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Introduction

Educational reforms worldwide emphasize fostering knowledge application to support
learning in science, technology, engineering, and mathematics (STEM) at the K-16 level [1-2,
23]. Knowledge application (also termed knowledge-in-use) is reflected in student ability to
integrate relevant content, skills and practices to explain phenomena [2]. Therefore, knowledge-
in-use reflects a complex cognitive construct that integrates multiple cognitive dimensions,
including content and practices [4, 13].

Additionally, there is complexity related to multiple modes of demonstrating knowledge-
in-use. Specifically, the process of doing science is inherently multi-modal with scientists
utilizing drawings, writings and mathematical expressions among other modalities to engage in
scientific practices. Therefore, to foster deep understanding we should support students in using
multiple modalities when explaining phenomena, which is reflective of multi-modal knowledge-
in-use. Thus, fostering deep science understanding calls for supporting knowledge-in-use
development along two main dimensions of complexity: 1) integration of multiple cognitive
dimensions (e.g., content and scientific practices) and 2) demonstrating knowledge-in-use via
multiple modalities (e.g., written explanations, drawings).

Supporting knowledge-in-use requires time and cognitively appropriate feedback and
scaffolding [2, 5, 9-10]. This feedback and scaffolding should support different modalities (e.g.,
text-based explanations and drawings) to ensure that students develop multi-modal knowledge-
in-use and afford engagement of learners from diverse academic, cultural and linguistic
backgrounds to support equitable opportunity to learn [24].

Learning Progressions (LPs) represent cognition models that describe how complex
understanding develops over time [3]. Building learning environments around validated LPs
helps adjust the learning process to the needs of individual diverse learners therefore creating
more equitable learning systems [4]. Moreover, validated LPs that describe multi-modal
knowledge-in-use constructs can guide the design of feedback and scaffolding to support multi-
modal knowledge-in-use. However, evaluating LP-aligned assessments that measure multi-
modal knowledge-in-use is challenging because such assessments should measure student ability
to integrate multiple cognitive dimensions (e.g., disciplinary ideas, scientific practices) at
different levels of sophistication and in multiple modalities (e.g., writing, drawing). This calls for
open-ended assessments that consume resources, i.e., time, to analyze [6]. Therefore, success in
fostering multi-modal knowledge-in-use depends upon our capability to evaluate student
progress on LP-aligned multimodal assessments in a timely way, providing feedback to
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individual students and teachers, and supporting meaningful use of this feedback to improve
learning outcomes.

Offloading these tasks onto artificial intelligence (Al) tools is increasingly feasible given
recent advances in Al. Recent studies show that different approaches to Al can evaluate stand-
alone written explanations [8] and scientific models [7], aligned to an underlying LP describing
knowledge-in-use. These results provide a basis for using Al to evaluate and provide
individualized feedback on LP-aligned assessments. However, the challenge of aligning multiple
modalities for supporting knowledge-in-use in a developmentally appropriate way remains.

This study builds on prior work of leveraging Al to evaluate LP-aligned stand-alone
scientific models and explanations measuring knowledge-in-use. We advance this prior work and
leverage a multi-modal LP for training Al to analyze LP-aligned assessments for delivering
personalized multi-modal LP-aligned feedback. We address the research question (RQ): How
can a validated multi-modal LP guide training of Al-based scoring models for multi-modal
assessments measuring knowledge-in-use? This study uses a validated LP describing knowledge-
in-use of electrical interactions focusing on scientific practices of developing models modeling
and constructing explanations of phenomena [9]. These two practices represent some of the most
common types of modalities used in science education [5].

To answer this RQ we first develop an LP-guided framework for training Al to evaluate
LP-aligned multi-modal assessments measuring knowledge-in-use. We show the framework’s
utility by using the multi-modal LP to guide the Al training process to ensure Al algorithms
capture all the relevant features of the knowledge-in-use construct (e.g., content, practice etc.) in
an integrated fashion at various LP levels. This LP-guided Al training process reflects argument-
based validity' approach [14] because the Al algorithm is trained to capture the same attributes of
knowledge-in-use that a trained human scorer would. The LP serves as a bridge between human
expertise in evaluating complexity of multi-modal knowledge-in-use reflected in the LP levels to
the language or visual features suitable for training the Al algorithm (LP-based rubrics for Al
training). This LP-guided approach to Al training [13] helps train Al algorithms to produce
scores that exhibit validity with respect to constructs being measured. Additionally, the LP
reflects diverse ways of demonstrating multi-modal knowledge-in-use at various LP levels. We
demonstrate how such an LP can serve as a bridge between human expertise in recognizing this
diversity reflected in LP levels to the language and visual features of student work which are
used to train the Al algorithm. Thus, we can develop Al algorithms to capture the diversity of
student thinking in ways a trained human scorer would. This contributes to creating more
equitable and inclusive Al-powered learning environments by providing all learners with access
to personalized feedback grounded in diverse ways of thinking.

Theoretical Framework
We build on the theoretical framework for LP-guided Al training introduced in Kaldaras,
Haudek & Krajcik [13]. The framework demonstrates using LPs to guide training for a wide
range of Al algorithms focused on preparing Al to evaluate complex student reasoning at various



levels of sophistication. The framework's utility has been demonstrated in the context of
analyzing LP-aligned constructed responses reflecting stand-along scientific explanations [7],
scientific models [8] and math-science sensemaking [15]. The current study demonstrates using
the framework to guide training of machine learning (ML) algorithms to evaluate LP-aligned
multi- modal assessments combining both scientific models (drawings) and short accompanying
explanations.

The study builds on a validated NGSS-aligned LP that integrates the DCIs (qualitative
Coulomb’s law relationships and charge transfer), CCC of cause and effect, and the SEPs of
developing and using models (M) and constructing explanations of (E) electrostatic phenomena.
The LP is shown in Table 1.

Table 1. NGSS-aligned learning progression for electrical interactions [9-11].

Level 3: Scientific models and explanations reflect causal relationships that integrate ideas of
energy and Coulombic interactions (qualitative, no formula) and charge transfer at the atomic-
molecular level to explain electrostatic phenomena.

Level 2: Scientific models and explanations represent causal relationships that use but don’t
integrate (or inaccurately integrate) ideas of energy and/or Coulombic interactions (qualitative)
and charge transfer at the macroscopic or partially atomic-molecular level to explain
electrostatic phenomena.

Level 1: Scientific models and explanations represent partially causal relationships that use
ideas of Coulombic interactions (qualitative), charge transfer and/or energy with
inaccurate/incomplete ideas to explain phenomena.

Level 0: Scientific models and explanations don’t represent causal relationships and use ideas
of Coulomb’s law (qualitative), charge transfer and/or energy with significantly inaccurate
and/or incomplete ideas to explain phenomena.

A key step in Al training to evaluate student reasoning lies in designing rubrics that will yield
high human-machine agreement and allow for meaningful evaluation of the validity of the Al-
based scores to ensure that the Al algorithms capture the same aspects of student responses as a
trained human scorer would [14]. While it is possible to design meaningful rubrics for evaluating
various tasks using Al without an available LP, this could considerably diminish the usefulness
of the resulting scores in terms of providing construct-specific, cognitively appropriate feedback
that will help students develop a deeper understanding of a construct beyond the specific
assessment items. LPs and LP-aligned assessments, on the other hand, result in data (student
responses) that can be meaningfully interpreted in terms of what students can do based on what
they demonstrate in their responses, and what support and feedback they need to transition to the
next, and subsequent levels of understanding on multiple modalities. The information that guides
development of such feedback is reflected in the LP levels that describe what students know and
should be able to do at various levels of sophistication [3]. LPs therefore represent an
overarching roadmap that helps organize and tailor feedback on a wider range of items to help



students develop a deeper understanding of a construct across contexts and assessment scenarios.
Such feedback, in turn, could support development of transferable knowledge and skills beyond
specific learning contexts, which is an ultimate goal of any educational system [1-2]. Moreover,
multi-modal LPs, such as the one used in the current study, reflect a path that students can follow
to develop knowledge-in-use across multiple modalities. Such LPs can guide feedback
development on multiple modalities, therefore supporting multi-modal knowledge-in-use
development.

In the current study we demonstrate how the LP shown in Table 1 helps guide
development of rubrics that yield rich and meaningful sources of data to help us accurately place
students on an LP level and determine the types of feedback and support they need to help them
move up the levels in the context of modeling and explaining electrostatic phenomena. The LP
shown in Table 1 guides development of analytic rubrics for both the model (drawing) and the
written explanation parts of the assessment item. The same rubric is used for human and ML
evaluations of student responses.

The process of LP-guided analytic rubric development for both modalities (modeling and
explaining) is shown in Figure 1. Specifically, for each LP-aligned assessment task the LP guides
development of analytic rubric categories that reflect presence or absence of specific ideas
relevant for capturing student proficiency in the construct described by the LP for a given
modality. Presence of the corresponding ideas is scored as 1, while absence as a 0. One can
design as many analytic rubric categories as needed to capture proficiency in a given assessment
item. Further, the combinations of “0” and “1” scores for all analytic rubric categories reflects
the overall level of student response with respect to the LP. Each analytic rubric category
combination can map to a specific LP level. Each combination also reflects specific ideas present
or absent in a given response, which provides opportunity to tailor feedback to a student's
specific LP level and the specific information present in student response. Further, analytic
rubric categories can also be developed to capture specific inaccuracies or incomplete/vague
ideas present in student responses. Capturing those ideas can help further personalize and tailor
feedback to diverse ways of thinking. Notice that Figure 1 reflects design of analytic rubric
categories separately for each modality, which will ensure that students can be supported in
developing proficiency in each modality separately via modality-specific, personalized feedback
(step 3 in figure 1). This differentiated feedback has potential to support a well-rounded
development of multimodal knowledge-in-use. For instance, some students might be better at
modeling and explaining or vice versa. Providing separate feedback on each modality will ensure
that students can develop equally high proficiency and get support on modalities that they
struggle with the most. The Methods section demonstrates how this process was used to develop
analytic rubrics and evaluate student models and explanations for the assessment item used in
this study.



Figure 1. LP-guided analytic rubric development for human and automatic scoring for
explanation and modeling modalities.
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Methods
Analytic Rubric Development for Modeling and Explanation Modalities

We begin with a previously developed item (Figure 2) aligned to LP levels 0-2 (Table 1).
The item asks students to develop a model to describe the following observations: electroscope
leaves moving a little bit when the charged rod touches the metal ball in scenario A, compared to
leaves moving a lot in scenario B when a different charged rod touches the metal ball. Students'
models are supposed to show more charge being transferred from the rod to all parts of the
electroscope in scenario B compared to A, which would indicate that the rod in scenario B has
more charge than in A.

The item focuses on ideas of qualitative Coulombic interactions and charge transfer only,
without assessing student understanding of energy. The item models interactions between the
electroscope parts and a charged rod. The analytic rubric allows to identify presence and absence
of essential components of models and explanations therefore permitting developing LP-aligned,
feedback tailored to specific student responses for both modalities. The analytic rubric for
models and explanations is shown in Table 2.

The modeling rubric contained a total of 13 analytic categories, ten of which reflect
accurate components of models that should be present in student responses (categories 1-10 in
Table 2). The final LP level assignment reflects student proficiency in developing a causal model
explaining the difference between scenario A and B using qualitative Coulomb’s law
relationships (more charge is associated with larger magnitude of electric force) and charge
transfer. To do this, we specified the necessary model components, the relationships between
them and the connection to the phenomenon. Briefly, a complete and accurate model should
include point charges on all parts of the electroscope (sphere, hook, leaves) as well as the rod.
Presence of these model components will indicate student proficiency in using ideas of charge
transfer to model how neutral objects (electroscope in this case) become charged through contact
with charged objects (rod in this case). In addition, there should be more charge on all parts of



the model in scenario B compared to A. Finally, student models should show larger repulsive
force between leaves of the electroscope in scenario B compared to A. Presents of these
components will indicate student proficiency in using qualitative Coulombic relationships,
specifically relating the amount of charge on interacting objects to the amount of associated
electric force between the objects.
Figure 2. Electroscope modeling item.

Scenario A below shows a diagram of what

occurred in the video when a charged rod
touched the ball.

In Scenario B, a rod touches the ball and
makes the leaves move much further apart.

: Scenario B
Scenario A
" -
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Question: What is different about scenario A and Scenario B? Justify your answer.

Further, to tackle variability in responses and ensure that resulting feedback can be
tailored to the diversity of student thinking in each modality, it is important to also capture
potential ideas that do not lead to modeling of phenomena in question in student models and
explanations. To do this for the modeling modality, we looked at multiple student models and
identified 3 broad categories reflecting inaccurate and/or incomplete ideas which we
incorporated into the modeling analytic rubric. These categories are described in Table 2 under
categories 11-13. Briefly, sometimes student models show both types of charge on some or all
parts of the model (electroscope sphere, hook, leaves). Category 11 aims to capture this
perspective. While presence of both charges in an object is not wrong- any object has both types
of charges present at all times, showing both charges on the model does not necessarily lead to
explaining the observations in this case. Further, some models show a similar amount of charge
on some parts of the electroscope in scenario B compared to A, which could indicate that they
don’t fully understand that there is more charge transferred in B compared to A. Category 12
aims to capture this inaccuracy. Finally, sometimes students think that the electroscope in part A
is not charged at all, and they don’t show any charge on the electroscope in part A. Category 13
aims to capture that inaccuracy. Presence of this category suggests that we potentially need to
provide students with more information on the scenario in the feedback and remind them that the
rod in both cases is charged and transfers charge to the electroscope.

Further, we developed 8 analytic rubric categories for the explanation part of the
electroscope item (categories 14-21 in Table 2). Specifically, categories 14 -18 aim to capture



accurate ideas that should be present in student responses. Generally, we expect that students will
relate the amount of charge transferred from the rod in scenarios A and B to the magnitude of the
repulsive force between the electroscope leaves in their explanations. Categories 14 and 15
reflect one component of this causal statement: category 14 captures whether students recognize
that scenario A has more charge than scenario B, while category 15 captures whether students
recognize that the magnitude of electric force is stronger in B compared to A. Category 16, on
the other hand, reflects both of these causal statement capturing that students can relate the
amount of charge to the resulting magnitude of electric force when comparing scenarios A and
B. Further, categories 17 and 18 capture presence of other important accurate ideas, like charge
transfer (category 17) and fundamental property of charges (category 18). Like the modeling
rubric, we wanted to identify common inaccurate or incomplete ideas in student explanations
(shown as categories 19-21). Specifically, category 19 captures whether students think that the
electroscope in part A is not charged at all, which is similar to category 13 for the modeling
modality. Categories 20 and 21 aim to capture incomplete explanations reflected in students
describing their observations with no use of disciplinary ideas (category 20) or lack of
comparison between scenarios (category 21).

Table 2. Analytic rubric for the model and explanation component of the electroscope item.
Shaded rows indicate analytic categories corresponding to explanation.

Category Description
1 Point charge (either + or — ) on the rod in scenario A
2 Point charge on the metal ball. The charge must be the same type as shown in

the rod in scenario A. Alternatively, models can show charge transfer from the
rod to the ball with arrows, and not explicitly show point charges on the ball
(there should be charges on the rod)

3 Point charge on the hook of the electroscope. The charge must be the same
type as shown on the rod in scenario A. Alternatively, models can show charge
transfer from the ball to the hook/foil leaves with arrows, and not explicitly
show point charges on the hook (there should be charges on the ball)

4 Point Charge on the leaves of the electroscope in scenario A. The charge must
be the same type as shown in the rod in scenario A.

5 Clearly indicates repulsive Electric force causes leaves to move, by using arrows
or force representations and pointing in opposite directions between the leaves
in scenario A

6 Point charge on the rod in scenario B. The charge must be the same type as

shown on the rod in scenario A. There must be more point charges on the rod in
scenario B than in scenario A.

7 Point charge on the sphere of the dome in scenario B. The charge must be the
same type as shown on the sphere of the dome in scenario A. There must be
more point charges on the sphere in scenario B than in scenario A. Alternatively,
models can show charge transfer from the rod to the ball with arrows, and not
explicitly show point charges on the ball




Point charge on the hook of the electroscope in scenario B. The charge must be
the same type as shown on the hook in scenario A. There must be more point
charges on the hook in scenario B than in scenario A. Alternatively, models can
show charge transfer from the ball to the hook with arrows, and not explicitly
show point charges on the hook

Point Charge on the leaves of the electroscope in scenario B. The charge must
be the same type as shown in the leaves in scenario A. A. There must be more
point charges on the leaves in scenario B than in scenario A.

10

Clearly indicates repulsive Electric force causes leaves to move, by using arrows
or force representations and pointing in opposite directions between the leaves
in scenario B.. The repulsive arrows should be bigger or bolder (or both) for
scenario B than for scenario A.

11

Model shows both types of charges on one or more parts of the electroscope in
one or both scenarios. This can be ignored if positive and negative charges are
not accumulated in specific locations.

12

Similar amount of charge on one or more parts of the electroscope in scenario
A and B. This category only applies if they show the same type of charge
through the entire model.

13

Either the rod in scenario A is not charged or the whole electroscope are not
charged in scenario A

14

States that:

- rod in scenario B has more charge OR

- rod in scenario A has less charge OR

- student can state that scenario A has less charge than Scenario B

15

States that repulsive electric force or electric field is:
-stronger in scenario B than in scenario A
-weaker in scenario A than in scenario B

16

Relate the amount of charge to the magnitude of the repulsive electric force in
both scenarios. States that:
Larger amount of charge in scenario B compared to scenario A causes stronger
repulsive force (or causes the leaves to move apart more)
Smaller amount of charge in scenario A compared to scenario B causes weaker
repulsive force (or causes leaves to move apart less)

17

States that Rod/parts of the system transfers charge to the foil leaves or any
part of the electroscope in one or both scenarios. No comparison between
scenario A and B is necessary for this category

18

States that similar charges repel

19

-States that the rod (or any other part of the electroscope) is neutral (not
charged) in Scenario A but charged in scenario B;

OR

-states that the electroscope leaves are neutral in A but charges in B

OR




-States that the charged rod is not transferring any charge to the electroscope
(metal ball, hook, foil leaves) or foil leaves in scenario A

20 Description of event only (no causality implied or disciplinary idea used)

21 Does not develop a comparison response including both scenarios explaining
why foil leaves mover further away in B compared to A

Table 3 describes alignment analytic rubric combinations for modeling and explanation modality
at each LP level. In this study, we analyze models and explanations separately and provide an LP
level assignment for a model and an explanation. Therefore, the corresponding potential
feedback is provided separately for a model and an explanation.

Table 3. Analytic rubric Categories combinations alignment with LP levels.

Level 2: models show charges on almost all electroscope parts (rod, sphere, hook, leaves,
missing on no more than 2 parts is permissible), more charge transferred from the rod to all
electroscope parts in scenario B, and a greater repulsive force in scenario B (score of “1” in at
least 8 of total ten categories (categories 1-10), score of “0” in categories 11-13). Explanations
provide a causal statement relating the difference in the amount of charge on the rod in both
scenarios to the amount of charge transferred to the foil leaves and the resulting magnitude of
the repulsive force (score of “1” for category 16). Additional accurate information is
permissible (score of “1” in categories 17 and 18), no inaccuracies (score of “0” in categories
19-21).

Level 1: models miss more than 2 components (e.g., charge on more than one electroscope
part, repulsive force indicator etc.) but no more than 4 components (score of “1” in at least 6 of
total ten categories (categories 1-10)). Explanation only contains one component of the causal
statement. Inaccuracies in both modalities are permissible (score of “1” on category 14 or 15).
Inaccuracy categories are permissible for both model (score of “1” on categories 11-13) and
explanation (score of “1” on categories 19-21).

Level 0: models show charges on less than 6 components of the model (score of 1 on less than
6 of the total ten categories (categories 1-10). Explanation is absent or only contains
inaccuracies (score of “1” on categories 11-13).

Data Sources

The Electroscope item was administered to 9th-grade students participating in the NGSS-aligned
curriculum study. Unit 1 focused on ideas related to Coulomb’s law as related to electrical
interactions. The Electroscope item was administered as part of the Unit 1 pre and post-test and
student responses from the posttest were used for the analysis reported here.

Human Scoring

We coded ~1200 randomly selected student models and accompanying explanations to ensure
that the rubrics for both modalities were easy to use and applied to a range of responses. The
rubrics and the coded responses were then reviewed by the researchers in the group.



10

Clarifications of rubric criteria and necessary additions were made to ensure the usability of the
rubric. Three undergraduates were trained to apply the rubric to student responses. Training was
done in subsets of several hundred responses and coded independently by coders.
ML Model Training and Testing
Modeling Modality

We used supervised ML, specifically convolutional neural network analysis approach
with Res-Net18 architecture as feature extraction network [16]. The training data set contained
884 responses (73 % of the overall data set) and the testing set contained 327 images (27% of the
dataset). During training, we use the pretrained ResNet-18 (Residual Network) architecture,
modifying its final fully connected layer to deliver binary output for our classification needs. The
ResNet-18 architecture, noted for its deep residual learning framework, was employed as our
feature extraction network [16]. This network, with its depth of layers and residual connections,
is particularly adept at learning from small datasets, which often pose challenges for deep

learning models due to the risk of overfitting [16]. To accommodate the input dimensionality and
maintain consistency with the ResNet architecture, we set d = 512 (feature dimensionality) and
resized all images to W= H = 224 (pixels).

Our model was implemented in PyTorch, benefitting from its flexible programming
environment and efficient computational graph dynamics [17]. Optimization during training was
conducted using the Adam optimizer, with a learning rate of le - 4, balancing the advantages of
adaptive gradient methods with the need for precision in the weight update process [18]. An
NVIDIA GeForce GTX 1080Ti graphics card expedited the training process, enabling the
efficient optimization of the model. Throughout the cross-validation process, we systematically
assessed and saved the best-performing models according to validation metrics, opting for F1
score or accuracy based on the dataset's balance.

We tested multiple data augmentation approaches to ensure best human-machine
agreement for training and testing stages. A detailed discussion of performance for various
augmentation approaches has been recently published [19]. In this paper we report results of
human-machine agreement achieved using the SMOTE augmentation approach which yielded
the highest agreement over many categories.

Explanation Modality

We used a supervised deep learning approach utilizing the Bidirectional Encoder
Representations from Transformers (BERT) model to classify responses across categories 14 to
21. Specifically, we used the bert-base-uncased model as the foundation for our feature
extraction network. The dataset consisted of textual justifications mapped to multiple categories,
with missing values in both the justification and categorical fields handled by appropriate
imputation strategies. The training dataset contained an 80-20 split for training and testing
purposes on 1060 student responses.

During preprocessing, textual inputs were tokenized using the BERT tokenizer with a
maximum sequence length of 128 tokens to ensure consistency across input representations. The
training pipeline involved encoding textual data, which was subsequently passed through the
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BERT model. The textual representations were extracted through the pooler output layer of
BERT, which serves as an encoder for the texts. The final classification layers consisted of
additional dense layers with ReLU activation, followed by a sigmoid-activated output layer to
accommodate multi-label classification across the eight categories.

The model was implemented using TensorFlow and trained with the Adam optimizer,
adopting a learning rate of 2e-5 to balance convergence speed and generalization. To mitigate
overfitting, we introduced dropout layers with a 30% dropout rate and utilized early stopping
based on validation loss, ensuring that the optimal model was retained. The model was trained
for up to 10 epochs with a batch size of 16.

Results
Human Scoring
The coders analyzed student models and explanations separately. Results from independent
coding on subsets were checked for IRR (Krippendorftf, 2004). We used a threshold of
Krippendorff’s alpha greater than 0.8 between human coders for each analytic category [20]. We
then checked for human IRR. Categories that showed <0.8 Krippendorf’s alpha between coders
were discussed by the coders until agreed upon and the rubric was updated. Trained human
scorers analyzed a total of 1211 modeling and explanation responses from students in 9th grade
Physical Science classroom. This data set is subsequently used to train the ML model.
ML Scoring

Precision, recall, and F1 score are key evaluation metrics used in classification tasks to
measure the performance of a model. Precision refers to the proportion of correctly predicted
positive instances out of all instances predicted as positive. It indicates how often the model's
positive predictions are accurate. Recall (also known as sensitivity) measures the proportion of
positive instances that the model correctly identifies, showing how well the model captures all
relevant instances. F1 score is the harmonic mean of precision and recall, providing a balanced
measure that accounts for both false positives and false negatives [21,22]. We used these
measures to evaluate the ML model performance for modeling and explanation modalities.

ML Scoring for Models
Table 4 shows the final human-machine agreement for each scoring category for the

training and testing stages. As shown in Table 4, human-machine agreement for all categories for
the training stage is above 90% accuracy, reflecting very high agreement. Other measures such
as precision, recall and F-1 score are also above 0.9 indicating very good model performance.
Further, accuracy for the testing stage is also above 90% accuracy, reflecting very high
agreement. Other measures such as precision, recall and F-1 score are also above 0.8 for most
categories indicating good model performance. We note that some of the categories with the
lowest performance metrics such as F-1 score for the training stage are rubric categories
associated with inaccuracies - categories 11-13. We also note that these categories have a small
overall number of positive cases available in the dataset as shown in Table 5. Similarly, a
somewhat lower performing category (although still within acceptable range)-category 7 also has
a lower number of positive cases in the dataset as shown in Table 6. Overall, this data suggests
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that the supervised ML approach accurately detected the model components and critical
relationships within the model that were outlined in the rubric for training and testing stages.

Table 4. Human-Machine agreement using CNN algorithm performance with SMOTE
augmentation for the modeling modality.

Training Stage (cross validation) Testing Stage
Category accuracy 95% CI precisi  reca F1 accuracy 95%CI  precisi  recal F1
on 11 score on 1 score
Cl 0.94 (0.93,0.94) 094 0.94 0.94 0.94 (0.89,0.99) 0.94 0.92 0093
C2 0.96 (0.95,0.97) 0.96 0.96 0.96 0.97 (0.93,1.01) 0.95 0.93 094
C3 0.97 (0.96,0.97) 0.97 0.97 0.97 0.97 (0.93,1.00) 0.90 094 0093
C4 0.95 (0.94,0.95) 0.95 0.95 0.95 0.93 (0.89,0.98) 0.90 0.90 0.90
G5 0.96 (0.95,0.96) 0.95 0.95 0.95 0.96 (0.91,1.00) 0.94 0.94 094
Co 0.91 (0.90,0.92) 0.91 091 091 091 (0.87,0.96) 0.90 0.84 0.87
C7 0.95 (0.94,0.95) 0.95 0.95 0.95 0.94 (0.91,0.97) 0.97 0.64 0.71
C8 0.95 (0.94,0.96) 0.96 0.95 0.95 0.94 (0.90,0.96) 0.79 0.86 0.82
C9 0.94 (0.93,0.95) 094 0.94 0.94 0.93 (0.89,0.97) 0.90 0.80 0.84
C10 0.95 (0,94, 0.96) 0.95 0.95 0.95 0.95 (0.91,1.00) 0.95 0.90 0.92
Cl1 0.93 (0.92,0.93) 0.93 0.93 0.92 091 (0.88,0.94) 0.65 0.55 0.56
Ci12 0.92 (0.91,0.93) 0.93 0.92 0.92 091 (0.87,0.94) 0.73 0.65 0.68
C13 0.96 (0.95,0.96) 0.96 0.96 0.96 0.92 (0.89,0.96) 0.83 0.72  0.76

Table 5. Percent of positive cases for each

Category | Percent of positive cases (%) scoring cgtegor v for m od‘elz’ng modality.
ML Scoring for Explanations
1 33.99 Performance evaluation across
2 16.43 categories revealed strong human-machine
3 11.89 agreement, with validation accuracy exceeding
4 19.57 90% for most categories, as shown in Table 6.
5 21.30 The highest performance was observed in
6 23.29 categories 15 and 18, where precision reached
7 11.81 91.30% and 100%, respectively. However,
8 8.92 certain categories, such as 17 and 19, exhibited
9 17.84 lower F1 scores due to class imbalance as
shown in Table 7 and inherent challenges in
10 20.48 : : .
label consistency. Despite these variations, the
1 8.92 overall performance suggests that the BERT-
g 23(1) based approach effectively captured key

relationships in the data and aligned well with
human scoring patterns. These findings
highlight the effectiveness of BERT in multi-label classification tasks while also emphasizing the
need for further refinements in certain categories to enhance recall and balance precision-recall
trade-offs. However, these results indicate that this rubric is appropriate for evaluating student



explanations on all major accuracy categories (categories 14-16) and potentially inaccuracy

categories as well.

Table 6: Human-machine agreement for the ML training stage of models scoring

13

Testing Stage
Category Accuracy (%) Precision (%) Recall (%) F1 score (%)
Cl14 91.70 85.29 89.23 87.21
C15 97.56 91.30 87.50 89.36
Cle 92.19 77.27 85.00 80.95
C17 93.65 57.14 28.57 38.09
C18 96.58 100 36.36 53.33
C19 93.65 50.00 38.46 43.47
C20 94.63 87.75 89.58 88.65
C21 90.73 75.00 58.06 65.45

Table 7. Percent of positive cases for each scoring category for explanation modality.

Category
Assessment of imbalance 14 | 15 16 | 17 18 19 20 21
Percent positive cases n=1066 333 (1071192 84 50 | 72 | 238|124

Examples of Output and Potential Feedback

We further demonstrate some examples of scored models and accompanying
explanations and discuss potential feedback that can be tailored to the specific responses and
modalities based on the scoring and corresponding LP level assignment.

For example, figure 3 shows the model that is consistent with the highest possible LP
level for this item- level 2, while the explanation provides a level 1 response. Specifically, notice
that the model shows all the necessary components, including all the charges and repulsive
forces on all parts on the electroscope in both scenarios, which is consistent with LP level 2 for
the modeling modality. On the other hand, the explanation modality only reflects students
recognizing that there is more charge in scenario B compared to A without relating it to
magnitude of associated electric force, which is needed to attain LP level 2 on this modality.
Therefore, the proposed feedback statement acknowledges the accuracy of the model (red text),
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while providing feedback for explanation (blue text) to help the student attain level 2 on this
modality by relating the amount of charge to the magnitude of electric force to explain the
phenomenon in question.
Figure 3. Sample LP level 2 response and potential feedback.

Explanation: In scenario B, the rod

Category 1 (rod) =1 SEE ., ™™ has more charge and can transfer
Category 2 (sphere) =1 [ more as well while in scenario A, the
Category 3 (hook) =1 .
Category 4 (leaves) = 1 R amount is reduced.
Category 5 (repulsive force) =1 Category 14-1
CICICNC) e) Y Scenario B Category 15- 0
Category 6 (rod) =1 ¢ Category 16-0
Category 7 (sphere) = 1 e Category 17-0
Category 8 (hook) =1 e Category 18-0
Category 9 (leaves) = 1 Category 19-0
Category 10 (repulsive force) = 1 Category 20-0

Category 21-0
Category 11-13: 0

Model: Level 2 (maximum possible) Explanation: Level 1

Possible feedback: your model accurately describes how the difference in the amount of
charge on the rod in scenario B compared to A affects the observations. Make sure your
explanation describes why bigger charge on the rod in scenario B causes the leaves in
scenario B to move further apart.

Further, figure 4 shows a sample response consistent with LP level 1 on both modalities
with no inaccuracies. Notice that the model misses charge components on the sphere and hook in
both scenarios, which reflects level 1 on modeling modality. Further, the accompanying
explanation does not relate the difference in the amount of charge to the difference in magnitude
of the associated repulsive force- similar to the previous example. Possible feedback addresses
both of these shortcomings to help the student attain a higher level for both modalities.

Further, Figure 5 shows an example of a model reflecting level 0 of the LP on both
modalities. Specifically, the model shows both types of charges on the electroscope, which is
consistent with inaccuracy category 11, and no accompanying explanation. Notice that the
feedback for the modeling modality focuses on recognizing that students showed charges on
their model and pointing out that both types of charges were shown. The feedback also pushes
students to think about how charges cause differences in observations and show their
understanding on both modeling and explanation modalities.



15

Figure 4. Sample LP level 3 response and potential feedback.

Example 1
_ Explanation: The charged rod in Scenario B
@ ! senateA  has a bigger charge than the rod in
gategory;((m:) =)1 . ﬁ Scenario A.
ategory 2 (sphere) = N
Category 3 (hook) = 0 % Category 14-1
Category 4 (leaves) = 1 35 Category 15-0
Category 5 (repulsive force) =1 Category 16-0
EES) @\;)@ - Scenario B Category 17-0
Category 6 (rod) =1 £ Category 18-0
Category 7 (sphere) =0 @ Category 19-0
Category 8 (hook) =0 A
Category 9 (leaves) = 1 AN Category 20-0
Category 10 (repulsive force) = 1 Category 21-0
Category 11-13: 0
Model: Level 1 Explanation: Level 1

Possible Feedback: Your model accurately shows difference in the amount of charge between scenarios A
and B. Make sure your model also demonstrates how the charged particles move from the rod to the leaves of
the electroscope in both scenarios. Your justification accurately notes the difference in the amount of charge
in scenarios A and B. Make sure your justification clearly explains how the difference in the amount of charge in
scenario A and B relate to leaves moving further apart in B compared to A.

Figure 5. Sample LP level 0 response containing inaccuracy in modeling and potential feedback.

Categories 1-10: 0 ( @ ScenarloA Explanation: none

Category 11: 1
Category 12: 0 T Categories 14-21: 0
Category 13: 0 6

@ ' Scenario B

Model: LP level 0 Explanation: LP level 0

Possible Feedback: your model in scenario B shows that more charge could result in leaves spreading apart more.
Your model also shows both types of charges (+ and -). Do positive and negative charges BOTH affect motion of the
electroscope leaves in scenarios A and B to cause difference in observations? Please revise your model. Please
provide a brief explanation of your proposed mode. Make sure your explanation includes how the charges affect the
electroscope leaves in both scenarios to cause the difference in observations.

Further, figure 6 shows an example of a model containing inaccurate ideas: same amount of
charge on electroscope leaves for the model (category 12). Feedback for the model, shown in
red, aims to address that inaccuracy. The accompanying explanation is incomplete because it
does not relate the amount of charge to the magnitude of the associated repulsive force. Feedback
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for the explanation, shown in blue, aims to help students make that connection.
Figure 6. Sample response containing inaccuracy in modeling and incomplete response for
explanation and potential feedback.

£ Scenario A

=
Category 1: 1 p Explanation: the rod in scenario B has
Category 2: 0 ? more charge than in scenario A.
Category 3: 0
Category 4: 0 P\ Categories 14: 1
Category 5: 0 & & Categories 15: 0
Category 6: 1 Categories 16: 0
Category 7: 0 Categories 17: 0
Category 8: 0 ] Categories 18: 0
Category 9: 0 cran S—— Categor!es 19f 0
Category 10: 0 Categories 20: 0
0

Category 13: 0

Category 11: 0 Categories 21:
Category 12: 1 Q
~J
+ +

Model: LP level 0 Explanation: LP level 1

Possible Feedback: Your model accurately shows difference in the amount of charge on the rod between scenarios
A and B. However, your model shows the same amount of charge on the leaves of the electroscope in both
scenarios. How does the difference in the amount of charge on each part of the electroscope (sphere, hook leaves)
cause difference in the motion of leaves in both scenarios? Your justification accurately notes the difference in the
amount of charge in scenarios A and B. Make sure your justification clearly explains how the difference in the amount
of charge in scenario A and B relate to leaves moving further apart in B compared to A.

These few examples demonstrate how the rubric and the LP-guided approach discussed in this
study can be used to tailor feedback on explanation and modeling modalities to a wide range of
student responses reflecting diverse ways of thinking and sophistication. We used this approach
to design personalized feedback statements for a wide range of models and accompanying

explanations and plan to pilot these statements with students.

Discussion

It is challenging to train Al algorithms to recognize multimodal knowledge-in-use, such
as that reflected in students’ scientific models and explanations. This is because trained ML
algorithms should go beyond identifying simple features of a given image, but instead to
recognize specific aspects that are important for the practice of modeling focusing on evaluating
causal aspects of scientific models related to explaining phenomena, which is reflective of
knowledge-in-use. Similarly, trained ML models should recognize relevant components of
scientific explanations reflecting knowledge-in-use proficiency. This is especially challenging
when we aim to provide cognitively appropriate feedback tailored to the diversity of student
knowledge-in-use reflected in these modalities. The reason is that often scientific models at
various LP levels might look very similar (compare level 2 and level 1 models in figures 3 and 4
respectively), but in reality, represent qualitatively different levels of understanding.
Furthermore, the diversity of student ways of modeling and explaining at various levels of
sophistication often integrates with various inaccurate and /or incomplete ways of thinking (e.g.,
inaccurate model shown in Figures 5 and 6). If ML algorithms are not able to accurately identify
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these important differences as it relates to student understanding and performance, then we will
not be able to design accurate and targeted LP-aligned feedback. This defeats the purpose of
using ML techniques to solve one of the central current problems in education- personalizing
education to individual learners’ needs. It is therefore important to design approaches that
leverage everything we know about how proficiency in a given construct develops, reflected in a
LP-based vision, when designing Al-based methods for evaluating student learning. The current
study demonstrates how an LP can guide ML training to evaluate student thinking on two
modalities: models and explanations, both of which are crucial for supporting deep science
understanding.

The proposed LP-guided ML training process yields results that are meaningful with
respect to LP levels, provide high human-machine agreement on most cases, and allow
meaningfully capture the diversity of student thinking on both modalities and tailor formative
feedback to individual student needs.

In cases when human-machine agreement is not sufficient, future work will focus on
providing more examples for ML training to ensure that ML algorithms have sufficient number
of pre-scored responses to learn to recognize specific features in student models and
explanations. Notice that insufficient agreement was mostly demonstrated for categories that
capture inaccuracies (categories 11-13 for modeling and categories 19 and 21 for explanations).
These categories often have an insufficient number of positive cases or represent highly diverse
ways which could be characterized in those categories. For example, in the case of modeling
modality, categories with the lowest F1 score- categories 11 and 12, both of which have few
responses in the dataset as shown in Table 6. Further, category 12 is very diverse because a
similar amount of charge can be shown on a wide range of electroscope parts, in both scenarios,
all of which would classify the model into this category. Similarly, category 11 reflects models
that show both types of charges, which can also be shown on different parts of the electroscope
and in both scenarios, making a range of possible responses highly diverse. This is in contrast to
scoring a “1” in categories 1-10, where there is basically only one possible way of attaining that
score. Therefore, it is possible that lower human-machine agreement on these categories could
result from these categories offering a wider range of possible answers that could be classified in
that category and smaller number of available responses that don’t necessarily reflect this
diversity. However, additional empirical studies could confirm this suggestion.

Study’s Significance

This process of LP-guided Al algorithm training described here (Figure 1) represents a
transparent and principle-based approach for designing LP-aligned, personalized feedback for
any constructed response assessments (including scientific models, text-based explanations etc.).
Defining analytic categories in this manner allows for easy identification of human-machine
misscores by providing a straightforward way to pinpoint specific analytic rubric categories that
were misscored. This property has the potential to improve overall validity of the associated Al-
based scoring system. Importantly, this LP-driven approach to Al training allows us to go
beyond using Al to perform specific tasks (e.g., scoring isolated assessment items) and train Al



18

to guide the learning process in ways that are grounded in relevant cognition theories and foster
multimodal understanding beyond specific tasks and modalities.
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