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Abstract

This study introduces a new approach for modeling preference-aware human spatial
behavior using Graph Neural Networks (GNN) and Reinforcement Learning (RL).
Current models often overlook the causality and impact of factors influencing pref-
erences. Our approach utilizes GNN for its advanced handling of graph-structured
spatial data, capturing physical, social, and environmental features and how these
are perceived by humans. Integrated with RL, the model dynamically adapts to
changes in the surrounding environment, improving adaptability and generaliz-
ability of simulations. As a proof of concept, we illustrate the approach in an
educational conference room setting to compare student behavior simulation with
and without preference inclusion. The results indicate that preference incorpora-
tion leads to significantly more realistic simulations, highlighting its potential to
improve the design and control of cyber-physical-human systems.

1 Introduction

In recent years, advancements in cyber-physical-human systems (CPHS) have focused on physical
simulations, feedback algorithms, and sensor integration [13]. A key challenge remains in character-
izing human models and understanding how they adapt during interactions [1]. This paper focuses on
cognitive-level human behavioral interactions, treating humans as decision makers who interact with
cyber-physical systems through spatio-temporal behaviors. The primary challenge lies in developing
computational models of human spatial behavior, which are essential for system design and control
in applications such as human-robot collaboration, self-driving vehicles, and smart environments.

Various simulation approaches, including system dynamics, flow-based, and multi-agent simulation
(MAS) [15], have been used to model human behavior in the built environment at different levels
of abstraction. Among these, MAS is notable for offering simulations that capture complex agent
interactions, enabling autonomous decision making and modeling emergent behaviors. However,
defining the rules that govern agents’ interactions with each other and their changing environments is
challenging due to the range of factors that influence behavior and preferences. These include physio-
logical (e.g., age, gender, sensory perceptions), psychological (e.g., motivations, needs, preferences),
spatial and environmental (e.g., temperature, proximity to others, seat arrangements), time-related
(e.g., time of day), contextual (e.g., social constraints, routines), social ties, and random factors.
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Researchers have long sought to develop the rules that govern spatial behavior by considering various
influential factors. These models generally fall into two categories: knowledge-driven, which are
based on survey data, observational studies, and expert insights [3], and data-driven [18], which rely
on extensive datasets enabled by advances in the Internet of Things and sensor technology [11, 10].
The training data for these models includes both known and unknown variables that can influence
decisions. However, these models often struggle to generalize to environments outside their training
data. Hybrid models, such as those using Reinforcement Learning (RL), combine the strengths of
different modeling approaches. RL excels in dynamic learning, as it can handle complexity and
uncertainty in evolving environments. RL also mirrors human decision-making processes by being
goal-driven, sequential, and focused on maximizing internal utility functions of agents.

A major challenge in modeling human behavior is the difficulty of defining the internal utility function
that represents individual goals and preferences. Developing this function based on data is complex,
not only because of the individual-specific factors influencing human decisions but also because
the human agent must perceive relational configurations. This involves understanding the spatial
arrangement and relative positioning of elements and other individuals within the environment.
By accurately modeling these spatio-temporal perceptions, control actions can be implemented to
encourage desired behaviors, thereby aligning with design objectives.

To address the complex needs of accounting for factors that influence human decisions and the
perception of relational configurations within their environment, we use Graph Neural Networks
(GNN) in our study. GNNs are uniquely capable of capturing, processing, and aggregating relational
data [14, 16], making them particularly effective in representing physical, social, and environmental
features of an environment and their interconnections. We use GNN as a key component to map
complex human perceptions and preferences to reward functions. The proposed GNN-based prefer-
ence model enhances the realism of the reward function in the RL algorithm, compared to simply
allocating rewards for performing activities. This approach results in behavioral simulations that are
more responsive to the diverse physical, social, and environmental attributes of the built environment.

We first discuss the development of the GNN-based preference model, followed by how RL is used
to model human spatial behavior in dynamic environments. We then describe the integration of
GNN and RL to create a preference-aware model. Finally, we demonstrate the model’s practical
applications through two conference room scenarios, highlighting improvements in simulation realism
and behavioral prediction compared to non-preference-based approaches.

2 Methodology

2.1 GNN preference model

Data collection. Accurate, in-situ data collection is crucial for building a reliable GNN-based
preference model. In public settings, privacy-preserving technologies like the Azure Kinect are used
to generate data processed by activity recognition algorithms [11, 10]. Such datasets can be further
enhanced with tracklets that capture precise activity locations, while a social map monitors individual
movements over time. Sensors track ambient conditions, and additional layers, such as time stamps
and the physical layout (via digital blueprints or LIDAR), contribute a comprehensive dataset. This
rich data foundation serves as a key input for the GNN preference model.

Graph representation of the environment. To apply GNN, the collected dataset must be structured
as a graph. The environment is divided into a grid, with each cell mapped to a node in the graph
G = (V,E), where V represents nodes, and E represents edges connecting adjacent cells. The
adjacency matrix A is defined as a;; = 1 if cells ¢ and j are adjacent, and a;; = 0 otherwise. Each
node v; € V is associated with a feature vector z; = [Er;, En;, S;], where Er; represents ergonomic
features, E'n; reflects environmental attributes, and S; indicates social occupancy. These features
are context-specific; for instance, in educational settings, they may include elements like furniture,
temperature, and light. Our approach utilizes node classification within the GNN model to estimate
the probability of selecting each grid cell (node) for specific activities. The target vector then assigns
labels indicating activity selection for each node.

Implementation of the preference model. The preference model operates in two phases: Training
and Prediction. During Training, the model calculates the probability of each grid cell being selected
for activities based on spatial, environmental, and social features from the Input Graph. This selection
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Figure 1: Overview of the environment layout and heatmaps.

process is influenced by the dynamics of human physiological and psychological traits, as well as
preferences related to the relational configuration of physical space, all captured through sensor
data. The Output Graph reflects cell selection, guided by these human preferences. To address data
imbalance caused by selecting only one node from the entire graph, we apply a weighted Binary
Cross-Entropy (BCE) loss function. This function assigns greater weight to the underrepresented
class (positive samples), enhancing their impact on the loss calculations and reducing the bias towards
the majority class. This adjustment is crucial in applications like preference modeling where the
minority class is of greater interest. After training, the model enters the Prediction phase, where it
calculates the probability of selecting each grid cell for each possible activities.

2.2 Preference-aware RL spatial behavior model

Specification of RL behavior model. In our model, humans are represented as RL agents whose
spatial decision making is guided by policy functions. The environment includes the cyber, physical,
and social worlds in which agents operate. Agents observe the state of the environment, which may
include only partial information from the surrounding. Based on these observations they perform
specific activities through fine-grained actions such as moving, sitting, standing, and initiating
interactions. The agent’s goal is to successfully accomplish these activities, for which it receives
rewards. However, this basic reward function overlooks spatial preferences, leading to homogeneous
behaviors that fail to accurately reflect human decision making. The next section addresses this issue.

GNN integration with RL. The integration process begins with the RL agent observing the current
state of the environment. Instead of using a simplistic reward function, the agent uses the GNN’s
predicted likelihood of various spaces being chosen for different activities given the current state
of the environment. This allows the agent to assess the desirability of different spatial locations for
performing activities. The rewards the agent receives are thus based on its complex perceptions and
spatial preferences as predicted by the GNN. At each time step, the agent’s policy function evaluates
possible actions based on the GNN-predicted rewards, which indicate the suitability of locations.
This results in agents choosing locations that align with their specific preferences. For instance, if
the GNN predicts a high likelihood that a location is ideal for studying, the agent receives a higher
reward for choosing it. These rewards can change as the physical and social characteristics of the
surroundings evolve, potentially prompting the agent to relocate if the suitability of a location changes
significantly, leading to more human-like spatial behaviors.

3 Illustrative example

A practical application of human spatial behavior models is in cyber-physical-social infrastructure
systems, where infrastructure is designed and controlled to meet economic and human-centered
objectives [4, 5]. To illustrate, we develop a human preference model in an educational facility.



Case study setting. The conference room, shown in Figure la, is a 4mx10m space that has
been divided into a grid (Figure 1b), converting the room into a discrete spatial model for graph
representation. Each 50cmx50cm grid cell represents physical elements like walls, entrances,
windows, furniture, and unoccupied spaces. The main activities are studying, eating, and socializing.

Graph structure. A mesh is extracted from the grid, excluding unoccupiable cells and walls, focusing
on potential areas for human presence. A graph overlays the mesh, where nodes represent mesh cells
and edges connect adjacent nodes, including diagonals. The feature vector of each node includes
environmental features (e.g., light, temperature), the objects presence (e.g., tables, chairs), proximity
to architectural elements (e.g., windows, walls), and occupancy.

Creating the synthetic dataset. For this proof-of-concept study, we generated 10,000 synthetic
data points per activity to analyze spatial preferences. Node feature vectors were constructed
based on room characteristics, while social and environmental maps were created using probabilistic
distributions to better mirror real-world conditions and enrich the dataset. The social map, representing
individual locations, is created by randomly placing individuals to simulate the presence of others,
affecting preferences for social interactions or quiet zones suitable for focused tasks. Light intensity
follows a normal distribution [2] with an average of 600 lux near windows, 300 lux in corners, and 500
lux under artificial lights, with corresponding standard deviations of 200, 150, and 75 lux. Similarly,
temperature is modeled using a normal distribution [12], averaging 26°C near heating/windows, 22°C
in corners, and 19°C near the entrance, with respective standard deviations of 3°C, 1.5°C, and 2°C.
Nearest-neighbor interpolation is used for light [17], and cubic interpolation for temperature [8].

Human activity preferences are modeled through a probabilistic selection mechanism that evaluates
cells for suitability as activity zones. Suitability is calculated using a weighted sum of node features,
with weights representing the importance of each feature for a given activity, influencing levels of
preference, indifference, or avoidance. For example, someone studying might prioritize light intensity
and proximity to windows, whereas for socializing, they may prioritize furniture layout. Each data
instance includes selecting an initial node for the activity’s starting point and a target node chosen
based on feature-weighted preferences, reflecting preferences within the current spatial, social, and
environmental context. In this case study, three human agents are placed in the conference room.
Agent 1, while studying, prefers areas with couches, avoids high temperatures, and is indifferent
to other factors. Agent 2 prefers warmer areas, avoids crowded spaces, and is indifferent to other
conditions. Agent 3 seeks well-lit areas near windows and is indifferent to other features.

Preference model training. The GNN is trained iteratively using the Adam optimizer (learning rate
0.0005) to minimize prediction errors, with early stopping after 50 epochs to prevent overfitting. The
model uses a batch size of 128, ReLU and Sigmoid activation functions for hidden and output layer
respectively, and a weighted BCE loss function. The learning rate is scheduled with a step size of 50
and a decay factor, -, of 0.99, with a maximum of 1000 epochs. The downward trend in training and
test loss curves (Figure 2) and the convergence of these curves indicates a balanced adaptation to the
training data while maintaining generalization to new, unseen data.
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Figure 2: GNN training and test loss over epochs for (a) Agent 1, (b) Agent 2, and (c) Agent 3.

4 Results and conclusion

We simulated movement trajectories and usage patterns for three agents using agent-based simulation.
Figures 1lc and 1d display temperature and light maps, while Figures 3a, 3b, and 3c compare
agent behavior with and without preference modeling across 200 trajectories. Without preference



modeling, agents typically choose the nearest seating to the entrance, reflecting a basic utilitarian
approach where minimizing travel distance is the primary goal. The GNN-based preference model
significantly alters these behaviors, tailoring them to each agent’s preferences and leading to more
complex trajectories. When agents operate under preference-aware decision-making, they often
traverse longer paths to reach their desired locations, suggesting that such preference-driven actions
promote goal-oriented movement, albeit with increased travel distances. These results underscore the
relevance of preference-based modeling for applications like urban planning and smart environments,
where user-specific goals can inform design optimizations. Agent I, who prefers couches and cooler
areas, predominantly selects the couch in the cooler part of the room, prioritizing thermal comfort
over proximity to the entrance. Agent 2, who seeks warmth and solitude, moves toward a couch on
the far-left side, balancing warmth with social distance. The presence of other agents, particularly
Agent 3, influences this choice, highlighting the multi-agent interaction in the simulation. As seen
in Figure 3c, Agent 3—who prefers well-lit seating near windows—consistently selects spots close
to the window. This choice encourages Agent 2 to prioritize the couch over nearby chairs, despite
similar temperatures. The results demonstrate that integrating preferences leads to behaviors that
more closely mirror human decision making, resulting in more diverse and realistic movements
within the space compared to the simple behavior observed without preference modeling.
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Figure 3: Comparison of agent trajectories under preference-aware and no preference conditions.

This study represents an initial effort to address a grand challenge of CPHS: modeling and predicting
human behavior. It lays the groundwork for innovative applications that integrate sensing technology
and artificial intelligence with human-centric design principles, promising a future where physical
systems adapt seamlessly to human needs. Future work should focus on enabling near real-time
model retraining to adapt to dynamic changes in preferences and goals. Additionally, assessing the
representativeness of training data concerning human physiological and psychological characteristics,
alongside benchmark comparisons, remains essential. Further model enhancements could include
integrating internal factors such as emotions [9] and social ties [7], refining the reward discount
factor to balance immediate and future objectives, and validating these models with real-world data
to ensure their practical applicability.
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