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Abstract—In today’s fast-paced software development environ-
ments, DevOps has revolutionized the way teams build, test, and
deploy applications by emphasizing automation, collaboration,
and continuous integration/continuous delivery (CI/CD). How-
ever, with these advancements comes an increased need to address
security proactively, giving rise to the DevSecOps movement,
which integrates security practices into every phase of the
software development lifecycle. DevOps security remains under-
represented in academic curricula despite its growing importance
in the industry. To address this gap, this paper presents a hands-
on learning module that combines Chaos Engineering and White-
box Fuzzing to teach core principles of secure DevOps practices
in an authentic, scenario-driven environment. Chaos Engineering
allows students to intentionally disrupt systems to observe and
understand their resilience, while White-box Fuzzing enables
systematic exploration of internal code paths to discover corner-
case vulnerabilities that typical tests might miss. The module was
deployed across three academic institutions, and both pre- and
post-surveys were conducted to evaluate its impact. Pre-survey
data revealed that while most students had prior experience
in software engineering and cybersecurity, the majority lacked
exposure to DevOps security concepts. Post-survey responses
gathered through ten structured questions showed highly positive
feedback 66.7% of students strongly agreed, and 22.2% agreed
that the hands-on labs improved their understanding of secure
DevOps practices. Participants also reported increased confidence
in secure coding, vulnerability detection, and resilient infrastruc-
ture design. These findings support the integration of experiential
learning techniques like chaos simulations and white-box fuzzing
into security education. By aligning academic training with real-
world industry needs, this module effectively prepares students
for the complex challenges of modern software development and
operations.

Index Terms—DevOps Security, Secure Software Development,
Cybersecurity Education, White box Fuzzing, Chaos Engineer-
ing, CI/CD

I. INTRODUCTION

To this end, white-box fuzzing plays a complementary role.

Unlike traditional black-box fuzzing, which generates random

inputs to a system under test, white-box fuzzing leverages

Fig. 1. Labware Setup

source code to intelligently generate inputs that maximize

code coverage and expose edge cases and latent bugs [1],

[2]. It is especially effective at revealing corner cases such

as division by zero, unexpected input formats, and boundary

condition violations that could lead to critical failures or

security vulnerabilities if left unchecked. In this paper, we

present a focused educational module that merges these two

paradigms, Chaos Engineering and white-box fuzzing, through

the development of a simple fuzzer targeting a basic calculator

application. Though the application itself is minimalistic, it

serves as an ideal case study to demonstrate how systematic

test input generation and fault injection can uncover subtle

bugs that traditional testing methods may overlook [3].

This module is part of a broader initiative involving the

design and implementation of ten modular learning expe-

riences, each tailored to reinforce core concepts in cyber-

security, DevOps, and software resilience. These modules

have been intentionally structured to include pre-lab content



dissemination, guided hands-on lab exercises, and post-lab

reflections, ensuring a full-spectrum experiential learning cycle

that supports skill acquisition, critical thinking, and retention.

[4], [5] The specific white-box fuzzing module enriches the

curriculum by exposing learners to real-world testing strategies

that go beyond superficial correctness. It promotes a deeper

understanding of how automated input generation, code in-

strumentation, and control flow analysis can be applied to

detect software flaws before they manifest in production.

By engaging students in designing a simple yet effective

fuzzer, this module instils practical knowledge about software

quality assurance and secure coding practices [6]. Moreover,

the modular design of the curriculum ensures accessibility

and adaptability across diverse educational environments [7],

[8]. Whether in university classrooms, bootcamps, or online

learning platforms, these modules provide scalable, authentic

learning experiences grounded in industry-relevant challenges.

By combining theory with hands-on experimentation, this

initiative aims to produce graduates equipped with both the

conceptual foundation and applied skills needed to thrive in

today’s fast-evolving software landscape.

II. BACKGROUND AND MOTIVATION

As software systems become increasingly complex and

interconnected, the potential impact of system failures has

grown significantly. Ensuring that these systems are robust,

secure, and fault-tolerant has thus become a primary concern

for software engineers. Traditional testing methods, while

essential, often fall short in detecting subtle bugs that emerge

only under rare or extreme conditions. This limitation has

led to the growing adoption of Chaos Engineering and fuzz

testing as advanced strategies to proactively expose system

weaknesses [9]–[11]. Chaos Engineering introduces the idea

of injecting controlled failures into systems to observe and

analyze their behavior under stress. Originally popularized

by Netflix’s ’Chaos Monkey,’ this discipline has expanded to

include fault injection at various levels, from infrastructure to

application logic. Its primary goal is to ensure that systems

can maintain functionality and recover gracefully even when

unexpected issues arise. Educationally, chaos engineering cul-

tivates a mindset of anticipating failure and building for re-

silience—essential qualities in modern software development

[12] [13].

On the other hand, fuzz testing (fuzzing) involves providing

invalid, unexpected, or random data as inputs to a software

program to find bugs and vulnerabilities. While black-box

fuzzing treats the system as opaque, white-box fuzzing utilizes

program structure, control flow, and symbolic execution to

intelligently generate test cases that achieve higher code cover-

age and uncover edge cases [1] [14] [15]. This form of fuzzing

is particularly effective at identifying logical errors and secu-

rity flaws in source code. For example, symbolic execution and

search-based techniques have been used effectively to improve

the precision of fuzzers in RESTful APIs and web front-end

applications [2] [1] [16]. The intersection of chaos engineering

and white-box fuzzing presents a powerful opportunity to

Fig. 2. Workflow of White box fuzzing

explore software robustness both at runtime and at the code

level. By incorporating both strategies into the curriculum,

students are exposed to the dual perspectives of fault injection

and systematic test generation. However, these topics are often

underrepresented in traditional computer science education,

which typically focuses on static learning formats or prede-

fined exercises with known outcomes [17] [18]. To address

this gap, we developed a modular educational framework that

includes ten independent yet interconnected modules, each

targeting a key area in cybersecurity, DevOps, and system

reliability. The white-box fuzzing module discussed in this

paper is one such module. By centering the lab around the

development of a fuzzer for a simple calculator application, we

ensure the exercise is approachable while still illustrating the

power of systematic bug discovery. This exercise empowers

learners to engage directly with concepts such as input space

exploration, assertion testing, control flow analysis, and fault

detection.

III. RELATED WORK

Golmohammadi [2] conducted a systematic literature review

of 92 studies focused on RESTful API testing. The study

revealed that approximately 72% of the reviewed research

emphasized black-box testing techniques, indicating a signif-

icant underrepresentation of white-box approaches. Golmo-

hammadi’s work underscores the potential of white-box testing

in generating high-coverage test cases by leveraging internal

code structures. The study also proposes the use of search-

based software testing (SBST), which frames test generation as

an optimization problem to be solved using search algorithms.

This method offers an automated and potentially more cost-

effective alternative to manual testing. Furthermore, the study

identifies the lack of REST API case studies and limited

research into white-box heuristics as critical gaps in the

literature, providing direction for future exploration.

Complementary research by Yang, Zhang, and Fu (2013)

[19] presents a white-box combinatorial fuzzing framework

that incorporates symbolic execution and combinatorial test-



ing. Their approach focuses on simulating attacks across

multiple input points by analyzing constraint conditions using

static analysis and symbolic execution. The framework intel-

ligently reduces the input space using interval computation

and constraint solving, allowing for efficient and targeted test

generation. This method effectively mitigates the combina-

torial explosion problem often associated with fuzzing and

demonstrates success in exposing deep-seated bugs within

large-scale software systems.

Kertusha (2024) [1] highlights this gap by proposing a

white-box, search-based methodology to address the limita-

tions of current black-box systems. While symbolic execution

and evolutionary algorithms have been applied in the backend

or system-level testing contexts (Yang, Zhang, & Fu, 2013),

their application in frontend testing remains largely unex-

plored. The proposed integration of Search-Based Software

Testing (SBST) and white-box analysis represents a promising

direction to improve test completeness and efficiency by

directly leveraging internal code logic.

Xiao-chen, Jing-yan, and Jie (2009) [20] proposed an in-

novative approach that combines cost-significant theory with

chaos theory for engineering cost estimation. Their method

integrates autocorrelation analysis, G-P algorithms, and Lya-

punov exponent calculations to model historical time-series

data, demonstrating that engineering costs exhibit chaotic

behavior suitable for short-term prediction. Their work shows

promise in reducing estimation workload and increasing fore-

cast accuracy by leveraging nonlinear dynamics.

The approach advocated by De (2021) [12] underscores

the importance of chaos experiments in real-world cloud

systems, particularly during high-traffic events such as e-

commerce mega sales. De introduces a framework rooted in

the Cynefin model, categorizing system components based on

their complexity (simple, complicated, complex, chaotic), thus

helping prioritize and guide chaos experimentation based on

contextual risk.

Borkar et al. [15] introduced WhisperFuzz, a white-box

fuzzing technique focused on detecting and locating timing

vulnerabilities in processors. By analyzing the microarchi-

tectural state transitions at the register-transfer level (RTL),

this approach overcomes the limitations of traditional fuzzing,

enabling precise identification of vulnerabilities in hardware

design.

Zhang et al. [21] presented a white-box fuzzing strategy for

RPC-based APIs using EvoMaster in industrial settings. Their

methodology improves code coverage and fault detection by

instrumenting internal API structures, making it suitable for

continuous testing in large-scale software systems.

Alshmrany et al. [14] developed FuSeBMC, a white-box

fuzzer combining symbolic execution with bounded model

checking to identify security vulnerabilities in C programs.

This hybrid approach enables the discovery of deep, hard-to-

reach bugs that standard fuzzing might miss.

Yang et al. [22] proposed WhiteFox, a compiler fuzzer

that integrates large language models (LLMs) with white-box

analysis to test deep learning compilers. The LLMs analyze

compiler internals and generate test programs that trigger

optimization bugs, showing the potential of AI-augmented

white-box fuzzing.

Luo et al. [16] introduced RESTler, an intelligent REST

API fuzzing tool that automatically generates test cases using

Swagger specifications. The tool leverages a dynamic feedback

loop to learn API dependencies and optimize test sequence

generation. Their approach demonstrated high bug-finding

capability and represents a concrete implementation of white-

box fuzzing in API environments.

Takanen et al. [23] provided a comprehensive overview of

fuzzing in software security, emphasizing its evolution toward

intelligent and grammar-based techniques. The work draws

attention to the critical role fuzzing plays in secure software

pipelines and identifies white-box fuzzing as a frontier requir-

ing deeper exploration, particularly in education and resilience

training.

Chen and Williams [18] explored the use of mutation

analysis for assessing the effectiveness of security testing in

DevSecOps. They concluded that while many security test

suites focus on known vulnerabilities, integrating white-box

fuzzing significantly improves fault detection rates, especially

for zero-day vulnerabilities.

In the realm of software testing education, Johnson et al.

[17] designed an interactive learning module on DevOps prin-

ciples and found that hands-on labs involving fault injection

significantly improved student comprehension and retention.

However, their module lacked a focus on white-box fuzzing

or Chaos Engineering, highlighting a gap our study seeks to

address.

Finally, Ahmad et al. [13] proposed a resilience-focused

learning environment using simulated CI/CD pipelines. Their

study emphasized the importance of simulating real-world

attacks and failure scenarios but acknowledged the need for

advanced test generation techniques like symbolic execution

and evolutionary fuzzing.

Although prior research has contributed significantly to the

understanding of security in DevOps pipelines, it is important

to note that none of these studies have explicitly addressed

the integration of Chaos Engineering and white-box fuzzing

within DevOps security education. While DevSecOps prac-

tices and security automation tools have gained traction in

industry and academia, the pedagogical application of Chaos

Engineering as a means to teach resilience and proactive

failure discovery in secure software development remains

underexplored. Similarly, white-box fuzzing has primarily

been discussed in the context of vulnerability discovery rather

than as a component of educational frameworks. Hence, our

research aims to bridge this gap by designing an authentic

learning module [5], [9] that incorporates Chaos Engineering

and white-box fuzzing to teach core DevOps security concepts.

This module enables learners to simulate fault injection and

analyze internal system states, thereby fostering a deeper

understanding of secure, fault-tolerant software design within

continuous delivery environments.



IV. METHODOLOGY

The methodology of this workshop module is grounded

in experiential learning and follows a structured format: pre-

lab orientation, guided hands-on implementation, and post-lab

reflection. The goal is to foster both conceptual understanding

and technical proficiency through active problem-solving.

A. Pre-Lab Orientation

Before beginning the lab, students are introduced to the

theoretical underpinnings of both chaos engineering and white-

box fuzzing. This includes:

• The rationale behind chaos engineering and its applica-

tions.

• Differences between black-box, gray-box, and white-box

fuzzing.

• The role of code coverage and symbolic execution in fuzz

testing.

• Examples of real-world failures discovered through

fuzzing tools like AFL, KLEE, and libFuzzer.

Students are also provided with a starter codebase: a basic

calculator implementation supporting operations such as addi-

tion, subtraction, multiplication, and division. The calculator

includes intentional vulnerabilities, such as unchecked divi-

sion, overflow risks, and poor input sanitization, to serve as

test targets.

B. Hands-On Lab Implementation

During the lab, students are tasked with designing and

implementing a white-box fuzzer in a high-level language

(e.g., Python or Java). The fuzzer uses knowledge of the

calculator’s source code to:

• Generate structured input data (e.g., mathematical expres-

sions).

• Target-specific operations and boundary conditions.

• Inject invalid or extreme values (e.g., divide by zero, large

integers).

• Evaluate output and log failures or exceptions.

Key steps include:

1) Input generation: Using input templates and randomiza-

tion within defined constraints.

2) Execution & Monitoring: Running the calculator with

the generated inputs and recording any run-time errors

or assertion failures.

3) Logging & Analysis: Track test cases that trigger unex-

pected behavior and analyze control paths taken during

execution.

Students are encouraged to iteratively refine their fuzzer to

improve code coverage and discover more complex bugs.

Optional extensions include the use of code instrumentation

tools to visualize execution paths.

C. Post-Lab Reflection

After completing the implementation, students reflect on

their findings through a structured post-lab questionnaire and

group discussion. They analyze:

• What types of bugs were discovered and why?

• How the input variation affected the discovery.

• How white-box knowledge contributed to testing effi-

ciency.

• How fuzzing complements chaos engineering principles.

This reflection reinforces the connection between theory and

practice and prepares students to apply these methods in more

complex environments.

V. SURVEY FINDINGS

The module was implemented in three academic institutions

in the spring of 2025. To evaluate its effectiveness, we con-

ducted both quantitative and qualitative surveys. Participants

completed pre-lab and post-lab surveys, which included vari-

ous questions designed to collect feedback and assess learning

outcomes.

A. Pre-Lab Survey

Twelve people took part in the survey. Most of them (41.7%)

were between 36 and 45 years old. Two age groups, 26 to

35 and 46 to 55, each comprised 25% of the participants.

Only one person (8.3%) was in the 18 to 25 age range. This

shows that most of the participants were older and likely had

more life and work experience, which added depth to group

discussions and workshop activities.

TABLE I
AGE GROUP DISTRIBUTION

Age Group Count %

18-25 years 1 8.3%

25-35 years 3 25.0%

36-45 years 5 41.7%

46-55 years 3 25.0%

In terms of programming experience, the survey revealed

that most participants possessed a strong foundation in soft-

ware development. Python emerged as the most familiar

programming language among respondents, with 18 students

reporting varying degrees of expertise ranging from moder-

ate to expert-level proficiency. Java, C, and C++ were also

widely recognized, each receiving substantial responses across

different skill levels. In contrast, languages such as Ruby,

Perl, and R had limited exposure, with only one or two

students indicating any experience. These results suggest a

high level of technical fluency among participants, especially

in mainstream programming languages commonly used in

systems-level and software engineering projects. The breadth

of programming knowledge among students highlights a strong

foundation upon which advanced topics like chaos engineering

and fuzzing can be effectively introduced.

The survey included questions about how participants prefer

to learn. They were asked to rate how much they agreed

or disagreed with six different learning style statements. The

results are shown in Table II.



Fig. 3. Age Group

Fig. 4. Programming Proficiencies

Most participants preferred active learning. Ten people

strongly agreed that they learn best by doing hands-on lab

work. Eight strongly agreed that they learn better by working

through examples. These responses support the workshop’s

focus on practical, experience-based learning.

Seven participants also strongly agreed that learning tools

with feedback helped them understand better. Reading on their

own was also popular—six strongly agreed that it worked for

them—although two strongly disagreed, showing some mixed

feelings about self-study.

Listening to lectures was the least preferred method. Only

one person strongly agreed with that statement, while oth-

ers either disagreed or felt neutral. This shows that most

participants prefer more interactive and engaging learning

environments.

TABLE II
LEARNING PREFERENCE RESPONSES

Learning Statement Strongly

Dis-

agree

Neutral Agree Strongly

Agree

I learn better by engaging
in hands-on lab work

1 1 0 10

I learn better by listening
to lectures

1 2 2 1

I learn better by per-
sonally doing or working
through examples

1 1 2 8

I learn better by reading
the materials on my own

2 0 4 6

I learn better by having
learning/tutorial systems
that provide feedback

1 1 3 7

B. Post-Lab Survey

As part of evaluating the effectiveness of the secure DevOps

hands-on lab modules, a post-survey consisting of ten ques-

Fig. 5. Students Learning Preferences

Fig. 6. Q: I like being able to work with the secure DevOps hands-on materials

tions was distributed to the participants. The survey aimed

to gather feedback on various aspects of the learning expe-

rience, including engagement, conceptual understanding, and

practical skill development. Responses were collected from

nine participants, and the overall results indicate a strongly

positive reception toward the hands-on learning approach.

One key area of focus was whether participants enjoyed

working with the secure DevOps hands-on materials. A signif-

icant majority—66.7% strongly agreed, while 22.2% agreed,

totaling nearly 89% of participants who found the materials

enjoyable and engaging. This highlights the value of interac-

tive learning in maintaining student interest and motivation.

In terms of educational impact, the hands-on labs were

found to be effective in enhancing understanding of De-

vOps security concepts. Again, 66.7% of participants strongly

agreed, and 22.2% agreed that the labs helped them better

understand secure DevOps practices. Only 11.1% strongly dis-

agreed, suggesting minimal negative feedback and reinforcing

the overall effectiveness of the approach.

Furthermore, participants were asked if the labs helped

improve their learning experience around secure coding and

DevOps best practices. The feedback remained consistent,

with 55.6% strongly agreeing and 33.3% agreeing—totaling

88.9% of participants who recognized a meaningful learning

benefit from the labs. This clearly demonstrates that practical

exercises not only support theory but also build technical

confidence and real-world applicability.

Overall, the post-survey results reveal that the majority

of participants responded positively across all ten questions.

The consistent pattern of agreement underscores the value

of integrating hands-on labs into DevOps and cybersecurity

education. These findings suggest that experiential learning

approaches are not only well-received but also play a critical

role in equipping learners with the skills and knowledge

required to succeed in modern secure software development

environments.



Fig. 7. Q: The hands-on labs help me understand better on DevOps security

Fig. 8. The hands-on labs help my learning experience on Secure DevOps
coding and best practices

VI. CONCLUSION

This paper presented a hands-on educational module that

combines Chaos Engineering and White-box Fuzzing to en-

hance student understanding of secure DevOps practices. By

integrating fault injection, systematic code testing, and secure

pipeline configuration into a single experiential learning ex-

perience, the module addresses a growing need for practical,

security-focused training in software engineering education.

Results from pre- and post-surveys indicate a notable improve-

ment in students’ comprehension of DevOps security concepts,

with participants demonstrating increased confidence in apply-

ing secure coding principles, identifying vulnerabilities, and

reasoning about system resilience.

While the findings are encouraging, this study is not without

limitations. The sample size was relatively small, with few

number of participants completing the post-survey, which may

affect the generalizability of the results. Additionally, the mod-

ule was implemented within a controlled academic environ-

ment and may require adaptation to reflect the complexity and

scale of real-world production systems. Technical limitations

also existed in the scope of tools used, as the module focused

on foundational exercises and did not incorporate advanced

automation or AI-driven fuzzing strategies.

Despite these constraints, the study provides strong evidence

supporting the value of hands-on, scenario-driven approaches

in teaching secure DevOps. Future enhancements to the mod-

ule will aim to address these limitations by expanding its

deployment across more diverse learning contexts, integrat-

ing scalable cloud environments, and incorporating deeper

tooling for continuous security validation. Overall, this work

contributes to ongoing efforts to modernize cybersecurity

education and align academic training with real-world industry

needs.
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