated),
tracing granularity, and the max resource consumption; (4) report
speci!cations, which describe the interested execution statistics.
Based on these con!gurations, PathFinder outputs pro!ling sum-
maries periodically or until the application stops, and highlights
notable CXL.mem information, such as what is the access intensity
across di"erent CXL paths, how the data locality varies under CXL
accesses, what is the latency breakdown of load/store/prefetch,
whether there exists a hardware bottleneck blocking some paths,
and how CXL memory $ows interfere with other local/CXL ones.

Under the hood, PathFinder performs snapshot-based path-driven
pro!lings to analyze CXL.mem protocol execution (Figure 5-c). It
takes time series snapshots over our telemetry engines, classi!es
transactions based on paths, and examines how concurrent paths
interleave over each on-path module. PathFinder comprises four
techniques: (a) PFBuilder, constructing the CXL data path map via
carefully synthesizing a slew of PMU counters (§4.3); (b) PFEstima-
tor, which employs a back-propagation algorithm that gradually
attributes the CXL-induced stall cycles in a bottom-up fashion to the
CPU pipeline (§4.4); (c) PFAnalyzer, zooming each architectural com-
ponent via white-box modeling and exploring how concurrent CXL
and non-CXL streams interfere with each other (§4.5); (d) PFMate-
rializer, which introduces an internal time-series database, takes a
per-snapshot digest as inputs, and identi!es consistent execution
characteristics, such as data locality, contention, and resource under-
utilization ($4.6). Together, PathFinder dissects CXL.mem accesses
and associated applications across the entire server system from
the temporal and spatial dimensions at the required granularity.

4.2 System Model

PathFinder models the server system as a Clos network (Figure 5-b),
represented as 𝑄 = (𝑅 , 𝑆), where (a) 𝑅 refers to architectural mod-
ules, like core, SB, LFB, L1D, L2, CHA, and CXL DIMM; (b) 𝑆 is the
interconnect link, such as on-core hardware FIFO, (mesh) intercon-
nect, and system FlexIO Bus. Each vertex can be a source node (𝑇𝐿𝑀𝑁)
issuing requests, a destination node (𝑇𝑂𝐿𝑃) serving requests, and an

intermediate stage (𝑇𝑄𝑅𝑃) with𝑈 ingress and 𝑉 egress ports, which
are all associated with a particular stage (𝑊). We then de!ne a lo-
cal/CXL memory $ow (mFlow) as𝐿𝑋𝑌𝑃𝑄 ↓ 𝑍𝑎𝑏𝑈𝑈𝑆 /𝑐𝑎𝑏𝑈𝑈𝑆 (Fig-
ure 5-a), enclosing all the associated load, store, and prefetch com-
mands and responses following the committed order. A mFlow is
(1) application-dependent, whose lifetime aligns with the workload;
(2) location-sensitive, i.e., we would create and initiate a new mFlow
when the thread migrates to a new core or touches the address
space of a new DIMM; (3) bidirectional, capturing both the request
submission and response returning transmission. Thus, an applica-
tion process would include a list of mFlows {𝑂𝑑𝑍𝑋𝑒1, ...,𝑂𝑑𝑍𝑋𝑒𝑅},
whose number is bounded by 𝐿𝑋𝑌𝑃# ↑ 𝑎𝑏𝑈𝑈#.

A mFlow spawns a list of data paths (𝑓) based on the data serving
location, each of which is denoted as ∨ 𝑇𝑄

𝑇𝐿↔→ 𝑇 𝑆 , where 𝑇𝑄 , 𝑇 𝑆 ↗ 𝑅
and 𝑃𝑈 ↗ 𝑆. A path is instantiated when a load/store instruction
is issued. It is deterministic based on the address mapping, whose
forward and backward sub-paths are symmetric. PathFinder uses
the PFBuilder (§4.3) to break down path details of all active mFlows.
It takes a snapshot of all PMUs at the end of every OS scheduling
epoch (or when preemption happens) and associates it with the
current running mFlow. We then generate an execution digest,
represented with a memory-e#cient data structure. Thus, a mFlow
has a sequence of time-series snapshots {𝑊𝑔𝑕𝑖𝑗𝑘𝑋𝑙1, ..., 𝑊𝑔𝑕𝑖𝑗𝑘𝑋𝑙𝑅}
over its lifetime, facilitating our pro!ling over the time dimension.

4.3 Constructing the Path Map

Our !rst step is to draw all the paths over each snapshot. Traceroute
is a widely used technique in computer networks to determine
which routers stay on the communication path. The client sends a
probing packet with a prede!ned TTL (time-to-live) value. Each on-
path router receiving the probing decrements the !eld and replies
to an ICMP time-exceeded message [11] when TTL becomes 0. One
would then !gure out the packet path by gradually incrementing
the TTL !eld until reaching the destination. However, such a trac-
ing scheme is infeasible in our case due to the non-programmability
of on-path micro-architecture hardware components. Load/store
requests and responses usually traverse a deterministic path, in-
structed by the memory address. One possible solution is to analyze
the destination address region and work with the server vendor
to demystify the caching policy, multi-tier cache structure, and

NoC (Network-on-Chip) routing algorithm. For example, the recent
432-core RISC-V server processor Occamy [87] open-sources its
architectural details. This would not work for commodity server
processors. Fortunately, we !nd that PMUs report path-speci!c
hit-and-miss information (§3) at di"erent locations, allowing us to
reconstruct the path map within a snapshot.

We develop the PFBuilder mechanism guided by Table 5 (Appen-
dix A.2). For each mFlow, it !rst examines its home core PMU and
computes the per-path tra#c load based on how many DRd/RFO/
PF/DWr hits happen at SB, L1D, LFB, and L2. Next, it walks through
the PMU hierarchy in a top-down fashion and analyzes the CHA
PMU. Since each core can send load/store commands to all CHAs,
the next hop after L2 becomes unclear, hinging on the propriety
routing logic, LLC slice caching, and destination address. We !nd
a special hardware module–called TOR (Table of Requests) in the
Intel processor, which records the core-CCA mapping for di"er-
ent types of requests (see unc_cha_tor_inserts in Table 5). This
helps us continue building the path map for missing commands
from L2. The AMD Zen processor has a functionally similar compo-
nent in its core complex die (CCD). Note that LLC request serving
has several scenarios. Speci!cally, a miss would be !rst served by
(a) the core’s local LLC slice, (b) followed by a distance LLC slice
from a Sub-NUMA cluster (when a processor has chiplets), and (c)
!nally followed by a remote LLC slice from another CPU socket. (b)
and (c) are triggered by request snooping. Finally, if requests were
missed from LLC/CHA, they would go through MC and arrive at
the DIMM. We use local MC counters at the socket level for local
memory access and M2PCIe uncore counters to track the FlexBus
transactions to CXL DIMMs. In sum, a path map describes all the
mFlow-induced paths with quantitative tra#c loads (de!ned as the
number of traversed requests). A snapshot, taken at the end of a
scheduling window, is always associated with a particular thread.
However, when there are multiple concurrent $ows (e.g., a core
accessing di"erent DIMMs), PathFinder can classify paths whose
destinations are beyond LLC since their PMUs can report target-
dependent statistics (as shown in Table 5), but not the on-core ones
as all path hits are mingled in the counter.

4.4 Breaking down CXL-Induced Pipeline Stall

The longer CXL accesses slow down data fetching, inevitably caus-
ing execution stall along the pipeline. PathFinder examines the stall
cycles of every hardware component and aims to tease out the CXL-
induced part. The challenge is how to separate the combined e"ect
between CXL transactions and other architectural factors (like local
memory access and cache coherence execution). Inspired by reverse
traceroute [60] from the computer networks, we develop a back-
propagation approach (PFEstimator) that incrementally attributes
the stall overhead from CXL DIMMs to cores.

PFEstimator works as follows (ALG 2 in Appendix A.3). Starting
from the CXL_DIMM MC, it checks which FlexBus root access
ports (RCs) have issued requests in the current snapshot, com-
putes their aggregated tra#c loads of all active paths, and propor-
tionally distributes the load/store queueing occupancy (obtained
from the unc_cxlcm_rxc_pack_buf counters) to these RCs (L2-
L9). The queue buildup at a CXL DIMM MC happens because its
memory command handling rate (egress) cannot catch up with
the request arrival rate (ingress). Next, we move backward to the

Algorithm 1 The Delay-based PFAnalyzer Algorithm.
1: HAL: the hardware abstract representation that contains its PMU

counter statistics and all housed path/mFlow information;
2: Q: queue length array;
3: procedure HW_O!!"#$%!&_D’(’!()*%(HAL module)
4: for p in module.all_cxl_paths do
5: for c in module.all_components do
6: if c == L2 or c == L1D or c == LLC then
7: 𝑉𝑀𝑁𝑂 = c.hits[p]/c.clocks;
8: 𝑉𝑃𝑁𝑄𝑄 = c.misses[p]/c.clocks;
9: 𝑊𝑀𝑁𝑂 = c.delay_hit;
10: if c == LLC then
11: 𝑊𝑃𝑁𝑄𝑄 = c.delay_miss; 𝐿 LLC
12: else
13: 𝑊𝑃𝑁𝑄𝑄 = c.delay_tag; 𝐿 core L2,L1D
14: Q[p][c]=𝑉𝑀𝑁𝑂 *𝑊𝑀𝑁𝑂+𝑉𝑃𝑁𝑄𝑄 *𝑊𝑃𝑁𝑄𝑄 ;
15: else 𝐿 core LFB,RAM
16: 𝑉𝑀𝑁𝑂 = c.hits[p]/c.clocks;
17: 𝑊𝑀𝑁𝑂 = c.delay_hit;
18: Q[p][c]=𝑉𝑀𝑁𝑂 *𝑊𝑀𝑁𝑂 ;
19: culprit_path = MAX_OCC(Q);

FlexBus RC!Host Uncore segment and divide the FlexBus waiting
(credit starvation) cycles–unc_m2p_rxc_cycles_ne). The estima-
tion works similarly (L10-L18) except that the stall cycle needs
to consider the inherited part from the last segment (L12). Af-
ter that, PFEstimator examines the Host Uncore!CHA path seg-
ment and proportionally attributes its RPQ (read pending queue)
and WRQ (write pending queue) delay (i.e., unc_m_rpq_cycles_ne
and unc_m_wpq_cycles_ne) to di"erent CHAs (L19-L27). Since
the uncore is shared between local and CXL memory streams,
get_Uncore_stall_cycle takes the CXL DIMM ID as input and
reports the DIMM-speci!c value (L21). As discussed in §2.2, within
a CHA, there is a mapping between LLC slices and CCDs. We fur-
ther partition the stalled cycles (observed via TOR) proportional
to individual slices. This works similarly to Host Uncore!CHA.
Finally, for all the in-core path segments (Core LLC ! L2 ! LFB
! L1D ! SB), the CXL-induced stall cycles are back-propagated
to each on-path module as above while piggybacking a propor-
tional stall cycle share (like L21). Note that algorithm 2 sketches
a generic description and the actual implementation would use
di"erent counters for load (read) and store (write) requests.

4.5 Detecting Culprit Paths at Bottlenecked HW

Next, PathFinder locates the hardware contention point along the
pipeline, explores the performance interference of concurrent paths,
and identi!es the culprit. However, due to the hardware opaqueness,
it is challenging to know how di"erent mFlows interact with each
other and share the hardware resources. Delay-based queueing
analysis [32, 36, 44] has been demonstrated in computer networks.
The idea is to attribute the queueing occupancy of a $ow to the
individual $ow based on its delay variation. We introduce a similar
approach (called PFAnalyzer), which leverages Little’s Law and the
delays observed by the core when requesting data from di"erent
components to attribute the queueing degree of $ows.

PathFinder views each hardware (vertex) in the Clos network
graph as a software switch and models it as a queueing model. An
observation driving our delay-based analysis is that the PMU of

an architectural module generally encloses two counters (§3): (a)
one counting the hit and miss frequency (HitCnt,MissCnt), which
relates to the data locality and total amount of allocated resource
from the last epoch; (b) the other reporting the data response time
(Delay), which indicates how long the requests would be served.
Except for interconnect routing, components along the data path
can be modeled as a variant of the FCFS queue (S3-FIFO [102]).
PFAnalyzer combines the HitCnt, MissCnt, and Delay, and applies
Little’s Law to estimate the average queue length per cycle as 𝑁 =
𝑚 ↘𝑛 . We attribute the core-observed request latency to each on-
path component by computing the latency di"erence between the
current hop and the previous hop, used as the delay𝑛 .

For components that forward miss requests to lower levels, we
use the following extended formulation, 𝑁 = 𝑚𝑋𝑄𝑃 ↘𝑛𝑋𝑄𝑃 + 𝑚𝑌𝑄𝐿𝐿 ↘
𝑛𝑌𝑄𝐿𝐿 , where (a) 𝑚 denotes the request arrival rate, obtained from
the component’s mFlow hit/miss counters and clock ticks; (b)𝑛𝑋𝑄𝑃
represents the time required to serve data on a hit.𝑛𝑌𝑄𝐿𝐿 is location-
dependent. For L1D and L2, we use𝑛𝑃𝑍𝑎 as𝑛𝑌𝑄𝐿𝐿 , which captures
the time spent on tag lookup to determine whether data exists.𝑛𝑃𝑍𝑎
is assigned a constant cycle value based on the hardware capacity
and associativity. For LLC, we use the request miss delay as𝑛𝑌𝑄𝐿𝐿 ,
since missing requests remain in the CHA TOR queue until they
are completed. For LFB and DIMM, as the LFB load is part of the
uncore path [98], and memory holds the complete data set that is no
longer forwarded, we adopt the 𝑁 = 𝑚𝑋𝑄𝑃 ↘𝑛𝑋𝑄𝑃 model. Algorithm 1
sketches how PFAnalyzer works. For DRd, RFO, and HWPF paths,
we apply di"erent models to estimate the queueing degree at each
component along the path. At L1D, L2, and LLC, both hit and
miss accesses are included in the queue length estimation (L6-L14).
At LFB and DIMM, only hit accesses are considered (L15–L18).
Finally, the component and path with the maximum queue length
are identi!ed as the culprit of the current snapshot (L19).

4.6 Synthesizing Multi-Snapshots

PathFinder summarizes execution characteristics via cross-snapshot
analysis. We employ a time-series database (like In$uxDB [5]), en-
capsulate a snapshot as a compacted record, and conduct time-series
analysis. Our record, tagged by the timestamp, uses a hierarchical
tree representation based on the system model (§4.2), including
edges, vertices, mFlows, and paths tables. An edge is further divided
into the traversed path list (§4.3), tra#c load, available bandwidth,
and queueing degree (§4.4). A vertex adopts an abstract hardware
model, contains its PMU counters, and captures how resources are
allocated among contending paths (§4.5). A mFlow/path encom-
passes basic routing information and running metadata statistics.

Our approach (PFMaterializer) provides a CLI interface, takes a
user-interested scenario as input, and translates it into a sequence
of In$uxDB Flux queries to explore insights. Supposing we are ana-
lyzing the application’s LLC temporal data locality when accessing
CXL memory. First, PFMaterializer determines the query scope that
contains the application-spawned paths whose destination is LLC,
i.e., FROM !path_set! WHERE !path.mflow.pid = APP_PID! AND
!path.dst=LLC!. Second, we look at the counter hit !eld and get
some overall statistics via some operators, such as min(), max(),
avg(), and movingAverage(). Third, PFMaterializer employs the
time series cluster technique [29] and partitions snapshots into
multiple windows with similar hits. The window length re$ects

how long an application stays consistently in the current phase.
Fourth, PFMaterializer applies classical time series analysis (TSA)
techniques [53] to explore data trend, seasonality, and residual
(or anomaly). For example, it can use the Holt-Winters forecast
method–holtWinters()–to search regular patterns, which would
indicate if an application exhibits some predictable data accesses.
Last, thanks to the time-series database capability, we can cross-
check other applications’ mFlows/paths in the same time window
or at the same timestamp, use some correlation detection meth-
ods, like pearsonr(), and identify locality-impacting factors from
the application layer. This work$ow is generally applicable and
can be easily extended via other queries. By layering a time-series
database atop the PathFinder system core, we enable many other
architectural-level CXL-related performance pro!ling, like spatial
data locality, computing burst, and execution orthogonality. We
will open-source and continuously develop more work$ows.

5 Evaluation
5.1 Experimental Methodology

Hardware testbed.We conduct experiments on two types of hard-
ware platforms. The !rst is a dual-socket Sapphire Rapids (SPR)
server with Sub-NUMA Clustering (SNC) enabled. It is equipped
with one CXL Type-3 memory device that appears as a CPU-less
NUMA node and runs on Linux 6.5 kernel with CHA PMU support
patches. Our experiments run on a 2U Supermicro server that has
two Intel Xeon Gold 6438Y+ processors and 256GB DDR5. The CPU
has 32 cores running at 2.0 GHz and 60MB LLC. Each core has 48KB
L1D and 2MB L2. We disable hyperthreading and Turbo Boost. Our
CXL Type-3 memory device is based on the Intel Agilex I-Series
card [6] enclosing 16GBDDR4. The second platform is a dual-socket
Emerald Rapids (EMR) server. It uses 256GB CXL Type-3 memory
device Micron CZ120 CXL DIMMs con!gured as CPU-less NUMA
node and runs on Linux 6.15 kernel. The server features two Intel
Xeon Gold 6530 processors and 1536GB DDR5 memory. The CPU
consists of 32 cores with 160MB LLC, and each core includes 2MB
L2 and 48KB L1D cache. Both servers are equipped with per-core
PMUs, 64 CHA PMUs, and use IMC and M2PCIe PMUs to monitor
local and CXL memory accesses, respectively.
Workload. We evaluate PathFinder using 77 applications from
various benchmark suites, including Redis [14] and YCSB [39],
graph processing GAP [33], PARSEC [35], SPLASH-2x [105], and
SPEC CPU 2017 [17]. PathFinder provides a CLI interface with
di"erent command parameters to enable various functionalities.

5.2 Case 1: Path Classi"cation

PFBuilder uses the PMU hit/miss counters to !gure out the precise
request paths, reporting the total amount and distribution of request
hits and misses at each cache hierarchy and DIMM component
from a core to the destination. This shows detailed memory access
behaviors and tra#c changes along di"erent paths.

Table 7 (Appendix A.5) demonstrates PFBuilder’s path mapping
capabilities when running SPEC CPU2017 applications over CXL
memory. It reports the path distribution for DRd, RFO, HWPF, and
DWr. For example, in 649.𝑜 𝑋𝑙𝑋𝑔𝑝𝑞3𝑟_𝑗 , the per-core hot path is DRd.
At the uncore, the hot path is HWPF, accounting for 59.3% of uncore
accesses. Further, PFBuilder shows that the CXL memory hits are
8.1↑ more than the local LLC hits, and HWPF paths account for

BFS

CC

FREQ

RAY

BARN

FFT

 0 200 400 600 800 1000 1200 1400

A
p
p
lic

a
tio

n
s

(a). DRd Breakdown (ns)

BFS

CC

FREQ

RAY

BARN

FFT

 0 200 400 600 800 1000 1200

A
p
p
lic

a
tio

n
s

(b). RFO Breakdown (ns)

BFS

CC

FREQ

RAY

BARN

FFT

 0 100 200 300 400 500 600 700 800

A
p
p
lic

a
tio

n
s

(c). HW PF Breakdown (ns)

BFS

CC

FREQ

RAY

BARN

FFT

 0 100 200 300 400 500 600

A
p
p
lic

a
tio

n
s

(d). DWr Breakdown (ns)

SB
L1D

LFB
L2

LLC
CHA

FlexBus+MC
CXL_DIMM

Figure 6: We break down CXL-induced stall cycles of SB, L1D, LFB,
L2, CHA/LLC, FlexBus+MC, and CXL DIMM.

89.1% of those CXL memory accesses, suggesting that CXL memory
heavily in$uences L1D and L2 behavior through the HWPF path. As
another example, we compare two selected snapshots in 602.𝑠𝑐𝑐_𝑗 ,
and !nd out that the total number of core-issued requests (from
DRd, RFO, and DWr hits across all components) increases by 5.8↑
in snapshot 2 compared to snapshot 1. PFBuilder allows us to drill
down into the CXL memory hit analysis: (a). The total amount of
DRd requests only slightly increases from 25.9% to 27.7%, indicating
that the cache hierarchy largely absorbs the additional DRd tra#c;
(b). In contrast, RFO requests rise from 1.1% to 69.0%, meaning that
a large amount of data is loaded from the CXL memory.

5.3 Case 2: Pipeline Stall Breakdown

PathFinder can examine the CXL-induced stall cycles and provide
a breakdown through PFEstimator (§4.4). This functionality allows
developers to understand (a) how e#cient the CXL accesses are
from the processor pipeline perspective; (b) how many stall cycles
are added from SB to FlexBus+MC. However, in a mixed memory
tra#c scenario [79, 97], PMU stall cycle counters capture the com-
bined impact of both local and CXL memory paths. Separating
stalls based solely on the proportion of request miss targets is in-
accurate [95]. PFEstimator adopts a bottom-up back-propagation
approach to tease out the CXL-induced portion from the total stall
counters and presents a stall breakdown to unearth the extent each
component is a"ected by CXL memory.

Figure 6 reports the breakdown for six applications. Regarding
"t, its stall delay of the DRd path is distributed across 7 components
(L1D, LFB, L2, LLC, CHA, FlexBus+MC, and CXL DIMM) with a per-
centage of 5.7%, 0.0%, 5.5%, 3.9%, 1.7%, 42.7%, and 40.3%, indicating
that DRd execution stalls are more pronounced in the uncore. How-
ever, raytrace experiences a higher stall at FlexBus and MC with
67.1%. Regarding RFO, we observe a breakdown of 1.9%, 0.0%, 1.6%,
0.9%, 6.3%, 3.3%, 58.0% and 1.3%, 0.01%, 0.07%, 0.03%, 4.3%, 59.3%,
35.0% stalls happen for barnes and freqmine applications across the
data path. The hardware prefetch also causes a stall. For example,
we !nd that 45.2% and 52.7% stall cycles come from FlexBus+MC
and CXL DIMM for the "t application, similar to the DWr paths.

Next, we show the advantage of capturing the CXL memory im-
pact through bottom-up back-propagation. In a hierarchical cache
system, CXL-induced stalls gradually diminish from the uncore
toward the core due to locality. For example, in Figure 6-a, CXL-
induced stalls on the DRd and RFO paths decrease by an average
of 74.5% and 67.8% from FlexBus+MC to L1D. The PFEstimator’s

 0

 2

 4

 6

 8

 10

 12

 14

20 40 60 80 100

S
ta

ll
T

im
e
 (

n
s)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(a) SB.

 0

 50

 100

 150

 200

20 40 60 80 100

S
ta

ll
T

im
e
 (

n
s)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(b) L1D.

 0

 50

 100

 150

 200

20 40 60 80 100

S
ta

ll
T

im
e
 (

n
s)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(c) LFB.

 0

 50

 100

 150

 200

20 40 60 80 100

S
ta

ll
T

im
e
 (

n
s)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(d) L2.

 0

 50

 100

 150

 200

20 40 60 80 100

S
ta

ll
T

im
e
 (

n
s)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(e) Core LLC.

 0

 150

 300

 450

 600

20 40 60 80 100

L
a
te

n
cy

 (
n
s)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(f) FlexBus+MC (DRd).

Figure 7:We present the pipeline stall cycle as varying the CXL tra$c
load. (a), (b), (c), (d), (e), and (f) report the behavior for SB, L1D, LFB,
L2, core LLC, and FlexBus+MC, respectively.

back-propagation approach can dissect the reduced CXL memory
impact from LLC to L2/L1D. SB bene!ts from L1 data locality, with
DWr path stalls decreasing by 90.6% on average from FlexBus+MC
to SB. Besides, HWPF CXL-induced stalls on FlexBus+MC are cor-
related with DRd CXL-induced stalls on L1D and L2 (Figure 6). For
instance, in BFS, there is a 353.5ns HWPF stall on the FlexBus+MC
corresponding to 209.8ns and 179.46ns DRd stalls on L1D and L2,
respectively. In contrast, for FREQ, we observe a 92.2 ns HWPF stall
on FlexBus+MC with only a 13.4ns and 0.7ns stall on L1D and L2.
PFEstimator can implicitly capture the e"ectiveness of L1D and L2
hardware prefetchers in mitigating the impact of CXL memory.

5.4 Case 3: Local v.s. CXL Access Interference

Although there is no memory channel contention between local
mFlow and CXL mFlow, resource contention on other host com-
ponents can cause severe interference. PathFinder can detect and
analyze interference between local and CXL mFlows. We con!gure
a case where a local mFlow and a CXL mFlow are located on the
same core, and vary the CXL tra#c load gradually from 20% to 100%.
PathFinder !rst identi!es potential interference between local and
CXL mFlows by analyzing the uncore target request distribution
reported by PFBuilder. PFAnalyzer and PFEstimator then dissect
the interference. As shown in Figure 8-d, the queueing e"ect at
the FlexBus and CHA stays stable. However, CXL-induced stall
within a core is increased by 1.7↑, 2.2↑, 2.2↑, 2.4↑, and 2.4↑ on SB,
L1D, LFB, L2, and core LLC, respectively (Figure 7-a/b/c/d/e). Even
though FlexBus and CHA are not congested, PFEstimator captures
the increased queueing within the core. PFAnalyzer further con-
!rms the impact on core components by reporting rising queue
lengths of LFB and L2 (Figure 8-b/c), particularly for the DRd path.
PFAnalyzer also shows that increased CXL-induced stalls degrade
L1D locality, which results in (a) heavy queueing at L2 and (b) long

 0

 2

 4

 6

 8

 10

 12

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(a) L1D.

 0

 0.5

 1

 1.5

 2

 2.5

 3

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(b) LFB.

 0

 5

 10

 15

 20

 25

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(c) L2 (DRd).

 0

 0.4

 0.8

 1.2

 1.6

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

CXL Traffic Load (%)

WATER
VOL

RAY
BODY

(d) FlexBus+MC (DRd).

Figure 8: We present the component queue length as varying the
CXL tra$c load. (a), (b), (c), (d) report the behavior for L1D, LFB, L2,
and FlexBus+MC, respectively.

L2 request serve latency, making the core bottleneck shift from
DRd on L1D to DRd on L2. A combination of path-level request
distribution analysis, stall time back-propagation, and queue length
estimation based on enqueue and dequeue rates enables dissect-
ing interference between local and CXL mFlows and the resulting
performance degradation of a"ected components.

5.5 Case 4: Concurrent CXL Access Contention

PathFinder can also analyze interference among CXLmFlows. PFEs-
timator leverages a back-propagation algorithm to compute CXL-
induced stall time for each component, enabling it to capture how
CXLmFlows interference pressure propagates backward from shared
FlexBus to each core. In parallel, PFAnalyzer localizes the bottleneck
and characterizes path states under neighboring CXL mFlows con-
tention from core-issued requests and memory subsystem served
requests. When CXL mFlow tra#c increases from 20% to 100%,
YCSB mFlow throughput is decreased by an average of 77.4% (Fig-
ure 9-a). All CXL mFlows originating from di"erent cores aggregate
at FlexBus+MC before reaching the CXL memory, and PFEstima-
tor captures a 4.3↑ increase in FlexBus+MC latency (Figure 9-h),
PFAnalyzer shows that the queueing degree of FlexBus+MC DRd
and HWPF is increased by 4.6↑ and 1.2↑ (Figure 10-e/f), indicating
that contention and blocking among CXL mFlows !rst manifest in
the uncore FlexBus+MC. Figure 9-g shows that CHA latency rises
by 1.6↑, suggesting that (a) CHA cannot fully hide the interference
across CXL mFlows; (b) the growing memory pressure from CXL
memory propagates upward along the hierarchy and impacts core
component performance. YCSB mFlow LLC experiences a 1.8↑ in-
crease in CXL-induced stall time (Figure 9-f) and a 3.4↑ increase
in queueing degree (Figure 10-d), suggesting CXL mFlows on LLC
are not isolated and request interleaving occurs. Although CXL
mFlows from di"erent cores do not interleave at the individual core,
the increased uncore interference still a"ects the core components.
As shown in Figures 9-b/d/e, CXL-induced stall time on the SB,
LFB, and L2 increases by 2.1↑, 2.9↑, and 1.8↑, with 1.6↑ and 1.2↑
increased queueing degrees of LFB and L2 (Figure 10-b/c), indicat-
ing that uncore contention among CXL mFlows indeed indirectly
a"ects private core components. When YCSB mFlow CXL-induced
stall on the L1D rises by 1.7↑(Figure 9-c), the L1D queueing degree

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 20 30 40 50 60 70 80 90 100

T
h
ro

u
g
h
p
u
t
(o

p
s/

s
e
+

4
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(a) Application Throughput.

 0

 10

 20

 30

 40

 50

 60

 70

 20 30 40 50 60 70 80 90 100

S
ta

ll
T

im
e
s

(n
s)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(b) SB.

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

S
ta

ll
T

im
e
s

(n
s)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(c) L1D.

 0

 2

 4

 6

 8

 10

 12

 14

 20 30 40 50 60 70 80 90 100

S
ta

ll
T

im
e
s

(n
s)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(d) LFB.

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

S
ta

ll
T

im
e
s

(n
s)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(e) L2.

 0

 50

 100

 150

 200

 250

 300

 20 30 40 50 60 70 80 90 100

S
ta

ll
T

im
e
s

(n
s)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(f) Core LLC.

 0

 2

 4

 6

 8

 10

20 40 60 80 100

L
a
te

n
cy

 (
n
s)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(g) CHA latency (DRd).

 0

 500

 1000

 1500

 2000

 2500

 3000

20 40 60 80 100

L
a
te

n
cy

 (
n
s)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(h) FlexBus+MC latency (DRd).

Figure 9: We present application performance and pipeline stall
cycles while increasing the CXL mFlow load from 20% to 100%.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(a) L1D.

 0

 1

 2

 3

 4

 5

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(b) LFB.

 0

 0.5

 1

 1.5

 2

 2.5

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(c) L2.

 0

 2

 4

 6

 8

 10

 12

 14

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(d) Core LLC.

 0

 2

 4

 6

 8

 10

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(e) FlexBus+MC (DRd).

 0

 0.5

 1

 1.5

 2

20 40 60 80 100

Q
u
e
u
e
 L

e
n
g
th

 (
#
)

Concurrent CXL Traffic Load (%)

YCSB-A
YCSB-B

YCSB-D
YCSB-F

(f) FlexBus+MC (HWPF).

Figure 10: We present the queue length while increasing the CXL
mFlow load from 20% to 100%. (a), (b), (c), and (d) present L1D, LFB,
L2, and core-accessed LLC queue length. (e) and (f) present the
FlexBus+MC queue length for DRd and HWPF, respectively.

 0

 1000

 2000

 3000

 4000

 5000

 6000

mFlow-1 mFlow-2 mFlow-3 mFlow-4

B
a
n
d
w

id
th

 (
M

B
/s

)

Applications

MBW w/o FlexBus Full
MBW w FlexBus Full

GUPS w/o FlexBus Full
GUPS w FlexBus Full

(a) mFlows bandwidth.

 0

 300

 600

 900

 1200

 1500

 1800

 0 5x107 1x108 1.5x108 2x108 2.5x108

B
a
n
d
w

id
th

 (
M

B
/s

)

CXL requests (#)

4MBW 4GUPS

(b) CXL BW and request frequency.

Figure 11: We examine the relationship between CXL bandwidth
partition among concurrent CXLmFLows. (a) shows the results using
4 MBW programs with bandwidths of 500 MB/s, 700 MB/s, 1000 MB/s,
and 3700MB/s; using 4 GUPS programs with bandwidths of 650MB/s,
1250 MB/s, 2200 MB/s, and 2800 MB/s. (b) shows the relationship
between CXL memory request frequency and runtime bandwidth.

drops by 41.0% (Figure 10-a). PFAnalyzer accounts for the decreased
core issue request rate and correctly identi!es that L1D queueing
decreases, while the mFlow bottleneck gradually shifts from DRd
on L1D to HWPF on FlexBus+MC. In summary, PathFinder en-
ables per-mFlow path-level analysis to identify interference, such
as where the contention occurs, which request types dominate, and
how each mFlow is indirectly a"ected in its core components.

5.6 Case 5: CXL Bandwidth Partition

Understanding bandwidth allocation among concurrent CXL mem-
ory streams is a challenging task for application developers. PathFinder
can assist in identifying the bandwidth among mFlows when the
saturated CXL device bandwidth becomes a bottleneck for the
host network. We evaluate this in 2 scenarios, i.e., 4 MBW in-
stances contention and four GUPS instances contention, both cause
FlexBus+MC to be saturated. Bandwidth competition reduces the
bandwidth of each mFlow (Figure 11-a). But due to varying mem-
ory access patterns, the bandwidth degradation is not uniform
across mFlows. For example, MBW-2 experiences a 37.7% drop,
while MBW-4 is degraded by 74.7%. However, under severe FlexBus
contention, PathFinder can estimate runtime bandwidth allocation
based on each mFlow’s demand on the uncore FlexBus. When the
CXL memory access latency increases to 974.9ns and 753.6ns, se-
vere FlexBus blocking occurs. PFAnalyzer detects the maximum
queue length at FlexBus, indicating that each mFlow’s performance
is largely determined by FlexBus. Moreover, the system observes
a Pearson correlation coe#cient as high as 0.998 between each
mFlow’s CXL memory request frequency and its application-level
reported bandwidth (Figure 11-b). Therefore, when PFAnalyzer
identi!es the culprit path at FlexBus+MC, the system can lever-
age PFBuilder’s report of CXL memory request frequency to infer
bandwidth allocation among concurrent CXL mFlows at runtime.

5.7 Case 6: Data Locality

PathFinder can report the data locality changes across multiple
snapshots using PFMaterializer (§4.6) to cluster the hit distribution
of historical data, identify windows with stable memory access
patterns, and report components with data locality changes when
mFlow is disturbed. By walking through a sequence of snapshots,
PathFinder examines how historical PMU counter statistics, cap-
tures the data locality trend, and further analyzes if co-located work-
loads contend the memory subsystem. For example, as shown in Fig-
ure 12, PathFinder shows that the LLCmisses are decreased by 20.6%
when co-locating with 519.𝑍𝑡𝑂_𝑌 compared with the 554.𝑌𝑋𝑂𝑗_𝑌

106

108

1010

 0 100 200 300 400 500 600 700

LBM LBM

H
it

C
o
u
n
t
(#

)

Time (s)

LD L1D Hit
LD LFB Hit

L2 Access
LLC Access

HW PF LLC Hit
HW PF CXL Hit

(a) 503.𝑏𝑐𝑍𝑑𝑇𝐿_𝑀 locality changes when launching 519.𝑒𝑏𝑌_𝑀 .

106

108

1010

1012

 0 200 400 600 800 1000 1200

ROM ROM

H
it

C
o
u
n
t
(#

)

Time (s)

LD L1D Hit
LD LFB Hit

L2 Access
LLC Access

HW PF LLC Hit
HW PF CXL Hit

(b) 503.𝑏𝑐𝑍𝑑𝑇𝐿_𝑀 locality changes when launching 554.𝑀𝑓𝑌𝐿_𝑀 .

106

108

1010

1012

 0 100 200 300 400 500 600 700

LBM LBMMCF MCFROM ROM

H
it

C
o
u
n
t
(#

)

Time (s)

LD L1D Hit
LD LFB Hit

L2 Access
LLC Access

HW PF LLC Hit
HW PF CXL Hit

(c) 503.𝑏𝑐𝑍𝑑𝑇𝐿_𝑀 data locality under multiple applications.

Figure 12: We monitor 503.𝑏𝑐𝑍𝑑𝑇𝐿_𝑀 application data locality
changes when launching di!erent applications. (a) Launch 519.𝑒𝑏𝑌_𝑀
application accesses local memory. (b) Launch 554.𝑀𝑓𝑌𝐿_𝑀 applica-
tion accesses CXL memory, further impacting 503.𝑏𝑐𝑍𝑑𝑇𝐿_𝑀 data
locality. (c) A combination of 519.𝑒𝑏𝑌_𝑀 , 505.𝑌𝑁𝑔 _𝑀 , and 554.𝑀𝑓𝑌𝐿_𝑀
applications accessing both local and CXL memory, introduce an
additional interference e!ect to 503.𝑏𝑐𝑍𝑑𝑇𝐿_𝑀 data locality.

case, indicating that 503.𝑡𝑒𝑕𝑇𝑃𝑗_𝑌 is more execution-friendly when
running with the 519.𝑍𝑡𝑂_𝑌 .

5.8 Case 7: Performance Optimization Using PathFinder

We !rst use PathFinder to understand how TPP [79] helps improve
the application performance. When TPP is enabled, we observe that
(a) YCSB-C, under the Zipf access pattern with a local/CXL memory
ratio of 4:1, reduces its query latency by 2.5%; (b) GUPS with 24GB
hot set, 72GB total working set, 1:1 read-write ratio, and 90% hot set
access probability, under the same memory con!guration, improves
its throughput by 3.0↑; and (c) 649.𝑜 𝑋𝑙𝑋𝑔𝑝𝑞3𝑟_𝑗 application reduces
its execution time by 14.3% with a 2:1 local/CXL memory ratio.

As shown in Figure 13-a, PFBuilder traces collected from the
core and M2PCIe PMU for YCSB-C, GUPS, and 649.𝑜 𝑋𝑙𝑋𝑔𝑝𝑞3𝑟_𝑗
demonstrates increased local memory access and decreased CXL
memory access when TPP is enabled. For instance, GUPS shows
a 7.4↑/1.7↑/3.3↑ increase in DRd/RFO/HWPF local memory hits
from core PMU, while the corresponding hit counts on CXL mem-
ory decrease by 87.2%/93.4%/87.7%. For the M2PCIe PMU, closest
to the CXL memory, load and store requests to the CXL memory
are reduced by 84.6% and 84.4%, respectively. These results align
with the TPP design, which migrates hot pages and shifts memory
access towards local memory. We then use PFEstimator for further
analysis. Figure 13-b shows that TPP reduces the average CHA ac-
cess latency of DRd/RFO/HWPF/DWr requests and provides faster
uncore serviceability. It observes the FlexBus+MC latency reduc-
tion, con!rming that TPP constrains tra#c along the CXL memory

1

102

104

106

108

1010

DRd-L RFO-L HWPF-L DRd-C RFO-C HWPF-C M2P-LD M2P-ST

H
it

C
o

u
n

t
(#

)

YCSB-C-w/o TPP
YCSB-C-w/ TPP

FOTS-w/o TPP
FOTS-w/ TPP

GUPS-w/o TPP
GUPS-w/ TPP

(a) Hit event.

1

10

102

103

104

CHA-DRd CHA-RFO CHA-HWPF CHA-DWr FMC-DRd FMC-RFO FMC-HWPF

S
ta

ll
T

im
e

 (
n

s)

YCSB-C-w/o TPP
YCSB-C-w/ TPP

FOTS-w/o TPP
FOTS-w/ TPP

GUPS-w/o TPP
GUPS-w/ TPP

(b) Stall data path.

Figure 13: (a) shows hit event comparison of local and CXL memory
for the YCSB-C, 649.𝑔 𝑓𝑃𝑓𝑅𝑄𝑈3𝑂_𝐿, and GUPS applications with TPP
disabled and enabled. (b) illustrates the stall data path comparison
of CHA and FlexBus+MC with TPP disabled and enabled.

path, thus lowering overall uncore latency. Taking GUPS as an ex-
ample, the latency of DRd/RFO/HWPF FlexBus+MC is reduced by
78.6%/83.5%/79.1%, resulting in an 82.9%/85.8%/88.0% corresponding
uncore serving latency reduction. Last, we cross-validate with TPP
by analyzing the application culprit path queueing degrees reported
by PFAnalyser. When enabling TPP, YCSB-C culprit path (DRd on
LFB) shows a 3.6% queueing degree decrease; the queueing of the
GUPS culprit path (LD on FlexBus+MC) is dropped by 96.0%; and
there is an 82.1% queueing reduction in the 649.𝑜 𝑋𝑙𝑋𝑔𝑝𝑞3𝑟_𝑗 culprit
path (DRd on L1D), which demonstrate that TPP’s page promotion
and demotion mechanism mitigates application bottlenecks.

We also use PathFinder to optimize the memory tiering mecha-
nism. Take TPP+Colloid as an example [97]. Colloid aims to balance
access latencies and guides TPP page migration at runtime using
per-tier memory latency (i.e., CHA miss latency of DRd requests
from di"erent memory tiers). We explore a dynamic TPP+Colloid
approach that PathFinder assists Colloid at runtime. It uses PFBuilder-
reported CHA miss ratios of DRd/RFO/HWPF requests to select the
most frequently accessed request type during the current execution
phase, and then uses the corresponding local/CXL memory latency
of the chosen type (obtained from PFEstimator) in place of Colloid’s
!xed DRd latency. This makes hot page migration better adapt to
application memory access characteristics. Our evaluation shows
that this approach can improve GUPS throughput by 1.1↑.

5.9 Discussion

Limitation. Due to the lack of PMU counters speci!cally designed
for RFO and HWPF requests within the core, PFBuilder and PFEs-
timator are limited. As shown in Table 7 produced by PFBuilder,
we are unable to monitor RFO and DWr type requests at the L1D
and LFB levels. The RFO counter at L2 indiscriminately includes
both demand and prefetch RFO requests. PFEstimator faces similar
issues when relying on core PMU data, the stall cycles at L1D, LFB,
L2, and LLC are reported only for demand load requests and cannot
be further broken down by access type. Future hardware with more
advanced PMU capabilities would help resolve these issues.
System overheads. We measure the CPU cycles and memory
footprint when enabling and disabling PathFinder. On average

across all the workloads, it consumes 1.3% CPU cycles and 38MB
of memory with a marginal impact on the application execution.

6 Related Work
Pro"ling Systems. People have developed many software utilities
to identify code hotspots, analyze concurrency dependency, and
break down stalled cycles [2, 8, 31, 37, 40, 42, 47, 48, 58, 59, 78, 96,
104]. Linux perf [40] is a widely used tool to instrument CPU per-
formance counters, tracepoints, and report application execution
statistics. Intel VTune [8] takes a top-down analysis strategy [104]
and drills down the performance analysis using architectural coun-
ters. Some are also integrated into the language system, facilitating
application development [2, 37, 48, 54, 61, 73, 76, 88–90, 92, 107].
PathFinder is built atop the Linux perf and PMUs.
Memory and Storage Disaggregation. People have explored
disaggregated memory and storage extensively, given the rising
networking bandwidth, fast remote storage protocol, and new clus-
ter interconnect [49, 50, 56, 57, 62–64, 66–68, 71, 74, 75, 77, 79, 81–
83, 91, 93–95, 99, 101, 106, 108]. For example, Ana Klimovic et al.
characterize the performance of iSCSI-based disaggregated stor-
age [62]. i10 [56] develops an e#cient in-kernel TCP/IP remote stor-
age based on dedicated end-to-end IO paths and delayed doorbell
noti!cations. Pond [66] extends CXL memory into disaggregated
memory pools and e"ectively uses the stranded and used mem-
ory. Caption [95] provides an in-depth comparison between CXL
memory and NUMA emulated CXL memory, and proposes a CXL
memory-aware page allocation policy that e#ciently utilizes the
CXLmemory expander. Melody [68] extensively characterizes appli-
cation access patterns on the CXL memory and proposes a runtime
slowdown modeling framework to diagnose performance degra-
dation code regions and components. We believe that PathFinder
can help democratize the CXL.mem protocol and facilitate the
deployment of CXL-based memory pooling.
Host Networking. Host interconnects have become a bottleneck
under high-bandwidth networks. Researchers have developed bench-
marking frameworks and diagnostic tools to analyze it [26–28, 52,
55, 70, 72]. For example, Saksham Agarwal et al. [28, 98] analyze the
host congestion issues and build the host congestion control proto-
col. Hostping [70] monitors and diagnoses intra-host bottlenecks
in RDMA networks. We focus on the CXL.mem protocol.

7 Conclusion
This paper presents a pro!ling and development utility for CXL.mem.
It enables developers to understand and analyze the CXL.mem exe-
cution in an end-to-end manner. Our key idea is to view the server
processor and its chipset as a multi-stage Clos network, equip each
architectural module with a PMU-based telemetry engine, track
di"erent CXL.mem paths, and apply conventional tra#c analysis
techniques. We build PathFinder over Linux Perf and apply it to
seven case studies. This work does not raise any ethical issues.

Acknowledgments
We would like to thank the anonymous reviewers and our shep-
herd, Stewart Grant, for their comments and feedback. This work
is supported in part by NSF grants CNS-2106199, CNS-2212192,
CAREER-2339755, and Intel faculty awards.

References
[1] [n. d.]. Intel VTune Pro!ler. https://software.intel.com/content/www/us/en/d

evelop/tools/oneapi/components/vtune-pro!ler.html, year = 2025,. ([n. d.]).
[2] 2024. NVIDIA Nsight. https://developer.nvidia.com/tools-overview. (2024).
[3] 2025. AMD uProf. https://www.amd.com/en/developer/uprof.html. (2025).
[4] 2025. Hardware LLC prefetch feature on 4th Gen Intel Xeon Scalable Processor.

https://www.intel.com/content/www/us/en/content-details/780991/hardware
-llc-prefetch-feature-on-4th-gen-intel-xeon-scalable-processor-codename-s
apphire-rapids.html. (2025).

[5] 2025. In$uxData: In$uxDB Time Series Data Platform. https://www.in$uxdata.
com. (2025).

[6] 2025. Intel Compute Express Link (CXL) FPGA IP. https://www.intel.com/cont
ent/www/us/en/products/details/fpga/intellectual-property/interface-proto
cols/cxl-ip.html. (2025).

[7] 2025. Intel Memory Latency Checker. https://www.intel.com/content/www/us
/en/developer/articles/tool/intelr-memory-latency-checker.html. (2025).

[8] 2025. Intel VTune Pro!ler. https://www.intel.com/content/www/us/en/develo
per/tools/oneapi/vtune-pro!ler.html. (2025).

[9] 2025. Intel Xeon Processor Scalable Family Technical Overview.
https://www.intel.com/content/www/us/en/developer/articles/technical
/xeon-processor-scalable-family-technical-overview.html. (2025).

[10] 2025. IntelliProp’s Omega Fabric. https://www.intelliprop.com/products-page.
(2025).

[11] 2025. INTERNET CONTROL MESSAGE PROTOCOL. https://datatracker.ietf .o
rg/doc/html/rfc792. (2025).

[12] 2025. "Memory directories" in Intel processors. https://sites.utexas.edu/jdm
4372/2023/08/28/memory-directories-in-intel-processors/. (2025).

[13] 2025. Multichase: A Pointer Chaser Benchmark. https://www.amd.com/en/dev
eloper/uprof.html. (2025).

[14] 2025. Redis. https://redis.io/. (2025).
[15] 2025. Samsung CXL Memory Module - Box (CMM-B). https://semiconductor.sa

msung.com/news-events/tech-blog/cxl-memory-module-box-cmm-b/. (2025).
[16] 2025. SMART CXL Memory Modules. https://www.smartm.com/product/list/

cxl-memory?utm_source=CXL&utm_medium=Website&utm_term=CXL-W
ebsite-TR&utm_content=CXL-Website-Link&utm_campaign=CXL-Website.
(2025).

[17] 2025. SPEC CPU 2017. https://www.spec.org/cpu2017/. (2025).
[18] 2025. The CXL Speci!cation. https://www.computeexpresslink.org/downloa

d-the-speci!cation. (2025).
[19] 2025. The Falcon C5022. https://www.h3platform.com/product-detail/overvi

ew/35. (2025).
[20] 2025. The GigaIO FabreX Platform. https://gigaio.com/products/fabrex-syste

m-overview/. (2025).
[21] 2025. The Leo CXL™Memory Connectivity Platform. https://www.asteralabs.c

om/products/cxl-memory-platform/leo-cxl-memory-connectivity-platform/.
(2025).

[22] 2025. The PCI Express (PCIe) Speci!cation. https://pcisig.com/speci!cations/p
ciexpress/. (2025).

[23] 2025. Traceroute Wikipedia. https://en.wikipedia.org/wiki/Traceroute. (2025).
[24] 2025. UnifabriX MAX. https://www.unifabrix.com/technology. (2025).
[25] 2025. XConn Titan Evaluation Kit. https://www.xconn-tech.com/products.

(2025).
[26] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref,

Khaled Elmeleegy, Luigi Rizzo, Marc Asher De Kruijf, Gautam Kumar, Sylvia
Ratnasamy, David Culler, et al. 2022. Understanding host interconnect con-
gestion. In Proceedings of the 21st ACM Workshop on Hot Topics in Networks.
198–204.

[27] Saksham Agarwal, Rachit Agarwal, Behnam Montazeri, Masoud Moshref,
Khaled Elmeleegy, Luigi Rizzo, Marc Asher de Kruijf, Gautam Kumar, Sylvia
Ratnasamy, David Culler, and Amin Vahdat. 2022. Understanding host inter-
connect congestion. In Proceedings of the 21st ACM Workshop on Hot Topics in
Networks (HotNets ’22). Association for Computing Machinery, New York, NY,
USA, 198–204. https://doi.org/10.1145/3563766.3564110

[28] Saksham Agarwal, Arvind Krishnamurthy, and Rachit Agarwal. 2023. Host
Congestion Control. In Proceedings of the ACM SIGCOMM 2023 Conference
(SIGCOMM’23). 275–287.

[29] Saeed Aghabozorgi, Ali Seyed Shirkhorshidi, and Teh Ying Wah. 2015. Time-
Series Clustering–a Decade Review. Information systems 53 (2015), 16–38.

[30] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-
able, commodity data center network architecture. In Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication (SIGCOMM’08). 63–74.

[31] Sotiris Apostolakis, Chris Kennelly, Xinliang David Li, and Parthasarathy
Ranganathan. 2025. Necro-reaper: Pruning away Dead Memory Tra#c in
Warehouse-Scale Computers. In Proceedings of the 30th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (ASPLOS ’25). Association for Computing Machinery, New
York, NY, USA, 689–703. https://doi.org/10.1145/3676641.3716007

[32] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing Router
Bu"ers. In Proceedings of the 2004 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. 281–292.

[33] Scott Beamer, Krste Asanovi%, and David A. Patterson. 2015. The GAP Bench-
mark Suite. ArXiv abs/1508.03619 (2015). https://api.semanticscholar.org/Corp
usID:11503794

[34] Daniel S Berger, Daniel Ernst, Huaicheng Li, Pantea Zardoshti, Monish Shah,
Samir Rajadnya, Scott Lee, Lisa Hsu, Ishwar Agarwal, Mark D Hill, et al. 2023.
Design tradeo"s in CXL-based memory pools for public cloud platforms. IEEE
Micro 43, 2 (2023), 30–38.

[35] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PAR-
SEC benchmark suite: Characterization and architectural implications. In 2008
International Conference on Parallel Architectures and Compilation Techniques
(PACT). 72–81.

[36] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rotten-
streich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-grained queue mea-
surement in the data plane. In Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies (CoNEXT’19). 15–29.

[37] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu Ma, Kun Qian, Lingjun Zhu,
Chao Shi, Yin Zhang, Ming Liu, et al. 2024. Demystifying datapath accelera-
tor enhanced o"-path smartnic. In 2024 IEEE 32nd International Conference on
Network Protocols (ICNP’24). 1–12.

[38] Charles Clos. 1953. A study of non-blocking switching networks. Bell System
Technical Journal 32, 2 (1953), 406–424.

[39] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (SoCC ’10). Association for
Computing Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/
1807128.1807152

[40] Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress, Vol. 18. 1–42.

[41] Chen Ding and Yutao Zhong. 2003. PredictingWhole-Program Locality Through
Reuse Distance Analysis. In Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation (PLDI’03). 245–257.

[42] Padmapriya Duraisamy,Wei Xu, Scott Hare, Ravi Rajwar, David Culler, Zhiyi Xu,
Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mijailovic, Brian
Morris, Chiranjit Mukherjee, Jingliang Ren, Greg Thelen, Paul Turner, Carlos
Villavieja, Parthasarathy Ranganathan, and Amin Vahdat. 2023. Towards an
Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (ASPLOS 2023).
Association for Computing Machinery, New York, NY, USA, 727–741. https:
//doi.org/10.1145/3582016.3582031

[43] Pouya Esmaili-Dokht, Francesco Sgherzi, Valéria Soldera Girelli, Isaac Boix-
aderas, Mariana Carmin, Alireza Monemi, Adrià Armejach, Estanislao Mercadal,
Germán Llort, Petar Radojkovi%, Miquel Moreto, Judit Giménez, Xavier Mar-
torell, Eduard Ayguadé, Jesus Labarta, Emanuele Confalonieri, Rishabh Dubey,
and Jason Adlard. 2024. A Mess of Memory System Benchmarking, Simulation
and Application Pro!ling. In 2024 57th IEEE/ACM International Symposium on
Microarchitecture (MICRO’24). 136–152.

[44] Gettys, Jim and Nichols, Kathleen. 2012. Bu"erbloat: dark bu"ers in the internet.
Commun. ACM 55, 1 (2012), 57–65.

[45] Donghyun Gouk, Miryeong Kwon, Hanyeoreum Bae, Sangwon Lee, and My-
oungsoo Jung. 2023. Memory Pooling with CXL. IEEE Micro 43, 2 (2023),
48–57.

[46] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct Access, High-Performance Memory Disaggregation with DirectCXL. In
2022 USENIX Annual Technical Conference (ATC’22).

[47] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. 1982. Gprof:
A call graph execution pro!ler. SIGPLAN Not. 17, 6 (jun 1982), 120–126.
https://doi.org/10.1145/872726.806987

[48] Zerui Guo, Jiaxin Lin, Yuebin Bai, Daehyeok Kim, Michael Swift, Aditya Akella,
and Ming Liu. 2023. LogNIC: A High-Level Performance Model for Smart-
NICs. In Proceedings of the 56th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’23). 916–929.

[49] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang.
2022. Clio: a hardware-software co-designed disaggregated memory system. In
Proceedings of the 27th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’22). Association
for Computing Machinery, New York, NY, USA, 417–433. https://doi.org/10.
1145/3503222.3507762

[50] Zerui Guo, Hua Zhang, Chenxingyu Zhao, Yuebin Bai, Michael Swift, and Ming
Liu. 2023. LEED: A Low-Power, Fast Persistent Key-Value Store on SmartNIC
JBOFs. In Proceedings of the ACM SIGCOMM 2023 Conference (SIGCOMM’23).
1012–1027.

[51] Daniel Hackenberg, Daniel Molka, and Wolfgang E Nagel. 2009. Comparing
Cache Architectures and Coherency Protocols on X86-64 Multicore SMP Sys-
tems. In Proceedings of the 42Nd Annual IEEE/ACM International Symposium on

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/vtune-profiler.html
https://developer.nvidia.com/tools-overview
https://www.amd.com/en/developer/uprof.html
https://www.intel.com/content/www/us/en/content-details/780991/hardware-llc-prefetch-feature-on-4th-gen-intel-xeon-scalable-processor-codename-sapphire-rapids.html
https://www.intel.com/content/www/us/en/content-details/780991/hardware-llc-prefetch-feature-on-4th-gen-intel-xeon-scalable-processor-codename-sapphire-rapids.html
https://www.intel.com/content/www/us/en/content-details/780991/hardware-llc-prefetch-feature-on-4th-gen-intel-xeon-scalable-processor-codename-sapphire-rapids.html
https://www.influxdata.com
https://www.influxdata.com
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property/interface-protocols/cxl-ip.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intelliprop.com/products-page
https://datatracker.ietf.org/doc/html/rfc792
https://datatracker.ietf.org/doc/html/rfc792
https://sites.utexas.edu/jdm4372/2023/08/28/memory-directories-in-intel-processors/
https://sites.utexas.edu/jdm4372/2023/08/28/memory-directories-in-intel-processors/
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html
https://redis.io/
https://semiconductor.samsung.com/news-events/tech-blog/cxl-memory-module-box-cmm-b/
https://semiconductor.samsung.com/news-events/tech-blog/cxl-memory-module-box-cmm-b/
https://www.smartm.com/product/list/cxl-memory?utm_source=CXL&utm_medium=Website&utm_term=CXL-Website-TR&utm_content=CXL-Website-Link&utm_campaign=CXL-Website
https://www.smartm.com/product/list/cxl-memory?utm_source=CXL&utm_medium=Website&utm_term=CXL-Website-TR&utm_content=CXL-Website-Link&utm_campaign=CXL-Website
https://www.smartm.com/product/list/cxl-memory?utm_source=CXL&utm_medium=Website&utm_term=CXL-Website-TR&utm_content=CXL-Website-Link&utm_campaign=CXL-Website
https://www.spec.org/cpu2017/
https://www.computeexpresslink.org/download-the-specification
https://www.computeexpresslink.org/download-the-specification
https://www.h3platform.com/product-detail/overview/35
https://www.h3platform.com/product-detail/overview/35
https://gigaio.com/products/fabrex-system-overview/
https://gigaio.com/products/fabrex-system-overview/
https://www.asteralabs.com/products/cxl-memory-platform/leo-cxl-memory-connectivity-platform/
https://www.asteralabs.com/products/cxl-memory-platform/leo-cxl-memory-connectivity-platform/
https://pcisig.com/specifications/pciexpress/
https://pcisig.com/specifications/pciexpress/
https://en.wikipedia.org/wiki/Traceroute
https://www.unifabrix.com/technology
https://www.xconn-tech.com/products
https://doi.org/10.1145/3563766.3564110
https://doi.org/10.1145/3676641.3716007
https://api.semanticscholar.org/CorpusID:11503794
https://api.semanticscholar.org/CorpusID:11503794
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3582016.3582031
https://doi.org/10.1145/3582016.3582031
https://doi.org/10.1145/872726.806987
https://doi.org/10.1145/872726.806987
https://doi.org/10.1145/3503222.3507762
https://doi.org/10.1145/3503222.3507762

microarchitecture (MICRO’09). 413–422.
[52] Roni Haecki, Radhika Niranjan Mysore, Lalith Suresh, Gerd Zellweger, Bo

Gan, Timothy Merri!eld, Sujata Banerjee, and Timothy Roscoe. 2022. How to
diagnose nanosecond network latencies in rich end-host stacks. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22). Renton,
WA, 861–877.

[53] James D Hamilton. 2020. Time series analysis.
[54] Yongchao He, Wenfei Wu, Yanfang Le, Ming Liu, and ChonLam Lao. 2023. A

Generic Service to Provide In-Network Aggregation for Key-Value Streams. In
Proceedings of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’23), Volume 2. 33–47.

[55] Wentao Hou, Jie Zhang, Zeke Wang, and Ming Liu. 2024. Understanding
Routable PCIe Performance for Composable Infrastructures. In 21st USENIX
Symposium on Networked Systems Design and Implementation (NSDI’24). 297–
312.

[56] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP ≃ RDMA:
CPU-e#cient Remote Storage Access with i10 . In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). 127–140.

[57] Sheng Jiang and Ming Liu. 2025. Building an Elastic Block Storage over EBOFs
Using Shadow Views. In 22nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI’25). 1137–1153.

[58] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Pro!ling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture (ISCA ’15). Association for Computing Machinery, New
York, NY, USA, 158–169. https://doi.org/10.1145/2749469.2750392

[59] Yuyuan Kang and Ming Liu. 2025. Understanding and Pro!ling NVMe-over-TCP
Using ntprof. In 22nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI’25). 1117–1136.

[60] Ethan Katz-Bassett, Harsha V. Madhyastha, Vijay Kumar Adhikari, Colin Scott,
Justine Sherry, Peter van Wesep, Thomas Anderson, and Arvind Krishnamurthy.
2010. Reverse traceroute. In 7th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’10).

[61] Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. SD3: A scalable ap-
proach to dynamic data-dependence pro!ling. In 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. 535–546.

[62] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar.
2016. Flash Storage Disaggregation. In Proceedings of the Eleventh European
Conference on Computer Systems (Eurosys’16).

[63] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2017. ReFlex: Remote Flash
≃ Local Flash. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’17). 345–359.

[64] Youngmoon Lee, Hasan Al Maruf, Mosharaf Chowdhury, Asaf Cidon, and
Kang G Shin. 2022. Hydra: Resilient and highly available remote memory.
In 20th USENIX Conference on File and Storage Technologies (FAST 22). 181–198.

[65] Philip Levis, Kun Lin, and Amy Tai. 2023. A Case Against CXL Memory Pooling.
In Proceedings of the 22nd ACMWorkshop on Hot Topics in Networks (HotNets’23).
18–24.

[66] Huaicheng Li, Daniel S Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, et al.
2023. Pond: CXL-based Memory Pooling Systems for Cloud Platforms. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS’23). 574–587.

[67] Pengfei Li, Yu Hua, Pengfei Zuo, Zhangyu Chen, and Jiajie Sheng. 2023.
{ROLEX}: A Scalable {RDMA-oriented} Learned {Key-Value} Store for Dis-
aggregated Memory Systems. In 21st USENIX Conference on File and Storage
Technologies (FAST 23). 99–114.

[68] Jinshu Liu, Hamid Hadian, Yuyue Wang, Daniel S. Berger, Marie Nguyen, Xun
Jian, Sam H. Noh, and Huaicheng Li. 2025. Systematic CXL Memory Charac-
terization and Performance Analysis at Scale. In Proceedings of the 30th ACM
International Conference onArchitectural Support for Programming Languages and
Operating Systems, Volume 2 (ASPLOS ’25). Association for Computing Machin-
ery, New York, NY, USA, 1203–1217. https://doi.org/10.1145/3676641.3715987

[69] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiaolong Zhong, Lizhuang
Tan, Tian Pan, and Tao Huang. 2023. Hostping: Diagnosing Intra-host Network
Bottlenecks in RDMA Servers. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’23). 15–29.

[70] Kefei Liu, Zhuo Jiang, Jiao Zhang, Haoran Wei, Xiaolong Zhong, Lizhuang
Tan, Tian Pan, and Tao Huang. 2023. Hostping: Diagnosing Intra-host Network
Bottlenecks in RDMA Servers. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). Boston, MA, 15–29.

[71] Ming Liu. 2020. Building Distributed Systems Using Programmable Networks.
University of Washington.

[72] Ming Liu. 2023. Fabric-Centric Computing. In Proceedings of the 19th Workshop
on Hot Topics in Operating Systems. 118–126.

[73] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and
Karan Gupta. 2019. O&oading distributed applications onto smartNICs using

iPipe. In Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM’19). 318–333.

[74] Ming Liu, Arvind Krishnamurthy, Harsha V. Madhyastha, Rishi Bhardwaj, Karan
Gupta, ChinmayKamat, Huapeng Yuan, Aditya Jaltade, Roger Liao, PavanKonka,
and Anoop Jawahar. 2020. Fine-Grained Replicated State Machines for a Cluster
Storage System . In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’20). 305–323.

[75] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and
Kishore Atreya. 2017. IncBricks: Toward In-Network Computation with an
In-Network Cache. In Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’17). 795–809.

[76] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-E#cient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference (USENIX
ATC’19). 363–378.

[77] Liang Luo, Ming Liu, Jacob Nelson, Luis Ceze, Amar Phanishayee, and Arvind
Krishnamurthy. 2017. Motivating in-network aggregation for distributed deep
neural network training. In Workshop on Approximate Computing Across the
Stack.

[78] Zhihong Luo, Sam Son, Sylvia Ratnasamy, and Scott Shenker. 2024. Harvesting
memory-bound CPU stall cycles in software with MSH. In Proceedings of the 18th
USENIX Conference on Operating Systems Design and Implementation (OSDI’24).
USENIX Association, USA, Article 4, 19 pages.

[79] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. 2023. TPP: Transparent Page Placement for CXL-
Enabled Tiered-Memory. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3.

[80] John D McCalpin. 1995. Stream benchmark. Link: www. cs. virginia.
edu/stream/ref. html# what 22, 7 (1995).

[81] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu Zhao, AndrewWei, In Hwan
Doh, and Arvind Krishnamurthy. 2021. Gimbal: enabling multi-tenant storage
disaggregation on SmartNIC JBOFs. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (SIGCOMM’21). 106–122.

[82] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishnamurthy. 2023.
eZNS: An Elastic Zoned Namespace for Commodity ZNS SSDs. In 17th USENIX
Symposium on Operating Systems Design and Implementation (OSDI’23). 461–477.

[83] Jaehong Min, Chenxingyu Zhao, Ming Liu, and Arvind Krishnamurthy. 2024.
eZNS: Elastic Zoned Namespace for Enhanced Performance Isolation and Device
Utilization. ACM Trans. Storage 20, 3, Article 16 (June 2024), 41 pages.

[84] Ashley O.Munch, Nevine Nassif, Carleton L. Molnar, Jason Crop, Rich Gammack,
Chinmay P. Joshi, Goran Zelic, KambizMunshi, Min Huang, Charles R. Morganti,
Sireesha Kandula, and Arijit Biswas. 2024. 2.3 Emerald Rapids: 5th-Generation
Intel® Xeon® Scalable Processors. In 2024 IEEE International Solid-State Circuits
Conference (ISSCC’24), Vol. 67. 40–42.

[85] Nevine Nassif, Ashley O. Munch, Carleton L. Molnar, Gerald Pasdast, Sitara-
manV. Lyer, Zibing Yang, OscarMendoza,MarkHuddart, Srikrishnan Venkatara-
man, Sireesha Kandula, Ra! Marom, Alexandra M. Kern, Bill Bowhill, David R.
Mulvihill, Srikanth Nimmagadda, Varma Kalidindi, Jonathan Krause, Moham-
mad M. Haq, Roopali Sharma, and Kevin Duda. 2022. Sapphire Rapids: The
Next-Generation Intel Xeon Scalable Processor. In 2022 IEEE International Solid-
State Circuits Conference (ISSCC’22), Vol. 65. 44–46.

[86] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio
López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe performance
for end host networking. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication (SIGCOMM’18). 327–341.

[87] Gianna Paulin, Paul Sche&er, Thomas Benz, Matheus A. Cavalcante, Tim Fis-
cher, Manuel Eggimann, Yichao Zhang, Nils Wisto", Luca Bertaccini, Luca
Colagrande, Gianmarco Ottavi, Frank K. Gürkaynak, Davide Rossi, and Luca
Benini. 2024. Occamy: A 432-Core 28.1 DP-GFLOP/s/W 83% FPU Utilization
Dual-Chiplet, Dual-HBM2E RISC-V-Based Accelerator for Stencil and Sparse
Linear Algebra Computations with 8-to-64-bit Floating-Point Support in 12nm
FinFET. In IEEE Symposium on VLSI Technology and Circuits 2024, Honolulu, HI,
USA, June 16-20, 2024. 1–2.

[88] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,
Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System
for NIC-Accelerated Network Applications. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’18). 663–679.

[89] Yiming Qiu, Qiao Kang, Ming Liu, and Ang Chen. 2020. Clara: Performance
Clarity for SmartNIC O&oading. In Proceedings of the 19th ACM Workshop on
Hot Topics in Networks (HotNets’20). 16–22.

[90] Yiming Qiu, Jiarong Xing, Kuo-Feng Hsu, Qiao Kang, Ming Liu, Srinivas
Narayana, and Ang Chen. 2021. Automated SmartNIC O&oading Insights
for Network Functions. In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP’21). 772–787.

https://doi.org/10.1145/2749469.2750392
https://doi.org/10.1145/3676641.3715987

[91] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K Aguilera, and Adam Belay. 2020.
{AIFM}:{High-Performance},{Application-Integrated} far memory. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 20).
315–332.

[92] Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krish-
namurthy. 2021. Xenic: SmartNIC-Accelerated Distributed Transactions. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP’21). 740–755.

[93] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating Fair Queueing on Recon!gurable Switches. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI’18). 1–16.

[94] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable
Calendar Queues for High-speed Packet Scheduling . In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’20). 685–699.

[95] Yan Sun, Yifan Yuan, Zeduo Yu, Reese Kuper, Chihun Song, Jinghan Huang,
Houxiang Ji, Siddharth Agarwal, Jiaqi Lou, Ipoom Jeong, Ren Wang, Jung Ho
Ahn, Tianyin Xu, and Nam Sung Kim. 2023. Demystifying CXL Memory with
Genuine CXL-Ready Systems and Devices. In Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO’23). 105–121.

[96] Yupeng Tang, Ping Zhou, Wenhui Zhang, Henry Hu, Qirui Yang, Hao Xiang,
Tongping Liu, Jiaxin Shan, Ruoyun Huang, Cheng Zhao, Cheng Chen, Hui
Zhang, Fei Liu, Shuai Zhang, Xiaoning Ding, and Jianjun Chen. 2024. Exploring
Performance and Cost Optimization with ASIC-Based CXL Memory. In Pro-
ceedings of the Nineteenth European Conference on Computer Systems (EuroSys
’24). Association for Computing Machinery, New York, NY, USA, 818–833.
https://doi.org/10.1145/3627703.3650061

[97] Midhul Vuppalapati and Rachit Agarwal. 2024. Tiered Memory Management:
Access Latency is the Key! (SOSP ’24). Association for Computing Machinery,
New York, NY, USA, 79–94. https://doi.org/10.1145/3694715.3695968

[98] Midhul Vuppalapati, Saksham Agarwal, Henry Schuh, Baris Kasikci, Arvind
Krishnamurthy, and Rachit Agarwal. 2024. Understanding the Host Network.
In Proceedings of the ACM SIGCOMM 2024 Conference (ACM SIGCOMM ’24).
Association for Computing Machinery, New York, NY, USA, 581–594. https:
//doi.org/10.1145/3651890.3672271

[99] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. 2020.
Semeru: A {Memory-Disaggregated} managed runtime. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20). 261–280.

[100] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan, and
Ren Wang. 2024. Nomad:{Non-Exclusive} Memory Tiering via Transactional
Page Migration. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’24). 19–35.

[101] Xincheng Xie, Wentao Hou, Zerui Guo, and Ming Liu. 2025. Building Massive
MIMO Baseband Processing on a Single-Node Supercomputer. In 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI’25). 1221–
1242.

[102] Juncheng Yang, Yazhuo Zhang, Ziyue Qiu, Yao Yue, and Rashmi Vinayak. 2023.
FIFO queues are all you need for cache eviction. In Proceedings of the 29th
Symposium on Operating Systems Principles (SOSP’23). 130–149.

[103] Nofel Yaseen, John Sonchack, and Vincent Liu. 2018. Synchronized network
snapshots. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM’18). 402–416.

[104] Ahmad Yasin. 2014. A Top-Downmethod for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). 35–44.

[105] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. 2017. PARSEC3.0: A
Multicore Benchmark Suite with Network Stacks and SPLASH-2X. SIGARCH
Comput. Archit. News 44, 5 (Feb. 2017), 1–16. https://doi.org/10.1145/3053277.
3053279

[106] Chenxingyu Zhao, Tapan Chugh, Jaehong Min, Ming Liu, and Arvind Krishna-
murthy. 2022. Dremel: Adaptive Con!guration Tuning of RocksDB KV-Store.
Proc. ACM Meas. Anal. Comput. Syst. 6, 2, Article 37 (June 2022), 30 pages.

[107] Chenxingyu Zhao, Jaehong Min, Ming Liu, and Arvind Krishnamurthy. 2025.
White-Boxing RDMA with Packet-Granular Software Control. In 22nd USENIX
Symposium on Networked Systems Design and Implementation (NSDI’25). 427–
449.

[108] Yuhong Zhong, Daniel S. Berger, Carl Waldspurger, Ryan Wee, Ishwar Agarwal,
Rajat Agarwal, Frank Hady, Karthik Kumar, Mark D. Hill, Mosharaf Chowd-
hury, and Asaf Cidon. 2024. Managing Memory Tiers with CXL in Virtualized
Environments. In 18th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’24). 37–56.

https://doi.org/10.1145/3627703.3650061
https://doi.org/10.1145/3627703.3650061
https://doi.org/10.1145/3694715.3695968
https://doi.org/10.1145/3651890.3672271
https://doi.org/10.1145/3651890.3672271
https://doi.org/10.1145/3053277.3053279
https://doi.org/10.1145/3053277.3053279

Appendices are supporting material that has not been peer-
reviewed.

Appendix A Appendix
A.1 Characterization Results on an Intel EMR Server

Figures 14, 15, 16 report the core PMU, CHA PMU, and uncore PMU
counters when running characterization experiments on an Intel
EMR machine.

A.2 Performance Counter Details

Tables 1, 2, 3, and 4 summarize the major performance counters
used by PathFinder in the core PMU, CHA/LLC PMU, uncore PMU,
and CXL device. Table 5 shows the counters used by PFBuilder.

A.3 PFEstimator Algorithm

Algorithm 2 shows the details of PFEstimator.

A.4 Application Con"guration

Table 6 summarizes our evaluated applications and their con!gura-
tions.

A.5 More Evaluation Results

Table 7 shows path mapping for SPEC CPU2017 applications ac-
cessing CXL memory by PFBuilder.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

PAR BWA PER ROMS CAC MCF

S
B

 S
ta

ll
C

yc
le

s
(e

+
8
)

Applications

Local (RD+WR)
CXL (RD+WR)

Local (WR-Only)
CXL (WR-Only)

(a) Stall Bu!er.

 0

 2

 4

 6

 8

 10

 12

 14

DEEP XZ GCC ROMS MCF BWA

C
yc

le
s

d
u
e
 t
o
 M

is
s

(e
+

9
)

Applications

Local (Response Wait Cycle)
CXL (Response Wait Cycle)
Local (Pipeline Stall Cycle)
CXL (Pipeline Stall Cycle)

(b) L1D Execution.

 0

 2

 4

 6

 8

 10

 12

Local
GCC

CXL Local
MCF

CXL Local
OMN

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

9
) DRd+RFO_Hit

DRd+RFO_Miss
Eviction

(c) L1D Operation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

IMA OMN XZ BLE X264 LBM LEE

L
F

B
 C

o
u
n
te

r
(e

+
8
)

Applications

Local (Stall Cycle)
CXL (Stall Cycle)

Local (Hit)
CXL (Hit)

(d) Line Fill Bu!er.

 0

 2

 4

 6

 8

 10

ROMS CAC

C
yc

le
s

d
u
e
 t
o
 M

is
s

(e
+

9
)

Applications

Local (Pipeline Stall)
CXL (Pipeline Stall)

Local (DRd)
CXL (DRd)

Local (RFO)
CXL (RFO)

Local (HW PF)
CXL (HW PF)

(e) L2 Execution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Local
ROMS

CXL Local
CAC

CXL Local
PAR

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

9
) HW_PF_Hit

HW_PF_Miss
DRd_Hit

DRd_Miss

RFO_Hit
RFO_Miss

Retire_DWr_Hit

(f) L2 Operation.

Figure 14: We compare core performance counters when running
in the local and CXL memory cases on an Intel EMR machine. Our
experimental con"gurations are similar to the ones used in Figure 2.
(a) reports the core stall cycles of six applications when the store
bu!er becomes full under the read/write mixed and write-only cases.
(b) and (c) present the L1D characteristics from the execution and
operation perspectives, respectively. (d) shows the LFB counter sta-
tistics. (e) presents the core stall cycles and data responses under L2
misses, while (f) depicts the L2 operation breakdown.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

GCC BWA OMN DEE ROM XZ

L
L
C

 S
ta

ll
C

yc
le

s
(e

+
9
)

Applications

Local (Pipeline Stall)
CXL (Pipeline Stall)

Local (DRd)
CXL (DRd)

(a) Core LLC Execution.

 0

 0.5

 1

 1.5

 2

Local
PAR

CXL Local
ROMS

CXL Local
MCF

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

9
) HW_PF_Hit

HW_PF_Miss
DRd_Hit

DRd_Miss

RFO_Hit
RFO_Miss

DWr

(b) Core LLC Hit/Miss Breakdown.

 0

 2

 4

 6

 8

 10

 12

DRd RFO
MCF-Local

HW_PF DRd RFO
MCF-CXL

HW_PF

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

7
) Local_Memory

SNC_LLC
SNC_Memory

Remote_LLC
Remote_Memory

CXL_Memory

(c) Core LLC Miss Serve Target.

1

102
104
106
108

1010
1012
1014

MCF CAC PAR

O
cc

u
p
a
n
cy

Applications

Local (DRd)
CXL (DRd)

Local (RFO)
CXL (RFO)

Local (HW PF)
CXL (HW PF)

Local (DWr)
CXL (DWr)

(d) CHA LLC Hit Occupancy.

1

102
104
106
108

1010
1012
1014

MCF CAC PAR

O
cc

u
p
a
n
cy

Applications

Local (DRd)
CXL (DRd)

Local (RFO)

CXL (RFO)
Local (HW PF)
CXL (HW PF)

(e) CHA LLC Miss Occupancy.

 0

 1

 2

 3

 4

 5

 6

Local
MCF

CXL Local
CAC

CXL Local
PAR

CXL

E
ve

n
t
B

re
a
kd

o
w

n
 (

e
+

7
) HW_PF_Hit

HW_PF_Miss
DRd_Hit

DRd_Miss

RFO_Hit
RFO_Miss

WB_Hit
WB_Miss

(f) CHA LLC Operation.

Figure 15: We compare CHA PMU when running in the local and
CXL memory cases on an Intel EMR machine. Our experimental
con"gurations are similar to the ones used in Figure 3. (a) reports
the core LLC stall cycles. (b) presents the LLC hit/miss breakdown.
(c) shows where the missed LLC requests are served. (d)/(e) report
the occupancy of LLC hits and misses. (f) depicts the LLC operation
breakdown. The y-axis of (d) and (e) is log-scale.

0

1

2

3

4

X264 CAC PAR OMN XZ MCF

Q
u
e
u
e
in

g
 D

e
g
re

e
 (

e
+

8
)

Applications

Local (RPQ)
CXL (RPQ)

Local (WPQ)
CXL (WPQ)

(a) Queueing Occupancy.

 0

 0.5

 1

 1.5

Local
X264

CXL Local
CAC

CXL Local
PAR

CXL

L
D

/S
T

 B
re

a
kd

o
w

n
 (

e
+

8
) LD ST

(b) Load/Store Breakdown.

Figure 16: We compare Uncore PMU of applications running in the
local and CXL cases on an Intel EMR machine. Our experimental
con"gurations are similar to the ones used in Figure 4. (a) reports
the channel occupancy of RPQ and WPQ. (b) breaks down the load
and store commands.

Architectural
Component Scope Counter Description

SB per-core resource_stalls.sb Counts stall cycles caused by the store bu"er being full where loads are still issued to avoid execution stall
per-core exe_activity.bound_on_stores Counts cycles where the store bu"er was full and no loads caused an execution stall

L1D

per-core cycle_activity.cycles_l1d_miss Counts cycles while L1D cache miss demand load is outstanding
per-core memory_activity.stalls_l1d_miss Counts execution stall cycles while L1D cache miss demand load is outstanding
per-core l1d.replacement Counts L1D data line eviction
per-core mem_load_retired.l1_hit Counts retired load instructions hit in the L1D cache
per-core mem_load_retired.l1_miss Counts retired load instructions missed in the L1D cache

LFB per-core mem_load_retired.fb_hit Counts retired load instructions missed in L1 but hit LFB due to preceding miss to the same cache line
per-core l1d_pend_miss.fb_full Counts number of cycles a demand request has waited due to LFB unavailability

L2

per-core mem_load_retired.l2_hit Counts retired load instructions with L2 cache hits as data sources
per-core mem_load_retired.l2_miss Counts retired load instructions missed L2 cache as data sources
per-core mem_store_retired.l2_hit Count retired store instructions hit L2 cache
per-core l2_rqsts.references Counts all requests that were hit or true misses in L2 cache
per-core o"core_requests.all_requests Counts memory transactions reached the super queue including requests initiated by the core
per-core l2_rqsts.all_demand_references Counts demand requests to L2 cache
per-core l2_rqsts.all_demand_miss Counts demand requests that miss L2 cache
per-core l2_rqsts.miss Counts read requests of any type with true-miss in the L2 cache, excluding ongoing L2 misses
per-core o"core_requests.data_rd Counts the demand and prefetch data reads
per-core l2_rqsts.all_demand_data_rd Counts demand data read requests accessing the L2 cache, which may hit or miss L2 cache
per-core l2_rqsts.demand_data_rd_hit Counts the number of demand data read requests initiated by load instructions that hit L2 cache
per-core o"core_requests.demand_data_rd Counts the demand data read requests sent to uncore
per-core l2_rqsts.demand_data_rd_miss Counts demand data read requests with true-miss in the L2 cache
per-core l2_rqsts.all_rfo Counts the total number of RFO requests to L2 cache, including L1D RFO misses and L1D RFO prefetches
per-core l2_rqsts.rfo_hit Counts the RFO requests that hit L2 cache
per-core l2_rqsts.rfo_miss Counts the RFO requests that miss L2 cache
per-core l2_rqsts.swpf_hit Counts software prefetch requests that hit the L2 cache
per-core l2_rqsts.swpf_miss Counts software prefetch requests that miss the L2 cache
per-core memory_activity.stalls_l2_miss Execution stalls while L2 cache miss demand cacheable load request is outstanding
per-core cycle_activity.cycles_l2_miss Cycles while L2 cache miss demand load is outstanding
per-core ORO.data_rd For every cycle, increments by the number of outstanding data read requests pending.
per-core ORO.cycles_with_data_rd Counts cycles where at least 1 outstanding data read request is pending.
per-core ORO.demand_data_rd For every cycle, increments by the number of outstanding demand data read requests pending
per-core ORO.cycles_with_demand_data_rd Counts cycles where at least 1 outstanding demand data read request is pending.
per-core ORO.cycles_with_demand_rfo Counts cycles where at least 1 outstanding demand RFO request is pending.

Latency per-core mem_trans_retired.load_latency Loads latency starts by the actual cache access until the data is returned by the memory subsystem.

per-core mem_trans_retired.store_sample Store latency starts when the demand write accesses the L1 datacache and lasts until the cacheline write is completed in
the memory subsystem.

Table 1: The summary of key performance counters in the core PMU used by PathFinder. ORO=o!core_requests_outstanding.

Algorithm 2 The PFEstimator Algorithm.
1: procedure P)#’+)%’_S($++_B,’$-.*/% (CXL_DIMM_ID)
2: id = CXL_DIMM_ID; AllLoads = 0;
3: CXL_DIMM_Stall = get_CXLDIMM_stall_cycle(id);
4: for j in all_FlexBus_RCs do 𝐿 CXL DIMM→ FlexBus RC
5: FlexBusRC_Load[j] = load_agg_rc2dimm(j, i);
6: AllLoads += FlexBusRC_Load[j];
7: for j in all_FlexBus_RCs do
8: weight = 𝑅𝑆𝑇𝑈𝑉𝑊𝑄𝑋𝑌_𝑍𝑎𝑏𝑐[𝑑]

𝑒𝑆𝑆𝑍𝑎𝑏𝑐𝑄 ;
9: FlexBusRC_Stall[j] = weight ↑ CXL_DIMM_Stall;
10: for i in all_FlexBus_RCs do 𝐿 FlexBus RC→ Host Uncore
11: AllLoads = 0;
12: FlexBusRC_Stall [i] += get_FlexBusRC_stall_cycle(i);
13: for j in all_Host_Uncores do
14: HostUncore_Load[j] = load_agg_uncore2rc(j, i);
15: AllLoads += HostUncore_Load[j];
16: for j in all_Host_Uncores do
17: weight = 𝑓𝑎𝑄𝑂𝑔𝑕𝑖𝑎𝑗𝑇_𝑍𝑎𝑏𝑐[𝑑]

𝑒𝑆𝑆𝑍𝑎𝑏𝑐𝑄 ;
18: HostUncore_Stall[j] = weight ↑ FlexBusRC_Stall[i];
19: for i in all_Host_Uncores do 𝐿 Host Uncore → CHA
20: AllLoads = 0;
21: HostUncore_Stall [i] += get_Uncore_stall_cycle(i, id);
22: for j in all_CHAs do
23: CHA_Load[j] = load_agg_cha2uncore(j, i);
24: AllLoads += CHA_Load[j];
25: for j in all_Host_Uncores do
26: weight = 𝑌𝑓𝑒_𝑍𝑎𝑏𝑐[𝑑]

𝑒𝑆𝑆𝑍𝑎𝑏𝑐𝑄 ;
27: CHA_Stall[j] = HostUncore_Stall[i] ↑ weight;
28: CHA→LLC and in-core path segments are omitted;

Architectural
Component Scope Counter Description

Core LLC

per-core cycle_activity.stalls_l3_miss Counts execution stalls while L3 cache miss demand load is outstanding
per-core ORO.l3_miss_demand_data_rd Counts the number of demand data read requests pending that are known to have missed the L3 cache
per-core mem_load_retired.l3_hit Counts retired load instructions with at least one uop that hit in the L3 cache
per-core mem_load_retired.l3_miss Counts retired load instructions with at least one uop that missed in the L3 cache

per-core mem_load_l3_hit_retired(4)
Counts retired load instructions whose data sources were HitM responses from shared L3, were L3 hit and cross-core
snoop missed in on-pkg core cache, were L3 and cross-core snoop hits in on-pkg core cache and were hits in L3
without snoops required

per-core mem_load_l3_miss_retired(4) Retired load instructions which data sources missed L3 but serviced from local DRAM, remote DRAM, forwarded from
a remote cache or hitm in remote cache

per-core longest_lat_cache.miss Counts core-originated cacheable requests that miss the L3 cache
per-core longest_lat_cache.reference Counts core-originated cacheable requests to the L3 cache
per-core ocr.modi!ed_write.any_response Counts writebacks of modi!ed cachelines and streaming stores that have any type of response

per-core ocr.demand_data_rd(9)

Counts o"core demand data reads in 9 scenarios: have any type of response; hit in the L3 or were snooped from
another core’s caches on the same socket; not supplied by the local socket’s L1, L2, or L3 caches; supplied by DRAM
attached to this socket, unless in Sub NUMA Cluster(SNC) Mode. In SNC Mode counts only those DRAM accesses that
are controlled by the close SNC Cluster; hit in a distant L3 Cache or were snooped from a distant core’s L1/L2 caches on
this socket when the system is in SNC (sub-NUMA cluster) mode; supplied by DRAM on a distant memory controller
of this socket when the system is in SNC (sub-NUMA cluster) mode; supplied by a cache on a remote socket where a
snoop hit a line in another core’s caches; supplied by DRAM attached to another socket; supplied by CXL DRAM

per-core ocr.rfo.any_response(9) Counts o"core demand RFO in 9 scenarios same as DRd scenarios
per-core ocr.l1d_hw_pf(9) Counts o"core L1D hardware prefetch in 9 scenarios same as DRd scenarios
per-core ocr.l2_hw_pf_drd(9) Counts o"core L2 hardware prefetch DRd in 9 scenarios same as DRd scenarios
per-core ocr.l2_hw_pf_rfo(9) Counts o"core L2 hardware prefetch RFO in 9 scenarios same as DRd scenarios

CHA LLC

per-socket unc_cha_tor_inserts.ia(4) Counts the number of entries successfully inserted into the TOR come from cores in 4 scenarios: total requests;
requests hit LLC; requests miss LLC; requests miss LLC and target to CXL;

per-socket unc_cha_tor_inserts.ia_drd(9)
Count DRd from core in TOR in 8 scenarios: total insert; hit LLC; miss LLC; miss LLC and target DDR; miss LLC and
target local; miss LLC and target local DDR; miss LLC and target remote; miss LLC and target remote DDR; miss LLC
and target CXL;

per-socket unc_cha_tor_inserts.ia_drd_pref(9) Count DRd prefetch from core in TOR in 9 scenarios same as DRd scenarios

per-socket unc_cha_tor_inserts.ia_rfo(6) Count RFO from core in TOR in 6 scenarios: total insert; hit LLC; miss LLC; miss LLC and target local; miss LLC and
target remote; miss LLC and target CXL;

per-socket unc_cha_tor_inserts.ia_rfo_pref(6) Count RFO prefetch from core in TOR in 6 scenarios same as RFO scenarios

per-socket unc_cha_tor_inserts.ia_wb(5) Count write back request from core in TOR in 5 scenarios: write back from E/F to E state; from E/F to I state; from M
to E state; from M to I state; from S to I state;

per-socket unc_cha_tor_occupancy.ia(4) For each cycle, this event accumulates the number of valid entries in the TOR that come from cores in 4 scenarios:
total requests; requests hit LLC; requests miss LLC; requests miss LLC and target to CXL;

per-socket unc_cha_tor_occupancy.ia_drd(9)
For each cycle, this event accumulates the number of valid DRd entries in the TOR that come from cores in 9 scenarios:
total insert; hit LLC; miss LLC; miss LLC and target DDR; miss LLC and target local; miss LLC and target local DDR;
miss LLC and target remote; miss LLC and target remote DDR; miss LLC and target CXL;

per-socket unc_cha_tor_occupancy.ia_drd_pref(9) For each cycle, this event accumulates the number of valid DRd prefetch entries in the TOR that come from cores in 9
scenarios same as DRd scenarios.

per-socket unc_cha_tor_occupancy.ia_rfo(6) For each cycle, this event accumulates the number of valid RFO entries in the TOR that come from cores in 6 scenarios:
total insert; hit LLC; miss LLC; miss LLC and target local; miss LLC and target remote; miss LLC and target CXL;

per-socket unc_cha_tor_occupancy.ia_rfo_pref(6) For each cycle, this event accumulates the number of valid RFO prefetch entries in the TOR that come from cores in 6
scenarios same as RFO scenarios.

per-socket unc_cha_tor_occupancy.ia_wbmtoi For each cycle, this event accumulates the number of valid write back M to I state entries in the TOR that come from
cores.

per-socket unc_cha_tor_threshold1.ia(4) Count the number of cycles subevent TOR not empty in 4 scenarios: total requests; requests hit LLC; requests miss
LLC; requests miss LLC and target to CXL;

per-socket unc_cha_tor_threshold1.ia_drd(9)
Count the number of cycles subevent TOR not empty in 9 scenarios: total insert; hit LLC; miss LLC; miss LLC and
target DDR; miss LLC and target local; miss LLC and target local DDR; miss LLC and target remote; miss LLC and
target remote DDR; miss LLC and target CXL;

per-socket unc_cha_tor_threshold1.ia_drd_pref(9) Count the number of cycles subevent TOR not empty in 9 scenarios same as DRd scenarios.

per-socket unc_cha_tor_threshold1.ia_rfo(6) Count the number of cycles subevent TOR not empty in 6 scenarios: total insert; hit LLC; miss LLC; miss LLC and
target local; miss LLC and target remote; miss LLC and target CXL;

per-socket unc_cha_tor_threshold1.ia_rfo_pref(6) Count the number of cycles subevent TOR not empty in 6 scenarios same as RFO scenarios.

Table 2: The summary of key performance counters in the CHA/LLC used by PathFinder.

Architectural
Component Scope Counter Description

IMC

per-channel unc_m_rpq_cycles_ne.pch0 Counts the number of cycles that the RPQ of pch0 is not empty
per-channel unc_m_rpq_cycles_ne.pch1 Counts the number of cycles that the RPQ of pch1 is not empty
per-channel unc_m_cas_count.all.pch0 Counts the total number of DRAM CAS commands issued on pch0 channel
per-channel unc_m_cas_count.all.pch1 Counts the total number of DRAM CAS commands issued on pch1 channel
per-channel unc_m_cas_count.rd.pch0 Counts the total number of DRAM Read CAS commands issued on pch0 channel
per-channel unc_m_cas_count.rd.pch1 Counts the total number of DRAM Read CAS commands issued on pch1 channel
per-channel unc_m_cas_count.wr.pch0 Counts the total number of DRAMWrite CAS commands issued on pch0 channel
per-channel unc_m_cas_count.wr.pch1 Counts the total number of DRAMWrite CAS commands issued on pch1 channel.
per-channel unc_m_rpq_inserts.pch0 Counts the number of allocations into the Read Pending Queue of PCH0
per-channel unc_m_rpq_inserts.pch1 Counts the number of allocations into the Read Pending Queue of PCH1
per-channel unc_m_rpq_occupancy_pch0 Accumulates the occupancies of the PCH0 Read Pending Queue each cycle
per-channel unc_m_rpq_occupancy_pch1 Accumulates the occupancies of the PCH1 Read Pending Queue each cycle
per-channel unc_m_wpq_cycles_ne.pch0 Counts the number of cycles that the WPQ of pch0 is not empty
per-channel unc_m_wpq_cycles_ne.pch1 Counts the number of cycles that the WPQ of pch1 is not empty
per-channel unc_m_wpq_inserts.pch0 Counts the number of allocations into the Write Pending Queue of PCH0
per-channel unc_m_wpq_inserts.pch1 Counts the number of allocations into the Write Pending Queue of PCH1
per-channel unc_m_wpq_occupancy_pch0 Accumulates the occupancies of the PCH0 Write Pending Queue each cycle
per-channel unc_m_wpq_occupancy_pch1 Accumulates the occupancies of the PCH1 Write Pending Queue each cycle

M2PCIe

per-socket unc_m2p_rxc_cycles_ne.all Counts the number of cycles when the M2PCIe ingress is not empty
per-socket unc_m2p_rxc_inserts.all Counts the number of entries inserted into the M2PCIe ingress queue
per-socket unc_m2p_txc_inserts_ak Counts the number of acknowledgements entries inserted into the M2PCIe egress queue
per-socket unc_m2p_txc_inserts_bl Counts the number of block data entries inserted into the M2PCIe egress queue

Table 3: The summary of key performance counters in the Uncore used by PathFinder.

Architectural
Component Scope Counter Description

CXL

per-socket unc_cxlcm_rxc_pack_buf_inserts Number of Allocation to Mem Rxx Packing bu"er
per-socket unc_cxlcm_rxc_pack_buf_inserts.mem_data Number of Allocation to Mem Data Packing bu"er
per-socket unc_cxlcm_rxc_pack_buf_full.mem_req Number of cycles the Packing Bu"er is Full
per-socket unc_cxlcm_rxc_pack_buf_full.mem_data Number of cycles the Packing Bu"er is Full
per-socket unc_cxlcm_rxc_pack_buf_ne.mem_req Number of cycles of Not Empty for Mem Rxx Packing bu"er
per-socket unc_cxlcm_rxc_pack_buf_ne.mem_data Number of cycles of Not Empty for Mem Data Packing bu"er
per-socket unc_cxlcm_txc_pack_buf_inserts.mem_req Number of Allocation to Mem Rxx Packing bu"er
per-socket unc_cxlcm_txc_pack_buf_inserts.mem_data Number of Allocation to Mem Data Packing bu"er

Table 4: The summary of key performance counters in the CXL device.

PMU Counter Data Path Description

Core

ocr.demand_data_rd(9) DRd

Counts DRds in 9 scenarios: (a) have any type of response; (b) hits in the L3 or were snooped from another core’s caches on
the same socket; (c) not supplied by the local socket’s L1, L2, or L3 caches; (d) supplied by DRAM attached to this socket,
unless in Sub NUMA Cluster (SNC) Mode count DRAM accesses that are controlled by the close SNC Cluster; (e) hit in a
distant L3 Cache or were snooped from a distant core’s L1/L2 caches on this socket when the system is in SNC mode; (f)
supplied by DRAM on a distant memory controller of this socket when the system is in SNC mode; (g)supplied by a cache
on a remote socket where a snoop hit a line in another core’s caches; (h) supplied by DRAM attached to another socket; (i)
supplied by CXL DRAM;

ocr.rfo(9) RFO Counts RFOs in 9 scenarios same as DRd scenarios;
ocr.l1d_hw_pf(9) HW PF (L1D) ! DRd Counts L1D hardware prefetch in 9 scenarios same as DRd scenarios;

ocr.l2_hw_pf_drd(9) HW PF (L2) ! DRd Counts L2 hardware prefetch DRd in 9 scenarios same as DRd scenarios;
ocr.l2_hw_pf_rfo(9) HW PF (L2) ! RFO Counts L2 hardware prefetch RFO in 9 scenarios same as DRd scenarios

CHA

unc_cha_tor_inserts.ia_drd(9) DRd
Count DRd from core in TOR in 8 scenarios: (a) total insert; (b) hit LLC; (c) miss LLC; (d) miss LLC and target DDR; (e) miss
LLC and target local; (f) miss LLC and target local DDR; (g) miss LLC and target remote; (h) miss LLC and target remote
DDR; (i) miss LLC and target CXL;

unc_cha_tor_inserts.ia_rfo(6) RFO Count RFO from core in TOR in 5 scenarios: (a) total insert; (b) hit LLC; (c) miss LLC; (d) miss LLC and target local; (e) miss
LLC and target remote; (f) miss LLC and target CXL;

unc_cha_tor_inserts.ia_drd_pref(9) HW/SW PF!DRd Count DRd prefetch from core in TOR in 9 scenarios same as DRd scenarios;
unc_cha_tor_inserts.ia_rfo_pref(6) HW/SW PF!RFO Count RFO prefetch from core in TOR in 6 scenarios same as RFO scenarios;

unc_cha_tor_inserts.ia_wb(5) DWr Count write back request from core in TOR in 5 scenarios: (a) write back from E/F to E state; (b) from E/F to I state; (c) from
M to E state; (d) from M to I state; (e) from S to I state;

Uncore unc_m2p_txc_inserts_ak(1) DWr Counts the number of acknowledgments entries inserted into the M2PCIe egress queue;
unc_m2p_txc_inserts_bl(1) DRd Counts the number of block data entries inserted into the M2PCIe egress queue;

Table 5: The key PMU counters used by PFBuilder to construct the path map for a mFlow. TOR=Table of Requests, which is a hardware queue
in the CHA. The number in the parenthesis (2nd column) indicates the sub-event amount for di!erent cases.

Benchmark Suite Applications Parallelism Working Set
(MB)

SPEC CPU2017

500.perlbench_r (PER) 1-64 202.5
502.gcc_r (GCC) 1-64 1366.9

503.bwaves_r (BWA) 1-64 822.3
505.mcf_r (MCF) 1-64 609.1

507.cactuBSSN_r (CAC) 1-64 789.5
508.namd_r (NAM) 1-64 162.5
510.parest_r (PAR) 1-64 419.4
511.povray_r (POV) 1-64 7.0
519.lbm_r (LBM) 1-64 410.5

520.omnetpp_r (OMN) 1-64 242.0
521.wrf_r (WRF) 1-64 178.8

523.xalancbmk_r (XAL) 1-64 481.0
525.x264_r (X264) 1-64 156.0
526.blender_r (BLE) 1-64 633.7
527.cam4_r (CAM) 1-64 856.0

531.deepsjeng_r (DEEP) 1-64 699.5
538.imagick_r (IMA) 1-64 286.5
541.leela_r (LEE) 1-64 24.7
544.nab_r (NAB) 1-64 146.3

548.exchange2_r (EXC) 1-64 2.5
549.fotonik3d_r (FOT) 1-64 848.4
554.roms_r (ROMS) 1-64 841.6

557.xz_r (XZ) 1-64 775.4
600.perlbench_s(PERS) 1-64 202.5

602.gcc_s(GCCS) 1-64 7620.2
603.bwaves_s(BWAS) 1-64 11467.1
605.mcf_s(MCFS) 1-64 3960.8

607.cactuBSSN_s(CACS) 1-64 6724.0
619.lbm_s(LBMS) 1-64 3224.5

620.omnetpp_s(OMNS) 1-64 242.3
621.wrf_s(WRFS) 1-64 177.8

623.xalancbmk_s(XALS) 1-64 481.8
625.x264_s(X264S) 1-64 156.0
627.cam4_s(CAMS) 1-64 873.6
628.pop2_s(POPS) 1-64 1434.3

631.deepsjeng_s(DEES) 1-64 6879.5
638.imagick_s(IMAS) 1-64 7007.8
641.leela_s(LEES) 1-64 25.0
644.nab_s(NABS) 1-64 561.3

648.exchange2_s(EXCS) 1-64 2.5
649.fotonik3d_s(FOTS) 1-64 9642.8
654.roms_s(ROMSS) 1-64 10386.9

657.xz_s(XZS) 1-64 15344.0

PARSEC

blackscholes(BLACK) 1-64 612.0
bodytrack(BODY) 1-64 32.9
facesim(FACE) 1-64 304.3
ferret(FER) 1-64 97.9

$uidanimate(FLU) 1-64 519.5
freqmine(FRE) 1-64 631.9
raytrace(RAY) 1-64 1282.7
swaptions(SWA) 1-64 5.5
vips(PVIPS) 1-64 37.5
x264(PX264) 1-64 80.0
canneal(CAN) 1-64 850.5
dedup(DEDUP) 1-64 1443.0

streamcluster(STREAM) 1-64 109.0

SPLASH2X

barnes(BARN) 1-64 1584.0
ocean_cp(OCEAN) 1-64 3546.5
radiosity(RADIO) 1-64 1442.5
raytrace(SRAY) 1-64 22.5
volrend(VOL) 1-64 54.0

water_nsquared(WATN) 1-64 28.5
water_spatial(WATS) 1-64 669.5

"t(FFT) 1-64 12291.0
lu_cb(LUCB) 1-64 502.0

lu_ncb(LUNCB) 1-64 501.5
radix(RADIX) 1-64 4097.5

GAPBS

Breadth-First Search (BFS) 1-64 15778.0
Single-Source Shortest Paths (SSSP) 1-64 36456.3

PageRank (PR) 1-64 12616.1
Connected Components (CC) 1-64 12381.1
Betweenness Centrality (BC) 1-64 13394.5

Triangle Counting (TC) 1-64 21027.0

Table 6: Benchmarking applications and their con"gurations.

Hit Location DRd RFO HW PF DWr
FOTS GCCS-s1 GCCS-s2 FOTS GCCS-s1 GCCS-s2 FOTS GCCS-s1 GCCS-s2 FOTS GCCS-s1 GCCS-s2

SB 7.8E+08 8.5E+07 2.1E+09
L1D 4.7E+09 8.1E+08 4.5E+09
LFB 3.1E+08 2.8E+08 1.3E+08
L2 4.3E+07 1.7E+07 1.7E+08 4.4E+06 3.8E+05 2.1E+07 1.8E+08 1.4E+08 1.7E+08 2.3E+05 84345 1.1E+07

local LLC 5.4E+06 5.0E+06 1.3E+07 7.5E+04 7.7E+04 1.0E+06 2.5E+07 9.7E+06 5.9E+07

1.5E+08 6.5E+06 7.9E+07snc LLC 9.4E+05 4.0E+05 8.1E+06 6.1E+03 1.0E+04 8.4E+05 1.8E+07 8.1E+06 6.3E+07
remote LLC 13385 5290 6984 586 42 379 19031 10920 22646
CXL Memory 2.5E+07 1.9E+06 8.1E+06 1.5E+06 935 4.1E+06 2.2E+08 1.8E+08 2.1E+07

Table 7: We classify mFlows into DRd, RFO, HW PF and DWr data paths and separate path hit distribution on SB, L1D, LFB, and L2 components
for 649.𝑔 𝑓𝑃𝑓𝑅𝑄𝑈3𝑂_𝐿 and 602.𝑎𝑁𝑁_𝐿 , where GCCS-s1 and GCCS-s2 are two selected snapshots from 602.𝑎𝑁𝑁_𝐿 . For mFlows entering uncore region,
we separate hit distribution on local LLC, SNC LLC, remote LLC, and CXL memory. L1D and LFB counters only provide hit count data at load
path granularity.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 CXL.mem Protocol
	2.2 CXL.mem Data Path
	2.3 Problem, Challenges, and Prior Solutions

	3 Dissecting CXL.mem Execution
	3.1 PMU Overview
	3.2 Core PMU
	3.3 CHA PMU
	3.4 Uncore PMU
	3.5 CXL PMU
	3.6 PMU Generality
	3.7 Summary

	4 PathFinder: a CXL.mem Profiler
	4.1 Key Idea and System Overview
	4.2 System Model
	4.3 Constructing the Path Map
	4.4 Breaking down CXL-Induced Pipeline Stall
	4.5 Detecting Culprit Paths at Bottlenecked HW
	4.6 Synthesizing Multi-Snapshots

	5 Evaluation
	5.1 Experimental Methodology
	5.2 Case 1: Path Classification
	5.3 Case 2: Pipeline Stall Breakdown
	5.4 Case 3: Local v.s. CXL Access Interference
	5.5 Case 4: Concurrent CXL Access Contention
	5.6 Case 5: CXL Bandwidth Partition
	5.7 Case 6: Data Locality
	5.8 Case 7: Performance Optimization Using PathFinder
	5.9 Discussion

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Characterization Results on an Intel EMR Server
	A.2 Performance Counter Details
	A.3 PFEstimator Algorithm
	A.4 Application Configuration
	A.5 More Evaluation Results

