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Abstract

Inferring variable importance is the key goal of
many scientific studies, where researchers seek to
learn the effect of a feature X on the outcome Y
in the presence of confounding variables Z. Fo-
cusing on classification problems, we define the
expected total variation (ETV), which is an intu-
itive and deterministic measure of variable impor-
tance that does not rely on any model assumption.
We then introduce algorithms for statistical infer-
ence on the ETV under design-based/model-X
assumptions. We name our method Total Varia-
tion Floodgate in reference to its shared high-level
structure with the Floodgate method of Zhang &
Janson (2020). The algorithms we introduce can
leverage any user-specified regression function
and produce asymptotic lower confidence bounds
for the ETV. We show the effectiveness of our
algorithms with simulations and a case study in
conjoint analysis on the US general election.

1. Introduction
1.1. Motivation

In many scientific studies, researchers would like to un-
derstand the effect of a feature X on a response variable
Y , while controlling for potential confounding features Z.
While this question is sometimes simplified to a hypothesis
testing problem of “does X affect Y at all in the presence
of Z”, it is more desirable to follow up with “if so, by how
much”; that is, we wish to provide a quantitative variable
importance measure (VIM). In traditional statistical frame-
works, such a follow-up question is addressed by postulating
a parametric model of L(Y | X,Z) and looking at the in-
ferred parameters. However, such parametric models are
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often limited in their capacity to capture complex relation-
ships. This paper aims at defining a VIM for classification
problems and conducting inference on it. As a design objec-
tive, this (population-level) VIM must be model-free, in that
it does not rely on an underlying model assumptions. We
would also like the VIM to be intuitive and easy to interpret.

1.2. Our Contribution

The main contributions of this work are listed below.

1. We propose the expected total variation (ETV) as a
VIM that is well-defined for any type of variables
(X,Y, Z). In this paper, we focus on categorical re-
sponse variables Y , for which VIMs with rigorous
statistical guarantees were rarely discussed in the liter-
ature and ETV has both an intuitive model-free inter-
pretation and sound statistical properties.

2. We introduce algorithms that provide lower confidence
bounds on the ETV without imposing any assumptions
on the distribution L(Y | X,Z), but instead make the
design-based/model-X assumption that we can sample
from L(X | Z), which we discuss in Secion 2.2. We
accompany our algorithms with hyperparameter choice
recommendations and show that they work well in our
extensive simulation results. Again, the same idea also
works for continuous and binary Y .

3. We demonstrate the effectiveness of our algorithms in
a real conjoint data analysis study.

In the remainder of this section, we will discuss related
work and introduce notation. The mathematical definition
of ETV will be given in Section 2. We will discuss the
properties of ETV in Section 2.1. Section 2.2 is devoted to
our main algorithm to conduct inference on ETV. We then
study the algorithm parameters in Section 2.3 to facilitate
practical applications and discuss a generalization of ETV
in Section 2.4. Section 3 includes simulations on synthetic
data to support the effectiveness of our proposed method.
We then apply our method to a conjoint analysis example
on political candidate preferences in Secton 4.
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1.3. Related Work

The canonical VIM is defined through parametric models.
When Y is categorical, the textbook approach is to parame-
terize L(Y | X,Z) with a generalized linear model (Agresti,
2015), and there has been work on parameter inference in
high-dimensional sparse models (Van de Geer et al., 2014;
Belloni et al., 2016). However, generalized linear models
have limited capacity in capturing non-linear effects, and
such parameter-based VIMs crucially rely on the model be-
ing well specified and become ill-defined when the model
is misspecified.

A more contemporary line of work utilizes machine learn-
ing methods to capture variable importance (Fisher et al.,
2019; Watson & Wright, 2021; Molnar et al., 2023) in a
model-free manner. While these VIMs are well-defined
without parametric assumptions, they are associated with
a trained machine learning model, which depends on the
model choice and the data itself. We aim to define a VIM
whose population-level definition depends on the underlying
distribution but does not depend on the model and data.

Another existing approach (Castro et al., 2009; Williamson
& Feng, 2020; Ning et al., 2022) borrows ideas from the
game theory literature and considers VIMs based on the
Shapley value (Shapley, 1953). Shapley-value based VIMs
capture the variable’s predictive power, and are often pos-
itive even for statistically null variables (that is, X where
X ⊥⊥ Y | Z). Thus, while these VIMs have attractive
predictive interpretations, they lack a causal interpretation.

Azadkia & Chatterjee (2021) introduced a model-free
VIM based on cumulative distributions functions for non-
categorical Y ; Huang et al. (2020) generalized it to categori-
cal Y , but it relies on a user-specified kernel function. These
VIMs have the appealing property that they are 0 if and only
if Y ⊥⊥ X | Z and 1 if and only if Y is a deterministic
measurable function of (X,Z). Both papers considered
consistent estimators of the VIMs and not lower confidence
bounds like we do here. Zhang & Janson (2020) proposed
a model-free VIM called the minimum mean squared er-
ror (mMSE) for non-categorical Y and provided a lower
confidence bound. Zhang & Janson (2020, Section 3.1)
extended their inference to a VIM called the mean abso-
lute conditional mean (MACM) gap, which is defined for
binary Y . Similarly, Williamson et al. (2021) defined a
class of VIMs based on a variable’s additional predictive-
ness and constructed estimators and confidence intervals.
These VIMs hinge on a predetermined family of predictors,
and while the VIMs could work for any type of responses,
Williamson et al. (2021) also only considered inference in
cases of non-categorical and binary responses where the
conditional mean is a meaningful quantity.

To the best of our knowledge, our work is the first to propose

a VIM for general categorical responses that is model-free,
natural and easy to interpret, and provide a lower confidence
bound for it.

Finally, there are two methods in the literature (Zhang &
Janson, 2020; Näf et al., 2022) that have close connections
with our proposed method. As it requires first introducing
our algorithm to properly discuss comparisons with these
methods, we will review these works and their relationship
to ours in Section 2.5.

2. VIM Inference in Classification
For random variables or vectors W1 and W2, L(W1) means
the distribution of W1 and L(W1 |W2) means the condi-
tional distribution of W1 given W2. TV(L1,L2) means the
total variation distance between distributions L1 and L2.
Unless otherwise specified, vectors are column vectors. Φ
denotes the cumulative distribution function of the standard
Gaussian distribution N (0, 1).

2.1. The Expected Total Variation Distance

Let (X,Y, Z) be a random vector with three components.
We would like to quantify the effect size of X; that is, the
strength of the conditional dependence between X and Y
given Z. We propose to use the expected total variation
distance (ETV) between L(Y | X,Z) and L(Y | Z):

ETV(X,Y, Z) :=
E[TV(L(Y | X,Z),L(Y | Z))]

1− 1/|Y|
, (1)

as the VIM, where |Y| is the support size of Y (if |Y| =∞,
we simply normalize by 1) and the expecation is taken over
(X,Z). The normalizing factor is to ensure the value of
ETV is in [0, 1], as stated below.

Lemma 2.1 (Range of ETV). If P(Y ∈ Y) = 1, then 0 ≤
ETV(X,Y, Z) ≤ 1, where the right equality is achieved
when X , conditional on Z, deterministically determines Y
and P(Y = y | Z) = 1/|Y| for all y ∈ Y .

If X is continuous and P(Y = y | Z) = 1/|Y| for all
y ∈ Y , then there always exists L(X | Z) such that Y is a
deterministic function of (X,Z). Thus, for any support Y ,
there exists (X,Y, Z) such that ETV(X,Y, Z) is equal to
1 for finite |Y|, or gets arbitrarily close to 1 for |Y| =∞.

The ETV has several desirable properties that distinguish it
from other VIMs in the literature:

1. ETV attains its minimum value zero if and only if X ⊥⊥
Y | Z. This means ETV captures the aggregation of all
possible effects of X on Y conditional on Z, including
both linear and non-linear effects.

2. ETV has a very simple and intuitive form and does not

2



Total Variation Floodgate for Variable Importance Inference in Classification

depend on any pre-specified model or kernel function
(that is, it is model-free).

3. ETV is particularly suitable to categorical Y because
it does not change under one-to-one mapping of Y .

ETV’s simple form should already make it very easy to
interpret conceptually. The key component is the total vari-
ation distance, which is also the Wasserstein distance with
0-1 loss and half the the L1 distance between probability
density/mass functions. To visually demonstrate the ETV,
we consider an example where Y could be one of 5 cate-
gories s1, . . . , s5. In Figure 1, the red bars represent the
probability of Y being from each category conditional on
(X,Z) taking on some particular value (x, z), the blue bars
represent the probability of Y taking each value conditional
on Z = z, and the yellow bars represent the difference.
The expected sum of the yellow bars, when averaged over
(X,Z), is equal to 2(1− 1/|Y|) ETV.

s1

P(Y=si | Z)
P(Y=si | X, Z)
Difference

s2 s3 s4 s5

Figure 1. ETV illustration. The expected sum of the yellow bars,
when averaged over (X,Z), is equal to 2(1− 1/|Y|) ETV.

We wish to note that ETV cannot be interpreted causally
without certain standard causal assumptions. One case
where those assumptions are met is the standard randomized
experiments, where X is the treatment variable.

Finally, we briefly discuss the interpretation of ETV in the
context of sensitivity analysis. When Y ⊥⊥ X | Z does not
hold, we can hypothesize the existence of a confounding
variable U , such that Y ⊥⊥ X | Z,U . We can define
B(X,Z,U) ≥ 1 as the (almost sure) supremum of

max

{
p(X | U,Z)

p(X | Z)
,

p(X | Z)

p(X | U,Z)

}
.

Therefore, B measures the minimal confounding effect that
can explain away the conditional non-independence. We can
show that B(X,Z,U) ≥ 1 + 2(1− 1/|Y|) ETV(X,Y, Z)
(see Appendix B). This interpretation is very relevant for
low-signal problems such as the genome-wide association
studies (GWAS), where most signals are weak and one

would want to know the sensitivity of the conditional non-
independence.

2.2. Lower Confidence Bound for the ETV

Having introduced ETV as a VIM, we now focus on design-
ing algorithms to do inference on it. We recognize that (1)
measures the distinction between the distributions

L(X,Y, Z) and L(Y | Z)× L(X | Z)× L(Z), (2)

where L(Y | Z) × L(X | Z) × L(Z) represents the joint
distribution of (X,Y, Z) when Z ∼ L(Z), X | Z ∼ L(X |
Z), Y | Z ∼ L(Y | Z), and X ⊥⊥ Y | Z. We can see this
by

2E[TV(L(Y | X,Z),L(Y | Z))]

=

∫
z

(∫
x

(∫
y

|p(y|x, z)− p(y|z)| dy
)
p(x|z) dx

)
p(z) dz

=

∫
z

∫
x

∫
y

|p(y, x, z)− p(y|z)p(x|z)p(z)| dy dx dz

= 2TV(L(X,Y, Z),L(Y | Z)× L(X | Z)× L(Z)).

In fact, the ETV measure (1) exactly corresponds to the
optimal error rate when classifying samples into the two
populations. We state a general result in Theorem 2.2 below.

Theorem 2.2. Let π0 and π1 be two distributions supported
on the same continuous or discrete space Ω. Let π be the
distribution of (ω,A), where A ∼ Bern(a) and ω | A ∼
πA. Then for any f : Ω→ [0, 1],

1−Eπ

[
1

a
I(A = 1)(1− f(ω))+

1

1− a
I(A = 0)f(ω)

]
≤ TV(π1, π0),

where the equality could be achieved by an optimal f .

Armed with this observation, we can convert the task of
inferring ETV into inferring the classification error rate of
samples from the two distributions in (2). Note that this
binary classification has nothing to do with |Y|, the support
size of Y , and all results in Sections 2.1 to 2.4 are agnos-
tic to |Y|. Using the available samples from L(X,Y, Z),
the design-based/model-X approach (Rubin, 1974; Holland,
1986; Janson, 2017; Candès et al., 2018) allows us to obtain
samples from L(Y | Z) × L(X | Z) × L(Z) by utilizing
our ability to sample from L(X | Z). In randomized exper-
iments (Rubin, 1974; Holland, 1986), L(X | Z) is known
by design, such as the example of conjoint analysis in Sec-
tion 4. Even for some observational data sets, L(X | Z) can
be estimated accurately from unlabeled samples of (X,Z)
without Y . We acknowledge that this is a limitation of our
algorithms, while we wish to point out that inference on con-
ditional inference is in general an impossible task without
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extra assumptions; specifically, when Z is continuous, Shah
& Peters (2020) showed that a universally valid conditional
independence test must be trivial.

Assuming1 it is possible to sample from L(X | Z), we have
the following simple corollary to Theorem 2.2.

Corollary 2.3. Let (X(0), Y, Z) ∼ p(z)p(x|z)p(y|x, z) ≡
p(x, y, z) be the original data. Draw X(1), . . . , X(J) |
X(0), Y, Z

i.i.d.∼ p(x|Z). Then for any classifier f :
(X ,Y,Z)→ [0, 1], we have

1− E

1− f(X(0), Y, Z) +
1

J

J∑
j=1

f(X(j), Y, Z)


≤ 1

2

∫ ∣∣∣p(y|x, z)− p(y|z)
∣∣∣p(x|z)p(z) dx dy dz .

In light of Corollary 2.3, we can design an algorithm that
produces a lower confidence bound on (1) using the cen-
tral limit theorem. The algorithm works by first choosing

Algorithm 1 Total variation floodgate.

Input: An i.i.d. data set (Xi, Yi, Zi)
n
i=1, conditional dis-

tribution L(X | Z) and a classifier f : (X ,Y,Z) →
[0, 1], number of resamples J , Y ’s support size |Y|, con-
fidence level α ∈ (0, 1)
Output: a lower confidence bound for ETV(X,Y, Z)
for i = 1 to n do

Draw X
(1)
i , . . . , X

(J)
i

i.i.d.∼ L(X | Z = Zi).
Set (Y (j)

i , Z
(j)
i ) = (Yi, Zi), Ei = 1 and E

(j)
i = 0,

1 ≤ j ≤ J .
fi ← f(Xi, Yi, Zi).
f
(j)
i ← f(X

(j)
i , Y

(j)
i , Z

(j)
i ).

Li ← (|fi − 1|+ (1/J)
∑J

j=1 |f
(j)
i − 0|).

end for
L̄←

∑n
i=1 Li/n, L̄2 ←

∑n
i=1 L

2
i /n.

Return Lα
n(f) =

max(0,1−L̄−zα

√
¯

L2−L̄2
√

n
)

(1−1/|Y|) , where zα satis-
fies 1− Φ(zα) = α.

a classification function f as in Corollary 2.3, which can
be understood as a labeling function, then using the sam-
ple mean and variance of classification error to produce a
lower confidence bound for the real classification accuracy
rate, which (by the corollary) is itself a lower bound on the
optimal classification accuracy rate and a rescaled ETV.

1This assumption can be relaxed if one is willing to assume
certain parametric models for L(X | Z) (Zhang & Janson, 2020,
Section 3.2), and the floodgate approach for other VIMs has been
extended to be doubly robust, but such an extension is beyond the
scope of this paper.

This idea of producing a lower confidence bound on a lower
bound on the quantity of interest is metaphorically termed
“floodgate” in Zhang & Janson (2020), hence the name of
Algorithm 1. Note that there is an oracle f that provides
the best lower confidence bound, in the sense given in Theo-
rem 2.4; thus, the coverage of Algorithm 1 can be tight.

Theorem 2.4 (Validity of Algorithm 1). For any given f
and α ∈ (0, 1), limn→∞ P(ETV ≥ Lα

n(f)) ≥ 1 − α,
where Lα

n(f) is defined in Algorithm 1. Additionally,
limn→∞ P(ETV ≥ Lα

n(foracle)) = 1− α, where

foracle(x, y, z) = I(p(y | x, z) > p(y | z))

= I
(

p(y | x, z)
p(y | x, z) + p(y | z)

> 0.5

)
. (3)

The proof of Theorem 2.4 follows directly from Corol-
lary 2.3 and the central limit theorem once we note that Li’s
are bounded and independent and identically distributed.

A natural question that the reader may have is whether we
could provide an upper confidence bound for the ETV. We
present Theorem 2.5, which states that in some sense the
answer is no: a generic confidence upper bound on the ETV
must simply cover the theoretical upper bound even under
the most ideal scenario: there is no Z variable, X and Y are
independent, X’s distribution is known, and Y ’s distribution
is uniform.

Theorem 2.5. Let (Xi, Yi)
n
i=1 be i.i.d. samples from L,

where the marginal distribution of Yi is Unif({1, . . . ,K}).
Let CLX

be an algorithm tailored for the marginal distri-
bution of Xi that takes (Xi, Yi)

n
i=1 as input and produces a

confidence upper bound, such that PL(CLX
(X1:n, Y1:n) ≥

ETV(X,Y )) ≥ 1− α, α ∈ (0, 1), for any L that respects
the marginal distributions LX , where ETV(X,Y ) is (1)
with an empty Z. Then,

P(CLX
(X1:n, Y1:n) ≥ 1) ≥ 1− α (4)

when (Xi, Yi)
i.i.d.∼ LX ×Unif({1, . . . ,K}), where LX is a

continuous distribution and 1 is the theoretical ETV upper
bound given by Lemma 2.1.

To provide some intuition on Theorem 2.5, we can un-
derstand the hardness of producing an upper bound by
thinking about the general problem of upper bounding the
total variance distance between L1 and L2. By writing
TV(L1,L2) = supA |L1(A) − L2(A)| (where the supre-
mum is over measurable sets A), we can easily obtain a
lower bound for TV by fixing a nontrivial set A, and it
is then straightforward to empirically estimate the lower
bound |L1(A)−L2(A)|. However, in order to upper bound
or estimate the actual TV, one would need to be able to
consistently estimate the set argmaxA |L1(A) − L2(A)|.

4



Total Variation Floodgate for Variable Importance Inference in Classification

For the ETV, this translates to consistently estimating the
optimal classifier f given by (3), which requires to impose
conditions on L(Y | X,Z). On the other hand, we do not
need such conditions to produce a lower confidence bound.

Moving back to Algorithm 1, the function f in practice
would have to be trained on a separate dataset to maintain
validity, which is not fully utilizing the whole dataset. Next,
we show how to apply cross-validation in a way that every
data point is used for inference.

Data Splitting, Cross Validation and Derandomization.
To avoid excluding any data in the inference step, we use the
idea of cross-validated floodgate. The idea borrows results
from central limit theorems for cross-validation (Austern &
Zhou, 2020; Bayle et al., 2020) and ensures the validity of
Algorithm 2, a cross-validated version of Algorithm 1.

Algorithm 2 Cross-validated total variation floodgate.

Input: An i.i.d. data set (Xi, Yi, Zi)
n
i=1, conditional

distribution L(X | Z) and a classifier training rule f ,
number of resamples J , number of CV folds k, Y ’s sup-
port size |Y|, confidence level α ∈ (0, 1)
Output: a lower confidence bound for ETV(X,Y, Z)
Randomly partition the data into k folds Bc

1, . . . , B
c
k with

sizes differing by at most one.
for r = 1 to k do

Train a classifier fBr
with data Br, plug in fBr

and
data (Xi, Yi, Zi)i∈Bc

r
to Algorithm 1, and record the

sample mean and sample variance of the L vector as
µ̂r and σ̂2

r .
end for
µ̂←

∑k
r=1 µ̂r/k, σ̂2 ←

∑k
r=1 σ̂

2
r/k.

Return Lα
n(f) = max(0, (1−µ̂−zασ̂/

√
n)/(1−1/|Y|)),

where zα satisfies 1− Φ(zα) = α.

Theorem 2.6 (Validity of Algorithm 2). For any given f
and α ∈ (0, 1), let

hn((x, x
(1:J), y, z);B1)

= |fB1(x, y, z)− 1|+ 1

J

J∑
j=1

|fB1(x
(j), y, z)|,

h̄n((x, x
(1:J), y, z)) = EB1

[hn((x, x
(1:J), y, z);B1)],

σn =
√
Var(h̄n((X,X(1:J), Y, Z)))

where the subscript B1 means taking expectation over B1,
which contains the n(1 − 1/k) training samples for fB1 .
Assume

(a)
(
h̄n((X,X(1:J), Y, Z))− E[h̄n((X,X(1:J), Y, Z))]

)
/σ2

n

is uniformly integrable;

(b) and the asymptotic linearity condition (2.2) in Bayle
et al. (2020) holds in probability:

1

σn
√
n

k∑
r=1

∑
i∈Bc

r

(
(hn(Xi, X

1:J
i , Yi, Zi);Br)

− E[hn(Xi, X
1:J
i , Yi, Zi);Br) | Br]

−
(
h̄n((X,X(1:J), Y, Z))

− E[h̄n((X,X(1:J), Y, Z))]
))

p→ 0.

Then, limn→∞ P(ETV ≥ Lα
n(f)) ≥ 1 − α. Additionally,

limn→∞ P(ETV ≥ Lα
n(foracle)) = 1 − α, where foracle is

given by (3).

Assumption (a) holds if h̄n((X,X(1:J), Y, Z)) does not
converge to a degenerate distribution. Section 3 in Bayle
et al. (2020) discussed some sufficient conditions of assump-
tion (b). Notably, when the number of cross-validation folds
k = O(1), then a sufficient condition for (b) is

E[Var[hn((X,X(1:J), Y, Z);B1) | (X,X(1:J), Y, Z)]]

Var(h̄n((X,X(1:J), Y, Z)))

→ 0 in probability.

Assuming the denominator converges to a positive constant,
this condition says that the out-of-sample loss is asymp-
totically stable over the random training sample. Because
hn is bounded, the conditions of Theorem 2.6 hold if there
exists f∗ such that fB1

(x, y, z)→ f∗(x, y, z) in probability,
uniformly over (x, y, z).

2.3. Classification Function

In this section, we discuss how to train the function f in
Algorithms 1 and 2.

By looking at the ultimate goal of f , which is to predict
whether X is a resample from p(x|z) or the original sample,
a naive approach is to train f by regressing E on (X,Y, Z)
using samples

(E
(j)
i , (X

(j)
i , Yi, Zi)), i = 1, . . . , n, j = 0, . . . , J,

where X
(0)
i = Xi and E

(j)
i = I(j = 0). However, this

approach is ignoring important structural information. From
the proof of Corollary 2.3, the oracle f that minimizes the
expected error rate is the one given in (3), which motivates
the following choice of f in practice

f(x, y, z; pθ1 , pθ2 , c) =


1, p̂i > 0.5 + c,

0, p̂i < 0.5− c

0.5, |p̂i − 0.5| ≤ c,

(5)

5



Total Variation Floodgate for Variable Importance Inference in Classification

where

p̂i =
pθ̂1(y | x, z)

pθ̂1(y | x, z) + pθ̂2(y | z)
,

θ̂1 and θ̂2 are parameter estimates of working models
pθ1(y | x, z) and pθ2(y | z) and c sets a buffer to account
for the estimation error and gives an extra degree of free-
dom. The working models can be from any model family,
including simple generalized linear models and more so-
phisticated machine learning models. The accuracy of the
working models directly impacts the performance of our
algorithms. While an agnostic model may already have ade-
quate performance, as we show in Section 3.1, practitioners
are encouraged to incorporate domain knowledge into build-
ing these working models. The logic behind such f is that
we classify the sample as 0 or 1 depending on which has the
higher estimated likelihood, but when the two likelihoods
are close and we are not sure, we set it to 0.5 and essentially
discard the sample. The parameter c controls our comfort
level of confidence. We will show the empirical effect of c
in Section 3.2.

2.4. Generalization to Hierarchical Responses

In some cases, the response Y may have several levels,
arranged in a hierarchy. For example, a wolf is also a type of
dog, which is also an animal. We can choose to relabel wolf
to dog or animal to reflect the relevant level of granularity.
It is then straightforward to apply Algorithms 1 and 2 to the
relabeled data. We wish to raise a subtle yet crucial point
that one cannot simply drop certain labels. For example,
if one only cares about a feature X’s ability to distinguish
Y = A from Y = B, one might be tempted to simply
drop all samples where Y ̸∈ {A,B}. However, doing so
would require one to be able to sample from L(X | Z, Y ∈
{A,B}) to apply Algorithms 1 or 2, which is a different
assumption from being able to sample from L(X | Z).

If all values of Y have the same number of levels, then
we can define an overall VIM by weighting all levels. Let
Y = (Y1, . . . , YK) have K hierarchy levels, where for any
possible values Y and Ỹ , if Yk ̸= Ỹk, then Yk′ ̸= Ỹk′ for all
k′ > k. For instance, we can let K = 3 and Y1, Y2, Y3 be
the taxonomic ranks of family, genus and species (a genus
consists of many species, etc.), so if two labels disagree at
the genus level, they must necessarily also disagree on the
species. Next, we define a VIM at each level k > 1:

HETVk(X,Y, Z) = (1− 1/|Y1:k|) ETV(X,Y1:k, Z)

− (1− 1/|Y1:k−1|) ETV(X,Y1:(k−1), Z),

where we add back the normalizing constant to en-
sure HETVk(X,Y, Z) ≥ 0. A sufficient condition of

HETVk(X,Y, Z) = 0 is

L(Yk | X,Y1:(k−1), Z) = L(Yk | Y1:(k−1), Z),

equivalently L(X | Y1:k, Z) = L(X | Y1:(k−1), Z),

so we can interpret HETVk(X,Y, Z) as an ETV-based
VIM of X at hierarchy level k. Finally, we define an overall
VIM of X by aggregating ETV(X,Y1, Z) and HETV at all
others levels with a user-specified weight vector w:

HETVw(X,Y, Z) = w1(1− 1/|Y1|) ETV(X,Y1, Z)

+
K∑

k=2

wk HETVk(X,Y, Z).

Here, w1:K is a sequence of non-increasing weights, so that
the coefficient for each ETV is non-negative. We can then
modify Algorithm 1 to support HETV, as below.

Algorithm 3 Hierarchically weighted TV floodgate.

Input: An i.i.d. data set (Xi, Yi, Zi)
n
i=1, conditional dis-

tribution L(X | Z) and classifiers fk : (X ,Y1:k,Z) →
[0, 1], number of resamples J , confidence level α ∈ (0, 1)
Output: a lower confidence bound for ETVw(X,Y, Z)
for i = 1 to n do

Draw X
(1)
i , . . . , X

(J)
i

i.i.d.∼ L(X | Z = Zi).
Set (Y (j)

i , Z
(j)
i ) = (Yi, Zi), Ei = 1 and E

(j)
i = 0,

1 ≤ j ≤ J .
for k = 1 to K do
fi,k ← fk(Xi, Y1:k,i, Zi).
f
(j)
i,k ← fk(X

(j)
i , Y

(j)
1:k,i, Z

(j)
i ).

Li,k ← (|fi,k − 1|+ (1/J)
∑J

j=1 |f
(j)
i,k − 0|).

end for
Li ← w1Li,1 +

∑K
k=2 wk(Li,k − Li,k−1).

end for
L̄←

∑n
i=1 Li/n, L̄2 ←

∑n
i=1 L

2
i /n.

Return Lα
n(f) = max(0, 1 − L̄ − zα

√
L̄2 − L̄2/

√
n),

where zα satisfies 1− Φ(zα) = α.

In the same way as done above, we could also modify Algo-
rithm 2 to work for HETV.

2.5. Relationship with Literature

Having introduced the definition of ETV and algorithms for
inference, we pause to discuss two recent related works.

Connection to the MACM Gap in Zhang & Janson (2020)
For the specific case where Y ∈ {1,−1}, Zhang & Janson
(2020) defined the MACM gap, which has exactly twice
the value of ETV. Their inference (Zhang & Janson, 2020,
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Algorithm 3) is equivalent to our Algorithm 1 with

f(X,Y, Z) =

{
I(µ(X,Z) ≥ E[µ(X,Z) | Z]), if Y = 1,

I(µ(X,Z) ≤ E[µ(X,Z) | Z]), if Y = −1.
(6)

The details are deferred to Appendix C.

Connection to λ̂ρ
bayes in Näf et al. (2022) Näf et al. (2022)

studied lower confidence bounds for TV(P,Q) based on
i.i.d. samples from P and Q. One of their proposed esti-
mators, λ̂ρ

bayes in Näf et al. (2022, Proposition 3), is based
on the same classification idea as Algorithm 1. Specifically,
Näf et al. (2022) also utilized the relationship between the
classification accuracy and the total variation distance, and
λ̂ρ

bayes is constructed based on this fact for a fixed classifica-
tion function ρt(x) = I(ρ(x) > t) with t = 0.5. Similar to
our discussion around the parameter c in Section 2.3, Näf
et al. (2022) showed that there may exist better choices for t
in ρt(x) than the natural t = 0.5, depending on prior knowl-
edge of P and Q. While we propose to use cross-validation
to choose c, Näf et al. (2022) went on to consider estima-
tors very different from λ̂ρ

bayes. While our method shares
the same construction idea as λ̂ρ

bayes in Näf et al. (2022),
the key difference between the two works is the problem
setting. Näf et al. (2022) studied two-sample testing, where
the samples are naturally labeled with auxiliary informa-
tion; our work is centered around the ETV, which is a novel
VIM defined through a sample-labeling mechanism based
on L(X | Z). Thus, while the algorithmic ideas are similar,
our motivations and applications are quite different.

3. Simulations
The code to implement ETV floodgate and replicate all
experiments is available at https://github.com/
wenshuow/etv_floodgate. Results are obtained
from a number of independent experiments. Each exper-
iment has a brief runtime, consistently below 10 minutes
on a single CPU. Given that standard errors are under 0.01
across all experiments, the error bars on the plots are deemed
negligible and have been excluded.

3.1. Effect of the Classification Function

In this section, we consider the model

Y | X ∼ Bern(Φ(X⊤β)), X ∼ N (0,Σ), (7)

where X is a p-dimensional column vector and we pro-
vide lower confidence bound for ETV(Xj , Y,X-j) for each
j. We choose Σij = ρ|i−j|. We set p = 4 or 10,
β = (0, 1, 2, 3) for p = 4 and β = (0, 0, 0, 0, 1, 2, 3, 4, 5, 6)
for p = 10, n = 100p, and apply 10-fold cross validation in
Algorithm 2. We use three types of classification functions
as in (5). For the oracle model, pθ1 and pθ2 are set to the

p=4 p=10
r

=
0.0

r
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0.5
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Figure 2. Lower confidence bound of ETV with different classifi-
cation functions, averaged over 1536 independent experiments. In
the p = 10 case where there are multiple βj’s equal to zero, we
plot one case where j = 1.

true models. For the logistic or tree models, pθ1 and pθ2
are logistic or tree models, and θ̂1 and θ̂2 are trained on
cross-validated data. We find that the oracle gives the high-
est lower confidence bound (as expected), and the logistic
model is a close second. Even the generic random forest
model performs reasonably well.

3.2. Effect of Threshold c

In this section, we demonstrate the effect of c in (5). We
consider a model Mk of the form

Y | X ∼ Bern

Φ

βkXkZk +
∑
j ̸=k

βjXj

 ,

X ∼ N (0,Σ), Z ∼ Bern(0.5), X ⊥⊥ Z.

(8)

Here, X is a p-dimensional column vector and we pro-
vide lower confidence bound for ETV(Xk, Y, (X-k, Z))
under Mk, where we rotate the value of k. We choose
Σij = ρ|i−j|. We set p = 10, β = (0, 0, 0, 1, 2, 3, 4, 5, 6, 7)
and n = 220. We focus on two classification functions as in
(5) and the results are reported in Figure 3. For the “logistic”
model, we use logistic models for pθ1 and pθ2 , and θ̂1 and
θ̂2 are trained on cross-validated data; for the “logistic int”
model, we add interactions between Z and other Xj’s into
the models. We explore the following methods to choose
c: “Naive” means setting c = 0; “CV” means using 10-fold
cross validation to choose c. Note that this cross validation
is different from one we use to train f in Algorithm 2. We
further compare our methods with an oracle method de-
scribed below. Consider the rth fold in Algorithm 2, where
we have trained classifier fBr and the evaluation set Bc

r .
We use µ̂(f c

Br
, D) and σ̂2(f c

Br
, D) to denote the sample
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Figure 3. Lower confidence bound of ETV based on 1536 experi-
ments. “logistic” and “logistic int” denote the classification func-
tion. The βk = 0 case is with k = 1.

mean and variance of applying Algorithm 1 with dataset
D and f c

Br
, where f c

Br
is combining c with fBr

as in (5).
“CV oracle” means setting

coracle = argmax
c

1

K

S∑
s=1

(
1− µ̂(f c

Br
, Ds)

− zασ̂(f
c
Br

, Ds)/
√
|Br ∪Bc

r |
)
,

where D1, . . . , DS are S (taken to be 10 in the experiments)
independent regenerations of the dataset Bc

r with the true
distribution. The results are summarized in Figure 3. We can
see that “Oracle” outperforms “CV” and “Naive”, matching
intuition. “CV” outperforms “Naive” and is quite close to
the oracle method.

4. Application in Conjoint Analysis
4.1. Conjoint Analysis

Conjoint analysis (Luce & Tukey, 1964) is a survey-based
statistical technique, where respondents are given a num-
ber of profiles with different attributes are asked to pick a
favourite or rank them. A popular VIM used by social sci-
entists is the average marginal component effect (AMCE),
and there has been work on constructing confidence in-
tervals on the AMCE (Hainmueller et al., 2014; Ono &
Burden, 2019). The AMCE, as its name suggests, consid-
ers only the marginal effect and may fail to capture some
interactions. Ham et al. (2022) introduced a hypothesis
testing procedure for the null hypothesis Y ⊥⊥ X | Z
in the conjoint analysis context, but they did not propose
a VIM. We will bridge this gap by using the ETV as
the VIM in conjoint analysis and construct lower confi-
dence bounds for it. The code is available at https:

//github.com/wenshuow/etv_floodgate.

4.2. US General Election Data

In this section, we analyze the election data in Ono & Bur-
den (2019), which is under the CC0 license. In the exper-
iment, each respondent is given two hypothetical political
candidate profiles and asked to pick the one that they prefer.
Each data point can thus be written in the form

(Y,X0, X1, Z0, Z1, ZR),

where (Xk, Zk) are the attributes of Candidate k with X
being the attribute of interest, ZR is the attribute of the re-
spondent, and Y ∈ {0, 1} is the choice of the respondent.
We use Z to denote the collection of (Z1, Z2, ZR). We
focus on the presidential election data with n = 7190 ob-
servations. In each observation, there are 13 attributes of
two political candidates and 11 attributes of the respondent,
so X0, X1 are scalars, Z0, Z1 are 12-dimensional and ZR

is 11-dimensional. Here, each candidate’s attributes are
uniformly and independently randomized, with a few hard
constraints; for example, a candidate with a high-skill pro-
fession must have at least two years of college experience.
More details on the data can be found in Appendix D.1.

4.3. Inference for ETV

We choose X0 and X1 to be the party affiliations of the can-
didates, which take value from {Democratic, Republican}.
We can see that while one would expect X0,1 to play an
important role in the respondent’s choice Y , its marginal
effect would be close to zero (assuming there is no party
affiliation bias in the respondents). To use the AMCE, we
would have to re-define X0,1 as whether that candidate has
the same party affiliation as the respondent. The ETV, on
the other hand, can be employed directly. This issue could
be more severe for other features that are not as straight-
forward to correct. For instance, the original analysis in
Ono & Burden (2019) based on the AMCE suggested that
gender is a statistically significant factor for congressional
political candidates, while the analysis Ham et al. (2022)
suggested that gender does matter for congressional candi-
dates through interactions with other factors, including the
respondent’s party affiliation.

Before presenting our data analysis, we pause to consider
what are reasonable values for the ETV. We have shown in
Lemma 2.1 that in the case of binary response, the upper
bound of ETV is 1. In our specific case, we should expect
an even lower upper bound. Suppose we have the following
ideal data generating distribution, where

P(candidate party affiliation is independent) = q ∈ [0, 1],

X = (X0, X1) | Z ∼ Unif{(D,D), (D,R), (R,D), (R,R)},

and L(Y | X,Z) is given by Table 1.

8

https://github.com/wenshuow/etv_floodgate
https://github.com/wenshuow/etv_floodgate


Total Variation Floodgate for Variable Importance Inference in Classification

Table 1. Ideal distribution by case.

Case L(Y | X,Z)

respondent is independent or two can-
didates have same party affiliation

Bern(0.5)

candidates’ party affiliations differ and
candidate 1 is same as respondent

Bern(p)

candidates’ party affiliations differ and
candidate 0 is same as respondent

Bern(1− p)

In this case, ETV(X,Y, Z) = (1 − q)|p − 0.5|. In the
election data, q ≈ 0.27, so even if p = 1, which means
a respondent deterministically prefers the candidate from
the same party, ETV(X,Y, Z) is merely around 0.365, far
from the general upper bound of 1. Simulations show that
we are able to produce floodgate estimates close to the
actual ETV with Algorithm 2. The derivation and supporting
simulations are included in Appendix D.2.

Returning to the real data analysis, we apply Algorithm 2
with k = 10 and J = 100. The classifier family f is chosen
to be the model-based f in equation (5), where the mod-
els are HierNet (Bien et al., 2013), following Ham et al.
(2022, Section 3.3). We summarize our analysis in Figure 4.
Each violin plot summaries 40 independent runs, with each
run (or one fold of cross validation for ”CV”) taking less
than 20 minutes on a single CPU. Here, we include both
the floodgate lower bound and the floodgate estimate (that
is, manually setting the confidence interval width to zero).
We use the “Naive” and “CV” methods to choose c as in
Section 3.2. We can see that activating c in f boosts perfor-
mance, and we obtain an ETV estimate of around 0.1 and
an ETV lower bound of around 0.08. Note that 0.1 is quite a
high VIM, translating to around p = 0.63 in the model given
in Table 1, though we do not assume that model. Further
details are deferred to Appendix D.3. Our analysis shows
that there is a strong presence of co-partisanship in the US,
where voters prefer candidates of the same party, even after
controlling for other candidate attributes. Co-partisanship is
a well-documented phenomenon in the US (Campbell et al.,
1980) and our finding corroborates existing research within
the literature; for instance, in a different experiment, Peter-
son (2017) showed that even when the respondent is given
the highest level of additional information, co-partisanship
still increases the probability that a respondent selects a
candidate by 0.29.
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Figure 4. Conjoint analysis result of the US general election data.
The black dots denote the mean of the violin plots.

Impact Statement
This paper’s goal is to make classification methods more
trustworthy and interpretable in a rigorous manner. The
positive consequences include improved human ability to
understand and interpret classifiers, and we do not foresee
any negative consequences that require highlighting here.
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Van de Geer, S., Bühlmann, P., Ritov, Y., and Dezeure, R.
On asymptotically optimal confidence regions and tests
for high-dimensional models. 2014.

Vovk, V., Gammerman, A., and Shafer, G. Algorithmic
learning in a random world, volume 29. Springer, 2005.

Watson, D. S. and Wright, M. N. Testing conditional in-
dependence in supervised learning algorithms. Machine
Learning, 110(8):2107–2129, 2021.

Williamson, B. and Feng, J. Efficient nonparametric sta-
tistical inference on population feature importance using
shapley values. In International Conference on Machine
Learning, pp. 10282–10291. PMLR, 2020.

Williamson, B. D., Gilbert, P. B., Simon, N. R., and Carone,
M. A general framework for inference on algorithm-
agnostic variable importance. Journal of the American
Statistical Association, pp. 1–14, 2021.

Zhang, L. and Janson, L. Floodgate: Inference
for model-free variable importance. arXiv preprint
arXiv:2007.01283, 2020.

10

https://doi.org/10.1214/19-AOS1857
https://doi.org/10.1214/19-AOS1857


Total Variation Floodgate for Variable Importance Inference in Classification

A. Proofs
Proof of Lemma 2.1. Let X , Y andZ be spaces X , Y and Z live in; let p, q, r and s denote the densities of L(Z), L(X | Z),
L(Y | X,Z) and L(Y | Z). We only prove the case where |Y| <∞, while the case |Y| =∞ can be treated similarly.

When |Y| <∞, We scale (1) as

2(1− 1/|Y|) ETV(X,Y, Z) =
∑
y∈Y

∫
x∈X

∫
z∈Z
|r(y | x, z)− s(y | z)|q(x | z) dx p(z) dz

=
∑
y∈Y

∫
z∈Z

EX|Z=z [|r(y | X, z)− s(y | z)|] p(z) dz

≤
∑
y∈Y

∫
z∈Z

2s(y | z)(1− s(y | z))p(z) dz (Lemma A.1)

= 2

∫
z∈Z

∑
y∈Y

s(y | z)(1− s(y | z))

 p(z) dz

≤ 2

∫
z∈Z

(1− 1/|Y|)p(z) dz = 2(1− 1/|Y|) (Lemma A.2).

Here, we are using two simple lemmas of which the proofs are omitted. The upper bound is achieved when X , conditional
on Z, deterministically determines Y and s(y | Z) = 1/|Y| almost surely for all y.

Lemma A.1. If X ∈ [0, 1], E[X] = µ and P(X = µ) = p, then E[|X − µ|] ≤ 2(1 − p)µ(1 − µ), where the equality is
achieved when X | (X ̸= µ) ∼ Bern(µ).
Lemma A.2. Let 0 ≤ ai ≤ 1,

∑n
i=1 ai = 1, then

n∑
i=1

ai(1− ai) ≤ 1− 1/n.

The equality is achieved when ai = 1/n for all i.

Proof of Theorem 2.2. Define ℓ(f) = Eπ

[
1
aI(A = 1)(1− f(ω)) + 1

1−aI(A = 0)f(ω)
]
. Then

ℓ(f) = Eπ

[
|f(ω)−A|

(
1

a
I(A = 1) +

1

1− a
I(A = 0)

)]
= E[(1− f(ω))/a | A = 1]P(A = 1) + E [f(ω)/(1− a) | A = 0]P(A = 0)

=

∫
(1− f(ω))π1(ω) dω+

∫
f(ω)π0(ω) dω

= 1 +

∫
f(ω)(π0(ω)− π1(ω)) dω .

The minimum of ℓ(f) is attained when

f(ω) = f∗(ω) = I(π0(w) < π1(ω)).

It is not hard to see that 1− ℓ(f∗) = TV(π1, π0).

Proof of Corollary 2.3. Let K ∼ Unif{0, 1, . . . , J} independent of (X(0:J), Y, Z). Then we apply Theorem 2.2 with
(X(K), Y, Z) as ω and I(K = 0) as E to get

1− E

[
(J + 1)I(E = 1)(1− f(X(K), Y, Z)) +

J + 1

J
I(E = 0)f(X(K), Y, Z)

]
≤ 1

2

∫
|py|x,z(y|x, z)− py|z(y|z)|px|z(x|z)pz(z) dx dy dz .

Evaluate the left hand side by integrating out K and we prove the claim.
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Proof of Theorem 2.5. The proof technique of this theorem is a generalization of the strategy used in the proof of Barber
(2020, Lemma 1), which is itself a generalization of the construction used in the proof of Vovk et al. (2005, Proposition 5.1).

We fix LX in the proof, so we omit the subscript LX of C. We partition the sample space of X into NK equal-probability
Borel sets B1:NK , N > n, which is possible because LX is a continuous distribution.

We are going to define data generating distributions D0, . . . , D5 for (Xi, Yi)
n
i=1, where D0 is the distribution we care about,

and we construct D1:5 in a way such that TV(Di−1, Di) is small for i = 1, . . . , 5. Our goal is to show (4) holds for D5, so
that it also has to hold for D0. We use L(B) to denote the distribution L restricted to the set B.

• D0: sample (Xi, Yi)
i.i.d.∼ L = LX ×Unif({1, . . . ,K});

• D1: randomly sample n sets B̃1:n with replacement from B1:NK ; sample Yi
i.i.d.∼ Unif({1, . . . ,K}) and Xi | B̃1:n ∼

LX(B̃i) independently;

• D2: randomly sample n sets B̃1:n without replacement from B1:NK ; sample Yi
i.i.d.∼ Unif({1, . . . ,K}) and Xi |

B̃1:n ∼ Lx(B̃i) independently;

• D3: randomly permutate B1:NK to be (B̃k,m)1≤k≤K,1≤m≤N ; sample Yi
i.i.d.∼ Unif({1, . . . ,K}), sample Ii

i.i.d.∼
Unif({1, . . . , N}) but resample until all the Ii’s are distinct, and then sample Xi | B̃ ∼ Lx(B̃Yi,Ii) independently;

• D4: randomly permutate B1:NK to be (B̃k,m)1≤k≤K,1≤m≤N ; sample Yi
i.i.d.∼ Unif({1, . . . ,K}), Ii

i.i.d.∼ Unif(1 : N)

and Xi | B̃ ∼ Lx(B̃Yi,Ii) independently;

• D5: randomly permutate B1:NK to be (B̃k,m)1≤k≤K,1≤m≤N ; sample Yi
i.i.d.∼ Unif({1, . . . ,K}) and Xi | Yi, B̃ ∼

LX

(
∪Nm=1B̃Yi,m

)
independently;

By assumption, because D5 is an i.i.d. data generating distribution for (Xi, Yi) conditional on B̃ that respects the marginal
distributions of X and Y ,

PD5
(C(X1:n, Y1:n) ≥ 1 | B̃) ≥ 1− α,

where 1 is the attained ETV upper bound per the calculation in the proof of Lemma 2.1. After marginalizing out B̃, we have
PD5

(C(X1:n, Y1:n) ≥ 1) ≥ 1− α.

We then notice that D4 and D5 are actually the same data generating distribution, so (4) holds under D4 as well.

Now we examine the difference between D3 and D4. The probability of not having to resample is N !/(Nn(N − n)!), so
the total variation distance between D3 and D4 is upper bounded by ϵ(n,N) = 1−N !/(Nn(N − n)!). Thus,

PD3
(C(X1:n, Y1:n) ≥ 1) ≥ 1− α− ε(n,N). (9)

Next, we notice that D2 and D3 are also the same. This is because they both essentially use n random samples without
replacement from B1:NK . Therefore, (9) also holds for D2.

Similarly, we can observe that the total variation distance between D1 and D2 is upper bounded by one minus the probability
of all sampled sets B1:n in D1 are distinct. This gives us the upper bound of ε(n,NK). As a result, we get

PD1
(C(X1:n, Y1:n) ≥ 1) ≥ 1− α− ε(n,N)− ε(n,NK). (10)

Finally, there is no difference between D1 and D0, so (10) also holds for D0. Since ϵ(n,N)→ 0 as N →∞, the fact that
(10) holds for D0 for any N means that (4) holds for D0, as desired.

B. ETV and Sensitivity Analysis
Let B(X,Z,U) be the almost sure supremum of

max

{
p(X | U,Z)

p(X | Z)
,

p(X | Z)

p(X | U,Z)

}
.

12
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For notational convenience, we write B(X,Z,U) as B. Then

p(y | z, x) =
∫

p(y | z, x, u)p(u | z, x) du

=

∫
p(y | z, u)p(x | u, z)p(u | z)

p(x | z)
du

=

∫
p(x | u, z)
p(x | z)︸ ︷︷ ︸
∈[1/B,B]

p(y | z, u)p(u | z)︸ ︷︷ ︸
integrates to p(y | z)

du ∈ [p(y | z)/B,Bp(y | z)].

Then
2(1− 1/|Y|) ETV(X,Y, Z) =

∫
|p(y | x, z)− p(y | z)| dy ·p(x | z) dx ·p(z) dz

≤
∫

max(B − 1, 1− 1/B)p(y | z) dy ·p(x | z) dx ·p(z) dz

= max(B − 1, 1− 1/B) = B − 1.

Thus, B ≥ 1 + 2(1− 1/|Y|) ETV(X,Y, Z).

C. Comparison with the MACM Gap
Continuing equation (6), the Ri in Zhang & Janson (2020, Algorithm 3) is equivalent to 1− Li in Algorithm 1. Note that

Ri =

{
P(Ui < 0 | Zi)− I(Ui < 0), if Y = 1,

P(Ui > 0 | Zi)− I(Ui > 0), if Y = −1.

and

1− Li = f(Xi, Yi, Zi)−
1

J

J∑
j=1

f(X
(j)
i , Y

(j)
i , Z

(j)
i )

= f(Xi, Yi, Zi)− ÊX|Z=Zi
[f(X,Yi, Zi)]

=

{
I(Ui ≥ 0)− P̂X|Z=Zi

(Ui ≥ 0), if Yi = 1,

I(Ui ≤ 0)− P̂X|Z=Zi
(Ui ≤ 0), if Yi = −1.

D. Conjoint Analysis Further Details
D.1. Additional Details on Data

In this section, we include some additional details on the data used in Section 4. Table 2 includes attributes of the candidate
profiles. Table 3 includes attributes of the respondents.

D.2. ETV Upper Bound

We derive the ETV upper bound in Section 4.3. First, we notice that due to the symmetry of labeling, P (Y = 0 | Z =
z) = P (Y = 1 | Z = z) = 0.5 for any z. If z is such that the respondent’s party affiliation is independent, then
P (Y = 0 | X0 = x0, X

1 = x1, Z = z) = P (Y = 1 | X0 = x0, X
1 = x1, Z = z) = 0.5 for any (x0, x1); otherwise,

P (Y = 0 | X0 = x0, X
1 = x1, Z = z) takes value 0.5, 0.5, p, 1− p for (x0, x1) ∈ {(D,D), (D,R), (R,D), (R,R)}. Then

the ETV is

ETV = q × 0 + (1− q)
∑

y∈{0,1}

∑
x0∈{R,D}

∑
x1∈{R,D}

1

4
|P (Y = y | X0 = x0, X

1 = x1, Z = z)− P (Y = y | Z = z)|

= (1− q)
∑

y∈{0,1}

1

4
(0 + 0 + |p− 0.5|+ |1− p− 0.5|)

= (1− q)× 2× 1

4
× |2p− 1| = (1− q)|p− 0.5|.

13
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Attributes Values
Sex Male, Female
Age 36, 44, 52, 60, 68, 76
Race/Ethnicity White, Black, Hispanic, Asian American
Family Single (never married), Single (divorced), Married (no child),

Married (two children)
Experience in public office 12 years, 8 years, 4 years, No experience
Salient personal characteristics Provides strong leadership, Really cares about people like you,

Honest, Knowledgeable, Compassionate, Intelligent
Party affiliation Democrat Party, Republican Party
Policy area of expertise Foreign policy, Public safety (crime), Economic policy, Health

care, Education, Environmental issues
Position on national security Wants to cut military budget and keep U.S. out of war, Wants to

maintain strong defense and increase U.S. influence
Position on immigrants Favors giving citizenship or guest worker status to undocu-

mented immigrants, Opposes giving citizenship or guest worker
status to undocumented immigrants

Position on abortion Abortion is a private matter (pro-choice), Abortion is not a
private matter (pro-life), No opinion (neutral)

Position on government deficit Wants to reduce the deficit through tax increase, Wants to reduce
the deficit through spending cuts, Does not want to reduce the
deficit now

Favorability rating among public 34%, 43%, 52%, 61%, 70%

Table 2. Types of attributes varied in candidate profiles (Table 1 in Ono & Burden (2019)).

To test how well our algorithm does in this ideal setting, We regenerate synthetic Y according to Table 1 and apply
Algorithm 2. In Figure 5, we plot the average floodgate estimate of ETV from 40 independent experiments (but they share
the same synthetic response) and the true value of ETV, which is the theoretical upper bound (1− q)|p− 0.5|. We can see
that in moderate to high signal regimes, the floodgate estimate is close to the true value.

0.1

0.2

0.3

0.6 0.7 0.8 0.9 1.0
p

E
TV Floodgate estimate

True value

Figure 5. ETV floodgate estimate vs true value in conjoint analysis with synthetic responses.
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Attributes Values
Sex Male, Female
Education level BA degree, No BA degree
Age group 18-29, 30-50, 51-65, 66 or older
Age Age in years
Social class Lower class, Middle class, Upper class
Region South, Nonsouth
Race/Ethnicity White, Black, Hispanic, Other
Partisanship Democrat Party, Republican Party, Independent
Thought on Hillary Clinton Dislike, Like, Neutral
Interest in politics Not at all interested, Not very interested, Somewhat interested,

Very interested
Political ideology Conservative or liberal levels (7 levels)

Table 3. Types of attributes recorded in respondents.

D.3. Analysis Details

In the experiments in Section 4.3, f is chosen to be

f(x, y, z; pθ1 , pθ2 , c) =


1, p̂i > 0.5 + c,

0, p̂i < 0.5− c

0.5, |p̂i − 0.5| ≤ c,

where pθ1(y | x, z) is a HierNet model with a fixed penalty parameter, where interactions between politician’s gender
and party affliation are added as a feature, and pθ2(y | z) is a HierNet model with the same penalty parameter. In the
method “CV” to choose c, we further partition the training data Br into m = 10 folds Cc

r1, . . . , C
c
rm. We then calculate the

cross-validated loss

lossr(c) =
1

m

m∑
j=1

loss of f(pθ̂1(Crj)
, pθ̂2(Crj)

, c) on Br \ Crj ,

where θ̂(C) means θ̂ estimated on dataset C, choose the cr that minimizes lossr(c), and let

fBr
= f(pθ̂1(Br)

, pθ̂2(Br)
, cr).
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