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Abstract—In today’s fast-paced software development environ-
ments, DevOps has revolutionized the way teams build, test, and
deploy applications by emphasizing automation, collaboration,
and continuous integration/continuous delivery (CI/CD). How-
ever, with these advancements comes an increased need to address
security proactively, giving rise to the DevSecOps movement,
which integrates security practices into every phase of the
software development lifecycle. DevOps security remains under-
represented in academic curricula despite its growing importance
in the industry. To address this gap, this paper presents a hands-
on learning module that combines Chaos Engineering and White-
box Fuzzing to teach core principles of secure DevOps practices
in an authentic, scenario-driven environment. Chaos Engineering
allows students to intentionally disrupt systems to observe and
understand their resilience, while White-box Fuzzing enables
systematic exploration of internal code paths to discover corner-
case vulnerabilities that typical tests might miss. The module was
deployed across three academic institutions, and both pre- and
post-surveys were conducted to evaluate its impact. Pre-survey
data revealed that while most students had prior experience
in software engineering and cybersecurity, the majority lacked
exposure to DevOps security concepts. Post-survey responses
gathered through ten structured questions showed highly positive
feedback 66.7% of students strongly agreed, and 22.2% agreed
that the hands-on labs improved their understanding of secure
DevOps practices. Participants also reported increased confidence
in secure coding, vulnerability detection, and resilient infrastruc-
ture design. These findings support the integration of experiential
learning techniques like chaos simulations and white-box fuzzing
into security education. By aligning academic training with real-
world industry needs, this module effectively prepares students
for the complex challenges of modern software development and
operations.

Index Terms—DevOps Security, Secure Software Development,
Cybersecurity Education, White box Fuzzing, Chaos Engineer-
ing, CI/CD

I. INTRODUCTION

To this end, white-box fuzzing plays a complementary role.
Unlike traditional black-box fuzzing, which generates random
inputs to a system under test, white-box fuzzing leverages
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source code to intelligently generate inputs that maximize
code coverage and expose edge cases and latent bugs [1],
[2]. It is especially effective at revealing corner cases such
as division by zero, unexpected input formats, and boundary
condition violations that could lead to critical failures or
security vulnerabilities if left unchecked. In this paper, we
present a focused educational module that merges these two
paradigms, Chaos Engineering and white-box fuzzing, through
the development of a simple fuzzer targeting a basic calculator
application. Though the application itself is minimalistic, it
serves as an ideal case study to demonstrate how systematic
test input generation and fault injection can uncover subtle
bugs that traditional testing methods may overlook [3].

This module is part of a broader initiative involving the
design and implementation of ten modular learning expe-
riences, each tailored to reinforce core concepts in cyber-
security, DevOps, and software resilience. These modules
have been intentionally structured to include pre-lab content



dissemination, guided hands-on lab exercises, and post-lab
reflections, ensuring a full-spectrum experiential learning cycle
that supports skill acquisition, critical thinking, and retention.
[4], [5] The specific white-box fuzzing module enriches the
curriculum by exposing learners to real-world testing strategies
that go beyond superficial correctness. It promotes a deeper
understanding of how automated input generation, code in-
strumentation, and control flow analysis can be applied to
detect software flaws before they manifest in production.
By engaging students in designing a simple yet effective
fuzzer, this module instils practical knowledge about software
quality assurance and secure coding practices [6]. Moreover,
the modular design of the curriculum ensures accessibility
and adaptability across diverse educational environments [7],
[8]. Whether in university classrooms, bootcamps, or online
learning platforms, these modules provide scalable, authentic
learning experiences grounded in industry-relevant challenges.
By combining theory with hands-on experimentation, this
initiative aims to produce graduates equipped with both the
conceptual foundation and applied skills needed to thrive in
today’s fast-evolving software landscape.

II. BACKGROUND AND MOTIVATION

As software systems become increasingly complex and
interconnected, the potential impact of system failures has
grown significantly. Ensuring that these systems are robust,
secure, and fault-tolerant has thus become a primary concern
for software engineers. Traditional testing methods, while
essential, often fall short in detecting subtle bugs that emerge
only under rare or extreme conditions. This limitation has
led to the growing adoption of Chaos Engineering and fuzz
testing as advanced strategies to proactively expose system
weaknesses [9]-[11]. Chaos Engineering introduces the idea
of injecting controlled failures into systems to observe and
analyze their behavior under stress. Originally popularized
by Netflix’s ’Chaos Monkey,” this discipline has expanded to
include fault injection at various levels, from infrastructure to
application logic. Its primary goal is to ensure that systems
can maintain functionality and recover gracefully even when
unexpected issues arise. Educationally, chaos engineering cul-
tivates a mindset of anticipating failure and building for re-
silience—essential qualities in modern software development
[12] [13].

On the other hand, fuzz testing (fuzzing) involves providing
invalid, unexpected, or random data as inputs to a software
program to find bugs and vulnerabilities. While black-box
fuzzing treats the system as opaque, white-box fuzzing utilizes
program structure, control flow, and symbolic execution to
intelligently generate test cases that achieve higher code cover-
age and uncover edge cases [1] [14] [15]. This form of fuzzing
is particularly effective at identifying logical errors and secu-
rity flaws in source code. For example, symbolic execution and
search-based techniques have been used effectively to improve
the precision of fuzzers in RESTful APIs and web front-end
applications [2] [1] [16]. The intersection of chaos engineering
and white-box fuzzing presents a powerful opportunity to

White-box Fuzzing

o) — d— AR
Source Code Executable Program

T_®J

Analysis

Fig. 2. Workflow of White box fuzzing

explore software robustness both at runtime and at the code
level. By incorporating both strategies into the curriculum,
students are exposed to the dual perspectives of fault injection
and systematic test generation. However, these topics are often
underrepresented in traditional computer science education,
which typically focuses on static learning formats or prede-
fined exercises with known outcomes [17] [18]. To address
this gap, we developed a modular educational framework that
includes ten independent yet interconnected modules, each
targeting a key area in cybersecurity, DevOps, and system
reliability. The white-box fuzzing module discussed in this
paper is one such module. By centering the lab around the
development of a fuzzer for a simple calculator application, we
ensure the exercise is approachable while still illustrating the
power of systematic bug discovery. This exercise empowers
learners to engage directly with concepts such as input space
exploration, assertion testing, control flow analysis, and fault
detection.

III. RELATED WORK

Golmohammadi [2] conducted a systematic literature review
of 92 studies focused on RESTful API testing. The study
revealed that approximately 72% of the reviewed research
emphasized black-box testing techniques, indicating a signif-
icant underrepresentation of white-box approaches. Golmo-
hammadi’s work underscores the potential of white-box testing
in generating high-coverage test cases by leveraging internal
code structures. The study also proposes the use of search-
based software testing (SBST), which frames test generation as
an optimization problem to be solved using search algorithms.
This method offers an automated and potentially more cost-
effective alternative to manual testing. Furthermore, the study
identifies the lack of REST API case studies and limited
research into white-box heuristics as critical gaps in the
literature, providing direction for future exploration.

Complementary research by Yang, Zhang, and Fu (2013)
[19] presents a white-box combinatorial fuzzing framework
that incorporates symbolic execution and combinatorial test-



ing. Their approach focuses on simulating attacks across
multiple input points by analyzing constraint conditions using
static analysis and symbolic execution. The framework intel-
ligently reduces the input space using interval computation
and constraint solving, allowing for efficient and targeted test
generation. This method effectively mitigates the combina-
torial explosion problem often associated with fuzzing and
demonstrates success in exposing deep-seated bugs within
large-scale software systems.

Kertusha (2024) [1] highlights this gap by proposing a
white-box, search-based methodology to address the limita-
tions of current black-box systems. While symbolic execution
and evolutionary algorithms have been applied in the backend
or system-level testing contexts (Yang, Zhang, & Fu, 2013),
their application in frontend testing remains largely unex-
plored. The proposed integration of Search-Based Software
Testing (SBST) and white-box analysis represents a promising
direction to improve test completeness and efficiency by
directly leveraging internal code logic.

Xiao-chen, Jing-yan, and Jie (2009) [20] proposed an in-
novative approach that combines cost-significant theory with
chaos theory for engineering cost estimation. Their method
integrates autocorrelation analysis, G-P algorithms, and Lya-
punov exponent calculations to model historical time-series
data, demonstrating that engineering costs exhibit chaotic
behavior suitable for short-term prediction. Their work shows
promise in reducing estimation workload and increasing fore-
cast accuracy by leveraging nonlinear dynamics.

The approach advocated by De (2021) [12] underscores
the importance of chaos experiments in real-world cloud
systems, particularly during high-traffic events such as e-
commerce mega sales. De introduces a framework rooted in
the Cynefin model, categorizing system components based on
their complexity (simple, complicated, complex, chaotic), thus
helping prioritize and guide chaos experimentation based on
contextual risk.

Borkar et al. [15] introduced WhisperFuzz, a white-box
fuzzing technique focused on detecting and locating timing
vulnerabilities in processors. By analyzing the microarchi-
tectural state transitions at the register-transfer level (RTL),
this approach overcomes the limitations of traditional fuzzing,
enabling precise identification of vulnerabilities in hardware
design.

Zhang et al. [21] presented a white-box fuzzing strategy for
RPC-based APIs using EvoMaster in industrial settings. Their
methodology improves code coverage and fault detection by
instrumenting internal API structures, making it suitable for
continuous testing in large-scale software systems.

Alshmrany et al. [14] developed FuSeBMC, a white-box
fuzzer combining symbolic execution with bounded model
checking to identify security vulnerabilities in C programs.
This hybrid approach enables the discovery of deep, hard-to-
reach bugs that standard fuzzing might miss.

Yang et al. [22] proposed WhiteFox, a compiler fuzzer
that integrates large language models (LLMs) with white-box
analysis to test deep learning compilers. The LLMs analyze

compiler internals and generate test programs that trigger
optimization bugs, showing the potential of Al-augmented
white-box fuzzing.

Luo et al. [16] introduced RESTler, an intelligent REST
API fuzzing tool that automatically generates test cases using
Swagger specifications. The tool leverages a dynamic feedback
loop to learn API dependencies and optimize test sequence
generation. Their approach demonstrated high bug-finding
capability and represents a concrete implementation of white-
box fuzzing in API environments.

Takanen et al. [23] provided a comprehensive overview of
fuzzing in software security, emphasizing its evolution toward
intelligent and grammar-based techniques. The work draws
attention to the critical role fuzzing plays in secure software
pipelines and identifies white-box fuzzing as a frontier requir-
ing deeper exploration, particularly in education and resilience
training.

Chen and Williams [18] explored the use of mutation
analysis for assessing the effectiveness of security testing in
DevSecOps. They concluded that while many security test
suites focus on known vulnerabilities, integrating white-box
fuzzing significantly improves fault detection rates, especially
for zero-day vulnerabilities.

In the realm of software testing education, Johnson et al.
[17] designed an interactive learning module on DevOps prin-
ciples and found that hands-on labs involving fault injection
significantly improved student comprehension and retention.
However, their module lacked a focus on white-box fuzzing
or Chaos Engineering, highlighting a gap our study seeks to
address.

Finally, Ahmad et al. [13] proposed a resilience-focused
learning environment using simulated CI/CD pipelines. Their
study emphasized the importance of simulating real-world
attacks and failure scenarios but acknowledged the need for
advanced test generation techniques like symbolic execution
and evolutionary fuzzing.

Although prior research has contributed significantly to the
understanding of security in DevOps pipelines, it is important
to note that none of these studies have explicitly addressed
the integration of Chaos Engineering and white-box fuzzing
within DevOps security education. While DevSecOps prac-
tices and security automation tools have gained traction in
industry and academia, the pedagogical application of Chaos
Engineering as a means to teach resilience and proactive
failure discovery in secure software development remains
underexplored. Similarly, white-box fuzzing has primarily
been discussed in the context of vulnerability discovery rather
than as a component of educational frameworks. Hence, our
research aims to bridge this gap by designing an authentic
learning module [5], [9] that incorporates Chaos Engineering
and white-box fuzzing to teach core DevOps security concepts.
This module enables learners to simulate fault injection and
analyze internal system states, thereby fostering a deeper
understanding of secure, fault-tolerant software design within
continuous delivery environments.



IV. METHODOLOGY

The methodology of this workshop module is grounded
in experiential learning and follows a structured format: pre-
lab orientation, guided hands-on implementation, and post-lab
reflection. The goal is to foster both conceptual understanding
and technical proficiency through active problem-solving.

A. Pre-Lab Orientation

Before beginning the lab, students are introduced to the
theoretical underpinnings of both chaos engineering and white-
box fuzzing. This includes:

o The rationale behind chaos engineering and its applica-
tions.

« Differences between black-box, gray-box, and white-box
fuzzing.

« The role of code coverage and symbolic execution in fuzz
testing.

o Examples of real-world failures discovered through
fuzzing tools like AFL, KLEE, and libFuzzer.

Students are also provided with a starter codebase: a basic
calculator implementation supporting operations such as addi-
tion, subtraction, multiplication, and division. The calculator
includes intentional vulnerabilities, such as unchecked divi-
sion, overflow risks, and poor input sanitization, to serve as
test targets.

B. Hands-On Lab Implementation

During the lab, students are tasked with designing and
implementing a white-box fuzzer in a high-level language
(e.g., Python or Java). The fuzzer uses knowledge of the
calculator’s source code to:

o Generate structured input data (e.g., mathematical expres-

sions).

o Target-specific operations and boundary conditions.

« Inject invalid or extreme values (e.g., divide by zero, large

integers).

« Evaluate output and log failures or exceptions.

Key steps include:

1) Input generation: Using input templates and randomiza-
tion within defined constraints.

2) Execution & Monitoring: Running the calculator with
the generated inputs and recording any run-time errors
or assertion failures.

3) Logging & Analysis: Track test cases that trigger unex-
pected behavior and analyze control paths taken during
execution.

Students are encouraged to iteratively refine their fuzzer to
improve code coverage and discover more complex bugs.
Optional extensions include the use of code instrumentation
tools to visualize execution paths.

C. Post-Lab Reflection

After completing the implementation, students reflect on
their findings through a structured post-lab questionnaire and
group discussion. They analyze:

o What types of bugs were discovered and why?

o How the input variation affected the discovery.

o How white-box knowledge contributed to testing effi-

ciency.

o How fuzzing complements chaos engineering principles.
This reflection reinforces the connection between theory and
practice and prepares students to apply these methods in more
complex environments.

V. SURVEY FINDINGS

The module was implemented in three academic institutions
in the spring of 2025. To evaluate its effectiveness, we con-
ducted both quantitative and qualitative surveys. Participants
completed pre-lab and post-lab surveys, which included vari-
ous questions designed to collect feedback and assess learning
outcomes.

A. Pre-Lab Survey

Twelve people took part in the survey. Most of them (41.7%)
were between 36 and 45 years old. Two age groups, 26 to
35 and 46 to 55, each comprised 25% of the participants.
Only one person (8.3%) was in the 18 to 25 age range. This
shows that most of the participants were older and likely had
more life and work experience, which added depth to group
discussions and workshop activities.

TABLE 1
AGE GROUP DISTRIBUTION

Age Group Count %
18-25 years 1 8.3%
25-35 years 3 25.0%
36-45 years 5 41.7%
46-55 years 3 25.0%

In terms of programming experience, the survey revealed
that most participants possessed a strong foundation in soft-
ware development. Python emerged as the most familiar
programming language among respondents, with 18 students
reporting varying degrees of expertise ranging from moder-
ate to expert-level proficiency. Java, C, and C++ were also
widely recognized, each receiving substantial responses across
different skill levels. In contrast, languages such as Ruby,
Perl, and R had limited exposure, with only one or two
students indicating any experience. These results suggest a
high level of technical fluency among participants, especially
in mainstream programming languages commonly used in
systems-level and software engineering projects. The breadth
of programming knowledge among students highlights a strong
foundation upon which advanced topics like chaos engineering
and fuzzing can be effectively introduced.

The survey included questions about how participants prefer
to learn. They were asked to rate how much they agreed
or disagreed with six different learning style statements. The
results are shown in Table II.



Fig. 3. Age Group

Fig. 4. Programming Proficiencies

Most participants preferred active learning. Ten people
strongly agreed that they learn best by doing hands-on lab
work. Eight strongly agreed that they learn better by working
through examples. These responses support the workshop’s
focus on practical, experience-based learning.

Seven participants also strongly agreed that learning tools
with feedback helped them understand better. Reading on their
own was also popular—six strongly agreed that it worked for
them—although two strongly disagreed, showing some mixed
feelings about self-study.

Listening to lectures was the least preferred method. Only
one person strongly agreed with that statement, while oth-
ers either disagreed or felt neutral. This shows that most
participants prefer more interactive and engaging learning
environments.

TABLE 11
LEARNING PREFERENCE RESPONSES

Learning Statement Strongly| Neutral | Agree Strongly
Dis- Agree
agree

I learn better by engaging 1 1 0 10

in hands-on lab work

I learn better by listening 1 2 2 1

to lectures

I learn better by per- 1 1 2 8

sonally doing or working

through examples

I learn better by reading 2 0 4 6

the materials on my own

I learn better by having 1 1 3 7

learning/tutorial systems

that provide feedback

B. Post-Lab Survey

As part of evaluating the effectiveness of the secure DevOps
hands-on lab modules, a post-survey consisting of ten ques-

Fig. 5. Students Learning Preferences

Fig. 6. Q: Ilike being able to work with the secure DevOps hands-on materials

tions was distributed to the participants. The survey aimed
to gather feedback on various aspects of the learning expe-
rience, including engagement, conceptual understanding, and
practical skill development. Responses were collected from
nine participants, and the overall results indicate a strongly
positive reception toward the hands-on learning approach.

One key area of focus was whether participants enjoyed
working with the secure DevOps hands-on materials. A signif-
icant majority—66.7% strongly agreed, while 22.2% agreed,
totaling nearly 89% of participants who found the materials
enjoyable and engaging. This highlights the value of interac-
tive learning in maintaining student interest and motivation.

In terms of educational impact, the hands-on labs were
found to be effective in enhancing understanding of De-
vOps security concepts. Again, 66.7% of participants strongly
agreed, and 22.2% agreed that the labs helped them better
understand secure DevOps practices. Only 11.1% strongly dis-
agreed, suggesting minimal negative feedback and reinforcing
the overall effectiveness of the approach.

Furthermore, participants were asked if the labs helped
improve their learning experience around secure coding and
DevOps best practices. The feedback remained consistent,
with 55.6% strongly agreeing and 33.3% agreeing—totaling
88.9% of participants who recognized a meaningful learning
benefit from the labs. This clearly demonstrates that practical
exercises not only support theory but also build technical
confidence and real-world applicability.

Overall, the post-survey results reveal that the majority
of participants responded positively across all ten questions.
The consistent pattern of agreement underscores the value
of integrating hands-on labs into DevOps and cybersecurity
education. These findings suggest that experiential learning
approaches are not only well-received but also play a critical
role in equipping learners with the skills and knowledge
required to succeed in modern secure software development
environments.
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Fig. 7. Q: The hands-on labs help me understand better on DevOps security

Fig. 8. The hands-on labs help my learning experience on Secure DevOps
coding and best practices

VI. CONCLUSION

This paper presented a hands-on educational module that
combines Chaos Engineering and White-box Fuzzing to en-
hance student understanding of secure DevOps practices. By
integrating fault injection, systematic code testing, and secure
pipeline configuration into a single experiential learning ex-
perience, the module addresses a growing need for practical,
security-focused training in software engineering education.
Results from pre- and post-surveys indicate a notable improve-
ment in students’ comprehension of DevOps security concepts,
with participants demonstrating increased confidence in apply-
ing secure coding principles, identifying vulnerabilities, and
reasoning about system resilience.

While the findings are encouraging, this study is not without
limitations. The sample size was relatively small, with few
number of participants completing the post-survey, which may
affect the generalizability of the results. Additionally, the mod-
ule was implemented within a controlled academic environ-
ment and may require adaptation to reflect the complexity and
scale of real-world production systems. Technical limitations
also existed in the scope of tools used, as the module focused
on foundational exercises and did not incorporate advanced
automation or Al-driven fuzzing strategies.

Despite these constraints, the study provides strong evidence
supporting the value of hands-on, scenario-driven approaches
in teaching secure DevOps. Future enhancements to the mod-
ule will aim to address these limitations by expanding its
deployment across more diverse learning contexts, integrat-
ing scalable cloud environments, and incorporating deeper
tooling for continuous security validation. Overall, this work
contributes to ongoing efforts to modernize cybersecurity
education and align academic training with real-world industry
needs.
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