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Introduction 

Educational reforms worldwide emphasize fostering knowledge application to support 
learning in science, technology, engineering, and mathematics (STEM) at the K-16 level [1-2, 
23]. Knowledge application (also termed knowledge-in-use) is reflected in student ability to 
integrate relevant content, skills and practices to explain phenomena [2]. Therefore, knowledge-
in-use reflects a complex cognitive construct that integrates multiple cognitive dimensions, 
including content and practices [4, 13].  

Additionally, there is complexity related to multiple modes of demonstrating knowledge-
in-use. Specifically, the process of doing science is inherently multi-modal with scientists 
utilizing drawings, writings and mathematical expressions among other modalities to engage in 
scientific practices. Therefore, to foster deep understanding we should support students in using 
multiple modalities when explaining phenomena, which is reflective of multi-modal knowledge-
in-use. Thus, fostering deep science understanding calls for supporting knowledge-in-use 
development along two main dimensions of complexity: 1) integration of multiple cognitive 
dimensions (e.g., content and scientific practices) and 2) demonstrating knowledge-in-use via 
multiple modalities (e.g., written explanations, drawings). 

Supporting knowledge-in-use requires time and cognitively appropriate feedback and 
scaffolding [2, 5, 9-10]. This feedback and scaffolding should support different modalities (e.g., 
text-based explanations and drawings) to ensure that students develop multi-modal knowledge-
in-use and afford engagement of learners from diverse academic, cultural and linguistic 
backgrounds to support equitable opportunity to learn [24].  

Learning Progressions (LPs) represent cognition models that describe how complex 
understanding develops over time [3]. Building learning environments around validated LPs 
helps adjust the learning process to the needs of individual diverse learners therefore creating 
more equitable learning systems [4]. Moreover, validated LPs that describe multi-modal 
knowledge-in-use constructs can guide the design of feedback and scaffolding to support multi-
modal knowledge-in-use. However, evaluating LP-aligned assessments that measure multi-
modal knowledge-in-use is challenging because such assessments should measure student ability 
to integrate multiple cognitive dimensions (e.g., disciplinary ideas, scientific practices) at 
different levels of sophistication and in multiple modalities (e.g., writing, drawing). This calls for 
open-ended assessments that consume resources, i.e., time, to analyze [6]. Therefore, success in 
fostering multi-modal knowledge-in-use depends upon our capability to evaluate student 
progress on LP-aligned multimodal assessments in a timely way, providing feedback to 
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individual students and teachers, and supporting meaningful use of this feedback to improve 
learning outcomes.  

Offloading these tasks onto artificial intelligence (AI) tools is increasingly feasible given 
recent advances in AI. Recent studies show that different approaches to AI can evaluate stand-
alone written explanations [8] and scientific models [7], aligned to an underlying LP describing 
knowledge-in-use. These results provide a basis for using AI to evaluate and provide 
individualized feedback on LP-aligned assessments. However, the challenge of aligning multiple 
modalities for supporting knowledge-in-use in a developmentally appropriate way remains. 

This study builds on prior work of leveraging AI to evaluate LP-aligned stand-alone 
scientific models and explanations measuring knowledge-in-use. We advance this prior work and 
leverage a multi-modal LP for training AI to analyze LP-aligned assessments for delivering 
personalized multi-modal LP-aligned feedback. We address the research question (RQ): How 
can a validated multi-modal LP guide training of AI-based scoring models for multi-modal 
assessments measuring knowledge-in-use? This study uses a validated LP describing knowledge-
in-use of electrical interactions focusing on scientific practices of developing models modeling 
and constructing explanations of phenomena [9]. These two practices represent some of the most 
common types of modalities used in science education [5].  

To answer this RQ we first develop an LP-guided framework for training AI to evaluate 
LP-aligned multi-modal assessments measuring knowledge-in-use. We show the framework’s 
utility by using the multi-modal LP to guide the AI training process to ensure AI algorithms 
capture all the relevant features of the knowledge-in-use construct (e.g., content, practice etc.) in 
an integrated fashion at various LP levels. This LP-guided AI training process reflects argument-
based validity' approach [14] because the AI algorithm is trained to capture the same attributes of 
knowledge-in-use that a trained human scorer would.  The LP serves as a bridge between human 
expertise in evaluating complexity of multi-modal knowledge-in-use reflected in the LP levels to 
the language or visual features suitable for training the AI algorithm (LP-based rubrics for AI 
training). This LP-guided approach to AI training [13] helps train AI algorithms to produce 
scores that exhibit validity with respect to constructs being measured. Additionally, the LP 
reflects diverse ways of demonstrating multi-modal knowledge-in-use at various LP levels.  We 
demonstrate how such an LP can serve as a bridge between human expertise in recognizing this 
diversity reflected in LP levels to the language and visual features of student work which are 
used to  train the AI algorithm. Thus, we can develop AI algorithms to capture the diversity of 
student thinking in ways a trained human scorer would. This contributes to creating more 
equitable and inclusive AI-powered learning environments by providing all learners with access 
to personalized feedback grounded in diverse ways of thinking. 

 
Theoretical Framework 

We build on the theoretical framework for LP-guided AI training introduced in Kaldaras, 
Haudek & Krajcik [13]. The framework demonstrates using LPs to guide training for a wide 
range of AI algorithms focused on preparing AI to evaluate complex student reasoning at various 
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levels of sophistication. The framework's utility has been demonstrated in the context of 
analyzing LP-aligned  constructed responses reflecting stand-along scientific explanations [7], 
scientific models [8] and math-science sensemaking [15].  The current study demonstrates using 
the framework to guide training of machine learning (ML) algorithms to evaluate LP-aligned 
multi- modal assessments combining both scientific models (drawings) and short accompanying 
explanations. 

The study builds on a validated NGSS-aligned LP that integrates the DCIs (qualitative 
Coulomb’s law relationships and charge transfer), CCC of cause and effect, and the SEPs of 
developing and using models (M) and constructing explanations of  (E) electrostatic phenomena. 
The LP is shown in Table 1. 
Table 1. NGSS-aligned learning progression for electrical interactions [9-11]. 

Level 3: Scientific models and explanations reflect causal relationships that integrate ideas of 
energy and Coulombic interactions (qualitative, no formula) and charge transfer at the atomic-
molecular level to explain electrostatic phenomena. 

Level 2: Scientific models and explanations represent causal relationships that use but don’t 
integrate (or inaccurately integrate) ideas of energy and/or Coulombic interactions (qualitative) 
and charge transfer at the macroscopic or partially atomic-molecular level to explain 
electrostatic phenomena. 

Level 1: Scientific models and explanations represent partially causal relationships that use 
ideas of Coulombic interactions (qualitative), charge transfer and/or energy with 
inaccurate/incomplete ideas to explain phenomena. 

Level 0: Scientific models and explanations don’t represent causal relationships and use ideas 
of Coulomb’s law (qualitative), charge transfer and/or energy with significantly inaccurate 
and/or incomplete ideas to explain phenomena. 

 
A key step in AI training to evaluate student reasoning lies in designing rubrics that will yield 
high human-machine agreement and allow for meaningful evaluation of the validity of the AI-
based scores to ensure that the AI algorithms capture the same aspects of student responses as a 
trained human scorer would [14]. While it is possible to design meaningful rubrics for evaluating 
various tasks using AI without an available LP, this could considerably diminish the usefulness 
of the resulting scores in terms of providing construct-specific, cognitively appropriate feedback 
that will help students develop a deeper understanding of a construct beyond the specific 
assessment items. LPs and LP-aligned assessments, on the other hand, result in data (student 
responses) that can be meaningfully interpreted in terms of what students can do based on what 
they demonstrate in their responses, and what support and feedback they need to transition to the 
next, and subsequent levels of understanding on multiple modalities. The information that guides 
development of such feedback is reflected in the LP levels that describe what students know and 
should be able to do at various levels of sophistication [3]. LPs therefore represent an 
overarching roadmap that helps organize and tailor feedback on a wider range of items to help 



4 

students develop a deeper understanding of a construct across contexts and assessment scenarios. 
Such feedback, in turn, could support development of transferable knowledge and skills beyond 
specific learning contexts, which is an ultimate goal of any educational system [1-2]. Moreover, 
multi-modal LPs, such as the one used in the current study, reflect a path that students can follow 
to develop knowledge-in-use across multiple modalities. Such LPs can guide feedback 
development on multiple modalities, therefore supporting multi-modal knowledge-in-use 
development. 
 In the current study we demonstrate how the LP shown in Table 1 helps guide 
development of rubrics that yield rich and meaningful sources of data to help us accurately place 
students on an LP level and determine the types of feedback and support they need to help them 
move up the levels in the context of modeling and explaining electrostatic phenomena. The LP 
shown in Table 1 guides development of analytic rubrics for both the model (drawing) and the 
written explanation parts of the assessment item. The same rubric is used for human and ML 
evaluations of student responses.  

The process of LP-guided analytic rubric development for both modalities (modeling and 
explaining) is shown in Figure 1. Specifically, for each LP-aligned assessment task the LP guides 
development of analytic rubric categories that reflect presence or absence of specific ideas 
relevant for capturing student proficiency in the construct described by the LP for a given 
modality. Presence of the corresponding ideas is scored as 1, while absence as a 0. One can 
design as many analytic rubric categories as needed to capture proficiency in a given assessment 
item. Further, the combinations of “0” and “1” scores for all analytic rubric categories reflects 
the overall level of student response with respect to the LP. Each analytic rubric category 
combination can map to a specific LP level. Each combination also reflects specific ideas present 
or absent in a given response, which provides opportunity to tailor feedback to a student's 
specific LP level and the specific information present in student response. Further, analytic 
rubric categories can also be developed to capture specific inaccuracies or incomplete/vague 
ideas present in student responses. Capturing those ideas can help further personalize and tailor 
feedback to diverse ways of thinking. Notice that Figure 1 reflects design of analytic rubric 
categories separately for each modality, which will ensure that students can be supported in 
developing proficiency in each modality separately via modality-specific, personalized feedback 
(step 3 in figure 1). This differentiated feedback has potential to support a well-rounded 
development of multimodal knowledge-in-use. For instance, some students might be better at 
modeling and explaining or vice versa. Providing separate feedback on each modality will ensure 
that students can develop equally high proficiency and get support on modalities that they 
struggle with the most. The Methods section demonstrates how this process was used to develop 
analytic rubrics and evaluate student models and explanations for the assessment item used in 
this study. 
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the model in scenario B compared to A. Finally, student models should show larger repulsive 
force between leaves of the electroscope in scenario B compared to A. Presents of these 
components will indicate student proficiency in using qualitative Coulombic relationships, 
specifically relating the amount of charge on interacting objects to the amount of associated 
electric force between the objects.  
 Figure 2. Electroscope modeling item. 

 
Question: What is different about scenario A and Scenario B? Justify your answer. 
______________________________________________________________________________ 
 Further, to tackle variability in responses and ensure that resulting feedback can be 
tailored to the diversity of student thinking in each modality, it is important to also capture 
potential ideas that do not lead to modeling of phenomena in question in student models and 
explanations. To do this for the modeling modality, we looked at multiple student models and 
identified 3 broad categories reflecting inaccurate and/or incomplete ideas which we 
incorporated into the modeling analytic rubric. These categories are described in Table 2 under 
categories 11-13. Briefly, sometimes student models show both types of charge on some or all 
parts of the model (electroscope sphere, hook, leaves). Category 11 aims to capture this 
perspective. While presence of both charges in an object is not wrong- any object has both types 
of charges present at all times, showing both charges on the model does not necessarily lead to 
explaining the observations in this case. Further, some models show a similar amount of charge 
on some parts of the electroscope in scenario B compared to A, which could indicate that they 
don’t fully understand that there is more charge transferred in B compared to A. Category 12 
aims to capture this inaccuracy. Finally, sometimes students think that the electroscope in part A 
is not charged at all, and they don’t show any charge on the electroscope in part A. Category 13 
aims to capture that inaccuracy. Presence of this category suggests that we potentially need to 
provide students with more information on the scenario in the feedback and remind them that the 
rod in both cases is charged and transfers charge to the electroscope. 
 Further, we developed 8 analytic rubric categories for the explanation part of the 
electroscope item (categories 14-21 in Table 2). Specifically, categories 14 -18 aim to capture 
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accurate ideas that should be present in student responses. Generally, we expect that students will 
relate the amount of charge transferred from the rod in scenarios A and B to the magnitude of the 
repulsive force between the electroscope leaves in their explanations. Categories 14 and 15 
reflect one component of this causal statement: category 14 captures whether students recognize 
that scenario A has more charge than scenario B, while category 15 captures whether students 
recognize that the magnitude of electric force is stronger in B compared to A. Category 16, on 
the other hand, reflects both of these causal statement capturing that students can relate the 
amount of charge to the resulting magnitude of electric force when comparing scenarios A and 
B. Further, categories 17 and 18 capture presence of other important accurate ideas, like charge 
transfer (category 17) and fundamental property of charges (category 18). Like the modeling 
rubric, we wanted to identify common inaccurate or incomplete ideas in student explanations 
(shown as categories 19-21). Specifically, category 19 captures whether students think that the 
electroscope in part A is not charged at all, which is similar to category 13 for the modeling 
modality. Categories 20 and 21 aim to capture incomplete explanations reflected in students 
describing their observations with no use of disciplinary ideas (category 20) or lack of 
comparison between scenarios (category 21). 
Table 2. Analytic rubric for the model and explanation component of the electroscope item. 
Shaded rows indicate analytic categories corresponding to explanation. 

Category Description 
1 Point charge (either + or – ) on the rod in scenario A 
2 Point charge on the metal ball. The charge must be the same type as shown in 

the rod in scenario A. Alternatively, models can show charge transfer from the 
rod to the ball with arrows, and not explicitly show point charges on the ball 
(there should be charges on the rod)  

3 Point charge on the hook of the electroscope. The charge must be the same 
type as shown on the rod in scenario A. Alternatively, models can show charge 
transfer from the ball to the hook/foil leaves with arrows, and not explicitly 
show point charges on the hook (there should be charges on the ball) 

4 Point Charge on the leaves of the electroscope in scenario A. The charge must 
be the same type as shown in the rod in scenario A. 

5 Clearly indicates repulsive Electric force causes leaves to move, by using arrows 
or force representations and pointing in opposite directions between the leaves 
in scenario A  

6 Point charge on the rod in scenario B. The charge must be the same type as 
shown on the rod in scenario A. There must be more point charges on the rod in 
scenario B than in scenario A. 

7 Point charge on the sphere of the dome in scenario B. The charge must be the 
same type as shown on the sphere of the dome in scenario A. There must be 
more point charges on the sphere in scenario B than in scenario A. Alternatively, 
models can show charge transfer from the rod to the ball with arrows, and not 
explicitly show point charges on the ball  
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8 Point charge on the hook of the electroscope in scenario B. The charge must be 
the same type as shown on the hook in scenario A. There must be more point 
charges on the hook in scenario B than in scenario A. Alternatively, models can 
show charge transfer from the ball to the hook with arrows, and not explicitly 
show point charges on the hook 

9 Point Charge on the leaves of the electroscope in scenario B. The charge must 
be the same type as shown in the leaves in scenario A. A. There must be more 
point charges on the leaves in scenario B than in scenario A. 

10 Clearly indicates repulsive Electric force causes leaves to move, by using arrows 
or force representations and pointing in opposite directions between the leaves 
in scenario B.. The repulsive arrows should be bigger or bolder (or both) for 
scenario B than for scenario A.  

11 Model shows both types of charges on one or more parts of the electroscope in 
one or both scenarios. This can be ignored if positive and negative charges are 
not accumulated in specific locations. 

12 Similar amount of charge on one or more parts of the electroscope in scenario 
A and B. This category only applies if they show the same type of charge 
through the entire model. 

13 Either the rod in scenario A is not charged or the whole electroscope are not 
charged in scenario A 

14 States that: 
- rod in scenario B has more charge OR 
- rod in scenario A has less charge OR 
- student can state that scenario A has less charge than Scenario B 

15 States that repulsive electric force or electric field is: 
-stronger  in scenario B than in scenario A 
-weaker in scenario A than in scenario B 

16 Relate the amount of charge to the magnitude of the repulsive electric force in 
both scenarios. States that: 

- Larger amount of charge in scenario B compared to scenario A causes stronger 
repulsive force (or causes the leaves to move apart more) 

- Smaller amount of charge in scenario A compared to scenario B causes weaker 
repulsive force (or causes leaves to move apart less) 

17 States that Rod/parts of the system transfers charge to the foil leaves or any 
part of the electroscope in one or both scenarios. No comparison between 
scenario A and B is necessary for this category 

18 States that similar charges repel 
19 -States that the rod (or any other part of the electroscope) is neutral (not 

charged) in Scenario A but charged in scenario B;  
OR 
-states that the electroscope leaves are neutral in A but charges in B 
OR 
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-States that the charged rod is not transferring any charge to the electroscope 
(metal ball, hook, foil leaves) or foil leaves in scenario A 

20 Description of event only (no causality implied or disciplinary idea used) 
21 Does not develop a comparison response including both scenarios explaining 

why foil leaves mover further away in B compared to A 
 
Table 3 describes alignment analytic rubric combinations for modeling and explanation modality 
at each LP level. In this study, we analyze models and explanations separately and provide an LP 
level assignment for a model and an explanation. Therefore, the corresponding potential 
feedback is provided separately for a model and an explanation. 
Table 3. Analytic rubric Categories combinations alignment with LP levels. 

Level 2: models show charges on almost all electroscope parts (rod, sphere, hook, leaves, 
missing on no more than 2 parts is permissible), more charge transferred from the rod to all 
electroscope parts in scenario B, and a greater repulsive force in scenario B (score of “1” in at 
least 8 of total ten categories (categories 1-10), score of “0” in categories 11-13). Explanations 
provide a causal statement relating the difference in the amount of charge on the rod in both 
scenarios to the amount of charge transferred to the foil leaves and the resulting magnitude of 
the repulsive force (score of “1” for category 16). Additional accurate information is 
permissible (score of “1” in categories 17 and 18), no inaccuracies (score of “0” in categories 
19-21).  

Level 1: models miss more than 2 components (e.g., charge on more than one electroscope 
part, repulsive force indicator etc.) but no more than 4 components (score of “1” in at least 6 of 
total ten categories (categories 1-10)). Explanation only contains one component of the causal 
statement. Inaccuracies in both modalities are permissible (score of “1” on category 14 or 15). 
Inaccuracy categories are permissible for both model (score of “1” on categories 11-13) and 
explanation (score of “1” on categories 19-21). 

Level 0: models show charges on less than 6 components of the model (score of 1 on less than 
6 of the total ten categories (categories 1-10). Explanation is absent or only contains 
inaccuracies (score of “1” on categories 11-13). 

 
Data Sources 
The Electroscope item was administered to 9th-grade students participating in the NGSS-aligned 
curriculum study. Unit 1 focused on ideas related to Coulomb’s law as related to electrical 
interactions. The Electroscope item was administered as part of the Unit 1 pre and post-test and 
student responses from the posttest were used for the analysis reported here.  
Human Scoring 
We coded ~1200 randomly selected student models and accompanying explanations to ensure 
that the rubrics for both modalities were easy to use and applied to a range of responses. The 
rubrics and the coded responses were then reviewed by the researchers in the group. 
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Clarifications of rubric criteria and necessary additions were made to ensure the usability of the 
rubric. Three undergraduates were trained to apply the rubric to student responses. Training was 
done in subsets of several hundred responses and coded independently by coders.  
ML Model Training and Testing 
Modeling Modality 

We used supervised ML, specifically convolutional neural network analysis approach 
with Res-Net18 architecture as feature extraction network [16]. The training data set contained 
884 responses (73 % of the overall data set) and the testing set contained 327 images (27% of the 
dataset). During training, we use the pretrained ResNet-18 (Residual Network) architecture, 
modifying its final fully connected layer to deliver binary output for our classification needs. The 
ResNet-18 architecture, noted for its deep residual learning framework, was employed as our 
feature extraction network [16]. This network, with its depth of layers and residual connections, 
is particularly adept at learning from small datasets, which often pose challenges for deep 
learning models due to the risk of overfitting [16]. To accommodate the input dimensionality and 
maintain consistency with the ResNet architecture, we set d = 512 (feature dimensionality) and 
resized all images to W = H = 224 (pixels). 

Our model was implemented in PyTorch, benefitting from its flexible programming 
environment and efficient computational graph dynamics [17]. Optimization during training was 
conducted using the Adam optimizer, with a learning rate of 1e - 4, balancing the advantages of 
adaptive gradient methods with the need for precision in the weight update process [18]. An 
NVIDIA GeForce GTX 1080Ti graphics card expedited the training process, enabling the 
efficient optimization of the model. Throughout the cross-validation process, we systematically 
assessed and saved the best-performing models according to validation metrics, opting for F1 
score or accuracy based on the dataset's balance.  

We tested multiple data augmentation approaches to ensure best human-machine 
agreement for training and testing stages. A detailed discussion of performance for various 
augmentation approaches has been recently published [19]. In this paper we report results of 
human-machine agreement achieved using the SMOTE augmentation approach which yielded 
the highest agreement over many categories. 
Explanation Modality 

We used a supervised deep learning approach utilizing the Bidirectional Encoder 
Representations from Transformers (BERT) model to classify responses across categories 14 to 
21. Specifically, we used the bert-base-uncased model as the foundation for our feature 
extraction network. The dataset consisted of textual justifications mapped to multiple categories, 
with missing values in both the justification and categorical fields handled by appropriate 
imputation strategies. The training dataset contained an 80-20 split for training and testing 
purposes on 1060 student responses. 

During preprocessing, textual inputs were tokenized using the BERT tokenizer with a 
maximum sequence length of 128 tokens to ensure consistency across input representations. The 
training pipeline involved encoding textual data, which was subsequently passed through the 



11 

BERT model. The textual representations were extracted through the pooler_output layer of 
BERT, which serves as an encoder for the texts. The final classification layers consisted of 
additional dense layers with ReLU activation, followed by a sigmoid-activated output layer to 
accommodate multi-label classification across the eight categories. 

The model was implemented using TensorFlow and trained with the Adam optimizer, 
adopting a learning rate of 2e-5 to balance convergence speed and generalization. To mitigate 
overfitting, we introduced dropout layers with a 30% dropout rate and utilized early stopping 
based on validation loss, ensuring that the optimal model was retained. The model was trained 
for up to 10 epochs with a batch size of 16. 

Results 
Human Scoring 
The coders analyzed student models and explanations separately. Results from independent 
coding on subsets were checked for IRR (Krippendorff, 2004). We used a threshold of 
Krippendorff’s alpha greater than 0.8 between human coders for each analytic category [20]. We 
then checked for human IRR. Categories that showed <0.8 Krippendorf’s alpha between coders 
were discussed by the coders until agreed upon and the rubric was updated. Trained human 
scorers analyzed a total of 1211 modeling and explanation responses from students in 9th grade 
Physical Science classroom. This data set is subsequently used to train the ML model. 
ML Scoring 

Precision, recall, and F1 score are key evaluation metrics used in classification tasks to 
measure the performance of a model. Precision refers to the proportion of correctly predicted 
positive instances out of all instances predicted as positive. It indicates how often the model's 
positive predictions are accurate. Recall (also known as sensitivity) measures the proportion of 
positive instances that the model correctly identifies, showing how well the model captures all 
relevant instances. F1 score is the harmonic mean of precision and recall, providing a balanced 
measure that accounts for both false positives and false negatives [21,22]. We used these 
measures to evaluate the ML model performance for modeling and explanation modalities. 
ML Scoring for Models 

Table 4 shows the final human-machine agreement for each scoring category for the 
training and testing stages. As shown in Table 4, human-machine agreement for all categories for 
the training stage is above 90% accuracy, reflecting very high agreement. Other measures such 
as precision, recall and F-1 score are also above 0.9 indicating very good model performance. 
Further, accuracy for the testing stage is also above 90% accuracy, reflecting very high 
agreement. Other measures such as precision, recall and F-1 score are also above 0.8 for most 
categories indicating good model performance. We note that some of the categories with the 
lowest performance metrics such as F-1 score for the training stage are rubric categories 
associated with inaccuracies - categories 11-13. We also note that these categories have a small 
overall number of positive cases available in the dataset as shown in Table 5. Similarly, a 
somewhat lower performing category (although still within acceptable range)-category 7 also has 
a lower number of positive cases in the dataset as shown in Table 6. Overall, this data suggests 
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that the supervised ML approach accurately detected the model components and critical 
relationships within the model that were outlined in the rubric for training and testing stages. 
Table 4. Human-Machine agreement using CNN algorithm performance with SMOTE 
augmentation for the modeling modality. 

  
Category 

Training Stage (cross validation)   Testing Stage  
accuracy 95% CI precisi

on 
reca

ll 
F1 

score 
  accuracy 95%CI precisi

on 
recal

l 
F1 

score 
C1 0.94 (0.93, 0.94) 0.94 0.94 0.94   0.94 (0.89, 0.99) 0.94 0.92 0.93 
C2 0.96 (0.95, 0.97) 0.96 0.96 0.96   0.97 (0.93, 1.01) 0.95 0.93 0.94 
C3 0.97 (0.96, 0.97) 0.97 0.97 0.97   0.97 (0.93, 1.00) 0.90 0.94 0.93 
C4 0.95 (0.94, 0.95) 0.95 0.95 0.95   0.93 (0.89, 0.98) 0.90 0.90 0.90 
C5 0.96 (0.95, 0.96) 0.95 0.95 0.95   0.96 (0.91, 1.00) 0.94 0.94 0.94 
C6 0.91 (0.90, 0.92) 0.91 0.91 0.91   0.91 (0.87, 0.96) 0.90 0.84 0.87 
C7 0.95 (0.94, 0.95) 0.95 0.95 0.95   0.94 (0.91, 0.97) 0.97 0.64 0.71 
C8 0.95 (0.94, 0.96) 0.96 0.95 0.95   0.94 (0.90, 0.96) 0.79 0.86 0.82 
C9 0.94 (0.93, 0.95) 0.94 0.94 0.94   0.93 (0.89, 0.97) 0.90 0.80 0.84 
C10 0.95 (0,94, 0.96) 0.95 0.95 0.95   0.95 (0.91, 1.00) 0.95 0.90 0.92 
C11 0.93 (0.92, 0.93) 0.93 0.93 0.92   0.91 (0.88, 0.94) 0.65 0.55 0.56 
C12 0.92 (0.91, 0.93) 0.93 0.92 0.92   0.91 (0.87, 0.94) 0.73 0.65 0.68 
C13 0.96 (0.95, 0.96) 0.96 0.96 0.96   0.92 (0.89, 0.96) 0.83 0.72 0.76 
              

Table 5. Percent of positive cases for each 
scoring category for modeling modality. 
ML Scoring for Explanations 

Performance evaluation across 
categories revealed strong human-machine 
agreement, with validation accuracy exceeding 
90% for most categories, as shown in Table 6. 
The highest performance was observed in 
categories 15 and 18, where precision reached 
91.30% and 100%, respectively. However, 
certain categories, such as 17 and 19, exhibited 
lower F1 scores due to class imbalance as 
shown in Table 7 and inherent challenges in 
label consistency. Despite these variations, the 
overall performance suggests that the BERT-
based approach effectively captured key 
relationships in the data and aligned well with 
human scoring patterns. These findings 

highlight the effectiveness of BERT in multi-label classification tasks while also emphasizing the 
need for further refinements in certain categories to enhance recall and balance precision-recall 
trade-offs. However, these results indicate that this rubric is appropriate for evaluating student 

Category Percent of positive cases (%) 

1 33.99 
2 16.43 
3 11.89 
4 19.57 
5 21.30 
6 23.29 
7 11.81 

8 8.92 
9 17.84 
10 20.48 
11 8.92 
12 8.51 
13 8.90 
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explanations on all major accuracy categories (categories 14-16) and potentially inaccuracy 
categories as well. 
Table 6: Human-machine agreement for the ML training stage of models scoring 

 
 
Category 

Testing Stage 

Accuracy (%) Precision (%) Recall (%) F1 score (%) 

C14 91.70 85.29 89.23 87.21 

C15 97.56 91.30 87.50 89.36 

C16 92.19 77.27 85.00 80.95 

C17 93.65 57.14 28.57 38.09 

C18 96.58 100 36.36 53.33 

C19 93.65 50.00 38.46 43.47 

C20 94.63 87.75 89.58 88.65 

C21 90.73 75.00 58.06 65.45 

 
Table 7. Percent of positive cases for each scoring category for explanation modality. 
 
 
Assessment of imbalance 

Category 

 14 15 16 17 18 19 20 21 

Percent positive cases n=1066 33.3 10.7 19.2 8.4 5.0 7.2 23.8 12.4 

 
Examples of Output and Potential Feedback 

We further demonstrate some examples of scored models and accompanying 
explanations and discuss potential feedback that can be tailored to the specific responses and 
modalities based on the scoring and corresponding LP level assignment. 

For example, figure 3 shows the model that is consistent with the highest possible LP 
level for this item- level 2, while the explanation provides a level 1 response. Specifically, notice 
that the model shows all the necessary components, including all the charges and repulsive 
forces on all parts on the electroscope in both scenarios, which is consistent with LP level 2 for 
the modeling modality. On the other hand, the explanation modality only reflects students 
recognizing that there is more charge in scenario B compared to A without relating it to 
magnitude of associated electric force, which is needed to attain LP level 2 on this modality. 
Therefore, the proposed feedback statement acknowledges the accuracy of the model (red text), 
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while providing feedback for explanation (blue text) to help the student attain level 2 on this 
modality by relating the amount of charge to the magnitude of electric force to explain the 
phenomenon in question. 
Figure 3. Sample LP level 2 response and potential feedback. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Further, figure 4 shows a sample response consistent with LP level 1 on both modalities 

with no inaccuracies. Notice that the model misses charge components on the sphere and hook in 
both scenarios, which reflects level 1 on modeling modality. Further, the accompanying 
explanation does not relate the difference in the amount of charge to the difference in magnitude 
of the associated repulsive force- similar to the previous example. Possible feedback addresses 
both of these shortcomings to help the student attain a higher level for both modalities. 

Further, Figure 5 shows an example of a model reflecting level 0 of the LP on both 
modalities. Specifically, the model shows both types of charges on the electroscope, which is 
consistent with inaccuracy category 11, and no accompanying explanation. Notice that the 
feedback for the modeling modality focuses on recognizing that students showed charges on 
their model and pointing out that both types of charges were shown. The feedback also pushes 
students to think about how charges cause differences in observations and show their 
understanding on both modeling and explanation modalities. 
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Figure 4. Sample LP level 3 response and potential feedback. 

 
Figure 5. Sample LP level 0 response containing inaccuracy in modeling and potential feedback. 

 
Further, figure 6 shows an example of a model containing inaccurate ideas: same amount of 
charge on electroscope leaves for the model (category 12). Feedback for the model, shown in 
red, aims to address that inaccuracy. The accompanying explanation is incomplete because it 
does not relate the amount of charge to the magnitude of the associated repulsive force. Feedback 
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for the explanation, shown in blue, aims to help students make that connection. 
Figure 6. Sample response containing inaccuracy in modeling and incomplete response for 
explanation and potential feedback. 

 
These few examples demonstrate how the rubric and the LP-guided approach discussed in this 
study can be used to tailor feedback on explanation and modeling modalities to a wide range of 
student responses reflecting diverse ways of thinking and sophistication. We used this approach 
to design personalized feedback statements for a wide range of models and accompanying 
explanations and plan to pilot these statements with students. 
 

Discussion 
 It is challenging to train AI algorithms to recognize multimodal knowledge-in-use, such 
as that reflected in students’ scientific models and explanations. This is because trained ML 
algorithms should go beyond identifying simple features of a given image, but instead to 
recognize specific aspects that are important for the practice of modeling focusing on evaluating 
causal aspects of scientific models related to explaining phenomena, which is reflective of 
knowledge-in-use. Similarly, trained ML models should recognize relevant components of 
scientific explanations reflecting knowledge-in-use proficiency. This is especially challenging 
when we aim to provide cognitively appropriate feedback tailored to the diversity of student 
knowledge-in-use reflected in these modalities. The reason is that often scientific models at 
various LP levels might look very similar (compare level 2 and level 1 models in figures 3 and 4 
respectively), but in reality, represent qualitatively different levels of understanding. 
Furthermore, the diversity of student ways of modeling and explaining at various levels of 
sophistication often integrates with various inaccurate and /or incomplete ways of thinking (e.g., 
inaccurate model shown in Figures 5 and 6). If ML algorithms are not able to accurately identify 
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these important differences as it relates to student understanding and performance, then we will 
not be able to design accurate and targeted LP-aligned feedback.  This defeats the purpose of 
using ML techniques  to solve one of the central current problems in education- personalizing 
education to individual learners’ needs. It is therefore important to design approaches that 
leverage everything we know about how proficiency in a given construct develops, reflected in a 
LP-based vision, when designing AI-based methods for evaluating student learning. The current 
study demonstrates how an LP can guide ML training to evaluate student thinking on two 
modalities: models and explanations, both of which are crucial for supporting deep science 
understanding. 

The proposed LP-guided ML training process yields results that are meaningful with 
respect to LP levels, provide high human-machine agreement on most cases, and allow 
meaningfully capture the diversity of student thinking on both modalities and tailor formative 
feedback to individual student needs.  

In cases when human-machine agreement is not sufficient, future work will focus on 
providing more examples for ML training to ensure that ML algorithms have sufficient number 
of pre-scored responses to learn to recognize specific features in student models and 
explanations. Notice that insufficient agreement was mostly demonstrated for categories that 
capture inaccuracies (categories 11-13 for modeling and categories 19 and 21 for explanations). 
These categories often have an insufficient number of positive cases or represent highly diverse 
ways which could be characterized in those categories. For example, in the case of modeling 
modality, categories with the lowest F1 score- categories 11 and 12, both of which have few 
responses in the dataset as shown in Table 6. Further, category 12 is very diverse because a 
similar amount of charge can be shown on a wide range of electroscope parts, in both scenarios, 
all of which would classify the model into this category. Similarly, category 11 reflects models 
that show both types of charges, which can also be shown on different parts of the electroscope 
and in both scenarios, making a range of possible responses highly diverse. This is in contrast to 
scoring a “1” in categories 1-10, where there is basically only one possible way of attaining that 
score. Therefore, it is possible that lower human-machine agreement on these categories could 
result from these categories offering a wider range of possible answers that could be classified in 
that category and smaller number of available responses that don’t necessarily reflect this 
diversity. However, additional empirical studies could confirm this suggestion. 
Study’s Significance 

This process of LP-guided AI algorithm training described here (Figure 1) represents a 
transparent and principle-based approach for designing LP-aligned, personalized feedback for 
any constructed response assessments (including scientific models, text-based explanations etc.). 
Defining analytic categories in this manner allows for easy identification of human-machine 
misscores by providing a straightforward way to pinpoint specific analytic rubric categories that 
were misscored. This property has the potential to improve overall validity of the associated AI-
based scoring system. Importantly, this LP-driven approach to AI training allows us to go 
beyond using AI to perform specific tasks (e.g., scoring isolated assessment items) and train AI 
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to guide the learning process in ways that are grounded in relevant cognition theories and foster 
multimodal understanding beyond specific tasks and modalities. 
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