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Abstract—The increasing deployment of deep neural networks
(DNNs) in cyber-physical systems (CPS) enhances perception
fidelity, but imposes substantial computational demands on exe-
cution platforms, posing challenges to real-time control deadlines.
Traditional distributed CPS architectures typically favor on-
device inference to avoid network variability and contention-
induced delays on remote platforms. However, this design choice
places significant energy and computational demands on the
local hardware. In this work, we revisit the assumption that
cloud-based inference is intrinsically unsuitable for latency-
sensitive control tasks. We demonstrate that, when provisioned
with high-throughput compute resources, cloud platforms can
effectively amortize network and queueing delays, enabling them
to match or surpass on-device performance for real-time decision-
making. Specifically, we develop a formal analytical model that
characterizes distributed inference latency as a function of the
sensing frequency, platform throughput, network delay, and
task-specific safety constraints. We instantiate this model in
the context of emergency braking for autonomous driving and
validate it through extensive simulations using real-time vehicular
dynamics. Our empirical results identify concrete conditions
under which cloud-based inference adheres to safety margins
more reliably than its on-device counterpart. These findings
challenge prevailing design strategies and suggest that the cloud
is not merely a feasible option, but often the preferred inference
location for distributed CPS architectures. In this light, the cloud
is not as distant as traditionally perceived; in fact, it is closer
than it appears.

Index Terms—real-time, cloud computing, autonomous vehicles

I. INTRODUCTION

The proliferation of intelligent cyberphysical systems
(CPS), ranging from autonomous vehicles to smart surveil-
lance, has placed unprecedented demands on real-time percep-
tion and control [1]. Central to these systems is the integration
of deep neural networks (DNNs) within the perception stack,
enabling data-driven decision-making under environmental
uncertainty. These models process high-dimensional and often
noisy sensor input, generating semantically rich represen-
tations that, in turn, inform actuation strategies. However,
this integration introduces substantial computational latency
and variability, which pose challenges to the strict timing
guarantees mandated by real-time CPS operations.

In contrast to traditional signal processing pipelines char-
acterized by deterministic and predictable execution, DNN
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inference exhibits highly operating context-dependent latency
profiles. Inference time can span tens to hundreds of mil-
liseconds, depending on model architecture and execution
platform, and such temporal uncertainty jeopardizes system
responsiveness. This problem is exacerbated by the increas-
ing sophistication of sensing techniques, such as multimodal
fusion [2], which drive the need for more computationally
intensive models. Although these advances improve perceptual
accuracy, they also strain on-device computational resources,
which are often constrained in terms of memory, processing
throughput, and energy budget. Consequently, deploying large,
high-performing models directly on end devices becomes
infeasible for latency-sensitive CPS workloads.

To address these constraints, the community has shifted
toward distributed CPS architectures that decouple sensing
from inference. In this paradigm, sensor data are transmitted
over the network to external compute nodes such as cloud
datacenters, capable of executing complex models with higher
accuracy and lower inference latency. This decoupling permits
the use of state-of-the-art architectures without being bounded
by the device’s compute resources. However, this approach
introduces new sources of delay stemming from network
variability and resource contention on the remote server.

Deployment strategies in distributed CPS generally fol-
low one of two canonical approaches. The first, common
in latency-critical applications, such as autonomous driving,
requires that inference be performed locally on the device
[3]. In this model, cloud offloading is considered only under
exceptional circumstances, for example, when the task com-
plexity exceeds the local processing capacity. Systems such as
Waymo [4] and Tesla’s FSD software [5] are prime examples
of this design philosophy, which favors tightly bounded and
deterministic compute pipelines on onboard GPUs. However,
while this approach ensures real-time responsiveness, it im-
poses considerable energy overhead: Inference workloads can
account for a substantial share of total power consumption,
which requires recharging every 4 to 6 hours [6], [7].

The second paradigm is more prevalent in large-scale, non-
real-time applications like video surveillance, where inference
is performed in the cloud by default. For example, systems
such as Amazon Rekognition [8] typically offload video data
to centralized servers for processing. This model assumes that
the application can tolerate long and variable inference delays,
which excludes its use in latency-critical control loops.



However, this long-standing perception of cloud-based in-
ference as incompatible with real-time applications, primarily
due to concerns over high and unpredictable network latency,
is becoming increasingly obsolete in light of recent technologi-
cal advances. Modern GPUs offer dramatically lower inference
times and can accommodate large-scale, high-accuracy models
with consistent throughput. At the same time, advances in
networking infrastructure, including 6G and local cloud zones
[9], have reduced round-trip latencies to the low tens of mil-
liseconds [10]. Moreover, cloud datacenters benefit from rapid
hardware refresh cycles and software stack updates, enabling
quicker adoption of emerging accelerator architectures and
inference optimizations than is feasible on already-deployed
IoT or vehicular platforms.

In this paper, we challenge the prevailing assumption
that on-device inference is categorically superior for latency-
sensitive tasks in distributed CPS. We focus on safety-critical
applications with stringent real-time requirements and pose
a fundamental question: Can cloud-based inference, despite
incurring network latency, match or even exceed the respon-
siveness of on-device computation in real-time control loops?
To answer this, we develop a formal analytical framework and
validate it through high-fidelity hardware-in-the-loop simula-
tions. Our findings demonstrate that, under a range of deploy-
ment conditions, cloud-hosted inference can outperform on-
device processing. This reveals the importance of holistically
analyzing system delays along with operating context, thus
motivating a rethinking of current design strategies.

Specifically, we make the following contributions.

1) We develop a generalized analytical model for dis-
tributed inference in real-time perception-driven control
loops. Our modeling captures the interplay between
sensing frequency, inference delay, network latency, and
system load, enabling a principled evaluation of the
suitability of various combination of model and platform
in deployment configurations.

2) We implement an emergency braking application us-
ing the CARLA simulator to evaluate the relationship
between response latency and application performance
under realistic operating conditions. Our system includes
real-time detection, cloud-hosted inference, and local
actuation. This setup enables controlled experiments
across diverse vehicle and obstacle dynamics, grounding
theoretical claims in realistic, safety-critical scenarios.

3) We demonstrate analytically and empirically that, across
a range of workload and context conditions, cloud-based
inference not only satisfies real-time control constraints
but often outperforms on-board processing. This coun-
terintuitive result highlights the need to rethink inference
placement in latency-critical CPS.

II. RELATED WORK

Inference Placement: The problem of determining the most
appropriate deployment location for task-specific inference has
generally been studied as a service placement problem. This
problem covers deciding where to run the inference [11], when
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Fig. 1: Temporal dynamics of emergency braking scenario. The ego
vehicle traveling at vo m/s detects an obstacle at time tqe;. A braking
command is issued at tprake following inference execution either on-
device (m, d) or on cloud (m, ¢) platform. The vehicle stops at op.

to offload a task to a remote server [12], and how to offload
data efficiently [13]. The service placement problem itself
has been addressed through various optimization objectives:
latency minimization [14], energy efficiency [15], QoS [16],
and accuracy guarantees [17] or a combination thereof [18].
For example, Kang et al. [19] explore accuracy-latency trade-
offs through model partitioning and early exit strategies. In
addition, techniques such as model compression for faster
inference [20] and parallelization for higher throughput [21]
have also emerged. Despite this breadth of research, placement
strategies for latency- and safety-critical applications have
traditionally favored on-device execution due to concerns
about network delays and cloud reliability [22]-[25].

Analytical Modeling: Several studies have employed ana-
Iytical models to capture system-level trade-offs in inference
latency and reliability [26]-[29]. Salem et al. [30] propose
a latency-accuracy optimization framework to allocate ML
models across distributed nodes, while Varma et al. [31] and
Ali-Eldin et al. [32] apply queuing-theoretic approaches to
establish feasibility bounds for cloud-based inference. Notably,
Ali-Eldin et al. demonstrate that, under moderate workloads,
cloud platforms can outperform local deployments due to
superior compute parallelism and reduced queuing. However,
work that captures the dynamic operating context of the appli-
cation remains limited, especially for safety-critical scenarios.

Moreover, many prior models assume the cloud as a static,
high-latency resource. However, cloud computing continues to
evolve rapidly, with leading providers, such as AWS [33] and
Google Cloud [34], now offering advanced GPU instances ca-
pable of high-throughput inference. Furthermore, data centers
are increasingly deployed at regional levels to bring compute
closer to end-users [9], aided by improved load balancing
[35] and batching strategies [36] that support multi-tenant
inference workloads. These advancements allow the cloud to
host and serve larger, more accurate models that generally
better with unseen inputs [37] and have faster refresh cycles.
Currently, the network infrastructure is improving with the
development of new technologies such as 6G [38], reducing
transmission latencies and jitter. Taken together, these trends
warrant a reevaluation of service placement decisions under
a performance-centric lens. Our work develops an analytical
framework to rigorously evaluate the viability of cloud infer-
ence for emergency response scenarios.



III. SYSTEM MODEL
A. System Overview

We consider a class of closed-loop, real-time CPS scenarios
in which inferences derived from sensor data directly drive
time-sensitive control actions. As a representative example, we
focus on a safety-critical emergency braking task (Figure 1),
where an ego vehicle must detect and respond to stationary
obstacles in its path. The perception pipeline is decoupled
from actuation and can be executed on one of two processing
platforms: on-device or cloud. Each captured image frame is
forwarded to one of these platforms, where an object detection
model is utilized to determine whether an obstacle exists in
the path of the vehicle. If a potential obstacle is consistently
detected across multiple frames, a braking signal is issued to
the controller of the ego vehicle, which immediately initiates
a braking maneuver.

B. Compute Fabric

The emergency braking system is supported by a two-
tier computational architecture, consisting of on-device and
cloud platforms. Each platform differs in terms of location,
processing capacity, network delay, and energy constraints.

The on-device platform is physically integrated within the
vehicle and is positioned in conjunction with the sensors
and actuators. It offers immediate access to sensor data,
thereby eliminating network latency. However, it is limited
in computational capacity and operates under tight energy
budgets, which restrict the size and complexity of models it
can run efficiently.

The cloud platform, on the other hand, refers to remote
datacenters equipped with powerful high-end GPUs. This tier
supports the largest and most accurate models with fast infer-
ence times but introduces network delays due to its location.

C. Deployment-Time Feasibility

We model the braking system as a real-time perception-
to-action pipeline operating under a periodic sensing scheme.
The camera sensor captures image frames at a fixed rate of
F' frames per second, producing an interval between frames
A= % This interval serves as a deployment time deadline
Tnaz, used to assess whether candidate inference configu-
rations are capable of responding within the available time
between successive frames.

Let M denote the set of available object detection models,
and let x € {d, ¢} denote the compute platform - on-device or
in the cloud. Each model m € M can be deployed on one or
more platforms, forming a set of model-platform pairs,

(m,z) € M x{d,c}

Each pair is characterized by a set of performance metrics
1 (m,:r)
such as the inference delay 7, ", the energy consumed per
inference E(™%), and the detection accuracy a(™%).
The total response latency for a pair (m,x) is given by

T =780 + 7507 + T (1)

where Tn($) is the round-trip network delay for platform z,
and 7.y is the platform-agnostic control actuation delay. For
the deployment on the device (x = d), we assume T,Ez) =0.
Although additional delays, such as sensor capture or sensor-
to-application delay, contribute to the total response time, they
are excluded from this formulation, as they remain invariant
across platforms and do not affect the relative comparison.
To ensure real-time compliance under average conditions, we
define the deployment-time feasibility set:

¢ ={(ma) e Mx{dc}|Tpa <A A B < Egjﬁ;i;
2
where Eéff& is a platform-specific energy budget. This con-
straint is enforced for energy-constrained on-device platforms
but may be relaxed for cloud deployments.
In addition, we select the optimal configuration by maxi-
mizing the detection accuracy in the feasible set such that:
(m*,z*) = arg max a(™® 3)
(m,xz)eC
This deployment-time selection policy ensures that the
chosen model-platform pair can meet both latency and en-
ergy constraints while prioritizing the highest achievable in-
ference accuracy. However, at run-time, inference executes
asynchronously. Once a frame is dispatched, it is processed to
completion regardless of whether the result returns within the
inter-frame deadline. This model reflects realistic execution be-
havior, allowing for variability in network conditions, resource
contention, and queuing while preserving static feasibility
guarantees established at deployment.

IV. ANALYTICAL MODELING

The feasibility set described in Section III-C enables model-
platform selection under average-case assumptions. That is the
latency, energy, and accuracy metrics used to define feasibility
are typically profiled in isolation or under mean conditions.
While such an approach may be sufficient for systems oper-
ating in stable environments, it fails to capture the variability
inherent in real-world deployments. An alternative is to design
for worst-case latency to ensure real-time constraints are met
under all conditions. However, this conservative strategy can
result in significantly degraded performance for typical or
best-case scenarios, as the system may be forced to deploy
suboptimal models in the interest of safety margins.

To address this, we develop analytical models that character-
ize how variability in system conditions, such as network and
platform-specific delays, impact the timing and effectiveness
of the braking task in real-world deployments.

Lemma 1: Cloud inference yields lower response latency
than device inference when the network transmission delay
is bounded by the difference in queue-amortized inference
latency between the two platforms.

Proof: Consider two deployment scenarios for a given model
m € M: one executing locally on the device (m,d), and the
other executing remotely on a cloud server (m,c). Although
the model m may differ across platforms in practice, we adopt
a unified notation for simplicity and denote both instances with



m. This abstraction does not affect the validity of our results.
As previously defined in Eq. 1, the total response latency for
each configuration (m, z) is given by,

(m,z)

Tm T — T(I) + Tinf + Tewrl

Since actuation occurs locally, 7y is invariant across plat-
forms. Additionally, on-device execution incurs zero network
overhead. Thus, the response latencies are simplified as:

(m,d)
CTm, d = Tinf + Tewl

Tome = T(C) + T(m °) + Tewl

Then, for the cloud response time to be faster, we have:

(m,d) (m,c)

T4 < T = Tt
Additionally, to incorporate the effects of system load, we
assume inference requests arrive at a constant rate F. We
model each compute platform With a simple M/M/1 queue
[39] with service rate p, = 1/7 (m.@) under the constraint

Tinf
F . 7'1%” @) < 1. The expected queue-amortized inference

latency on platform z is then:
(m,x)
(mww) _ inf

inf 1_F. 7_1(m )

Substituting into the inequality above yields:

o #mid) (m.0)
™SR rmd ) @

inf

We explicitly include queuing delays for the on-device
latency model, despite the platform being dedicated, because
queuing can still occur when inference delay exceeds the frame
inter-arrival interval. Although such cases should be precluded
via deployment-time feasibility checks, runtime perturbations
such as thermal throttling or transient contention, can violate
baseline assumptions. Capturing this possibility is essential
for modeling worst-case latency and ensuring robust system
behavior under variable conditions.

Discussion: This lemma establishes a sufficient condition
under which cloud execution (m, ¢) yields lower total response
latency compared to device execution (m,d). Specifically,
when the round-trip network latency is smaller than the dis-
crepancy in effective (i.e., queue-amortized) inference latency
between the two platforms, cloud inference outperforms local
inference. This has two important 1m1>)11cations. First, in prac-

(m,c (m .. . .
tical scenarios where 7, Tin the condition is easily
satisfied even in the presence of moderate network delays.
Second, as the frame rate I increases, queuing delays on the
device dominate the total latency, causing the right-hand side
of the inequality to grow rapidly. This, in turn, enlarges the
set of network conditions under which cloud-based inference
becomes the latency-optimal choice. This result demonstrates
that the cloud platform, despite being remote, can achieve
lower response latency than local execution, provided that its
service rate advantage adequately amortizes the network delay.

Lemma 2: Inference and network delays induce temporal
misalignment in control actuation, which can violate safety
constraints even when control latency is platform-invariant.

Proof: Let vy denote the initial velocity of the vehicle, and
let a denote the magnitude of deceleration achieved once the
braking begins. Using a constant deceleration model, the total
distance required to come to a complete stop is given by

02

Sstop — V0 * ( (@) + 7_1(m I)) + i
where the first term represents the distance traveled by the
vehicle during the processing delay, and the second term
captures the braking distance once the deceleration is initiated.

Let s,yai1 denote the distance from the vehicle to the obstacle
at the time of detection. The braking decision is successful in
preventing a collision if and only if,

Sstop < Savail

This inequality can be equivalently expressed as a bound
on the maximum allowable perception delay:

Té\f/) + 7_(771,1?) < Treact 5)

inf
where the reaction-time budget Tieaer i defined as

Savail Vo

Vo 2a

Discussion: This result reveals that inference and network
delays, while not directly increasing control latency, shift the
control decision point beyond the physical window for safe
intervention. Importantly, T, iS not fixed but depends on the
running environment. In the braking application, the run-time
context includes factors such as vehicle speed and braking
capability, and uncertainty in obstacle detection. Thus, a
model-platform pair that satisfies the feasibility of deployment
time (that is, 75, , < A) may still lead to unsafe outcomes
it 7@ 4 TIEIT ) > . under specific driving conditions.
We therefore introduce this condition as a runtime safety
constraint that augments the static feasibility criterion and
exposes a hidden coupling between perception latency and
actuation efficacy in real-time control loops.

Lemma 3: Detection time is model- and platform-
dependent, and this variability further shifts the timing of
control actuation.

Proof: Lemma 2 assumes that all the model-platform con-
figurations observe the obstacle at a common reference time,
defined by the moment the object becomes physically visible
in the scene. However, in practice, the time of first detection
is not constant between configurations but depends on the
accuracy, robustness, and sensitivity of the deployed model.
We therefore define the detection time tg:tl’m) as the frame time
at which configuration (m, z) first produces a valid detection
with sufficient confidence.

The time! at which the control action is ultimately triggered
is then given by:

Treact —

x)

(m,z)

e = 1+ 7+ 7

— ¢lm
brake det
I'We use ¢-based notation to denote specific time instants, and 7-based to
denote time durations or intervals.



To ensure safe braking, we require that the entire delay from
the physical appearance of the obstacle to the control actuation
remain within the reaction time budget. Let ¢, denote the
time at which the obstacle first enters the scene and becomes
theoretically detectable. Then,

(m,z)

) =t -+ 7 i

+ T+ Tt

where (™" = ¢{™") _ {, denotes the detection delay.

Including this delay in the reaction time budget, we get:

(m,z

(m,x)
Tdet

) + Trg\f/) + Ting < Treact (6)

Discussion: This result highlights an important and of-
ten overlooked dynamic: total response latency includes not
only model execution and communication delay, but also
the system’s ability to recognize and react to visual stimuli
in a timely fashion. Delayed detection reduces the effective
decision window, even in the presence of fast inference or
proximity to the actuator.

Thus, safety in perception-to-action systems must be eval-
uated not only with respect to platform latency but also with
respect to model-specific detection delay, which may vary
significantly across configurations due to model accuracy and
detection thresholds. This extension further tightens the run-
time feasibility envelope and motivates end-to-end evaluations
that jointly consider detection timeliness and response latency.

Although t,s is generally not observable in real-world
systems, the lemma remains practically useful in two key
ways. First, relative detection times across model-platform
pairs are observable and actionable. Even if the absolute
moment of appearance of the obstacle is unknown, earlier
detection by one configuration compared to another provides
a measurable advantage in response time. Second, s can be
approximated offline using labeled sequences or simulation.
These approximations allow system designers to empirically
bound detection uncertainty and incorporate detection delays
into deployment-time or run-time feasibility assessments. As
such, this lemma provides the foundation for context-aware
safety analysis, even in the absence of ground-truth timing.

V. EXPERIMENTAL EVALUATION

In this section, we empirically validate the analytical results
derived in Section IV. Specifically, our objective is to quantify
the conditions under which cloud-based inference outperforms
on-device execution in latency-sensitive control tasks.

A. System Setup

We conducted experiments using the CARLA simulator
[40], a high-fidelity platform to model urban driving environ-
ments with realistic sensor suites and traffic dynamics. The
simulated ego vehicle is equipped with a front-facing RGB
camera operating at a fixed sampling rate of 10 frames per
second. To capture variations in vehicle dynamics and deceler-
ation profiles, we evaluated three distinct vehicle types. Audi
(car), Carla Cola (truck), and Kawasaki Ninja (motorbike).
Each vehicle is evaluated at speeds of 20, 40, and 60 mph,
corresponding to urban, city, and highway driving conditions.
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Fig. 2: (Left) Latency distributions for WiFi and 5G networks;
(Right) Inference latency as a function of GPU utilization for cloud
and on-device deployments.

To evaluate the perception-to-action latency in safety-critical
settings, we introduce a static obstacle approximately 300 m
ahead of the vehicle’s trajectory. The perception module uses
the YOLOI11 [41] family of object detectors, which are pre-
trained on the COCO dataset [42]. These models are evaluated
in two deployment configurations: (1) on-device inference
using an NVIDIA Jetson AGX Orin, and (2) cloud-based
inference hosted on a dedicated RTX A5000 GPU server. In
both configurations, the control logic remains local to ensure
deterministic actuation latency.

Note that we do not deploy the perception stack directly on
public cloud infrastructure due to the uncontrollable variability
in latency and compute availability arising from time-of-day
effects and background tenant load [43]. Therefore, to emulate
realistic network-induced delays, we inject synthetic round-
trip latencies that represent low (pl0), median (p50), and
high (p90) percentiles. These latency values are derived from
empirical measurements obtained by transmitting CARLA-
generated image frames (20 kB in size) to an instance of the
AWS EC2 local zone located in the us-west-2-lax-1la
region. The measurements include two network access tech-
nologies: urban Wi-Fi and 5G cellular networks. The summary
statistics for each network class are visualized in Figure 2.

All system components operate within a controlled envi-
ronment, with each vehicle initialized at a common starting
location to ensure consistent measurement of critical events:
frame capture® (%), brake execution (e), and vehicle stop (m).
In addition, we record energy and throughput metrics to pro-
vide a comprehensive assessment of the trade-offs associated
with model-platform selection for real-time CPS.

B. Model Deployment

To determine the optimal model-platform pairing for de-
ployment, we empirically profile each variant in the YOLO11
model family using three key metrics: inference latency,
detection accuracy, and energy consumption. The results,
summarized in Table 1, are evaluated under a maximum target
latency constraint (7},,,,) of 100 ms, chosen to align with a
control loop time that remains safely below typical human
reaction times, which range from 300 ms to 1.2 s [44].

2Frame capture marks the distance at which the image frame that eventually
triggers detection was captured by the vehicle’s camera.



The detection accuracy (mAP) of each variant of the
YOLOI11 model remains consistent across deployment plat-
forms, as it is derived from standardized benchmarks re-
ported in the official YOLOI1 documentation. Moreover,
as expected, the on-device inference exhibits lower energy
consumption across all variants, a consequence of the Jetson
AGX Orin design, which prioritizes energy efficiency for
resource-constrained environments. In contrast, the A5000
GPU is optimized for throughput, trading energy efficiency
for raw computational power. This tradeoff is most evident
in the inference latency: the AS000 achieves approximately
85% lower inference times than the Jetson across all model
sizes. Based on these results and guided by the feasibility
conditions established in Section III-C, we select YOLO11-
medium for the deployment on the device and YOLO11-xlarge
for the cloud deployment, since both configurations satisfy the
constraint 1}, 4.

Model mAP Cloud / A5000 On-Device / Jetson
Energy (J) Latency (s) | Energy (J) Latency (s)

YOLO11x 54.7 1.66 0.029 0.75 0.126

YOLOL111 534 1.27 0.028 0.75 0.126

YOLOIlIm | 51.5 0.92 0.021 0.58 0.095

YOLOLl1s 47.0 0.76 0.019 0.43 0.088

YOLOI1n 39.5 0.73 0.019 0.41 0.079

TABLE I: Comparison of YOLO11 models across platforms: accu-
racy, energy consumption, and inference latency

C. Application Performance

Figure 3(a) illustrates braking performance under baseline
conditions for cloud and on-device deployments in a range
of vehicle speeds and types. Although inference on devices
eliminates network latency, it suffers from prolonged inference
delays due to limited computational resources. In contrast,
the cloud configuration, although it incurs a median round-
trip delay of 22 ms, consistently initiates braking earlier
and results in longer stopping distances from the obstacle.
This superior performance stems from two key factors: (1)
significantly lower inference latency enabled by the cloud’s ad-
vanced computational infrastructure, and (2) the use of a larger
model with higher sensitivity and accuracy. Cloud deployment
detects obstacles almost 20 m earlier by responding more
effectively to subtle variations in input frames, reducing the
delay between frame capture (%) and the brake decision (e).
This gives the system more space to decelerate and respond
safely within the available time budget T;c,c. Such advantages
are especially pronounced at higher speeds, where delays in
perception and control compress available reaction time. As
observed in the figure, the deployment of the device frequently
results in stops near or within the unsafe braking zone at 40
and 60 mph, reflecting the consequences of higher inference
latency and reduced detection reliability. In contrast, cloud-
based execution results in earlier brake commands even at
higher speeds, promoting more consistent and safer outcomes.

Takeaway: These findings reinforce Lemmas 1-3 by empiri-
cally demonstrating that cloud-based inference, when operated
under bounded and moderate network delay, can outperform
on-device processing in both timeliness and safety for real-
time cyberphysical systems.

D. Impact of High Network Latency

To assess its robustness under adverse network conditions,
we note the performance of the system when the cloud
experiences tail network latency (55 — 65 ms). Based on our
measurements in Figure 2, this represents rare but realistic
conditions, such as network congestion or deployments geo-
graphically distant from data centers. In particular, the obstacle
is observed for the first time at the same location (%) in
both baseline and adverse configurations. Only the timing of
the actuation, specifically, the interval between frame capture
(*) and brake signal reception (e), is affected by the added
network delay.

Here, cloud-based deployment maintains adequate safety
margins at lower speeds but begins to deteriorate at higher
speeds. In one critical case involving a high-speed truck,
the cloud platform produces a braking response that occurs
within the unsafe zone. This outcome is not due to delayed
detection (74 ), but rather a shortened actuation window (Tyeact)
caused by tail latency, which proves insufficient for the longer
vehicle deceleration profile. Interestingly, cloud deployment
yields braking profiles that are quite similar to those of the
on-device configuration, as seen by the overlapping brake
reception distances. Further, we find that under extreme tail
latencies (p99 and beyond), cloud deployment yields unsafe
braking responses for heavier vehicles such as trucks even at
moderate speeds (40 mph). Although such latency spikes are
rare, their occurrence poses a disproportionate risk for cloud-
driven high-momentum scenarios.

Takeaway: These results underscore a key insight: early
detection alone is insufficient, especially if control action
is delayed. Therefore, platform selection for safety-critical
applications must take into account both typical and worst-case
network conditions. These empirical findings reinforce Lemma
2 and 3 by illustrating how delays introduced by communi-
cation can decouple perception from actuation, shifting the
effective response time (Zprake) and potentially breaching safety
margins. The effect is especially pronounced for vehicles with
lower braking efficiency, where even small misalignments
between detection and control can lead to unsafe outcomes.

E. Impact of Concurrent Workloads

The overall response time, (15, ), iS most strongly in-

fluenced by the inference latency of the selected model-
. . . (mx) . .

platform pair. Variations in 7 can arise in multitenant
cloud environments, where resource sharing across diverse
workloads leads to fluctuating GPU availability. While modern
cloud systems employ load-balancing techniques to manage
such variability, moderate levels of concurrent usage are still
likely. For on-device deployments, we restrict our analysis
to scenarios with minimal additional load. Even in dedicated
hardware settings, some degree of parallel execution, such as
concurrent sensing or lightweight control routines, may intro-
duce non-negligible delays. This section evaluates how such
concurrent workloads can influence downstream performance.

We begin by characterizing how inference latency and GPU
utilization are affected by increasing concurrent workload on
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(c) Concurrent workload scenario: Cloud maintains stable braking
performance under increased GPU contention.
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(d) Varying obstacle: Both deployments exhibit reduced detection

ranges for smaller obstacles, narrowing the performance gap.

Fig. 3: Platform-wise braking performance under (a) baseline, (b) tail latency, (¢) concurrent workload, and (d) varying obstacle scenarios.
Each horizontal series corresponds to a specific vehicle—platform—speed configuration. Marker positions indicate distances at perception,
brake reception, and vehicle stop. Line styles represent vehicle types, and unsafe outcomes are flagged in red.

both cloud and on-device deployments. The measurements,
shown in Figure 2, were obtained using the nsys [45] and
tegrastats [46] profiling tools, respectively, while varying
the number of co-located YOLO11 inference servers from 0
to 10. As expected, the cloud GPU exhibits better scalability,
handling additional clients with relatively modest increases
in utilization and latency. In contrast, the on-device GPU
demonstrates sharp latency spikes (100 — 150 ms) even under
low additional load. Although these trends are closely related
to the hardware design of each platform, they provide a
representative baseline for interpreting downstream differences
in braking performance.

Under conditions of asymmetric load, that is, moderate
concurrent inference load in the cloud and minimal load on
the on-device platform, we observe nuanced trade-offs in
braking performance. While the cloud configuration continues
to demonstrate superior actuation margins at lower speeds,
violations of the safety constraint emerge at higher speeds
(60 mph), where increased network and compute delays under
load narrow the available reaction window, Tye,cr. In contrast,
the on-device platform, despite benefiting from zero communi-
cation latency and bounded inference delay, fails to meet the
braking constraint at both moderate and high speeds due to
its limited computational capacity. These results suggest that
while cloud inference scales more gracefully with workload

and offers tighter performance distributions at low to moderate
speeds, it becomes vulnerable to safety violations under high-
velocity scenarios where even modest latency increases can
be detrimental. On-device inference, though more predictable,
offers little margin for dynamic actuation under increasing
speed or computational complexity.

Takeaway: These findings corroborate Lemma 3 by demon-
strating that temporal misalignment introduced by inference
or network delay can compromise control safety, and neither
deployment strategy is universally optimal. Instead, effective
system design must consider the joint impact of model-
platform characteristics, and operational and load conditions
when selecting inference targets for real-time control tasks.

F. Varying Environmental Context

Until now, our analysis has focused on system-level factors
that directly influence response latency and control perfor-
mance. However, as formalized in Lemma 3, the environ-
mental context plays a critical role in determining the timing
of obstacle detection itself. We previously evaluated two
such contextual variables: vehicle type, where differences in
deceleration capacity affect stopping time (%s0p), and vehicle
speed, which governs the margin available for safe braking
(Treact)- We now examine a third environmental factor: the size
of the obstacle. This is closely linked to perception uncertainty,



as smaller obstacles or those farther away occupy fewer pixels
in the input frame, delaying confident detection. To study
this, we vary the obstacle type by selecting a pedestrian
(small), a bicycle (medium) and a car (large) as representative
cases, and evaluate system performance at an ego vehicle
speed of 40 mph, as shown in Figure 3(d). As expected,
smaller obstacles are detected later (ie, have larger tqe),
resulting in shorter stopping distances. Importantly, the cloud
configuration is more resilient to such contextual variations,
owing to its ability to deploy larger and more accurate models
that not only complete inference faster, but are more sensitive
to smaller changes in the scene.

Takeaway: This experiment further illustrates how different
environmental variables (vehicle type, speed, and obstacle
size) modulate different components of the system’s temporal
pipeline, influencing when detection occurs and how much
actuation time remains - both of which critically affect down-
stream control performance as expressed in Equation 1.

VI. DISCUSSION AND CONCLUSION

Our work revisits the prevailing assumption that cloud-based
inference is fundamentally too slow for real-time decision-
making critical to safety. Rather than treating the cloud as
inherently infeasible due to its physical remoteness and net-
work delays, we offer a structured framework, grounded in
analytical modeling and empirical validation, that identifies
the conditions under which cloud inference is not only viable
but preferable. We do not claim universal superiority of the
cloud; instead, we articulate when and why it can outperform
local execution in real-time control loops.

We formalize this investigation through a series of lemmas
that characterize the effects of network latency, inference
delay, and detection timing on control actuation. Each lemma
is experimentally validated through controlled simulations that
approximate real-world driving conditions. By testing across
diverse speeds, vehicle types, and platform loads, we show that
these analytical limits match the observed system behavior.
Specifically, our results confirm that cloud inference can
meet or exceed the safety performance of on-device systems,
even for latency-sensitive applications like emergency braking,
when model and queuing dynamics are properly accounted for.

Our modeling framework is deliberately conservative. It
incorporates queuing delay on both cloud and on-device
deployments, models detection delay as a function of model
complexity and input sensitivity, and defines feasibility with
respect to task-level physical constraints such as braking
distance. These choices represent a departure from platform-
centric narratives (e.g., “cloud is farther, therefore worse”)
toward task-aligned reasoning: Given the sensing frequency,
the model execution profile and the actuation demands, can
the system respond in time?

Empirically, we find that the cloud’s ability to sustain higher
service rates gives it a notable advantage under multi-tenant
workloads. In such scenarios, even modest additional delays
on the device can lead to constraint violations, while the elastic
compute resources of the cloud allow it to maintain bounded

inference delays. This scalability makes the cloud especially
attractive for applications that must handle concurrency or
operate under resource constraints.

Although our findings highlight the conditions under which
cloud inference is feasible, they also expose scenarios where
it falls short. A key failure case arises when stopping a
heavy vehicle, such as a truck, at high speeds under high
latency or workload conditions. These scenarios motivate
hybrid architectures, where the cloud performs early, lower-
accuracy detection and relays this information to the on-board
platform for further processing. This cooperative approach
can enable a timely braking response even under adverse
conditions. Additionally, in safety-critical domains such as
pedestrian detection, systems often rely on sensor fusion across
modalities such as LIDAR and multi-camera arrays to improve
robustness. Although our current analysis abstracts away this
complexity, it remains representative of real-world deploy-
ments by capturing the timing and computational bottlenecks
that ultimately govern feasibility.

Other system-level considerations that affect performance
warrant further analysis. In particular, we assume a fixed
frame rate F', yet real-world systems can dynamically adjust
frame rate based on context, such as increasing it in high-
speed scenarios. Such variability introduces additional queuing
and tightens inference deadlines. Further, encryption of data
in transit introduces additional overhead, which, while amor-
tizable in persistent sessions, may further tighten feasibility
bounds under high-frequency workloads. Moreover, dynamic
obstacles introduce spatio-temporal uncertainty and require
predictive models for motion planning and avoidance. These
extensions would require integration of real-time tracking and
trajectory forecasting modules and could impact the interplay
between detection timing and control actuation. However, our
formulation provides a foundational model that captures the
dominant trade-offs in latency-sensitive perception and can be
extended to accommodate these complexities in future work.

Despite these abstractions, the core insight remains: Cloud
is not inherently disqualified by its distance. When inference
delay, queuing behavior, and detection timing are modeled in a
task-aligned fashion, cloud inference can meet, and sometimes
exceed, real-time safety requirements. As network latencies
decrease and model inference efficiency improves, the case
for the cloud as a viable, even preferred, inference platform
in safety-critical CPS becomes increasingly compelling.

Moreover, the insights developed here extend well beyond
braking. Real-time CPS tasks such as adaptive cruise control,
industrial automation, and medical intervention share com-
mon structural constraints: periodic sensing, latency-bound
actuation, and feasibility thresholds. By integrating platform-
level characteristics with application-level constraints, our
framework offers a generalizable lens for reasoning about
remote inference in these domains. By reframing viability
as a function of context rather than location, this work lays
the groundwork for more principled and scalable deployment
strategies across a wide spectrum of real-time systems.
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