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Abstract. Human Activity Recognition (HAR) using wearable sensors
has gained significant attention due to its portability and unobtrusive-
ness. However, the data obtained from wearable sensors are limited to
inertial data from predefined locations on the human body. In contrast,
skeletal data from motion capture devices, such as the Kinect camera,
offer richer information by capturing the whole body dynamics of a hu-
man action. Unfortunately, the use of skeletal data is impractical in
wearable sensor-based HAR for real-world deployment. Currently, trans-
former neural networks, known for their self-attention mechanism, have
shown effective handling of data from diverse modalities in wearable
sensor-based HAR. However, the deployment of multimodal transformer
on wearable devices is challenging due to their inherent large model size.
We propose a Lightweight HAR Transformer (LightHART) framework
that trains an unimodal Inertial Transformer (IT) network by transfer-
ring knowledge from a large multimodal transformer using a knowledge
distillation approach. We evaluate the proposed framework on three pub-
lic multimodal human activity datasets and compare the performance of
the LightHART student model with various state-of-the-art approaches.
Experimental results demonstrate that our LightHART model achieves
competitive performance in terms of effectiveness and scalability with
a model size of only 1.43 Mb. We are the first to deploy and validate
the LightHART fall detection model on a SmartFall App running on a
WearOS-compatible smartwatch showcasing its potential in advancing
wearable sensor-based HAR research.

Keywords: Human Activity Recognition, Transformer, Knowledge Distillation,
Multi-modal Learning, Wearable Devices

1 Introduction

A wearable sensing system that can facilitate Human Activity Recognition (HAR)
utilizing information extracted from diverse visual and inertial (accelerometer,
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gyroscope, etc.) modalities can have a significant societal impact. For example,
HAR can improve elder care in assisted living centers from timely detection of
falls and timely administration of medication. In addition, HAR can also rev-
olutionize diverse context-aware applications like fitness tracking, health moni-
toring, and gesture recognition, just to name a few [16].

Human perceives the world in a multimodal view, automatically integrating
information from multiple sensors like vision, sound, touch, etc. It is known that
multimodal deep learning approaches can leverage information from multiple
sources like accelerometers, gyroscopes, and visual inputs and alleviate the limi-
tation regarding unimodal approaches via complementary information, reducing
the ambiguity of activity recognition, and being robust against noisy data. While
the multimodal learning model offers various benefits for HAR problem, imple-
menting them in wearable devices is challenging due to hardware limitations in
executing models of large size and the inability to acquire the visual modality
continuously with on-body sensors without compromising users’ privacy.

Knowledge Distillation (KD) is a potential solution that can leverage multi-
modal algorithms for wearable devices. KD was first introduced in [9] to distill
knowledge from large models i.e. teacher into smaller models i.e. student. Ini-
tially, a large complex model is trained with data suitable for the task. These
models typically had a large number of parameters and thus can achieve high
accuracy by learning rich representations. Next, a smaller model is trained on
the same dataset, but instead of using only the ground truth labels, it is trained
to mimic the behavior of the teacher model. To improve the performance of
deep learning models on HAR tasks involving vision modality, particularly when
dealing with occlusion, the authors of [13] introduced a multimodal knowledge
distillation approach that integrates diverse sensor information. A cross-modal
knowledge distillation method is introduced in [23] that transfers knowledge
from multimodal to unimodal networks. Though this work aimed to produce a
model for wearable devices, the ResNet18 student network used in this research
resulted in a complex model that is not usable in wearable devices. A small Dis-
tilled Mid-fusion Transformer student model is produced by [14], but the student
model only works in the presence of multimodal data, which makes it inappro-
priate for use in portable wearable devices since it is not possible to acquire the
visual data in real-time while being mobile and free of the burden to carry a
specialized on-body visual sensor. Meanwhile, previous studies applied several
fusion methods in building effective multimodal model [22, 14]. For instance, the
work in [22] uses a late fusion, and the authors in [14] introduce a Temporal
Mid Fusion. However, these fusions don’t take the spatial and temporal features
into account at the same time and thus can’t produce an effective knowledge
representation when transferring to student models.

To leverage multi-modal learning on wearable devices, we propose a Light-
weight HAR Transformer (LightHART) framework that produces an Inertial
Transformer (IT), the student model, that can learn to mimic a Spatio-Temporal
ConvTransformer (STConvT) teacher model. First, we train the STConvT model
with data from multiple modalities (i.e. skeleton, inertial) and fuse the spatial
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and temporal information using Attention Feature Fusion. We then train the
student model on only inertial data (unimodal) guided by the feature repre-
sentation acquired in STConvT using knowledge distillation. This LightHART
framework tries to minimize the distillation loss during its training. After train-
ing, LightHART’s student model can achieve competitive performance on three
multimodal HAR datasets with a model size of only 1.43 Mb. We further tested
and deployed the LightHART fall detection model (a specific type of human ac-
tivity) on a SmartFall App [21] running on a WearOS-compatible smartwatch.
The contributions of this paper are summarized as follows:

– We propose LightHART that generates a lightweight transformer model run-
ning on inertial modalities only. To our knowledge, this is the first study con-
ducting a knowledge distillation process from a skeleton-to-inertial domain
using an unimodal Transformer model which is lightweight.

– We propose a STConvT model with Attention Feature Fusion that can pro-
duce better feature representation aligning both spatial and temporal infor-
mation.

– We demonstrated the effectiveness and generalization ability of the proposed
LightHART method on three public datasets.

– We are the first to test and deploy the LightHART fall detection model on
a real-world fall detection App to demonstrate its potential in advancing
wearable sensor-based HAR research.

Our paper is organized as follows. In the related work in Section 2, we describe
some background work on human activity recognition and the motivation be-
hind choosing a transformer-based architecture. Next, we present the method-
ology and the architecture of LightHART in Section 3. We outline the setup
of the Spatial and Temporal encoder blocks and the Attention Feature Fusion
strategy. In Section 4, we describe the dataset used, the experimental setup,
and the evaluation protocol used. In Section 5, we compare the performance of
LightHART with other SOTA approaches. In Section 6, we conduct ablation
studies to showcase the effectiveness of our fusion strategy and the spatial block.
Finally, we discuss the implications of our findings and future directions for our
work in the conclusion section.

2 Related Work

Human Activity Recognition: HAR is used to detect and classify human
activities under appropriate labels. An activity refers to the collective movement
of parts of the body to complete a task. For example, moving the head in negation
is a gesture, and walking, jumping, and hand waving are activities [27]. The
approaches to resolving the human activity recognition task can be divided into
three types: vision-based HAR [2], sensor-based HAR [8], and multimodal HAR
[14]. A wide spectrum of methods, ranging from traditional machine learning,
rule-based, to deep learning methods have been used for HAR over the years.
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An extensive comparison among K-Nearest Neighbor (KNN), Support Vec-
tor Machines (SVM), Gaussian Mixture Models (GMM), and Hidden Markov
Models (HMM) for wearable sensor-based HAR is discussed in [1]. The early
traditional machine learning approaches depend on features built by domain ex-
perts and can’t efficiently differentiate between very similar activities such as
walking upstairs and walking downstairs [26]. RNN, LSTM, and CNN are uni-
modal deep learning networks that have become popular in recent years and
have achieved state-of-the-art in recognizing different HAR tasks. For example,
an ensemble Recurrent Neural Network (RNN) method has been used in [17]
to do fall detection from wearable devices. Multiple other research works such
as those in [26, 19, 25] have used LSTM and a hybrid CNN-LSTM network for
HAR.

Wearable devices using unimodal data have shown the promise of bringing
personalized health monitoring closer to consumers [20]. For example, smart-
watches like the Apple Series, which feature built-in "hard fall" detection and
ECG monitoring apps, are a viable platform for digital health applications when
paired with a smartphone. However, unimodal deep learning methods using data
from wearable devices have certain limitations [30, 12]. Data produced by wear-
able sensors can be noisy, lack contextual information, and face difficulties dis-
criminating among activities producing similar patterns. For example, if a person
is wearing a watch on the left wrist and the left wrist does not move during a fall,
the fall will be missed. Video or skeleton modalities can provide complementary
and contextual information to unimodal data from wearable devices for better
recognition of human activities. To capture information from both spatial and
temporal domains, the authors in [16] introduced a multimodal network called
AttnSense. DanHar framework was proposed in [7] to blend channel attention
and temporal attention with a CNN model. However, none of the above multi-
modal models have a model size that is small enough for real-world deployment
to a wearable device.

Transformer: Deep learning methods like LSTM and CNN have some in-
herent problems when used for HAR. Although LSTM can handle temporal
dynamics in long sequences of data from human activities, their singular percep-
tion limits them in capturing complex patterns that require multiple viewpoints.
Convolutional Neural Networks (CNNs) are primarily designed to extract local
spatial patterns within data. By leveraging multiple layers, they can also cap-
ture more complex and global spatial features. However, CNNs are inherently
limited in their ability to process temporal information. The continuous HAR
signal patterns are more distinguishable when seen from a global temporal view-
point. Transformer [28] possesses a global viewpoint courtesy of its self-attention
layer, and the multiple heads in self-attention help to create multiple viewpoints.
Transformer has already been used successfully in NLP, Computer Vision, Rec-
ommendation Systems, and many others. It also has been used in HAR. For
example, the authors in [31] used a two-stream Transformer network to capture
both spatial and temporal features from inertial data.
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However, these multimodal networks aren’t suitable for deployment in wear-
able sensors due to the unavailability of visual modalities in real-time [23, 13, 15].
Moreover, the constraints of computation power of wearable devices preclude the
deployment of the usually large multi-modal learning model.

To the best of our knowledge, only a few studies by [6, 10, 32] have conducted
efficient experiments on lightweight transformer-based architecture in HAR do-
main.

3 Methodology

In this paper, we introduce our LightHART framework that produces a lightweight
(Inertial Transformer) student model from the knowledge distillation process
that only uses inertial data and still maintains similar accuracy as the multi-
modal teacher model. An STConvT network works as a teacher by extracting
the salient spatial and temporal features and using an Attention Feature Fusion
to combine features from skeleton and inertia modalities effectively.

Figure 1 gives the overview of the knowledge distillation process that dis-
tillates knowledge from a multimodal teacher model to an unimodal student
model. First, we train a multimodal STConvT teacher network with skeleton
and inertial data. The input from different modalities is segmented using the
sliding window technique described in [34]. We then add a learnable positional
embedding to each of the modalities to preserve the positional information. A
Spatial Block consisting of two convolutional layers extracts accurate spatial
information from the skeleton data.

The output of the Spatial Block is divided into patches and passed on to
a Temporal block which leverages ViT architecture [5]. The Temporal Block
consists of two Transformer Encoders that apply a multi-head self-attention
mechanism [28] on the patches to extract the salient temporal features while
preserving spatial information. On the other hand, inertial data is passed to
a separate Temporal Block. The features from the intermediate Transformer
Encoder dedicated to the skeleton and inertial data are fused using Attention
Feature Fusion and passed to an MLP layer for final prediction. Finally, a knowl-
edge distillation procedure is used to transfer the feature representation learned
by the teacher module to the student’s Inertial Transformer(IT) that works on
inertial data only. Our IT also adopts the ViT architecture [5]. In the following,
we elaborate on the framework to produce the lightweight student model using
the knowledge distillation procedure.

3.1 Inertial Transformer (IT)

The original transformer model consists of an encoder and a decoder. The en-
coder generates embeddings from the input, while the decoder uses these embed-
dings to produce output in a different language. However, for activity recognition,
only the encoder is needed to extract both spatial and temporal information.
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Fig. 1: LightHART framework with STConvT as teacher and IT as student.
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In ViT, an image’s input is first segmented into patches. We can think of
the inertial data as 2-D images with shape (W,Ciner) where W is the window
size and Ciner is the number of channels of inertial data. The input for IT
x ∈ R(N×(W×Ciner)/P ) is reshaped into a sequence of patches, where N is the
number of patches and P is the patch size. The IT uses a constant embedding
size of D through all its layers. The patches are transformed to D dimension
using a linear layer (Eq. 1). A learnable class token is appended at the start
of the sequence of embedding patches (z00 = xclass) whose state at the out-
put of the Transformer’s encoderz0L serves as the inertial data representation y.
A learnable one-dimensional positional embedding Epos is added to the patch
embeddings. The Transformer encoder [28] comprising of interleaved layers of
multiheaded self-attention (MSA) and MLP blocks is applied to the patches.
Layer normalization (LN) is employed preceding each block for stabilized train-
ing, with residual connections following each block. The residual connection was
used to avoid a vanishing gradient and ensure a direct flow of information. The
class token of the last encoder block output is then passed to the MLP head
with the softmax activation to get the final prediction.

To keep the network small, we construct it with only two Transformer encoder
blocks with small embedding dimensions in the student’s IT.

z0 = [xclass ; x
1
p E ; x2

p ; ...; x
N
p E ; ] + Epos E ∈ R((W×Ciner)/P )×D (1)

3.2 Spatio-Temporal ConvTransformer

The Spatio-Temporal ConvTransformer is made up of three important parts: 1.
Spatial Block, 2. Temporal Blocks, and 3. Attention Feature Fusion that helps it
to analyze both spatial and temporal information effectively.

Spatial Block: The Spatial Block is depicted in Fig 1 in orange color. This
module is in charge of dealing with the spatial details found in skeleton data.
It uses two 2-dimensional (2D) convolution layers that could effectively extract
the relationships between nearby joints. These layers have a special property
called translation invariance inductive bias, making them particularly effective
at processing spatial information. Let xSK ∈ R(CSK ,JSK ,WSK) is the skeleton
input to the Spatial Block where CSK is the channels of skeleton data, JSK

is the number of predefined joints and WSK is the size of the window. The 2D
Convolution layers in the Spatial Block take in an input of (Cin, H,W ) where Cin

is the number of channels, H is the height of input and W is width. To process
the skeleton data with 2D Convolution Layer we set Cin = CSK , H = JSK , and
W = WSK . Both the convolution layers had a filter shape of (1, 9) to gather
spatial information from three adjacent joints. The Spatial Block (SP) produces
an output sp of shape (Cout, Hout,W ), where Cout is the output channel size and
Hout is the output height as of Eq. 2. The output of the Spatial Block is then
reshaped to (N,Cout ×Hout × (W/P )) where N is the number of patches and P
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is the size of the patches.

sp = SP(Xskl) Xskl ∈ R(CSK ,JSK ,WSK) (2)

Temporal Block: The Temporal Block has a structure that is the same as the
IT. So, the sequence of skeleton patches sp is transformed into z skl0 ∈ R(B,P,D)

(Eq. 4) where D remains constant all across the network. Creating patches from
the embedding will help the Temporal Block to process temporal information
together [5]. We also process the inertial data with a Temporal Block. Let
Xiner ∈ R(W×Ciner) be the inertial data. This inertial is then reshaped to ip ∈
R(N×(W×Ciner)/P ). To match the dimension of the Transformer Encoder the
input is transformed to x ∈ R(N×D) and 1-D learnable positional embedding
Epos and class embedding iclass was added (Eq. 3). The processed inertial data
and output from the Spatial Block then go through the first Encoder on two
different Temporal Blocks as shown in Fig 1 and produce embedding z skl1 and
z iner1 (Eq. 5).

z iner0 = [iclass ; i
1
p E ; i2p ; ...; i

N
p E ; ] + Epos E ∈ R((W×Ciner)/P )×D (3)

z skl0 = [sclass ; s
1
p E ; s2p ; ...; s

N
p E ; ] + Epos E ∈ R((Cout×Hout×W )/P )×D (4)

zm1 = Encoder(zm0 ) m ∈ (iner, skl) (5)

Attention Feature Fusion z skl1 and z iner1 are then added together to pro-
duce z comb

1 (Eq. 6). This fusion purpose is named as Attention Feature Fu-
sion(AFF) as the output of transformer encoder layers dedicated to different
modalities are fused. AFF merges complementary information from temporally
aligned patches of different modalities. This fusion in terms helps the subsequent
self-attention layer(MSA) in better exploring the relation between patches. For
all subsequent layers, z comb

l is produced by fusing z comb
l−1 and z inerl−1 (Eq. 7). The

final prediction y is generated by passing the class token z comb0
L of the L-th en-

coder block (last) through an MLP layer (Eq. 8). A softmax function is used on
the output of the MLP layer to produce the class predictions.

z comb
1 = Encoder(z skl1 + z iner1 ) (6)

z comb
l = Encoder(z comb

l−1 + z inerl−1 ) (7)

y = softmax(MLP(z comb0
L ) (8)

3.3 Multimodal to Unimodal Knowledge Distillation

The knowledge distillation begins after we finish training the STConvT with
skeleton and inertial data. During knowledge distillation, a teacher’s STConvT
takes multimodal (skeleton & inertial) data as input and the student’s IT takes
only the inertial data. In general, neural networks produce a class probability by
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taking the logits and passing it through a softmax function pi = softmax(z i).
But, the knowledge distillation method in [9] used a soft prediction with pa-
rameter Temperature (T) (Eq. 9). The higher the temperature the softer the
prediction. Both the teacher and the student produce soft predictions Pteacher

and Pstudent . These soft predictions are then compared using a KL-Divergence
Loss (Eq. 10). The entropy between the ground truth ygt and the student’s (IT)
final prediction ystud is measured using a cross-entropy loss and added with the
KL-Divergence loss to get the knowledge distillation loss LKD (Eq. 11). The
student model tries to mimic the teacher’s prediction by minimizing this loss
during its training.

pi =
e

(zi )
T∑

j e
( zj
T )

(9)

Lkl(Pstudent ,Pteacher ) =
∑
i

Pstudent,i log
Pstudent,i

Pteacher ,i
(10)

LKD = Lcross(y
gt , ystud ) + Lkl(Pteacher ,Pstudent ) (11)

4 Experiments

4.1 Datasets

We evaluated the LightHART’s performance on three human activity datasets.
UTD-MHAD and Berkeley-MHAD are a few of the mainstream multimodal hu-
man activity recognition datasets publicly available. SmartFallMM is another
multimodal human activity recognition dataset developed in our lab with a spe-
cific focus on fall detection.

The UTD-MHAD dataset [3] was collected using a single Kinect camera and
one wearable inertial sensor. The Kinect camera captures full-body visual data
during activities, while the inertial sensor records acceleration, gyroscope, and
magnetometer data. The sensor was placed on the subject’s right wrist or thigh,
depending on whether the action primarily involved the arm or leg. The use of
only a Kinect camera and inertial sensor is due to their low cost and non-intrusive
nature. The dataset includes 27 actions performed by 8 subjects (4 males and
4 females), with each action repeated 4 times, resulting in 861 samples after
excluding corrupted ones.

The Berkeley-MHAD dataset [24] consists of temporally synchronized and ge-
ometrically calibrated data from an optical mocap system, multi-baseline stereo
cameras from multiple views, depth sensors, accelerometers, and microphones.
We used the accelerometer data collected from the left wrist for our experiment.
It contains 11 actions performed by 7 male and 5 female subjects in the range
of 23-30 years of age except for one elderly subject. All the subjects performed
5 repetitions of each action, yielding about 660 samples which correspond to
about 82 minutes of total recording time.
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The SmartFallMM1 multi-modal dataset comprises data from two distinct
modalities, collected using four different types of devices. The skeleton data was
gathered using three Azure Kinect cameras. Additionally, accelerometer and gy-
roscope data were obtained from three types of inertial sensors: Meta sensors
(from MBIENT), a Huawei Smartwatch running WearOS, and a Google Nexus
phone. This dataset includes a total of 14 activities, performed by 36 partici-
pants. Among these activities, 9 are Activities of Daily Life (ADL), and 5 are
different fall activities, resulting in a total of 1,134 activity trials, and only 11
participants could perform fall activities. We used the accelerometer data sensed
from Huawei SmartWatch and the skeleton data for our experiments.

4.2 Evaluation Protocol

For the UTD-MHAD dataset, we follow the established evaluation protocol out-
lined in the original paper [3]. Specifically, subjects with odd-numbered identi-
fiers (1, 3, 5, 7) are designated for training purposes, while subjects with even-
numbered identifiers (2, 4, 6, 8) are reserved for testing. Given the limited size of
the dataset, this approach serves to maintain a balance between the sizes of the
training and testing datasets. Moreover, the segmentation based on person IDs
serves the dual purpose of preventing data leakage and ensuring the integrity
of the evaluation process. We adhere to the evaluation protocol outlined in the
original paper [24] for Berkeley-MHAD. The training dataset comprises of first
7 persons’ data while the testing dataset consists of the last 5 persons’ data.

We performed recognition of fall-related activities on SmartFallMM dataset
with real-world testing and evaluation in mind, as we already have a fall detection
system developed for a wearable device [21]. We used the first 9 persons’ data
for training and the last 2 persons’ data for testing. After training an offline stu-
dent IT model with LightHART, we deploy this model to a Huawei Smartwatch
running the SmartFall App for real-time evaluation. Two student participants
are recruited under IRB 9461 for the real-time evaluation. They performed all 9
ADLs and 5 Fall activities five times each activity wearing the smartwatch.

4.3 Experimental Setup

The inertial modality may contain multiple streams (e.g. the accelerometer and
gyroscope) of data. Despite the presence of different streams, we consider them
as a single modality since they are all time-series data. Skeleton data is sensed
as a sequence of time-series (accelerometer) data from multiple skeletal nodes.
Both skeleton and inertial data have variable lengths across activity trials and
different sampling rates. To optimize training, we equalized the sampling rates
and extracted synchronized windows of size 64 from both skeleton and inertial
modalities, with a 10-timestamp overlap between windows. The STConvT ar-
chitecture consists of 2 consecutive Convolution layers with both having a filter
size of 9 to facilitate the extraction of spatial information from adjacent joints.
1 Url: https://anonymous.4open.science/r/smartfallmm-4588
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The two Temporal Blocks had two Transformer encoders each with an input
dimension of 32. To optimize the model, we employed the SGD optimizer with
a learning rate set at 0.0025 and utilized the knowledge distillation loss (Eq. 11)
function during the training phase.

5 Studies & Results

5.1 Evaluations & Comparisons

We compared our LightHART’s performance with other state-of-the-art mul-
timodal transformers with knowledge distillation-based methods using inertial
and skeleton data as input. Table 1 and 2 show the experimental results on
UTD-MHAD and Berkeley-MHAD respectively. We evaluated SmartFallMM
mainly for fall detection activities and is not included in this table. The iner-
tial data from UTD-MHAD had two streams (accelerometer and gyroscope). We
compared the performance of LightHART with multimodal transformer models
like CrossVit [33], DMFT [14] and TokenFusion [29]. LightHART outperformed
these transformer-based methods as it consecutively gains 8.67% and 14.44%,
over TokenFusion [29], CrossVit [33]. Though DMFT [14] has a higher accu-
racy of 92.12%, it’s worth mentioning that it had a complex architecture with
262.2× larger model size than the student model trained with LightHART which
makes it infeasible for deployment in wearable devices. The increased accuracy
of LightHART is primarily due to the knowledge distillation method. Before
knowledge distillation, the accuracy of LightHART student’s model was 73.618
% on UTD-MHAD dataset and the teacher Spatial-Temporal ConvTransformer
had an accuracy of 89.81%.

Table 1: Performance comparison on the UTD-MHAD dataset. S: Skeleton, D:
Depth, I: Inertial, aug:augumentation.

Method Modality Combination Accuracy(%)
UTD-MHAD [3] I + D 81.86

Gimme Signals [18] I + S 76.13
Gimme Signals [18] I + S(aug) 86.53
TokenFusion [29] I + S 78.89

CrossViT [33] I + S 75.37
MobileHART(XS) [6] I 77.52

DMFT [14] I+S 92.12
LightHART(Teacher) I + S 89.81
LightHART (Student) I 73.62

LightHART(KD) I 87.56 (13.94 ↑)

But after the knowledge distillation, the accuracy of the student model went
up to 87.56% which is a 13.942% increase in accuracy. The LightHART stu-
dent model also has an 10.037% accuracy gain over MobileHART(XS) [6] - a
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lightweight Transformer model - which further supports the effectiveness of our
LightHART framework.

The gap between teacher and student is as small as 2.25% which demonstrates
that the STConvT supported by Attention Feature Fusion creates feature rep-
resentations that the student’s uni-modal IT (Inertial Transformer) can easily
mimic.

Table 2: Performance comparison on the Berkeley-MHAD dataset. S: Skeleton,
D: Depth, I: Inertial

Method Modality Combination Accuracy(%)
MMhar-Ensemblenet [4] I + D 81.86

TokenFusion [29] I + S 79.91
CrossVit [33] I + S 75.37
DMFT [14] I + S 78.18

LightHART (Teacher) I + S 85.69
LightHART (student) I 80.33

LightHART(KD) I 81.93(1.60 ↑)

Similar trends are observed in the case of the Berkeley-MHAD dataset. The
inertial modality had only the accelerometer stream for this dataset. LightHART
outperformed multimodal Transformer networks like TokenFusion [29] and Cross-
Vit [33] and DMFT [14]2 as it consecutively gains 3.04% and 6.56% and 3.75%
. The knowledge distillation method effectively increased the accuracy of the
student model by 1.6%. The gap between teacher and student was 3.76%. The
accuracy gain after knowledge distillation was 1.6% which is lower than the
UTD-MHAD dataset. This was due to the absence of a gyroscope stream in
inertial data as gyroscopes provide much-needed information about angular ve-
locity. We couldn’t compare the results with MobileHART(XS) [6] as it required
both gyroscope and accelerometer modalities.

Fig. 2 illustrates the performance comparison of STConvT, IT, and IT with
KD on the SmartFallMM dataset. The teacher model, STConvT, achieved an
accuracy of 99.75%, while the student IT model of LightHART had an accuracy
of 77.0% before applying KD. By employing STConvT as the teacher during the
knowledge distillation process, the accuracy of the IT model increased by 1.50%
for fall detection.

Table. 3 shows the model size comparison of different multimodal Trans-
former models. The student model generated using LightHART had a model size
of 1.43 Mb which is 262.2× smaller than DMFT [14] which has a model size of
375 Mb. The DMFT uses a ResNet50 pre-trained model size of 98 Mb. Even if
they used an architecture without the ResNet50, the model size would still be

2 DMFT wasn’t originally evaluated on Berkley-MHAD datasets. We trained this
model for 250 epochs for Berkley-MHAD to provide the same training time for
fair comparison
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Fig. 2: Accuracy Comparison for Fall Detection Task of SmartfallMM dataset

193.7× larger than the student model generated by LightHART. CrossVit [33]
and MobileHART(XS) also have 425× and 7.23× larger model sizes compared
to our student model. Only TokenFusion [29] has a smaller model size than our
student network. However, this smaller model size also compromises the accu-
racy as it drops to 78.89% for UTD-MHAD and 79.91% for Berkeley-MHAD.
Overall, only our student model can maintain competitive performance while
reducing the model size.

Table 3: Model Size comparison for different Transformer models
Modalities Model Model size(mb)

I LightHART 1.43
I + S TokenFusion [29] .68
I + S CrossVit [33] 608.09

I + R + S DMFT [14] 375
I MobileHART(XS) [6] 10.36

5.2 Performance on Wearable Devices

We ported two different IT models to run on a smartwatch, one generated by
LightHART and the other purely based on uni-modal accelerometer data without
knowledge distillation to observe the average inference time and performance.
Both of our IT models running on the device could make an inference in .4459
ms to .8428 ms for a stream of data with a duration of 4 seconds compared to
1 to 13 ms for 2.56 seconds duration of data using MobileHART(XS) [6]. The
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LightHART student IT model’s performance improvement in fall detection task
after training with KD can also be observed in Figure 3. Though both the
models have a similar number of True Positive detection of 24 and 25, the IT
model trained without KD cannot differentiate the intrinsic patterns between
ADL and Fall activities as it can only detect 5 of 35 ADL activities accurately
compared to 25 out of 35 of the student model trained with KD. The accuracy
of the model without KD drops by 31.69% and becomes 45.31% during the on-
device evaluation. The student’s model trained with KD can maintain similar
accuracy with on-device evaluation as its accuracy only becomes 76.56% which
represents only a 1.94% drop. This on-device performance comparison shows
models trained with KD can help maintain better performance.

(a) Performance of IT with KD (b) Performance of IT without KD

Fig. 3: Confusion matrices for on device performance of LightHART(student)
with and without Knowledge Distillation

6 Ablation Studies

6.1 Effectiveness of Attention Feature Fusion

Table 4 shows the effectiveness of Attention Feature Fusion(AFF). For this
experiment, we used the SimpleFusion [11], TokenFusion by [29], CrossView
Fusion by [33] and Attention Feature Fusion(AFF) with our STConvT to observe
which fusion methods have the most impact on the student model’s accuracy.
The result shows that the teacher model using AFF has a student model with
the highest accuracy of 87.56%. Though the teacher network with CrossView
Fusion had better accuracy, the representation was complex for a lightweight
student model to mimic. Thus, the student had the lowest accuracy of 69.47%

6.2 Effectiveness of Convolution Spatial Block

Table 5 shows the impact of the Convolution Spatial Block. First, we changed
the Spatial Block to a Transformer-like architecture with 2 encoders. The accu-
racy dropped to 77.12% in comparison to 89.81% for the Convolution Spatial
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Table 4: Performance comparison of different fusion methods on UTD-Mhad
dataset

Method Teacher Accuracy(%) KD Accuracy(%)
SimpleFusion [11] 87.68 84.36
TokenFusion [29] 85.00 70.04

CrossView Fusion [33] 90.0 69.47
AFF 89.81 87.56

Block. This shows that the Convolutional layers with an inductive bias for spa-
tial information outperform vanilla transformers. On the other hand, a network
without Spatial Block had an accuracy of 80.25% which is 9.56% lower than a
model with Convolution Spatial Block.

Table 5: Performance comparison with and w/o Convolution Spatial Block
Method Teacher Accuracy(%)

Transformer SB 77.12
W/O SB 80.25

Convolution SB 89.81

A supplementary study on the effectiveness of the Temporal Block is pre-
sented in Table 1 of the supplementary materials.

7 Conclusion

In this paper, we propose a LightHART network architecture to generate a
lightweight transformer model (student) using unimodal inertial data that has a
very small model size while retaining similar accuracy as the complex multimodal
transformer (teacher) network in the case of UTD and Berkeley datasets. With
SmartFallMM dataset, we show that the IT model with KD performs better than
the one without. The experimental results also demonstrate that our lightweight
student model with a model size of 1.43 Mb can achieve competitive performance
as compared to other student models distilled from state-of-the-art multimodal
learning frameworks. We further tested and deployed the LightHART student’s
model on a wearable smartwatch device running a fall detection App. The real-
world testing of the model using two participants demonstrates the better per-
formance of a uni-modal fall detection trained using a knowledge distillation
approach. However, while we have demonstrated that a lightweight LightHART
model can be deployed successfully on the device that outperforms the model
without KD, there is still a considerable performance gap between the teacher
and student model in LightHART which we believe can be reduced by adopting
more advanced knowledge distillation methods. Furthermore, using the Smart-
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FallMM dataset, the fall detection model trained with KD still needs to be
optimized to reduce the high False Positive ratio for practical use.
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