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Abstract— We present a new upper-limb anthropomorphic
dexterous telemanipulation system, the Dexterity Testbed Nexus
(DexNex). DexNex is teleoperated by a human user in the
Operator Station who controls the Avatar Station to complete
manipulation tasks. The Avatar replicates the upper limbs of a
human and is statically mounted to the workspace. Three
benchmarking tasks were used: box & blocks, the Minnesota
Turning Test revised form (MTTrf), and a table setting task.
Subjects completed the tasks with their natural bodies to provide
normative data. Subjects then attempted the same tasks with
haptic feedback enabled or disabled. The utility of haptics was
computed for four metrics. Haptic feedback improved
performance for three of the four metrics (26% increase in Box
& Blocks score, 12% increased Table Setting success rate, and
1.3x faster time per success in Table Setting).

I. INTRODUCTION

This paper presents a new dexterous manipulation testbed,
the Dexterity Nexus (DexNex), with anthropomorphic arms,
hands, and vision (Fig. 1). DexNex’s objective is to test
advanced hardware and software to improve the performance
of manipulation systems. DexNex is composed of an Operator
station and an Avatar station. This paper uses the DexNex base
system which mirrors the Operator’s actions 1-to-1 onto the
Avatar. Inspiration for DexNex’s design was taken from the
NimbRo Avatar [1] and Tactile Telerobot [2].

Similar teleoperation systems have benchmarked their
performance compared to normative data. I. A. Kuling et al.
compared the utility of haptics and found that haptic feedback
was preferred but didn’t have an impact on performance in a
Box & Blocks task [3]. Their system reported a 13.3x lower
teleoperation score compared to their natural bodies. Fishel et
al. also performed the Box & Blocks task with shadow robot
hands and URI10 arms. They reported a 4.6x lower
teleoperation score.

II. SYSTEM OVERVIEW

The Operator station uses two HaptX DK2 gloves (Seattle,
WA), three SteamVR base stations (Bellevue, WA), and a
Varjo Aero VR headset (Arlington, VA). The headset provides
stereoscopic visual feedback while the gloves provide
fingertip haptic feedback and passive finger force feedback.

The Avatar station uses two ABB Gofas for arms, two
Shadow Dexterous Hands, a UFACTORY xArmé6 for its neck,
two FLIR Blackfly cameras with Fujifilm fisheye lenses for
eyes, and 6 Biotac SP- fingertip pressure sensors on the thumb,
index, and middle fingers. The Biotac sensors each provide a
single analog output of pressure.

The Operator and Avatar stations are computationally
separate; the only connection is a single ethernet cord which
puts each station onto the same local area network (LAN).

Figure 1. Dexterity Testbed Nexus. Left: Operator station, right: Avatar station.
Only the upper limbs are tracked and mirrored. Feedback is provided to the user visually
and haptically.

ROS2 is the middleware used to allow different applications
and hardware to communicate. GPU’s on Avatar and Operator
PC’s use FFMPEG with the H.265 codec to encode & decode
4k camera feeds at 60 FPS with about 16ms latency.

Double Spherical Televisualization (DST) is used to render
the wide field-of-view (FOV) Avatar cameras to the
Operator’s head-mounted-display (HMD) [4]. The Unity 3D
graphics engine is used to facilitate DST and provide 3D vision
to the user.

The ROS2 package Moveit2 is used to compute inverse
kinematics (IK) for each arm. The neck arm uses the
Kinematics and Dynamics Library (KDL) IK solver to mirror
the Operator HMD pose 1-to-1. The Avatar arm+wrist (8§ DoF)
tracks the user’s palm using a custom cost function in a
gradient descent-based solver (BIO-IK) with a term for L2
normalization (limits total movement in joint space) [5].

Each finger uses a uniquely tuned custom cost function in
BIO-IK with terms for L2 normalization, target orientation,
target position, and planar position. Each finger IK was
calibrated to facilitate gestures when the user adopts an open
hand state, and fine manipulation when the user adopts a
closed hand state. A simple linear scaling function is used to
transition between “gesture” mode and “manipulation” mode.

Biotac fingertip pressures are normalized and then passed
onto the HaptX fingertip tactors & finger brakes. All tactors of
a fingertip are inflated according to a simple linear scaling
function. Finger brakes activate once a static threshold is
surpassed.

III. TEST PROCEDURE

Seven subjects performed three tasks: Box & Blocks,
Minnesota Turning Test revised form (MTTrf), and Table
Setting [6, 7].



Each subject performed each task three times: once with
their natural bodies, once teleoperated with haptics on, and
once with haptics off. The order of teleoperation was switched
for each participant to minimize the effects of training time on
the calculation of haptics utility. Sessions were stopped if
hardware or software failures occurred. After each session, a
post-test survey was conducted for qualitative data.

Subjects were first trained in DexNex for 5 minutes doing
various non-task warmup exercises. Subjects then had 5
minutes to practice one trial of the MTTrf task (the same
procedure as the normative data).

IV. RESULTS

Four metrics were used to compare results: Box & Blocks
score, MTTrf success rate, Table Setting (T.S.) success rate,
and Table Setting time per success (Fig. 2).

The data for no haptic feedback vs. haptic feedback was
compared to inform the utility of haptics. For Box & Blocks
haptic feedback increased the score by 26% (3.9 to 4.9, n=7).
For MTTrtf haptic feedback decreased the success rate by 20%
(4.3 to 3.4, n=7).

For the Table Setting task, haptics improved the success
rate 12% (5.0 to 5.6, n=5), The Table Setting time per success
was about 1.3x faster (75.4s to 56.3s, n=5) with haptic
feedback.

Data were also compared to those for a highly experienced
teleoperator (lead author) with around 30 hours of training.
Compared to the average teleoperator, the experienced user
scored 40% better on Box & Blocks, had a 2x higher MTTrf
success rate, had a 1.1x higher Table Setting success rate, and
was 2.9x faster per success on Table Setting.

Compared to the natural body performance, the average
participant scored 15x worse on Box & Blocks, had 50%
worse success rate on MTTrf, had 10% worse success rate on
Table Setting, and took 40x longer per success on Table
Setting.

Compared to the natural body performance, the highly
experienced teleoperator scored 10x worse on Box & Blocks,
had the same MTTrf success rate (100%), had the same Table
Setting success rate (100%), and took 13.5x longer per success
on Table Setting.

V. DISCUSSION

The small sample size limits the strength of any
conclusions. For example, in the MTTrf task, one would
expect success rate to increase with haptic feedback, but in fact
it decreased. This trend may well reverse with additional data.

The MTTrf task required users to delicately grasp
lightweight pucks and rotate the Avatar forearm 180°. Neither
of these actions were heavily dependent on haptic feedback.
Regardless, users did report a preference for haptics enabled
as it reduced mental burden since they relied less on tiresome
visual processing to determine if objects were grasped or not.

Based on the user surveys and observations, the biggest
bottlenecks to performance were difficulty in achieving
desired finger positions, difficulty completing grasps and
obtaining high quality grasps, difficulty avoiding collisions
due to bulky Avatar components, and physical delays from
moving or rotating bulky equipment. In addition, users desired
more training time which would let them become better
acquainted with how the system functioned. Users also
reported feeling physically fatigued after the trials, and some
experienced mental fatigue too.

Based on this study, future work will provide assistive
features such as automatically aligning grasps and stabilizing
object interactions. Such features will enable higher
performance teleoperation while reducing mental burden,
frustration, and fatigue of the user. Hardware could also be
improved; lighter robot hands & forearms would lead to much
quicker movements, especially wrist rotations.

More advanced features that incorporate computer vision
and A/ML may help to speed up teleoperation further. For
instance, an Al copilot could transform Operator actions into
a more useful command signal, increasing the likelihood of
task success, and a dynamic world model would allow
movement planning to achieve grasps and avoid collisions.
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Figure 2. Results of all participants’ teleoperation for all four metrics. Each chart compares the performance without and with haptic feedback enabled. From left to right: Box
& Blocks score (normative score: 63.8), MTTrf Success Rate (normative score: 100%), Table Setting Success Rate (normative score: 100%), Table Setting time per success
(normative score: 1.6s)
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