
Fair Secretaries with Unfair Predictions

Eric Balkanski
Columbia University

eb3224@columbia.edu

Will Ma
Columbia University

wm2428@gsb.columbia.edu

Andreas Maggiori
Columbia University

am6292@columbia.edu

Abstract

Algorithms with predictions is a recent framework for decision-making under un-
certainty that leverages the power of machine-learned predictions without making
any assumption about their quality. The goal in this framework is for algorithms to
achieve an improved performance when the predictions are accurate while maintain-
ing acceptable guarantees when the predictions are erroneous. A serious concern
with algorithms that use predictions is that these predictions can be biased and,
as a result, cause the algorithm to make decisions that are deemed unfair. We
show that this concern manifests itself in the classical secretary problem in the
learning-augmented setting—the state-of-the-art algorithm can have zero probabil-
ity of accepting the best candidate, which we deem unfair, despite promising to
accept a candidate whose expected value is at least max{Ω(1), 1− O(ε)} times
the optimal value, where ε is the prediction error. We show how to preserve this
promise while also guaranteeing to accept the best candidate with probability Ω(1).
Our algorithm and analysis are based on a new “pegging” idea that diverges from
existing works and simplifies/unifies some of their results. Finally, we extend to the
k-secretary problem and complement our theoretical analysis with experiments.

1 Introduction

As machine learning algorithms are increasingly used in socially impactful decision-making applica-
tions, the fairness of those algorithms has become a primary concern. Many algorithms deployed in
recent years have been shown to be explicitly unfair or reflect bias that is present in training data.
Applications where automated decision-making algorithms have been used and fairness is of central
importance include loan/credit-risk evaluation [52, 40, 50], hiring [11, 17], recidivism evaluation
[53, 1, 24, 15, 19], childhood welfare systems [16], job recommendations [44], price discrimination
[18], resource allocation [51], and others [34, 33, 35, 8, 49]. A lot of work in recent years has been
devoted to formally defining different notions of fairness [47, 38, 29, 26, 20, 42, 41], designing
algorithms that satisfy these different definitions [37, 36, 12, 13, 55], and investigating trade-offs
between fairness and other optimization objectives [9, 10].

While most fairness work concentrates on classification problems where the instance is known
offline, we explore the problem of making fair decisions when the input is revealed in an online
manner. Although fairness in online algorithms is an interesting line of research per se, fairness
considerations have become increasingly important due to the recent interest in incorporating (possibly
biased) machine learning predictions into the design of classical online algorithms. This framework,
usually referred to as learning-augmented algorithms or algorithms with predictions, was first
formalized in [48]. In contrast to classical online algorithms problems where it is assumed that no
information is known about the future, learning-augmented online algorithms are given as input,

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

possibly erroneous, predictions about the future. The main challenge is to simultaneously achieve
an improved performance when the predictions are accurate and a robust performance when the
predictions are arbitrarily inaccurate. A long list of online problems have been considered in this
setting and we point to [45] for an up-to-date list of papers. We enrich this active area of research by
investigating how potentially biased predictions affect the fairness of decisions made by learning-
augmented algorithms, and ask the following question:

Can we design fair algorithms that take advantage of unfair predictions?

In this paper, we study this question on a parsimonious formulation of the secretary problem with
predictions, motivated by fairness in hiring candidates.

The problem. In the classical secretary problem, there are n candidates who each have a value
and arrive in a random order. Upon arrival of a candidate, the algorithm observes the value of that
candidate and must irrevocably decide whether to accept or reject that candidate. It can only accept
one candidate and the goal is to maximize the probability of accepting the candidate with maximum
value. In the classical formulation, only the ordinal ranks of candidates matter, and the algorithm of
Dynkin [27] accepts the best candidate with a constant probability, that equals the best-possible 1/e.

In the learning-augmented formulation of the problem proposed by Fujii and Yoshida [30], the
algorithm is initially given a predicted value about each candidate and the authors focus on comparing
the expected cardinal value accepted by the algorithm to the maximum cardinal value. The authors
derive an algorithm that obtains expected value at least max{Ω(1), 1−O(ε)} times the maximum
value, where ε g 0 is the prediction error. The strength of this guarantee is that it approaches 1 as the
prediction error decreases and it is a positive constant even when the error is arbitrarily large.

However, because the algorithm is now using predictions that could be biased, the best candidate
may no longer have any probability of being accepted. We view this as a form of unfairness, and aim
to derive algorithms that are fair to the best candidate by guaranteeing them a constant probability
of being accepted (we contrast with other notions of fairness in stopping problems in Section 1.1).
Of course, a simple way to be fair by this metric is to ignore the predictions altogether and run the
classical algorithm of Dynkin. However, this approach would ignore potentially valuable information
and lose the improved guarantee of [30] that approaches 1 when the prediction error is low.

Outline of results. We first formally show that the algorithm of [30] may in fact accept the best
candidate with 0 probability. Our main result is then a new algorithm for secretary with predictions
that: obtains expected value at least max{Ω(1), 1 − O(ε)} times the maximum value, like [30];
and ensures that, under any predictions, the best candidate is hired with Ω(1) probability. This
result takes advantage of potentially biased predictions to achieve a guarantee on expected value
that approaches 1 when the prediction error is small, while also providing a fairness guarantee for
the true best candidate irrespective of the predictions. We note that Antoniadis et al. [3] also derive
an algorithm for secretary with predictions, where the prediction is of the maximum value (a less
informative form of prediction). This algorithm accepts the best candidate with constant probability
but it does not provide a guarantee on the expected value accepted that approaches 1 as the prediction
error approaches 0. Similarly, Dynkin’s algorithm for the classical secretary problem accepts the best
candidate with constant probability but does not make use of predictions at all.

Our algorithm is fundamentally different from existing algorithms for secretary with predictions, as
our “pegging” idea, i.e., the idea not to accept a possibly suboptimal candidate if there is a future
candidate with high enough predicted value, is important to achieve our fairness desideratum. We
also note that the definitions of the prediction error ε differ in [30] and [3]; the former error definition
uses the maximum ratio over all candidates between their predicted and true value while the latter
uses the absolute difference. Our techniques present an arguably simpler analysis and extend to a
general family of prediction error measures that includes both of these error definitions.

We then extend our approach to the multiple choice or k-secretary problem where the goal is to accept
at most k candidates and maximize the total of their values, which is the most technical part of the
paper. We design an algorithm that obtains expected total value at least max{Ω(1), 1−O(ε)} times
the optimum (which is the sum of the k highest values), while simultaneously guaranteeing the k
highest-valued candidates a constant probability of being accepted. We also have a refined guarantee
that provides a higher acceptance probability for the (1 − ¶)k highest-valued candidates, for any
¶ ∈ (0, 1).

2

Finally, we simulate our algorithms in the exact experimental setup of Fujii and Yoshida [30]. We
find that they perform well both in terms of expected value accepted and fairness, whereas benchmark
algorithms compromise on one of these desiderata.

1.1 Related work

The secretary problem. After Gardner [31] introduced the secretary problem, Dynkin [27] developed
a simple and optimal stopping rule algorithm that, with probability at least 1/e, accepts the candidate
with maximum value. Due to its general and simple formulation, the problem has received a lot of
attention (see, e.g., [46, 32] and references therein) and it was later extended to more general versions
such as k-secretary [43], matroid-secretary [7] and knapsack-secretary [6].

Secretaries with predictions. The two works which are closest to our paper are those of Antoniadis
et al. [3] and Fujii and Yoshida [30]. Both works design algorithms that use predictions regarding
the values of the candidates to improve the performance guarantee of Dynkin’s algorithm when
the predictions are accurate while also maintaining robustness guarantees when the predictions are
arbitrarily wrong. Antoniadis et al. [3] uses as prediction only the maximum value and defines the
prediction error as the additive difference between the predicted and true maximum value while Fujii
and Yoshida [30] receives a prediction for each candidate and defines the error as the maximum
multiplicative difference between true and predicted value among all candidates. Very recently, Choo
and Ling [14] showed that any secretary algorithm that is 1-consistent cannot achieve robustness
better than 1/3 + o(1), even with predictions for each candidate. This result implies that, if we wish
to maintain the 1−O(ε) competitive ratio guarantee from [30], then the probability of accepting the
best candidate cannot be better than 1/3 + o(1).

Secretaries with distributional advice. Another active line of work is to explore how distributional
advice can be used to surpass the 1/e barrier of the classical secretary problem. Examples of this
line of work include the prophet secretary problems where each candidate draws its valuation from a
known distribution [28, 22, 23, 5] and the sample secretary problem where the algorithm designer
has only sample access to this distribution [39, 21]. We note that in the former models, predictions
are either samples from distributions or distributions themselves which are assumed to be perfectly
correct, while in the learning-augmented setting, we receive point predictions that could be completely
incorrect. Dütting et al. [25] investigate a general model for advice where both values and advice
are revealed upon a candidate’s arrival and are drawn from a joint distribution F . For example,
their advice can be a noisy binary prediction about whether the current candidate is the best overall.
Their main result uses linear programming to design optimal algorithms for a broad family of advice
that satisfies two conditions. However, these two conditions are not satisfied by the predictions we
consider. Additionally, we do not assume any prior knowledge of the prediction quality, whereas their
noisy binary prediction setting assumes that the error probability of the binary advice is known.

Fairness in stopping algorithms. We say that a learning-augmented algorithm for the secretary
problem is F -fair if it accepts the candidate with the maximum true value with probability at least
F . In that definition, we do not quantify unfairness as a prediction property but as an algorithmic
one, since the algorithm has to accept the best candidate with probability at least F no matter how
biased predictions are our fairness notion is a challenging one. That notion can be characterized as
an individual fairness notion similar to the identity-independent fairness (IIF) and time-independent
fairness (TIF) introduced in [4]. In the context of the secretary problem, IIF and TIF try to mitigate
discrimination due to a person’s identity and arrival time respectively. While these are very appealing
fairness notions, the fair algorithms designed in [4] fall in the classical online algorithms setting
as they do not make any assumptions about the future. Consequently, their performance is upper
bound by the performance of the best algorithm in the classical worst-case analysis setting. It is also
interesting to note the similarities with the poset secretary problem in [54]. In the latter work the
set of candidates is split into several groups and candidates belonging to different groups cannot be
compared due to different biases in the evaluation. In some sense, we try to do the same; different
groups of candidates may have predictions that are affected by different biases making the comparison
difficult before the true value of each candidate is revealed. Again, in [54] no information about the
values of future candidates is available and the performance of their algorithms is upper bounded by
the best possible performance in the worst-case analysis setting.

3

2 Preliminaries

Secretary problem with predictions. Candidates i = 1, . . . , n have true values ui and predicted
values ûi. The number of candidates n and their predicted values are known in advance. The
candidates arrive in a uniformly random order. Every time a new candidate arrives their true value
is revealed and the algorithm must immediately decide whether to accept the current candidate or
reject them irrevocably and wait for the next arrival. We let i∗ = argmaxi ui and ı̂ = argmaxi ûi

denote the indices of the candidates with the maximum true and predicted value respectively. An
instance I consists of the 2n values u1, . . . , un, û1, . . . , ûn which, for convenience, are assumed to
be positive1 and mutually distinct2. We let ε(I) denote its prediction error. For simplicity, we focus
on the additive prediction error ε(I) = maxi |ûi − ui|, but we consider an abstract generalization
that includes the multiplicative prediction error of [30] in Appendix A.2.

Objectives. We letA be a random variable denoting the candidate accepted by a given algorithm on a
fixed instance, which depends on both the arrival order and any internal randomness in the algorithm.
We consider the following desiderata for a given algorithm:

E[uA] g ui∗ − C · ε(I), ∀I (smoothness)

P [A = i∗] g F, ∀I. (fairness)

Since the prediction error ε(I) is an additive prediction error, we define smoothness to provide an
additive approximation guarantee that depends on ε(I). When considering the multiplicative predic-
tion error of [30], smoothness is defined to provide an approximation guarantee that is multiplicative
instead of additive (see Theorem 4).

We aim to derive algorithms that can satisfy smoothness and fairness with constants C,F > 0 that do
not depend on the instance I or the number of candidates n. Existing algorithms for secretary with
predictions do not simultaneously satisfy these desiderata, as shown by our examples in Appendix A.1.

Comparison to other objectives. Existing algorithms for secretary with predictions do satisfy
a weaker notion called R-robustness, where E[uA] g R · ui∗ for some constant R > 0. Our
desideratum of fairness implies F -robustness and aligns with the classical secretary formulation
where one is only rewarded for accepting the best candidate. Another notion of interest in existing
literature is consistency, which is how E[uA] compares to ui∗ when ε(I) = 0. Our smoothness
desideratum implies 1-consistency, the best possible consistency result, and guarantees a smooth
degradation as ε(I) increases beyond 0.

3 Algorithm and Analysis

We first present and analyze ADDITIVE-PEGGING in Algorithm 1 which achieves the desiderata
from Section 2. Then, we mention how using a more abstract prediction error and an almost identical
analysis, permits us to generalize ADDITIVE-PEGGING to PEGGING which achieves comparable
guarantees for a more general class of error functions that includes the multiplicative error.

Our algorithms assume that each candidate i arrives at an independently random arrival time ti drawn
uniformly from [0, 1]. The latter continuous-time arrival model is equivalent to candidates arriving in
a uniformly random order and simplifies the algorithm description and analysis. We also write ϵi as
shorthand for |ui − ûi|, ε as shorthand for ε(I) (so that ε = maxi ϵi) and i z j if ti < tj .

Description of ADDITIVE-PEGGING. ADDITIVE-PEGGING ensures smoothness by always accept-
ing a candidate whose value is close to uı̂ which, as we argue, is at least ui∗ − 2 ε. To see this, note
that uı̂ g ûı̂− ϵı̂ g ûi∗− ϵı̂ g ui∗− ϵi∗− ϵı̂ g ui∗−2 ε, where we used that ûı̂ g ûi∗ (by definition
of ı̂) and ε g max{ϵi∗ , ϵı̂} (by definition of ε). Consequently, for smoothness, our algorithm defines
the literal C = (i = ı̂) at each new arrival, which is true if and only if i has the highest predicted
value. Accepting while C holds would maintain smoothness.

For the fairness desideratum, we note that Dynkin’s algorithm [27] for the classical secretary problem
relies on the observation that if a constant fraction of the candidates have arrived and the candidate

1Our results for additive error allow negative values, but our extension to multiplicative error in Appendix A.2
requires positive values.

2This is without loss as adding an arbitrarily small perturbation to each true and predicted value does not
change the performance of our algorithms. This allows for a unique argmax in the definitions of i∗ and ı̂.

4

who just arrived has the maximum true value so far, then this candidate has a constant probability
of being the best overall. The same high-level intuition is used in our algorithm. Every time a new
candidate i arrives, we check if i is the maximum so far and if ti > 1/2; namely, we compute the
literal F . Accepting when F is true, which is what Dynkin’s algorithm does, would ensure fairness.

However, there are two crucial situations where ADDITIVE-PEGGING differs from Dynkin’s algorithm.
The first such situation is when the candidate ı̂ with maximum predicted value arrives and we have

that ı̂ is not the maximum so far or tı̂ f 1/2, i.e., C ' F is true. In this case, we cannot always reject
ı̂, as Dynkin’s algorithm would, because that would not guarantee smoothness. Instead, we reject
ı̂ only if there is a future candidate whose prediction is sufficiently high compared to uı̂. We call
Ipegged the set of those candidates. The main idea behind the pegged set Ipegged is that it contains
the last candidate to arrive who can guarantee the smoothness property, which is why we accept
that candidate when they arrive. The second situation where our algorithm departs from Dynkin’s
algorithm is when a candidate i arrives with i ̸= ı̂, i ̸= ipegged and we have that F is true, in which

case Algorithm 1 executes the if statement under the case C ' F . In this situation, we cannot always
accept i as Dynkin’s algorithm would, because that would again violate smoothness. Instead, we
accept i only if ui can be lower bounded by ûı̂ − εti , noting that if conversely ui + εti is smaller
than ûı̂, then accepting i might be detrimental to our quest of ensuring smoothness.

Algorithm 1 ADDITIVE-PEGGING

//* The algorithm stops when it accepts a candidate by executing A ← i. *//
Initialization: Ipegged ← ∅
while agent i arrives at time ti do

if i ∈ Ipegged then
if |Ipegged| = 1 then
A ← i

else
Ipegged ← Ipegged \ {i}

F ← (ui > maxjzi uj) ' (ti > 1/2) , C ← (i = ı̂) , εti ← maxj:tjfti |ûj − uj |
if C ' F then
A ← i

else if C ' F then
Ipegged ← {j { ı̂ : uı̂ < ûj + εtı̂} (note that ı̂ = i)
if Ipegged = ∅ then
A ← i

else if C ' F then
if ui > ûı̂ − εti then
A ← i

Analysis of the ADDITIVE-PEGGING algorithm.

Lemma 1. ADDITIVE-PEGGING satisfies uA g ui∗ − 4 ε(I), ∀I with probability 1.

Proof. Let ipegged denote the last arriving candidate in Ipegged.

We first argue that PEGGING always accepts a candidate irrespective of the random arrival times of
the candidates. We focus on any instance where ADDITIVE-PEGGING does not accept a candidate

until time tı̂. At time tı̂ either C ' F or C ' F are true. Since in the former case candidate ı̂ is
accepted, we focus on the latter case and in particular whenever the set Ipegged which is computed
is non-empty (otherwise, candidate ı̂ is accepted). In that case, it is guaranteed that by time tipegged
ADDITIVE-PEGGING will accept a candidate.

We now argue that in all cases ADDITIVE-PEGGING maintains smoothness. Using ε, ϵi definitions
and the fact that ı̂ is the candidate with the maximum predicted value we have: ûı̂ g ûi∗ g
ui∗ − ϵi∗ g ui∗ − ε. If candidate ı̂ is accepted then using the latter lower bound we get uı̂ g
ûı̂ − ϵı̂ g ui∗ − ε−ϵı̂ g ui∗ − 2 ε. If we accept i ̸= ı̂ and the if statement of C ' F is executed
at time ti then we have ui > ûı̂ − εti g ui∗ − ε−εti g ui∗ − 2 ε. Finally, we need to lower

bound the value uipegged in case our algorithm terminates accepting ipegged. Note that from the way

5

the pegged set Ipegged is updated when C ' F is true we always have uı̂ < ûipegged + εtı̂ . Since
uipegged g ûipegged − ϵipegged we can conclude that uipegged > uı̂ − εtı̂ − ϵipegged g ui∗ − 4 ε.

Lemma 2. ADDITIVE-PEGGING satisfies P [A = i∗] g 1/16, ∀I.

Proof. In the following, we assume that the number of candidates is larger or equal to 3. The proof for
the case where n = 2 is almost identical while the fairness guarantee in that case is 1/4. We denote
by ı̃ the index of the candidate with the highest true value except i∗ and ı̂, i.e., ı̃ = argmaxi ̸=i∗ ,̂ı ui.
Note that depending on the value of uı̂, ı̃ might denote the index of the candidate with the second
or third highest true value. To prove fairness we distinguish between two cases: either ı̂ = i∗ or
ı̂ ̸= i∗. For each of those cases, we define an event and argue that: (1) the event happens with constant
probability, and (2) if that event happens then ADDITIVE-PEGGING accepts i∗.

If i∗ = ı̂ we define event E = {tı̃ < 1/2 < ti∗} for which P [E] = 1/4. E implies that our algorithm
does not accept any candidate until time ti∗ . Indeed, note that at any point in time before ti∗ , both
literals F and C are simultaneously false. On the contrary, at time ti∗ , both C and F are true and our
algorithm accepts i∗.

On the other hand, if i∗ ̸= ı̂ we distinguish between two sub-cases. First, we show that either
uı̂ < ûi∗ + ϵı̂ or ui∗ > ûı̂ − ϵi∗ is true. By contradiction, assume that both inequalities do not hold,
then

uı̂ g ûi∗ + ϵı̂
ui∗>uı̂
=====⇒ ui∗ > ûi∗ + ϵı̂ =⇒ ui∗ − ûi∗ > ϵı̂

ϵi∗gui∗−ûi∗========⇒ ϵi∗ > ϵı̂

ui∗ f ûı̂ − ϵi∗
ui∗>uı̂
=====⇒ uı̂ < ûı̂ − ϵi∗ =⇒ ϵi∗ < ûı̂ − uı̂

ϵı̂guı̂−ûı̂
======⇒ ϵi∗ < ϵı̂

which is a contradiction. We now define two events E1 and E2 which imply that i∗ is always accepted
whenever {uı̂ < ûi∗ + ϵı̂} and {ui∗ > ûı̂ − ϵi∗} are true respectively.

If uı̂ < ûi∗ + ϵı̂, then we define event E1 = {tı̃ < 1/2} ' {tı̂ < 1/2} ' {1/2 < ti∗} which is
composed by 3 independent events and it happens with probability P [E1] = 1/23 = 1/8. E1 implies
that tı̂ < ti∗ ⇒ εti∗ g ϵı̂, thus we can deduce that ui∗ > uı̂ g ûı̂ − ϵı̂ g ûı̂ − εti∗ . Consequently, if

until time ti∗ all candidates are rejected, E1 implies that C ' F ' {ui∗ > ûı̂ − ϵi∗} is true at time ti∗
and candidate i∗ is hired. To argue that no candidate is accepted before time ti∗ , note that F is false
at all times before ti∗ and at time tı̂ (when literal C is true) the set {j { ı̂ : uı̂ < ûj + εtı̂} § {j {
ı̂ : uı̂ < ûj + ϵı̂} contains i∗.

If ui∗ > ûı̂ − ϵi∗ , then we define E2 = {tı̃ < 1/2 < ti∗ < tı̂} which happens with probability

P [E2] = P [tı̃ < 1/2] · P [1/2 < ti∗ < tı̂]

= P [tı̃ < 1/2] · P [1/2 < min{ti∗ , tı̂} 'min{ti∗ , tı̂} = ti∗]

= P [tı̃ < 1/2] · P [1/2 < min{ti∗ , tı̂}] · P [min{ti∗ , tı̂} = ti∗]

= (1/2) · (1/4) · (1/2) = 1/16

Note that until time ti∗ no candidate is accepted since C and F are both false at all times. Indeed,
between times 0 and 1/2 only ı̂ could have been accepted but its arrival time is after ti∗ , and between
times 1/2 and ti∗ no candidate has a true value larger than uı̃. Finally, note that at time ti∗ we have

εti∗ g ϵi∗ and consequently C ' F ' {ui∗ > ûı̂ − εti∗ } is true and i∗ gets accepted.

Theorem 3. ADDITIVE-PEGGING satisfies smoothness and fairness with C = 4 and F = 1/16.

Theorem 3 follows directly from Lemmas 1 and 2. We note that Lemma 1 actually implies a stronger
notion of smoothness that holds with probability 1.

The general PEGGING algorithm. In Appendix A.2 we generalize the ADDITIVE-PEGGING

algorithm to the PEGGING algorithm to provide fair and smooth algorithms for different prediction
error definitions. ADDITIVE-PEGGING is an instantiation of PEGGING when the prediction error is
defined as the maximum absolute difference between true and predicted values among candidates.
To further demonstrate the generality of PEGGING, we also instantiate it over the same prediction
error definition ε(I) = maxi |1− ûi/ui| as in [30] and recover similar smoothness bounds while
also ensuring fairness. We name the latter instantiation MULTIPLICATIVE-PEGGING and present its
guarantees in Theorem 4.

6

Theorem 4. Let ε(I) = maxi |1− ûi/ui| and assume ui, ûi > 0 ∀i ∈ [n]. Then MULTIPLICATIVE-
PEGGING satisfies fairness with F = 1/16 and selects a candidate A such that uA g ui∗ ·
(1− 4 · ε(I)) with probability 1.

Fujii and Yoshida [30] define the prediction error as in Theorem 4 and design an algorithm that accepts
a candidate with expected value at least ui∗ ·max {(1− ε)/(1 + ε), 0.215}. Since (1−ε)/(1+ε) g
1− 2 ε their algorithm satisfies a smoothness desideratum similar to the one in Theorem 4, but as we
prove in Appendix A.1, it violates the fairness desideratum.

4 Extension: k-Secretary problem with predictions

We consider the generalization to the k-secretary problem, where k g 1 candidates can be accepted.
To simplify notation we label the candidates in decreasing order of predicted value, so that û1 >
· · · > ûn and denote rℓ to be the index of the candidate with the ℓ’th highest true value so that
ur1 > · · · > urn . The prediction error is again defined as ε(I) := maxi |ui − ûi| and we let S
denote the random set of candidates accepted by a given algorithm on a fixed instance. The extension
of our two objectives to this setting is

E

[

∑

i∈S

ui

]

g
k

∑

ℓ=1

urℓ − C · ε(I), ∀I (smoothness for k-secretary)

P [rℓ ∈ S] g Fℓ, ∀ℓ = 1, . . . , k, ∀I. (fairness for k-secretary)

The smoothness desideratum compares the expected sum of true values accepted by the algorithm
to the sum of the k highest true values that could have been accepted. The fairness desideratum
guarantees each of the candidates ranked ℓ = 1, . . . , k to be accepted with probability Fℓ. The
k-secretary problem with predictions has been studied by Fujii and Yoshida [30], who derive an

algorithm satisfying E
[
∑

i∈S ui

]

g max{1−O(log k/
√
k), 1−O(maxi |1− ûi/ui|)}

∑k
ℓ=1 urℓ

but without any fairness guarantees. We derive an algorithm k-PEGGING that satisfies the following.

Theorem 5. k-PEGGING satisfies smoothness and fairness for k-secretary with C = 4k and

Fℓ = max
{

(1/3)k+5, 1−(ℓ+13)/k
256

}

for all ℓ = 1, . . . , k.

We note that the algorithm of Kleinberg [43] for k-Secretary (without predictions) obtains in expecta-
tion at least

(

1− 5√
k

) k
∑

ℓ=1

urℓ g
k

∑

ℓ=1

urℓ − 5
√
kmax

i
ui,

which has a better asymptotic dependence on k than our smoothness constant C = 4k if the prediction

error is relatively large, i.e., ε(I) = É
(

maxi ui/
√
k
)

. On the other hand, regarding our fairness

guarantee, if one only considers our fairness desideratum for k-secretary, then a simple algorithm
suffices to achieve Fℓ = 1/4 for all ℓ = 1, . . . , k, namely: reject all candidates i with ti < 1/2;
accept any candidate i with ti > 1/2 whose true value ui is among the k highest true values observed
so far, space permitting. For any of the top k candidates, i.e., candidate rℓ with ℓ ∈ [k], their value
urℓ is always greater than the threshold Ä , which our algorithm recomputes upon the arrival of
each candidate. Consequently, candidate rℓ is added to our solution if the following conditions
are satisfied: (1) trℓ > 1/2; and (2) there is space available in the solution when rℓ arrives. For
condition (2) to hold, it suffices that at least k of the 2k − 1 candidates with the highest values
other than rℓ arrive before time 1/2. This ensures that at most k − 1 candidates other than rℓ can
be accepted after time 1/2. The probability of both conditions (1) and (2) being satisfied is at

least P
[

trℓ > 1/2 ' Binom(2k − 1, 1
2)
]

= P [trℓ > 1/2] ·P
[

Binom(2k − 1, 1
2) g k

]

= 1
2 · 12 = 1

4 ,

establishing that Fℓ =
1
4 for all ℓ = 1, . . . , k.

Assuming k is a constant, C and F1, . . . , Fk in Theorem 5 are constants that do not depend on n or
the instance I. For large values of k the first term in Fℓ is exponentially decaying, but the second
term still guarantees candidate rℓ a probability of acceptance that is independent of k as long as
(ℓ+ 13)/k is bounded away from 1. More precisely, for k g 52 and l f k/2 we have that candidate
rℓ is accepted with probability at least 1

1024 , i.e., every candidate among the top k/2 is accepted

7

with probability at least 1
1024 , thus E

[
∑

i∈S ui

]

g 1
1024

∑k/2
ℓ=1 urℓ g 1

2048

∑k
ℓ=1 urℓ . This implies a

multiplicative guarantee on total value that does not depend on k when k is large.

The algorithm. While we defer the proof of Theorem 5 to Appendix B, we present the intuition and
the main technical difficulties in the design of k-PEGGING. The algorithm maintains in an online
manner the following sets: (1) the solution set S which contains all the candidates that have already
been accepted; (2) a set H that we call the “Hopefuls” and contains the k − |S| future candidates
with highest predicted values; (3) a set B that we call the blaming set, which contains a subset of
already arrived candidates that pegged a future candidate; and (4) the set P of pegged elements which
contains all candidates that have been pegged by a candidate in B. In addition, we use function peg
to store the “pegging responsibility”, i.e., if peg (i) = j, for some candidates i, j where i had one of
the k highest predicted values, then i was not accepted at the time of its arrival and pegged j. We use
peg−1 (j) = i to denote that j was pegged by i.

Algorithm 2 k-PEGGING

//* The algorithm stops when it accepts k candidates, i.e., when |S| = k. *//
Initialization: H ← [k], S ← ∅, P ← ∅, B ← ∅
while agent i arrives at time ti do

if i ∈ P then ▷ Case 1
Add i to S, remove i from P , and remove peg−1 (i) from B

Ä ← kth highest true value strictly before ti
F ← (ui > Ä) ' (ti > 1/2) , C ← (i ∈ H), εti ← maxj:tjfti |ûj − uj |
if C ' F then ▷ Case 2

Add i to S and remove i from H
else if C ' F then ▷ Case 3

if {j { i : ui < ûj + εti} \ (P ∪ [k]) = ∅ then ▷ subcase a
Add i to S and remove i from H

else ▷ subcase b
j′ ← An arbitrary candidate from {j { i : ui < ûj + εti} \ (P ∪ [k])
Add j′ to P , add i to B, remove i from H , and set peg (i) = j′

else if C ' F then ▷ Case 4
if {j ∈ B : ui > uj} ≠ ∅ then ▷ subcase a

j′ ← An arbitrary candidate from {j ∈ B : ui > uj}
Add i to S, remove j′ from B, and remove peg (j′) from P

else if {j ∈ H : ui > ûj − εti} ≠ ∅ then ▷ subcase b
j′ ← An arbitrary candidate from {j ∈ H : ui > ûj − εti}
Add i to S and remove j′ from H

To satisfy the fairness property, we check if the current candidate i has arrived at time ti > 1/2 and if

ui is larger than the kth highest value seen so far. We refer to these two conditions as the fairness
conditions. If i ∈ P (case 1) or i ∈ H and the fairness conditions hold (case 2), then we accept i. If
the fairness conditions hold but i ̸∈ H then we accept if there is a past candidate in B with lower
true value than ui (subcase 4a), or a future candidate in H with low predicted value compared to ui

(subcase 4b). The main technical challenge in generalizing the pegging idea to k > 1 arises when
a candidate i ∈ H arrives, but the fairness conditions do not hold (case 3). In this situation, it is
unclear whether to reject i and peg a future candidate, or accept i. For instance, consider a scenario
where the prediction error is consistently large (i.e., εti is always large), such that when i arrives, the
set {j { i : ui < ûj + εti} \ (P ∪ [k]) is always non-empty. If ti < 1/2 and we accept i, we risk
depleting our budget too quickly before time 1/2, leaving insufficient capacity to accept candidates
not in [k] who arrive later. Conversely, if we reject i, we deny it the possibility of acceptance in the
first half of the time horizon, potentially reducing its overall acceptance probability. k-PEGGING

balances this tradeoff while achieving smoothness. To establish smoothness, we demonstrate that the
k candidates with the highest predicted values can be mapped to the solution set S, ensuring that the
true values within our solution set are pairwise “close” to the values of candidates in {1, 2, . . . , k}.
This is proven in Lemma 8 by constructing an injective function m(·) from set S to {1, 2, . . . , k}
such that for each j ∈ S, uj ≈ um(j).

8

5 Experiments

We simulate our ADDITIVE-PEGGING and MULTIPLICATIVE-PEGGING algorithms in the exact
experimental setup of Fujii and Yoshida [30], to test its average-case performance.

Experimental Setup. Fujii and Yoshida [30] generate various types of instances. We follow their
Almost-constant, Uniform, and Adversarial types of instances, and also create the Unfair type
of instance to further highlight how slightly biased predictions can lead to very unfair outcomes.
Both true and predicted values of candidates in all these instance types are parameterized by a scalar
ε ∈ [0, 1) which controls the prediction error. Setting ε = 0 creates instances with perfect predictions
and setting a higher value of ε creates instances with more erroneous predictions. Almost-constant

models a situation where one candidate has a true value of 1/(1− ε) and the rest of the candidates
have a value of 1. All predictions are set to 1. In Uniform, we sample each ui independently from
the exponential distribution with parameter 1. The exponential distribution generates a large value
with a small probability and consequently models a situation where one candidate is significantly
better than the rest. All predicted values are generated by perturbing the actual value with the uniform
distribution, i.e., ûi = ¶i · ui, where ¶i is sampled uniformly and independently from [1− ε, 1 + ε].
In Adversarial, the true values are again independent samples from the exponential distribution
with parameter 1. The predictions are “adversarially” perturbed while maintaining the error to be
at most ε in the following manner: if i belongs to the top half of candidates in terms of true value,
then ûi = (1− ε) · ui; if i belongs to the bottom half, then ûi = (1 + ε) · ui. Finally, in Unfair all
candidates have values that are at most a (1 + ε) multiplicative factor apart. Formally, ui is a uniform
value in [1 − ε/4, 1 + ε/4], and since (1 + ε/4)/(1 − ε/4) f (1 + ε) we have that the smallest
and largest value are indeed very close. We set ûi = un−r(i)+1 where r(i) is the rank of ui, i.e.,
predictions create a completely inverted order.

We compare ADDITIVE-PEGGING and MULTIPLICATIVE-PEGGING against LEARNED-DYNKIN

[30], HIGHEST-PREDICTION which always accepts the candidate with the highest prediction, and the
classical DYNKIN algorithm which does not use the predictions. Following [30], we set the number
of candidates to be n = 100. We experiment with all values of ε in {0, 1/20, 2/20, . . . , 19/20}. For
each type of instance and value of ε in this set, we randomly generate 10000 instances, and then
run each algorithm on each instance. For each algorithm, we consider instance-wise the ratio of the
true value it accepted to the maximum true value, calling the average of this ratio across the 10000
instances its competitive ratio. For each algorithm, we consider the fraction of the 10000 instances
on which it successfully accepted the candidate with the highest true value, calling this fraction its
fairness. We report the competitive ratio and fairness of each algorithm, for each type of instance and
each value of ε, in Figure 1. Our code is written in Python 3.11.5 and we conduct experiments on an
M3 Pro CPU with 18 GB of RAM. The total runtime is less than 5 minutes.

Results. The results are summarized in figure 1. Since ADDITIVE-PEGGING and MULTIPLICATIVE-
PEGGING achieve almost the same competitive ratio and fairness for all instance types and values of
ε we only present ADDITIVE-PEGGING in figure 1 but include the code of both in the supplementary
material. Our algorithms are consistently either the best or close to the best in terms of both
competitive ratio and fairness for all different pairs of instance types and ε values. Before discussing
the results of each instance type individually it is instructive to mention some characteristics of
our benchmarks. While DYNKIN does not use predictions and is therefore bound to suboptimal
competitive ratios when predictions are accurate, we note that it accepts the maximum value candidate
with probability at least 1/e, i.e., it is 1/e-fair. When predictions are non-informative this is an upper
bound on the attainable fairness for any algorithm whether it uses predictions or not. HIGHEST-
PREDICTION is expected to perform well when the highest prediction matches the true highest value
candidate and poorly when the latter is not true. In Almost-constant for small values of ε all
candidates have very close true values and all algorithms except DYNKIN have a competitive ratio
close to 1. DYNKIN may not accept any candidate and this is why its performance is poorer than the
rest of the algorithms. Note that as ε increases both our algorithms perform significantly better than
all other benchmarks.

In terms of fairness, predictions do not offer any information regarding the ordinal comparison
between candidates’ true values and this is why for small values of ε the probability of HIGHEST-
PREDICTION and LEARNED-DYNKIN of accepting the best candidate is close to 1/100 = 1/n,
i.e., random. Here, the fairness of our algorithms and DYNKIN is similar and close to 1/e. In both
Uniform and Adversarial we observe that for small values of ε the highest predicted candidate is the

9

Figure 1: Competitive ratio and fairness of different algorithms, for each instance type and level of ε.

true highest and ADDITIVE-PEGGING, LEARNED-DYNKIN and HIGHEST-PREDICTION all accept
that candidate having a very close performance both in terms of fairness and competitive ratio. For
higher values of ε the fairness of those algorithms deteriorates similarly and it approaches again
0.37 ≃ 1/e. In Unfair our algorithms outperform all other benchmarks in terms of competitive ratio
for all values of ε and achieve a close to optimal fairness. This is expected as our algorithms are
particularly suited for cases where predictions may be accurate but unfair.

Overall, our algorithms are the best-performing and most robust. The HIGHEST-PREDICTION

algorithm does perform slightly better on Uniform instances and Adversarial instances under most
values of ε, but performs consistently worse on Almost-constant and Unfair instances, especially in
terms of fairness. Our algorithms perform better than LEARNED-DYNKIN in almost all situations.

6 Limitations and Future Work

We study a notion of fairness that is tailored to the secretary problem with predictions and build
our algorithms based on this notion. However, there are alternative notions of fairness one could
consider in applications such as hiring, as well as variations of the secretary problem that capture
other features in these applications. While our model allows for arbitrary bias in the predictions we
assume that the true value of a candidate is fully discovered upon arrival, and define fairness based
on hiring the best candidate (who has the highest true value) with a reasonable probability. Thus, we
ignore considerations such as bias in how we get the true value of a candidate (e.g., via an interview
process). In addition, as noted in Section 1, we use an individual fairness notion which does not
model other natural desiderata like hiring from underprivileged populations or balance the hiring
probabilities across different populations. These are considerations with potentially high societal
impact which our algorithms do not consider and are interesting directions for future work on fair
selection with predictions.

Regarding trade-offs in our guarantees: for the single-secretary problem, we can improve the fairness
guarantee from 1/16 to 0.074 by optimizing the constants in our algorithm. However, we choose
not to do so, as the performance increase is marginal, and we aim to keep the proof as simple as
possible. Additionally, as we noted in Section 1.1 any constant C for smoothness implies an upper
bound of F = 1/3 + o(1) for fairness. Finding the Pareto-optimal curve in terms of smoothness
and fairness is an interesting direction. The main challenge in achieving a smooth trade-off between
fairness and smoothness is as follows: any bound on C for smoothness implies a competitive ratio of
1− Cϵ, which reaches a ratio of 1 when the predictions are exactly correct. Thus, regardless of the
smoothness guarantee, we must achieve a competitive ratio of 1 when predictions are fully accurate.
This constraint makes it challenging to improve the fairness guarantee F , even at the cost of a less
favorable smoothness constant C.

10

References

[1] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: There’s
software used across the country to predict future criminals. and it’s biased against
blacks. ProPublica, May 23 2016. URL https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing.

[2] Antonios Antoniadis, Christian Coester, Marek Elias, Adam Polak, and Bertrand Simon. On-
line metric algorithms with untrusted predictions. In Proceedings of the 37th International
Conference on Machine Learning (ICML), pages 345–355, 2020.

[3] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and online
matching problems with machine learned advice. In Proceedings of the 33rd Annual Conference
on Neural Information Processing Systems (NeurIPS), pages 7933–7944, 2020.

[4] Makis Arsenis and Robert Kleinberg. Individual fairness in prophet inequalities. In Proceedings
of the 23rd ACM Conference on Economics and Computation (EC), page 245, 2022.

[5] Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Prophet secretary: Surpassing the 1− 1/e
barrier. In Proceedings of the 19th ACM Conference on Economics and Computation (EC),
pages 303–318, 2018.

[6] Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A knapsack secretary
problem with applications. In Proceedings of the 10th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), pages 16–28, 2007.

[7] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), page 434–443, 2007.

[8] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. Regularized online allocation problems:
Fairness and beyond. In Proceedings of the 38th International Conference on Machine Learning
(ICML), pages 630–639, 2021.

[9] Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis. The price of fairness. Operations
Research, 59(1):17–31, 2011.

[10] Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis. On the efficiency-fairness trade-off.
Management Science, 12:2234–2250, 2012.

[11] Miranda Bogen and Aaron Rieke. Help wanted: an examination of hiring algorithms. Equity,
and Bias, Upturn (December 2018), 2018.

[12] L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi. Ranking with fairness constraints. In
Proceedings of the 45th International Colloquium on Automata, Languages and Programming
(ICALP), 2018.

[13] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvtiskii. Matroids, matchings,
and fairness. In Proceedings of the 22ndInternational Conference on Artificial Intelligence and
Statistics (AISTATS), pages 2212–2220, 2019.

[14] Davin Choo and Chun Kai Ling. A short note about the learning-augmented secretary problem.
arXiv preprint arXiv:2410.06583, 2024.

[15] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big Data, 5(2):153–163, June 2017.

[16] Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr Fialko, and Rhema Vaithianathan.
A case study of algorithm-assisted decision making in child maltreatment hotline screening
decisions. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency
(FAccT), pages 134–148, 2018.

[17] Lee Cohen, Zachary C. Lipton, and Yishay Mansour. Efficient candidate screening under
multiple tests and implications for fairness. In Proceedings of the 1st Symposium on the
foundations of responsible computing (FORC), page 1–20, 2019.

11

[18] Maxime C. Cohen, Adam N. Elmachtoub, and Xiao Lei. Price discrimination with fairness
constraints. Management Science, 68(12):8536–8552, 2022.

[19] COMPAS (software). https://en.wikipedia.org/wiki/COMPAS_(software).

[20] Sam Corbett-Davies, Emma Pierson, Avi Feller, Sharad Goel, and Aziz Huq. Algorithmic
decision making and the cost of fairness. In Proceedings of the 23rd International Conference
on Knowledge Discovery and Data Mining (KDD), page 797–806, 2017.

[21] José R. Correa, Andrés Cristi, Laurent Feuilloley, Tim Oosterwijk, and Alexandros Tsigonias-
Dimitriadis. The secretary problem with independent sampling. In Proceedings of the 32nd
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2047–2058, 2021.

[22] José R. Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vredeveld.
Posted price mechanisms and optimal threshold strategies for random arrivals. Mathematics of
Operations Research, 46(4):1452–1478, 2021.

[23] José R. Correa, Raimundo Saona, and Bruno Ziliotto. Prophet secretary through blind strategies.
Mathematical Programming, 190(1):483–521, 2021.

[24] Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidivism.
Science Advances, 4(1), 2018.

[25] Paul Dütting, Silvio Lattanzi, Renato Paes Leme, and Sergei Vassilvitskii. Secretaries with
advice. In Proceedings of the 22nd ACM Conference on Economics and Computation (EC),
page 409–429, 2021.

[26] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (ITCS), page 214–226, 2012.

[27] E. B. Dynkin. The optimum choice of the instant for stopping a markov process. Soviet
Mathematics Doklady, 4:627–629, 1963.

[28] Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Morteza Monemizadeh.
Prophet secretary. SIAM Journal on Discrete Mathematics (SIDMA), 31(3):1685–1701, 2017.

[29] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkatasub-
ramanian. Certifying and removing disparate impact. In Proceedings of the 21th International
Conference on Knowledge Discovery and Data Mining (KDD), page 259–268, 2015.

[30] Kaito Fujii and Yuichi Yoshida. The secretary problem with predictions. In Mathematics of
Operations Research, 2023.

[31] Martin Gardner. Mathematical games. Scientific American, 202(3):172–186, 1960.

[32] John P. Gilbert and Frederick Mosteller. Recognizing the maximum of a sequence. Journal of
the American Statistical Association, 61:35–73, 1966.

[33] Lev Grossman. Are face-detection cameras racist? Time, 2010.

[34] Alex Hern. Artificial intelligence beauty contest doesn’t like black people. The Guardian,
September 8 2016. URL https://www.theguardian.com/technology/2016/sep/08/
artificial-intelligence-beauty-contest-doesnt-like-black-people.

[35] A Howard and J Borenstein. The ugly truth about ourselves and our robot creations: The
problem of bias and social inequity. Science and Engineering Ethics, 24(5):1521–1536, October
2018.

[36] Matthew Joseph, Michael Kearns, Jamie H Morgenstern, and Aaron Roth. Fairness in learning:
Classic and contextual bandits. In Proceedings of the 29th Annual Conference on Neural
Information Processing Systems (NeurIPS), 2016.

12

[37] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through
regularization approach. In Proceedings of the 11thInternational Conference on Data Mining
Workshops (ICDMW), pages 643–650, 2011.

[38] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier
with prejudice remover regularizer. In Peter A. Flach, Tijl De Bie, and Nello Cristianini, editors,
Proceedings of the European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD), volume 7524, 2012.

[39] Haim Kaplan, David Naori, and Danny Raz. Competitive analysis with a sample and the
secretary problem. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2082–2095, 2020.

[40] Amir E. Khandani, Adlar J. Kim, and Andrew W. Lo. Consumer credit-risk models via
machine-learning algorithms. Journal of Banking & Finance, 34(11):2767–2787, 2010. URL
https://www.sciencedirect.com/science/article/pii/S0378426610002372.

[41] Jon Kleinberg and Manish Raghavan. Inherent trade-offs in the fair determination of risk scores.
In Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS),
2017.

[42] Jon Kleinberg, Himabindu Lakkaraju, Jure Leskovec, Jens Ludwig, and Sendhil Mullainathan.
Human Decisions and Machine Predictions. The Quarterly Journal of Economics, 133(1):
237–293, 2017.

[43] Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 630–631, 2005.

[44] Anja Lambrecht and Catherine Tucker. Algorithmic bias? an empirical study of apparent
gender-based discrimination in the display of stem career ads. Management Science, 65(7):
2966–2981, 2019.

[45] Alexander Lindermayr and Nicole Megow. Algorithms with predictions. https://
algorithms-with-predictions.github.io/.

[46] D. V. Lindley. Dynamic programming and decision theory. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 10(1):39–51, 1961.

[47] Binh Thanh Luong, Salvatore Ruggieri, and Franco Turini. k-nn as an implementation of
situation testing for discrimination discovery and prevention. In Proceedings of the 17th
International Conference on Knowledge Discovery and Data Mining (KDD), page 502–510,
2011.

[48] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
In Proceedings of the 35th International Conference on Machine Learning (ICML), pages
3302–3311, 2018.

[49] Will Ma, Pan Xu, and Yifan Xu. Group-level fairness maximization in online bipartite matching.
In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, page 1687–1689, 2022.

[50] Rashmi Malhotra and D. K. Malhotra. Evaluating consumer loans using neural networks.
Omega, 31(2):83–96, 2003. URL https://EconPapers.repec.org/RePEc:eee:jomega:
v:31:y:2003:i:2:p:83-96.

[51] Vahideh Manshadi, Rad Niazadeh, and Scott Rodilitz. Fair dynamic rationing. Management
Science, 69(11):6818–6836, 2023.

[52] Amitabha Mukerjee, Rita Biswas, Kalyanmoy Deb, and Amrit P. Mathur. Multi–objective
evolutionary algorithms for the risk–return trade–off in bank loan management. International
Transactions in Operational Research, 9(5):583–597, 2002.

13

[53] David B. Mustard. Reexamining criminal behavior: The importance of omitted variable bias.
The Review of Economics and Statistics, 85(1):205–211, 2003.

[54] Jad Salem and Swati Gupta. Secretary problems with biased evaluations using partial ordinal
information. Management Science, 70(8):5337–5366, 2023.

[55] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. In Proceedings of the
29th International Conference on Scientific and Statistical Database Management (SSDBM),
2017.

14

A Additional discussion and missing analysis for single secretary

A.1 Unfair outcomes in previous work

In this section we present the learning-augmented algorithms of [2] and [30], and argue that they fail
to satisfy simultaneously the smoothness and fairness desiderata described in section 2. We follow the
same notation as in the main paper where the i∗, ı̂ denote the index of the candidate with maximum
true and predicted value respectively. Since the algorithm in [2] requires only the prediction about
the maximum value but not the identity of that candidate, we use the symbol û∗ to denote such value.

Algorithm 3 LEARNED-DYNKIN [30]

¹ ← 0.646, t← 0.313, mode← Prediction
while agent i arrives at time ti do

Ä ← maxjzi uj

if |1− ûi/ui| > ¹ then
mode← Secretary.

if mode = Prediction and i = ı̂ then
A ← i.

if mode = Secretary and ti > t and ui > Ä then
A ← i.

Algorithm 4 VALUE-MAXIMIZATION SECRETARY [2]

Input: parameters c, ¼ such that ¼ g 0 and c g 1.
t∗ ← exp{W−1(−1/(ce))}, t∗∗ ← exp{W 0(−1/(ce))}
while agent i arrives at time ti do

Ä∗ ← maxj:tj<t∗ uj

if t∗ < ti < t∗∗ and ui > max {Ä∗, û∗ − ¼} then
A ← i

Ä∗∗ ← maxj:tj<t∗∗ uj

if ti g t∗∗ and ui > Ä∗∗ then
A ← i

LEARNED-DYNKIN of Fujii and Yoshida [30] receives a predicted valuation for all candidates and
defines the prediction error of candidate i as |1 − ûi/ui|. If the prediction error of a candidate is
higher than ¹ then it switches to Secretary mode where it mimics the classical DYNKIN algorithm
where all candidates are rejected for a constant fraction of the stream and after that rejection phase
the first candidate whose valuation is the maximum overall is hired. Note that if all candidates have
very low prediction error then LEARNED-DYNKIN remains in the Prediction mode and the candidate
with the higher prediction is hired. One instance where LEARNED-DYNKIN never accepts candidate
i∗ is the following: there are two candidates with true valuations u1 = 1+ ¹′

/2, u2 = 1 and predicted
valuations û1 = 1 + ¹′

/2, û2 = 1 + ¹′ where ¹′ < ¹ = 0.646. The prediction error is equal to
¹′ < ¹ = 0.646. Consequently LEARNED-DYNKIN does not switch to Prediction mode, and it never
accepts the candidate with true valuation 1 + ¹′

/2, violating the Fairness desideratum.

VALUE-MAXIMIZATION SECRETARY of [2] receives only one prediction regarding the max-
imum value û∗ and the prediction error is defined as ε = |ui∗ − û∗|. The latter algorithm is
parametrized by ¼ g 0 and c g 1 which control the relationship between the robustness and smooth-
ness bounds. VALUE-MAXIMIZATION SECRETARY has three distinct phases defined by the time
ranges [0, t∗], (t∗, t∗∗) and [t∗∗, 1] respectively, where t∗, t∗∗ are defined using the Lambert functions
W−1and W 0. The first phase is used as an “exploration” phase where all candidates are rejected and
at the end of the phase a threshold Ä∗ is computed. During the second phase the algorithm accepts a
candidate if and only if the true value of the candidate is larger than max{Ä∗, û∗ − ¼}. Finally, if at
the end of the second phase no candidate has been selected then the algorithm accepts a candidate if
their true value is the maximum so far (note that in the pseudocode this is done by computing the
threshold Ä∗∗).

To demonstrate the failure of VALUE-MAXIMIZATION SECRETARY , let A be the random variable
denoting the candidate it accepts. For any ε ∈ (0, 1) we define an instance with predicted maximum

15

value û∗ = 1 − ε and true values {u1, u2, . . . , un} where all numbers are distinct, u1 = 1 and
ui ∈ [0, ε] , ∀i ∈ {2, . . . , n}. The prediction error of that instance is ε. Note that if i∗ = 1 arrives in
the first phase then the maximum value of a candidate that VALUE-MAXIMIZATION SECRETARY can
accept in the second and third phases is at most ε. Thus, we can upper bound the expected value of
candidate A as follows: E[uA] f P [ti∗ g t∗] · ui∗ + P [ti∗ < t∗] · ε = (1− t∗)ui∗ + t∗ ε.

We emphasize that in the learning-augmented setting, there is no assumption regarding the quality
of the prediction; thus, the parameters c and ¼ cannot depend on the prediction error. For any
parameter c g 1 (and any ¼), we have that t∗ > 0 is a constant that is bounded away from 0.
Towards a contradiction, assume that VALUE-MAXIMIZATION SECRETARY satisfies the smoothness
desideratum described in section 2 for some parameter C. Then, we have that E[uA] g ui∗ − C · ε.

Consequently, (1− t∗)ui∗ + t∗ ε g ui∗ − C · ε ui∗=1
====⇒ (1− t∗) + t∗ ε g 1− C · ε which leads to

contradiction when we let ε −→ 0.

A.2 The PEGGING algorithm

In this subsection, we generalize the ADDITIVE-PEGGING algorithm so as to provide fair and smooth
algorithms for different prediction error definitions. We use the direct sum symbol · to denote the
addition or multiplication operation, ¸ for its inverse operation, i.e., subtraction or division, and 0

for the identity element of ·, i.e, either the number 0 if · denotes the classical addition operation or
1 if · denotes the multiplication operation.

To model the “difference” between predictions and true values we use a function
ϵ : ℜ>0 ×ℜ>0 −→ ℜ>0. We assume that ϵ receives as input only tuples of strictly positive reals
so that the multiplicative error definition of [30] is not ill-defined3. Furthermore, as noted in the main
paper, we assume distinct true and predicted values. This is achieved by introducing arbitrarily small
perturbations, a simplification that does not affect our algorithm’s performance and simplifies proofs
by avoiding potentially cumbersome case distinctions arising from subtractions involving zero.

Our techniques require the following inequality to be true:

Assumption 6. u· (0+ ϵ(u, û)) g û g u· (0− ϵ(u, û)), ∀u, û ∈ ℜ>0, u ̸= û

Assumption 6 essentially demands that a prediction û can be upper and lower bounded as a function
of the true value u and the “distance” ϵ(u, û) between true and predicted value. While the notation
is left abstract to highlight the generality of Theorem 7, we provide examples on how to instantiate
the error function and operators for natural prediction errors such as the absolute difference that we
used in ADDITIVE-PEGGING and a multiplicative prediction error function that is used by Fujii and
Yoshida [30]. To be specific, it is easy to check that Assumption 6 holds when:

• · is addition, 0 = 0, and ϵ(u, û) = |û− u| = |u− û|;
• · is multiplication, 0 = 1, and ϵ(u, û) = |1− û/u|;
• · is multiplication, 0 = 1, and ϵ(u, û) = |1−max{u, û}/min{u, û}| (this follows from

above because |1−max{u, û}/min{u, û}| g |1− û/u|).

It is worth noting that Assumption 6 does not hold when · represents the scalar multiplication,
0 = 1, and ϵ(u, û) = |1 − u/û|. However, this definition of ϵ(u, û) is arguably less conventional
than ϵ(u, û) = |1− û/u| which is employed in [30].

Using the new abstract notation, we write ϵi = ϵ(ui, ûi) and define the prediction error of our instance
as ε = maxi ϵi. We can generalize ADDITIVE-PEGGING to PEGGING by making the following
modifications:

1. Update the condition ui > ûı̂ − εti ô ui + εti > ûı̂ to ui · (0+ εti) > ûı̂.

2. Redefine the update rule of the “pegging” set from Ipegged ← {j { ı̂ : uı̂ < ûj + εtı̂} to

Ipegged ← {j { ı̂ : uı̂ · (0− εtı̂) < ûj}.

We proceed stating and proving the main theorem of this subsection.

3While we could allow zero-valued inputs by extending the image set to R>0 ∪ {∞}, we avoid this for
simplicity.

16

Algorithm 5 PEGGING

//* The algorithm stops when it accepts a candidate by executing A ← i. *//
Initialization: Ipegged ← ∅
while agent i arrives at time ti do

if i ∈ Ipegged then
if |Ipegged| = 1 then
A ← i

else
Ipegged ← Ipegged \ {i}

F ← (ui > maxjzi uj) ' (ti > 1/2) , C ← (i = ı̂) , εti ← maxj:tjfti ϵj
if C ' F then
A ← i

else if C ' F then
if ui · (0+ εti) > ûı̂ then
A ← i

else if C ' F then
Ipegged ← {j { ı̂ : uı̂ · (0− εtı̂) < ûj}
if Ipegged = ∅ then
A ← i

Theorem 7. Suppose that · represents either scalar addition or scalar multiplication, with ¸
being its inverse. Suppose that the error function ϵ(·, ·) satisfies Assumption 6. Then PEGGING

accepts the maximum value candidate with probability at least 1
16 and its expected value is at least

max{ui∗ · (0− ε)· (0− ε)¸ (0+ ε)¸ (0+ ε), 1
16ui∗}

Proof. The proof that PEGGING always accepts a candidate is the same as in Lemma 1 and therefore
we omit it. To prove the smoothness bound we argue that the selected candidate i has a true value
that is close to the true value of ı̂ which is in turn close to the true value of i∗.

To lower bound ûı̂ we use the right-hand side of Assumption 6 and the fact that ı̂ is the candidate
with the maximum predicted value, and get ûı̂ g ûi∗ g ui∗ · (0− ϵi∗).

We also lower bound uı̂ as follows: from the left-hand side of Assumption 6 we get that uı̂ · (0+
ϵı̂) g ûı̂ =⇒ uı̂ g ûı̂ ¸ (0 + ϵı̂). Combining the latter with the previously argued lower bound

ûı̂ g ui∗ · (0− ϵi∗) we have:

uı̂ g ûı̂ ¸ (0+ ϵı̂)

g ui∗ · (0− ϵi∗)¸ (0+ ϵı̂)

The latter inequality lower bounds the value accrued by our algorithm whenever candidate ı̂ is selected,
i.e., literal C is true at the time of the selection. If a candidate is accepted using the if-statement

corresponding to literal C ' F then we have ui · (0+ εti) g ûı̂ =⇒ ui g ûı̂ ¸ (0+ εti) and again

using the lower bound on ûı̂ we get

ui g ui∗ · (0− ϵi∗)¸ (0+ εti)

Note that up until this moment we considered all but one case where our algorithm may accept a
candidate and terminate. Indeed, we still need to lower bound the value of the last candidate in the
pegging set since it may be the one accepted by our algorithm. Let the index of that candidate be
ipegged.

17

Note that for all j ∈ Ipegged, it holds that uı̂ · (0− εtı̂) < ûj . Thus for ipegged, using the left hand
side of Assumption 6 we have:

uipegged · (0+ ϵipegged) g ûipegged =⇒

uipegged g ûipegged ¸ (0+ ϵipegged)
ipegged∈Ipegged

========⇒

uipegged g uı̂ · (0− εtı̂)¸ (0+ ϵipegged)
lower bound of uı̂=========⇒

uipegged g ui∗ · (0− ϵi∗)¸ (0+ ϵı̂)· (0− εtı̂)¸ (0+ ϵipegged) =⇒
uipegged g ui∗ · (0− ε)· (0− ε)¸ (0+ ε)¸ (0+ ε)

Combining all the lower bounds on the value of the accepted candidate we deduce the first part of the
lower bound.

We proceed proving fairness and, consequently robustness. The proof of the latter follows the same
line of thinking as the proof of Lemma 2. We repeat it here to conform with the abstract notation and
also assume (as in Lemma 2) that the number of candidates is at least 3 (if there are two candidates,
then the proof remains essentially the same and the fairness bound improves to 1/4). Let ı̃ be the
index of the candidate with the highest true value except i∗ and ı̂, i.e., ı̃ = argmaxi ̸=i∗ ,̂ı ui.

If i∗ = ı̂ we define event E = {tı̃ < 1/2 < ti∗} for which P [E] = 1/4. E implies that our algorithm
does not accept any candidate until time ti∗ . Indeed, note that at any point in time before ti∗ , both
literals F and C are simultaneously false. On the contrary, at time ti∗ , both C and F are true and our
algorithm accepts i∗.

On the other hand, if i∗ ̸= ı̂ we distinguish between two sub-cases, namely when {uı̂·(0−ϵı̂) < ûi∗}
and {ui∗·(0+ϵi∗) > ûı̂}. We continue arguing that {uı̂·(0−ϵı̂) < ûi∗}({ui∗·(0+ϵi∗) > ûı̂}
is always true. Indeed if {uı̂ · (0− ϵi∗) g ûi∗} we have that:

uı̂ · (0− ϵı̂) g ûi∗
right hand side of Assumption 6
==================⇒

uı̂ · (0− ϵı̂) g ui∗ · (0− ϵi∗)
(⋆)
==⇒

ui∗ · (0+ ϵi∗) g uı̂ · (0+ ϵı̂)
left hand side of Assumption 6
==================⇒

ui∗ · (0+ ϵi∗) g ûı̂

where for (⋆) we need to prove that

uı̂ · (0− ϵı̂) g ui∗ · (0− ϵi∗)⇒ ui∗ · (0+ ϵi∗) g uı̂ · (0+ ϵı̂)

If · denotes the addition operation then we have that:

uı̂ + (0− ϵı̂) g ui∗ + (0− ϵi∗)ô
ϵi∗ − ϵı̂ g ui∗ − uı̂

ui∗>uı̂
=====⇒

ϵi∗ > ϵı̂
ui∗>uı̂
=====⇒

ui∗ + (0 + ϵi∗) > uı̂ + (0 + ϵı̂)

Likewise if · denotes the multiplication operation then:

uı̂ · (1− ϵı̂) g ui∗ · (1− ϵi∗)ô
ui∗ϵi∗ − uı̂ϵı̂ g ui∗ − uı̂

ui∗>uı̂
=====⇒

ui∗ϵi∗ > uı̂ϵı̂
ui∗>uı̂
=====⇒

ui∗ϵi∗ + ui∗ > uı̂ϵı̂ + uı̂ ô
ui∗ · (1 + ϵi∗) > uı̂ · (1 + ϵı̂)

We now define two events E1 and E2 which imply that i∗ is always accepted whenever {uı̂·(0−ϵı̂) <
ûi∗} and {ui∗ · (0+ ϵi∗) > ûı̂} are true respectively.

18

If {uı̂· (0− ϵı̂) < ûi∗}, then we define event E1 = {tı̃ < 1/2} ' {tı̂ < 1/2} ' {1/2 < ti∗} which
is composed by 3 independent events and it happens with probability P [E1] = 1/23 = 1/8. E1

implies that tı̂ < ti∗ ⇒ εti∗ g ϵı̂, thus we can deduce that:

ui∗ · (0+ εti∗)
ui∗>uı̂,εti∗ gϵı̂

g uı̂ · (0+ ϵı̂)
left hand side of Assumption 6

g ûı̂

Consequently, if until time ti∗ all candidates are rejected, E1 implies that C ' F '
{ui∗ · (0+ εti∗) g ûı̂} is true at time ti∗ and candidate i∗ is hired. To argue that no candidate is
accepted before time ti∗ , note that F is false at all times before ti∗ and at time tı̂ (when literal C is
true) the set {j { ı̂ : uı̂ · (0− εtı̂) < ûj} § {j { ı̂ : uı̂ · (0− ϵı̂) < ûj} contains i∗.

If {ui∗ · (0 + ϵi∗) > ûı̂}, then we define E2 = {tı̃ < 1/2 < ti∗ < tı̂} which happens with
probability

P [E2] = P [tı̃ < 1/2] · P [1/2 < ti∗ < tı̂]

= P [tı̃ < 1/2] · P [1/2 < min{ti∗ , tı̂} 'min{ti∗ , tı̂} = ti∗]

= P [tı̃ < 1/2] · P [1/2 < min{ti∗ , tı̂}] · P [min{ti∗ , tı̂} = ti∗]

= (1/2) · (1/4) · (1/2) = 1/16

Note that until time ti∗ no candidate is accepted since C and F are both false at all times. Indeed,
between times 0 and 1/2 only ı̂ could have been accepted but its arrival time is after ti∗ , and between
times 1/2 and ti∗ no candidate has a true value larger than uı̃. Finally, note that at time ti∗ we have

εti∗ g ϵi∗ and consequently C ' F ' {(0+ εti∗)· ui∗ > ûı̂} is true and i∗ gets accepted.

Note that by instantiating ·,¸ to the usual scalar addition and subtraction and defining ϵ(u, û) =
|u− û| we get that, ε = maxi |ui − ûi| and Theorem 7 recovers Theorem 3.

We further demonstrate the generality of PEGGING by instantiating ·,¸, ϵ and recovering similar
smoothness and robustness bounds as [30] while also ensuring fairness. Fujii and Yoshida [30] define
the prediction error as ε = maxi |1− ûi/ui| and design an algorithm which accepts a candidate i
whose expected value is at least ui∗ max {(1− ε)/(1 + ε), 0.215}. Since (1−ε)/(1+ε) g 1−2 ε the
latter algorithm satisfies the Smoothness desideratum of Section 2, but, as we prove in Appendix A.1
it violates the Fairness desideratum.

To that end, let MULTIPLICATIVE-PEGGING be the instantiation of PEGGING when ·,¸ denote the
classical multiplication and division operations, and ϵ(u, û) = |1− û/u|. We now use Theorem 7 to
recover Theorem 4, which is restated below for convenience.

Theorem 4. Let ε(I) = maxi |1− ûi/ui| and assume ui, ûi > 0 ∀i ∈ [n]. Then MULTIPLICATIVE-
PEGGING satisfies fairness with F = 1/16 and selects a candidate A such that uA g ui∗ ·
(1− 4 · ε(I)) with probability 1.

Proof. Function ϵ(u, û) = |1 − û/u| satisfies the properties of Assumption 6. Consequently, us-
ing Theorem 7 MULTIPLICATIVE-PEGGING accepts a candidate whose expected value is at least
ui∗ max

{

(1− ε)2/(1 + ε)2, 1/16
}

g ui∗ max {1− 4 ε, 1/16}, where we used the inequalities

1/(1 + ε) g (1− ε) and (1− ε)4 g 1− 4 ε.

B Missing analysis for the k-secretary pegging algorithm

In Lemma 8 we prove that k-PEGGING satisfies the smoothness desideratum.

Lemma 8.
∑

j∈S uj g
∑k

i=1 uri − 4k ε(I) , ∀I with probability 1.

Proof. Similarly to the single choice secretary problem we proceed in two steps, first we prove that
∑

i∈[k]

uri −
∑

i∈[k]

ui f 2k ε

and then we prove that
∑

i∈[k]

ui −
∑

j∈S

uj f 2k ε

19

Note that combining those two inequalities is enough to prove the current lemma.

The first inequality is proven as follows:

k
∑

i=1

uri f(1)

k
∑

i=1

(ûri + ε) f(2) k ε+

k
∑

i=1

ûi f(3) k ε+

k
∑

i=1

(ui + ε) = 2k ε+

k
∑

i=1

ui

where (1) and (3) are by definition of ε and (2) since ûi is ith largest predicted value.

We proceed to argue that:
∑

i∈[k]

ui −
∑

j∈S

uj f 2k ε

We now define an injective function m : [k] −→ S for which we have:

ui − um(i) f 2 ε, ∀i ∈ [k]

Note that the existence of such a function implies the desired
∑

i∈[k] ui−
∑

j∈H uj f 2k ε inequality.

Note that each candidate j′ ∈ [k] is initially added to H . During the execution of our algorithm
candidate j′ may be either (1) deleted from H without being added to B or (2) added to B.

The first case where j′ is deleted from H without being added to B, occurs either in case 2, 3a, or 4b
of the algorithm. Let i be the current candidate at the time ti when the latter happens. If case 2 or 3a
happens then j′ = i, we define m(j′) = j′ and uj′ − um(j′) = 0 f 2 ε. If case 4b happens then we

have that at that time ti, j
′ ∈ {j ∈ H : ui > ûj − εti} and we define m(i) = j′. Consequently, we

conclude that ui − um(i) = ui − uj′ f ui − ûj′ + εtj′ f ϵi + εtj′ f 2 ε.

We now consider the cases where j′ is added to B during the execution of our algorithm. Note that
for that to happen j′ must be added to B at time tj′ via case 3b. In that case, candidate peg (j′)
either remains in P until time tpeg(j′) and it is added to S at that time or it is deleted from P
earlier. In both cases, j′ is removed from B at the respective time. Thus, we conclude that j′ gets
deleted from B at time tpeg(j′) or before. If the deletion happens at time tpeg(j′) then it must happen

through case 1, we define m(j′) = peg (j′) and we have that uj′ − um(j′) = uj′ − upeg(j′) f
ûpeg(j′) + εtj′ − upeg(j′) = (ûpeg(j′) − upeg(j′)) + εtj′ f ϵpeg(j′) + εtj′ f 2 ε, where in the first

inequality we used that ûpeg(j′) > uj′ − εtj′ since peg (j′) was pegged by j′ at time tj′ . If j′ is

deleted from B before time tpeg(j′) it must happen via subcase 4a due to the arrival of a candidate l
that is added to S. In that case we define m(j′) = l and from the condition of subcase 4a we have
that j ∈ E at time tj′ we have that uj′ − um(j′) = uj′ − ul < 0 f 2 ε.

We now move on to prove the fairness desideratum.

Lemma 9. For all i ∈ [k]: P [ri ∈ S] g (1/3)k+5

Proof. We start arguing that if ri ∈ [k], i.e., if candidate ri is among the k-highest prediction

candidates, then P [ri ∈ S] g (1/2)k+1. We define event E , which happens with probability (1/2)k+1

and implies that ri is added to the solution S. Let

E =
∧

l∈[k+1]\{i}

{trl < 1/2} ' {tri > 1/2}

During the interval [0, 1/2], only candidates in [k] may be added to S. In addition, E implies that
the threshold Ä is greater than urk+1

after time 1/2, and only candidate ri has a value exceeding Ä
after that time. Thus, other than ri the only candidates that may be added to S during the interval
[1/2, tri], are candidates pegged by a candidate j ∈ [k]. In summary, E implies that S consists of
candidates in [k] or candidates which were pegged by some candidate in j ∈ [k] which is not part of
the solution set S. Thus, |S| < k before time tri , and at that time ri is added to S through case 1.

In the rest of the proof, we focus on the case where ri ̸∈ [k]. Note that since i ∈ [k] and ri ̸∈ [k] then
∃j ∈ [k] such that uri g urk > uj , i.e., j has a true value which is not among the k-highest true
values. We now argue that {uj < ûri + ϵj} ({uri > ûj − ϵri} is always true. Similarly to the proof

20

of Lemma 2, assume towards a contradiction that both inequalities can be inverted and hold at the
same time, then we end up in a contradiction as follows:

uj g ûri + ϵj
uri

>uj

=====⇒ uri > ûri + ϵj =⇒ uri − ûri > ϵj
ϵriguri

−ûri========⇒ ϵri > ϵj

uri f ûj − ϵri
uj<uri=====⇒ uj < ûj − ϵri =⇒ ϵri < ûj − uj

ϵjgûj−uj

=======⇒ ϵri < ϵj

For each of those cases, i.e., whether {uj < ûri + ϵj} or {uri > ûj − ϵri} is true we define an event
which implies that ri is added to the solution set S.

If {uri > ûj − ϵri} is true then we define the following event:

E =
∧

{r1,...,rk+2}\{ri,j}

{tl < 1/2} ' {1/2 < tri < tj}

Note that:

P [E] = P [1/2 < tri < tj] ·
∏

{r1,...,rk+2}\{ri,j}

P [trl < 1/2]

= P [1/2 < min{tri , tj} ' {tri < tj}] ·
∏

{r1,...,rk+2}\{ri,j}

(1/2)

= P [1/2 < min{tri , tj}] · P [tri < tj] ·
∏

{r1,...,rk+2}\{ri,j}

(1/2)

g P [1/2 < min{tri , tj}] · P [tri < tj] · (1/2)k+2

= (1/4) · (1/2) · (1/2)k+2

= (1/2)k+5

We now argue that E implies that ri is added to S.

The first literal of E ensures that Ä g urk+1
after time 1/2 and, consequently, the only candidate with

a true value higher than the threshold Ä at any time t ∈ [1/2, tri] is ri. That observation implies that
conditions of case 4 are true only for ri. We now argue that: (1) before time tri less than k candidates
are added to S; and (2) the conditions of subcase 4b are true for ri at time tri .

For (1) first note that: (a) initially we have |S| = |B| = 0, |H| = k; (b) at all times our algorithm
maintains the invariant B ∩ H = ∅, B ∪ H ¦ [k]; and (c) every time a candidate is added to
the solution S then a candidate is deleted from either B, as in case 1 and subcase 4a, or H as
in case 2, subcase3a, and subcase 4b. Thus, at all times |B| + |H| + |S| remains constant and
since initially is equal to k we conclude that at all times |B| + |H| + |S| = k. In addition, a
candidate not yet arrived may be removed from H only through subcase 4b. Since we argued
that conditions of case 4 are true only for ri, we have that right before ri’s arrival j ∈ H and
|S| = k − |B| − |H| f k − |H| f k − 1 < k. For (2), to argue that conditions of subcase 4b are
met at time tri , it is enough to prove that j ∈ {j′ : uri > ûj′ − εtri } (note that j ∈ H and E implies
that tj > tri). To see this, note that by the definition of εtri it holds that εtri g ϵri and consequently,

{j′ : uri > ûj′ − εtri } § {j
′ : uri > ûj′ − ϵri} ∋ j.

Before proceeding to the second case we introduce the following notation:

tpeg(j) =

{

tl if ∃l : l = peg (j)

∞ otherwise

that is, if at time tj candidate l is added to the pegging set P then we use tpeg(j) to denote the arrival
time of candidate l. However, if at time tj no candidate is added to set P then we define tpeg(j) to be

equal to∞ so that the literal {tpeg(j) > x} is true for every x ∈ ℜ.

We now analyze the case where {uj < ûri + ϵj} is true and define the following event:

E =
∧

{r1,...,rk+1}\{ri,j}

{trl < 1/3} ' {1/3 < tj < 1/2} ' {tri > 1/2} ' {tpeg(j) g tri}

21

To simplify notation, let Pj be the random variable denoting the pegging set at time tj before the
execution of the while loop because of j’s arrival. We let Fj = {j′ { j : uj < ûj′ + εtj} \ (Pj ∪ [k])
be the random variable which contains all candidates that could be “pegged” at time tj .

In addition we define event T as follows:

T =
∧

{r1,...,rk+1}\{ri,j}

{trl < 1/3} ' {1/3 < tj < 1/2} ' {tri > 1/2}

Before lower bounding the probability of event E we argue that:

P
[

tpeg(j) g tri | T
]

g 2/3

Let Fj denote the set of all non-empty subsets of [n] such that P [Fj = fj | T] > 0. Note that
P [Fj = ∅ | T] +

∑

fj∈Fj
P [Fj = fj | T] = 1.

From the law of total probability we have:

P
[

tpeg(j) g tri | T
]

(1)

= P
[

{tpeg(j) g tri} ' {Fj = ∅} | T
]

+ P
[

{tpeg(j) g tri} ' {Fj ̸= ∅} | T
]

(2)

= P [Fj = ∅ | T] + P
[

{tpeg(j) g tri} ' {Fj ̸= ∅} | T
]

(3)

= P [Fj = ∅ | T] +
∑

fj∈Fj

P
[

{tpeg(j) g tri} ' {Fj = fj} | T
]

(4)

= P [Fj = ∅ | T] +
∑

fj∈Fj

P
[

tpeg(j) g tri | {Fj = fj} ' T
]

· P [Fj = fj | T] (5)

Where from (2) to (3) we use that if Fj = ∅ then the condition of subcase3b is false, thus no candidate
is “pegged” and consequently tpeg(j) =∞. From (3) to (4) we used that {Fj ̸= ∅} =

∨

fj∈Fj
{Fj =

fj}. We now focus on lower bounding the summation term.

∑

fj∈Fj

P
[

tpeg(j) g tri | {Fj = fj} ' T
]

· P [Fj = fj | T] =

∑

fj∈Fj :peg(j)=ri

P
[

tpeg(j) g tri | {Fj = fj} ' T
]

· P [Fj = fj | T]+

+
∑

fj∈Fj :peg(j) ̸=ri

P
[

tpeg(j) g tri | {Fj = fj} ' T
]

· P [Fj = fj | T] =

∑

fj∈Fj :peg(j)=ri

1 · P [Fj = fj | T] +
∑

fj∈Fj :peg(j) ̸=ri

P
[

tpeg(j) g tri | {Fj = fj} ' T
]

· P [Fj = fj | T]

We proceed lower bounding the term P
[

tpeg(j) g tri | {Fj = fj} ' T
]

for all fj ∈ Fj : peg (j) ̸=
ri. Note that the conditioning {Fj = fj}'T changes the distribution of random variables tpeg(j), tri
as follows: tri is uniformly drawn from [1/2, 1] and tpeg(j) is uniformly drawn from [z, 1] for some

z ∈ [1/3, 1/2] which equals the realization of the random variable tj . We define a random variable

t̃peg(j) which is stochastically dominated by tpeg(j) and is drawn uniformly from [1/3, 1] as follows:

let t̃ be uniformly drawn from [1/3, z] and B ∼ Bernoulli((z − 1/3)/(1/2− 1/3)) then we define:

t̃peg(j) = B · t̃+ (1−B) · tpeg(j)

Note that since t̃ f tpeg(j) then also t̃peg(j) f tpeg(j) holds almost surely.

Therefore we have:

P
[

tpeg(j) g tri | {Fj = fj} ' T
]

g P
[

t̃peg(j) g tri | {Fj = fj} ' T
]

g 3/8

22

We proceed to bound the initial summation as follows:

∑

fj∈Fj

P
[

tlfj g tri | {Fj = fj} ' T
]

· P [Fj = fj | T] =

=
∑

fj∈Fj :lfj=ri

1 · P [Fj = fj | T] +
∑

fj∈Fj :lfj ̸=ri

P
[

tlfj g tri | {Fj = fj} ' T
]

· P [Fj = fj | T]

g
∑

fj∈Fj :lfj=ri

1 · P [Fj = fj | T] +
∑

fj∈Fj :lfj ̸=ri

(3/8) · P [Fj = fj | T]

g (3/8)
∑

fj∈Fj

P [Fj = fj | T]

We then have:

P
[

tpeg(j) g tri | T
]

(6)

= P [Fj = ∅ | T] +
∑

fj∈Fj

P
[

tlfj g tri | {Fj = fj} ' T
]

· P [Fj = fj | T] (7)

g P [Fj = ∅ | T] + (3/8)
∑

fj∈Fj

P [Fj = fj | T] (8)

g (3/8) ·



P [Fj = ∅ | T] +
∑

fj∈Fj

P [Fj = fj | T]



 (9)

= 3/8 (10)

We are now ready to lower bound the probability of event E as follows

P [E] = P [T] · P
[

tpeg(j) g tri | T
]

g P [T] · (3/8)
=

∏

{r1,...,rk+1}\{ri,j}

P [tl < 1/3] · P [1/3 < tj < 1/2] · (3/8)

g (1/3)k · (1/2− 1/3) · (3/8)
= (1/3)k+3

Similar to the analysis of the first case the first literal of E ensures that the only candidate which may
be accepted after time 1/2 without being at any point in time in the pegging set P is ri. In addition,
since tj < 1/2 then we have that j remains in H until at least time tj . Indeed, a candidate in H that
has not arrived yet may be removed from set H only through case 4b which happens exclusively after
time 1/2. We now analyze E’s implications regarding the execution of our algorithm at j’s arrival by
distinguishing between two mutually exclusive cases, that is whether ri is in P before time tj or not.

If ri is not in the pegging set exactly before time tj then we have that the conditions of case 3b are
true. Indeed note that since ϵj f εtj we have:

{j′ { j : uj < ûj′ + εtj} \ (P ∪ [k]) § {j′ { j : uj < ûj′ + ϵj} \ (P ∪ [k]) ∋ ri

Thus, we are in the case where at time tj a candidate (which may be ri) is added to the pegging set,
candidate j is added to B and tpeg(j) < ∞. Due to the literal tpeg(j) g tri of E and the fact that

the only candidate which may be accepted after time 1/2 without being at any point in time in the
pegging set P is ri, we can deduce that at time tri j is still in B. Thus, at time tri the conditions of
subcase 4a are true and ri is added to S. If ri is in the pegging set exactly before time tj then since
the conditions of case 4 are false for any candidate except possibly ri we can deduce that at time tri ,
candidate ri is still in the pegging set P and is added to the solution through case 1.

Combining all the different lower bounds on P [ri ∈ S] we conclude the lemma.

23

Lemma 10. For all i ∈ {1, 2, . . . , k}: P [ri ∈ S] g 1− i+13

k

256

Proof. Let ¶′ > 12/k be such that i = (1−¶′)k−1. We now argue that proving P [ri ∈ S] g ¶′/256
suffices to prove the lemma.

First, we underline that such a ¶′ exists only for i < k − 13. Indeed,

i = (1− ¶′)k − 1 =⇒ ¶′ = 1− i+ 1

k

¶′>12/k
=====⇒ i < k − 13

For all i < k − 13 we have:

P [ri ∈ S] g ¶′/256 >
1− i+1

k

256
>

1− i+13
k

256

For i g k − 13 the statement of the lemma is vacuous, since:

P [ri ∈ S] g 0 g 1− i+13
k

256

Consequently, from now on we focus on proving that P [ri ∈ S] g ¶′/256. We do so by defining an
event E for which P [E] g ¶′/256 and argue that E implies ri being accepted.

Before defining E we need to introduce some auxiliary notation. We call replacement set and denote
by R the set of indexes initially in H with value lower than uri , i.e., R = {j : uri > uj} ∩ [k]
and by jworse = argmaxj∈R ϵj the index of the candidate with the highest error in R. For any

t, t′ ∈ [0, 1] we define the random variable At,t′ = {j : t f tj f t′} \ {ri, jworse} which contains
all indexes except ri and jworse of candidates arrived between times t and t′. Also, for x ∈ [n]
we define the set function Lx : 2[n] −→ 2[n], such that for any subset Y ¦ [n], Lx(Y) contains
the x indexes with highest true value in Y . For ¶ ∈ (0, 1/2) let (a) R1 = R ∩ A0,1/2+¶ and

R2 = R ∩A1/2+¶,1 be the random variables denoting all candidates of R \ {jworse} arriving before

and after time 1/2 + ¶ respectively; and (b) let M = L+(1+4¶)k,(A0,1/2+¶) ∩ A1/2,1/2+¶ denote

the random variable containing candidates which arrived between times 1/2 and 1/2 + ¶ with the
+(1 + 4¶)k, higher true value among the ones arrived before time 1/2 + ¶ (excluding ri and jworse).

We now define event E . Let ¶ = ¶′/16:

E =

{

|R2| g
1/2− 2¶

1− ¶
¶′k

}

' {|M | < 4¶k} ' {1/2 < tri < 1/2 + ¶} ' {tjworse < tri}

The literal {|M | < 4¶k} implies that at most 4¶k candidates not in H or not “pegged” by a previously
arrived candidate in H may be added to our solution between times 1/2 and 1/2+¶. In addition, each
candidate in M through subcase 4b may delete from H at most one candidate with arrival time after
1/2 + ¶. Consequently, the number of candidates in R that are in H until time 1/2 + ¶ are at least

|R2| − |M |. We first argue that {|R2| g 1/2−2¶
1−¶ ¶′k} and |M | < 4¶k implies that |R2| − |M | > 1,

i.e., until time 1/2 + ¶ at least one candidate from the replacement set R is still in H (note that
initially we have R ¦ H = [k].

|R2| − |M | >
1/2− 2¶

1− ¶
¶′k − 4¶k

>
1

3
¶′k − 4¶k

> (¶′/3− 4¶)k

g (¶′/3− 4¶′/16)k

g (¶′/12)k

> 1

where in the second inequality we used that ¶ = ¶′/16 f 1/16 < 1/10.

We continue arguing that E implies that the conditions of subcase 4b are true at time tri . For every
candidate j ∈ R2 it holds that:

uri > uj g ûj − ϵj g ûj − ϵjworse g ûj − εtri

24

Where the first inequality comes from the definition of set R since R2 ¦ R, the second from
the definition of the error, the third from the definition of jworse and the last from the fact that
tjworse < tri implies εtri g ϵjworse . Thus, we have that at time tri there is at least one candidate j
in H for which uri g ûj − εtri , consequently the conditions of subcase 4a are true, and candidate ri
is added to our solution.

We now lower bound the probability of event E . Since R2 and M do not contain neither ri nor jworse

we have that events {|R2| g 1/2−2¶
1−¶ ¶′k}, {|M | < 4¶k} are independent of the time arrival of jworse

and ri. Thus,

P [E] = P

[

{|R2| g
1/2− 2¶

1− ¶
¶′k} ' {|M | < 4¶k}

]

· P [1/2 < tri < 1/2 + ¶] · P [tjworse < 1/2]

= P

[

{|R2| g
1/2− 2¶

1− ¶
¶′k} ' {|M | < 4¶k}

]

· ¶ · (1/2)

= (¶′/32) · P
[

{|R2| g
1/2− 2¶

1− ¶
¶′k} ' {|M | < 4¶k}

]

= (¶′/32) · P
[

{|R1| < |R| −
1/2− 2¶

1− ¶
¶′k} ' {|M | < 4¶k}

]

We continue by lower bounding the second term of the last expression. We do so by defining a
random variableM which is independent of R1 and it is such thatM stochastically dominates |M |.
We prove the stochastic dominance ofM using a coupling argument.

Note that every candidate i accepts an arrival time ti uniformly at random from [0, 1]. We now
describe an equivalent procedure to create the arrival times ti. Each candidate i draws three
independent random variables Bi ∼ Bernoulli(1/2 + ¶), t1i ∼ Uniform([0, 1/2 + ¶]) and
t2i ∼ Uniform([1/2 + ¶, 1]). Note that we can construct random variables ti using Bi, t

1
i and

t2i as follows:

ti = Bi · t1i + (1−Bi) · t2i

Let l = |L(1+4¶)k(A0,1/2+¶)| and denote by h1, . . . , hl the set of candidates in L(1+4¶)k(A0,1/2+¶).

We define random variables t̃1, . . . , t̃(1+4¶)k as follows: For each j ∈ {1, . . . , l} we define t̃j = t1hj

and for each j ∈ {l + 1, . . . , 1 + 4¶k} we define t̃j ∼ Uniform([0, 1/2 + ¶]). We defineM =
∑+(1+4¶)k,

i=1 I
{

t̃j > 1/2
}

and sinceM− |M | = ∑+(1+4¶)k,
i=l+1 I

{

t̃j > 1/2
}

we have thatMg |M |
almost surely. Note that random variables t̃j and random variables Bi are independent. Consequently,
since |R1| =

∑

i∈R Bi we have that events {M < y} and {|R1| < x} are independent. Combining
these observations we have:

P

[

{|R1| < |R| −
1/2− 2¶

1− ¶
¶′k} ' {|M | < 4¶k}

]

gP
[

{|R1| < |R| −
1/2− 2¶

1− ¶
¶′k} ' {M < 4¶k}

]

gP
[

|R1| < |R| −
1/2− 2¶

1− ¶
¶′k

]

· P [M < 4¶k]

gP
[

|R2| g
1/2− 2¶

1− ¶
¶′k

]

· P [M < 4¶k]

To upper bound P [M < 4¶k] note that E[M] = +(1+4¶)k,· ¶
1/2+¶ < 3¶k, where the last inequality

holds since 1/2 > 1/16 g ¶′/16 = ¶. From Markov’s inequality, we have that:

25

P [M > 4¶k] = P [M > (4/3) · 3¶k]
f P [M > (4/3) ·E[M]]

f (3/4)

Consequently

P [M < 4¶k] > (1/4)

Note that since i < (1− ¶′)k − 1 we have that |R| g ¶′k + 1.

E[|R2|] = |R \ {jworse}|(1− 1/2− ¶) g ¶′k(1/2− ¶)

From Markov’s inequality, we have that:

P

[

|R2| >
1/2− 2¶

1− ¶
¶′k|

]

g P

[

|R2| >
1/2− 2¶

(1− ¶) · (1/2− ¶)
·E[|R2|]

]

g (1− ¶) · (1/2− ¶)

1/2− 2¶

=
(1− ¶) · (1− 2¶)

1− 4¶
g (1− ¶)

Consequently,

P [E] g (¶′/32) · (1/4) · (1− ¶)

g (¶′/32) · (1/4) · (1/2)
g (¶′/256)

]

Theorem 5. k-PEGGING satisfies smoothness and fairness for k-secretary with C = 4k and

Fℓ = max
{

(1/3)k+5, 1−(ℓ+13)/k
256

}

for all ℓ = 1, . . . , k.

Proof. The theorem follows directly from Lemmas 8 to 10.

C Additional experimental results

In this section we present the competitive ratio achieved by each algorithm as a function of the
parameter ε which controls the predictions error in each of the datasets defined in Section 5.

26

Table 1: Competitive ratio (mean ± std deviation) on Almost-constant

ε ADD.-PEGGING MULT.-PEGGING LEARNED-DYNKIN DYNKIN HIGHEST-PRED.

0.0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.64 ± 0.48 1.00 ± 0.00
0.05 0.97 ± 0.02 0.97 ± 0.02 0.95 ± 0.00 0.62 ± 0.47 0.95 ± 0.00
0.1 0.93 ± 0.05 0.93 ± 0.05 0.90 ± 0.01 0.61 ± 0.46 0.90 ± 0.01
0.15 0.90 ± 0.07 0.90 ± 0.07 0.85 ± 0.01 0.61 ± 0.45 0.85 ± 0.01
0.2 0.87 ± 0.09 0.87 ± 0.09 0.80 ± 0.02 0.59 ± 0.45 0.80 ± 0.02
0.25 0.83 ± 0.12 0.83 ± 0.12 0.75 ± 0.02 0.57 ± 0.44 0.75 ± 0.02
0.3 0.80 ± 0.14 0.80 ± 0.14 0.70 ± 0.03 0.55 ± 0.44 0.70 ± 0.03
0.35 0.77 ± 0.17 0.77 ± 0.17 0.65 ± 0.03 0.54 ± 0.43 0.65 ± 0.03
0.4 0.74 ± 0.19 0.74 ± 0.19 0.60 ± 0.04 0.53 ± 0.43 0.60 ± 0.04
0.45 0.70 ± 0.21 0.70 ± 0.21 0.55 ± 0.04 0.53 ± 0.43 0.55 ± 0.04
0.5 0.67 ± 0.24 0.67 ± 0.24 0.50 ± 0.05 0.51 ± 0.43 0.50 ± 0.05
0.55 0.64 ± 0.26 0.64 ± 0.26 0.46 ± 0.06 0.49 ± 0.43 0.46 ± 0.06
0.6 0.61 ± 0.29 0.61 ± 0.29 0.41 ± 0.06 0.48 ± 0.43 0.41 ± 0.06
0.65 0.57 ± 0.31 0.57 ± 0.31 0.40 ± 0.36 0.46 ± 0.43 0.36 ± 0.06
0.7 0.54 ± 0.33 0.54 ± 0.33 0.38 ± 0.36 0.45 ± 0.44 0.31 ± 0.07
0.75 0.51 ± 0.36 0.51 ± 0.36 0.36 ± 0.37 0.44 ± 0.44 0.26 ± 0.07
0.8 0.47 ± 0.38 0.47 ± 0.38 0.33 ± 0.38 0.42 ± 0.45 0.21 ± 0.08
0.85 0.44 ± 0.40 0.44 ± 0.40 0.31 ± 0.39 0.41 ± 0.46 0.16 ± 0.08
0.9 0.40 ± 0.42 0.40 ± 0.42 0.28 ± 0.40 0.39 ± 0.46 0.11 ± 0.09
0.95 0.37 ± 0.45 0.37 ± 0.45 0.26 ± 0.41 0.38 ± 0.47 0.06 ± 0.10

Table 2: Competitive ratio (mean ± std deviation) on Uniform

ε ADD.-PEGGING MULT.-PEGGING LEARNED-DYNKIN DYNKIN HIGHEST-PRED.

0.0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.05 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.58 ± 0.45 1.00 ± 0.01
0.1 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.02 0.58 ± 0.45 0.99 ± 0.02
0.15 0.98 ± 0.04 0.98 ± 0.04 0.99 ± 0.04 0.57 ± 0.45 0.99 ± 0.04
0.2 0.97 ± 0.07 0.97 ± 0.06 0.98 ± 0.05 0.57 ± 0.45 0.98 ± 0.05
0.25 0.96 ± 0.09 0.96 ± 0.08 0.97 ± 0.07 0.57 ± 0.45 0.97 ± 0.07
0.3 0.93 ± 0.12 0.94 ± 0.11 0.95 ± 0.08 0.58 ± 0.45 0.95 ± 0.08
0.35 0.91 ± 0.14 0.92 ± 0.12 0.94 ± 0.10 0.57 ± 0.45 0.94 ± 0.10
0.4 0.89 ± 0.16 0.90 ± 0.15 0.93 ± 0.11 0.56 ± 0.45 0.93 ± 0.11
0.45 0.87 ± 0.18 0.89 ± 0.16 0.92 ± 0.12 0.58 ± 0.45 0.92 ± 0.12
0.5 0.85 ± 0.20 0.87 ± 0.17 0.91 ± 0.13 0.58 ± 0.45 0.91 ± 0.13
0.55 0.83 ± 0.22 0.86 ± 0.19 0.90 ± 0.14 0.57 ± 0.45 0.90 ± 0.14
0.6 0.81 ± 0.23 0.84 ± 0.20 0.89 ± 0.14 0.57 ± 0.45 0.89 ± 0.14
0.65 0.79 ± 0.25 0.83 ± 0.21 0.83 ± 0.27 0.58 ± 0.45 0.89 ± 0.15
0.7 0.77 ± 0.26 0.81 ± 0.22 0.66 ± 0.41 0.57 ± 0.45 0.88 ± 0.15
0.75 0.76 ± 0.28 0.80 ± 0.23 0.63 ± 0.42 0.57 ± 0.45 0.87 ± 0.16
0.8 0.73 ± 0.29 0.78 ± 0.24 0.61 ± 0.43 0.57 ± 0.45 0.87 ± 0.16
0.85 0.72 ± 0.30 0.77 ± 0.25 0.62 ± 0.43 0.58 ± 0.45 0.86 ± 0.16
0.9 0.70 ± 0.31 0.76 ± 0.25 0.61 ± 0.43 0.57 ± 0.45 0.86 ± 0.17
0.95 0.68 ± 0.33 0.75 ± 0.26 0.61 ± 0.43 0.57 ± 0.45 0.85 ± 0.17

27

Table 3: Competitive ratio (mean ± std deviation) on Adversarial

ε ADD.-PEGGING MULT.-PEGGING LEARNED-DYNKIN DYNKIN HIGHEST-PRED.

0.0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.05 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.1 0.99 ± 0.03 0.99 ± 0.03 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.15 0.99 ± 0.05 0.99 ± 0.05 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.2 0.98 ± 0.06 0.98 ± 0.06 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.25 0.98 ± 0.07 0.98 ± 0.07 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.3 0.97 ± 0.08 0.97 ± 0.08 1.00 ± 0.00 0.58 ± 0.45 1.00 ± 0.00
0.35 0.97 ± 0.09 0.97 ± 0.09 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.4 0.97 ± 0.09 0.97 ± 0.09 1.00 ± 0.00 0.58 ± 0.45 1.00 ± 0.00
0.45 0.97 ± 0.09 0.97 ± 0.09 1.00 ± 0.00 0.58 ± 0.45 1.00 ± 0.00
0.5 0.97 ± 0.09 0.97 ± 0.09 1.00 ± 0.00 0.57 ± 0.45 1.00 ± 0.00
0.55 0.97 ± 0.09 0.97 ± 0.09 1.00 ± 0.01 0.57 ± 0.45 1.00 ± 0.01
0.6 0.97 ± 0.10 0.97 ± 0.10 1.00 ± 0.05 0.57 ± 0.45 1.00 ± 0.05
0.65 0.96 ± 0.13 0.96 ± 0.13 0.60 ± 0.43 0.57 ± 0.45 0.98 ± 0.13
0.7 0.91 ± 0.22 0.92 ± 0.21 0.60 ± 0.44 0.57 ± 0.45 0.88 ± 0.29
0.75 0.80 ± 0.32 0.81 ± 0.32 0.60 ± 0.43 0.58 ± 0.45 0.64 ± 0.41
0.8 0.66 ± 0.38 0.67 ± 0.39 0.60 ± 0.43 0.58 ± 0.45 0.34 ± 0.35
0.85 0.57 ± 0.40 0.56 ± 0.42 0.59 ± 0.44 0.57 ± 0.45 0.17 ± 0.16
0.9 0.57 ± 0.40 0.52 ± 0.43 0.61 ± 0.43 0.58 ± 0.45 0.14 ± 0.04
0.95 0.56 ± 0.40 0.49 ± 0.43 0.60 ± 0.44 0.58 ± 0.45 0.14 ± 0.04

Table 4: Competitive ratio (mean ± std deviation) on Unfair

ε ADD.-PEGGING MULT.-PEGGING LEARNED-DYNKIN DYNKIN HIGHEST-PRED.

0.0 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.63 ± 0.48 1.00 ± 0.00
0.05 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.00 0.63 ± 0.48 0.98 ± 0.00
0.1 0.99 ± 0.02 0.99 ± 0.02 0.95 ± 0.00 0.64 ± 0.48 0.95 ± 0.00
0.15 0.98 ± 0.02 0.98 ± 0.02 0.93 ± 0.00 0.65 ± 0.48 0.93 ± 0.00
0.2 0.98 ± 0.03 0.98 ± 0.03 0.91 ± 0.00 0.64 ± 0.48 0.91 ± 0.00
0.25 0.97 ± 0.04 0.97 ± 0.04 0.88 ± 0.00 0.64 ± 0.48 0.88 ± 0.00
0.3 0.96 ± 0.04 0.96 ± 0.04 0.86 ± 0.00 0.64 ± 0.48 0.86 ± 0.00
0.35 0.96 ± 0.05 0.96 ± 0.05 0.84 ± 0.00 0.64 ± 0.48 0.84 ± 0.00
0.4 0.95 ± 0.06 0.95 ± 0.06 0.82 ± 0.00 0.64 ± 0.48 0.82 ± 0.00
0.45 0.95 ± 0.06 0.95 ± 0.06 0.80 ± 0.00 0.63 ± 0.48 0.80 ± 0.00
0.5 0.94 ± 0.07 0.94 ± 0.07 0.78 ± 0.00 0.64 ± 0.48 0.78 ± 0.00
0.55 0.94 ± 0.08 0.94 ± 0.08 0.76 ± 0.00 0.64 ± 0.48 0.76 ± 0.00
0.6 0.93 ± 0.08 0.93 ± 0.08 0.74 ± 0.00 0.64 ± 0.48 0.74 ± 0.00
0.65 0.93 ± 0.09 0.93 ± 0.09 0.73 ± 0.00 0.64 ± 0.48 0.73 ± 0.00
0.7 0.92 ± 0.10 0.92 ± 0.10 0.71 ± 0.00 0.64 ± 0.48 0.71 ± 0.00
0.75 0.92 ± 0.10 0.92 ± 0.10 0.69 ± 0.00 0.64 ± 0.48 0.69 ± 0.00
0.8 0.92 ± 0.11 0.92 ± 0.11 0.67 ± 0.00 0.64 ± 0.48 0.67 ± 0.00
0.85 0.91 ± 0.11 0.91 ± 0.11 0.66 ± 0.00 0.64 ± 0.48 0.66 ± 0.00
0.9 0.91 ± 0.12 0.91 ± 0.12 0.64 ± 0.00 0.64 ± 0.48 0.64 ± 0.00
0.95 0.90 ± 0.12 0.90 ± 0.12 0.62 ± 0.00 0.64 ± 0.48 0.62 ± 0.00

28

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: Each claim in the contributions is made as a theorem statement which is
formally proved in the main text together with the appendices.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] .

Justification: We added a limitations section at the end of the main paper. The computational
efficiency of the algorithms is discussed in the main paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

29

Answer: [Yes] .

Justification: All theorems are clearly stated and proofs are written in detail either in the
main paper or in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes] .

Justification: In the experiments section we describe in full detail the experimental setup
and also submit the code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

30

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: Yes, all results can be reproduced easily by running the jupyter notebook in
the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: The pseudocode and all details of our experimental setup are described in the
main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: We present the mean and standard deviation of the competitive ratio for each
dataset/prediction error/algorithm tuple in the experimental section of the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

31

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes] .

Justification: Yes, we mention the characteristics of the CPU we used, its memory and the
time of execution in the experiments section of the main paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: Our research conforms with every aspect of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: In the introduction we discuss our fairness notion and how it relates to other
fairness notions in the literature, and in the limitations section we discuss how different
notions are required to capture different fairness considerations.

Guidelines:

32

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We are the creators of the code.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

33

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes] .

Justification: We provide the code in the supplementary material.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

34

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

35

	Introduction
	Related work

	Preliminaries
	Algorithm and Analysis
	Extension: k-Secretary problem with predictions
	Experiments
	Limitations and Future Work
	Additional discussion and missing analysis for single secretary
	Unfair outcomes in previous work
	The Pegging algorithm

	Missing analysis for the k-secretary pegging algorithm
	Additional experimental results

