Check for
Updates

TrajGPT: Controlled Synthetic Trajectory Generation Using a
Multitask Transformer-Based Spatiotemporal Model

Shang-Ling Hsu
University of Southern California
Los Angeles, California, USA
hsushang@usc.edu

Cyrus Shahabi
University of Southern California
Los Angeles, California, USA
shahabi@usc.edu

ABSTRACT

Human mobility modeling from GPS-trajectories and synthetic
trajectory generation are crucial for various applications, such as
urban planning, disaster management and epidemiology. Both of
these tasks often require filling gaps in a partially specified sequence
of visits, — a new problem that we call “controlled” synthetic tra-
jectory generation. Existing methods for next-location prediction
or synthetic trajectory generation cannot solve this problem as
they lack the mechanisms needed to constrain the generated se-
quences of visits. Moreover, existing approaches (1) frequently treat
space and time as independent factors, an assumption that fails to
hold true in real-world scenarios, and (2) suffer from challenges
in accuracy of temporal prediction as they fail to deal with mixed
distributions and the inter-relationships of different modes with
latent variables (e.g., day-of-the-week). These limitations become
even more pronounced when the task involves filling gaps within
sequences instead of solely predicting the next visit.

We introduce TrajGPT, a transformer-based, multi-task, joint
spatiotemporal generative model to address these issues. Taking
inspiration from large language models, TrajGPT poses the problem
of controlled trajectory generation as that of text infilling in natural
language. TrajGPT integrates the spatial and temporal models in a
transformer architecture through a Bayesian probability model that
ensures that the gaps in a visit sequence are filled in a spatiotem-
porally consistent manner. Our experiments on public and private
datasets demonstrate that TrajGPT not only excels in controlled
synthetic visit generation but also outperforms competing models
in next-location prediction tasks—Relatively, TrajGPT achieves a
26-fold improvement in temporal accuracy while retaining more
than 98% of spatial accuracy on average.

This work is licensed under a Creative Commons Attribution International 4.0
License.

SIGSPATIAL °24, October 29-November 1, 2024, Atlanta, GA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1107-7/24/10

https://doi.org/10.1145/3678717.3691303

Emmanuel Tung
Novateur Research Solutions
Ashburn, Virginia, USA
etung@novateur.ai

John Krumm
University of Southern California
Los Angeles, California, USA
jkrumm@usc.edu

Khurram Shafique
Novateur Research Solutions
Ashburn, Virginia, USA
kshafique@novateur.ai

CCS CONCEPTS

« Information systems — Location based services; « Comput-
ing methodologies — Mixture models; Bayesian network models;
Neural networks.

KEYWORDS

Spatiotemporal modeling, human mobility modeling, Synthetic
Trajectory generation, Transformers

ACM Reference Format:

Shang-Ling Hsu, Emmanuel Tung, John Krumm, Cyrus Shahabi, and Khur-
ram Shafique. 2024. TrajGPT: Controlled Synthetic Trajectory Generation
Using a Multitask Transformer-Based Spatiotemporal Model. In The 32nd
ACM International Conference on Advances in Geographic Information Sys-
tems (SIGSPATIAL °24), October 29-November 1, 2024, Atlanta, GA, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3678717.3691303

1 INTRODUCTION

Modeling human mobility is important for understanding traffic,
urban dynamics, commerce, health, and equity. Ideally, researchers
and practitioners would have access to relevant, detailed visit se-
quences of large numbers of people. In reality, however, it is difficult
to get a large volume of high-quality visit sequences, due to con-
cerns about privacy, confidentiality, low-resolution measurements,
missing observations, the cost of commercially available data, or
minimal motivation for people to measure and share their location
data.

To solve this problem, researchers and practitioners can attempt
to fix low-quality visit sequences from real people, or they can
generate completely synthetic visit sequences. Both approaches
lead to the problem of filling gaps in the sequence. In the case of a
real visit sequence, with missing parts due to privacy concerns, poor
measurements, or dropouts, we have a partially specified sequence.
The gaps can be filled with purely the most likely computed visits,
or they can be filled with visits that meet some prior background
knowledge of where the person went, such as a time-space cube.
For instance, the gap may come with only an approximate location,
such as somewhere in the vicinity of certain cell tower, which
constrains the filled-in visits.

Likewise, for synthetic sequences, we may want to intentionally
drop certain visits and replace them with other, loosely specified

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

visits to simulate certain behavior. This is a way to simulate tem-
porarily popular hot spots (e.g. a concert) or travel to new points
of interest or newly developed neighborhoods.

For both cases, filling visits in real data or replacing visits in
synthetic data, the problem becomes one of replacing gaps with
likely visits to complete the sequence, with possible constraints on
the filled-in visits. We define this problem of filling gaps as a new
challenge that we call “controlled” synthetic trajectory generation.

Gaps in the data present unique challenges, and to the best of
our knowledge there are currently no methods designed for this
problem. Traditional models for next-location prediction or syn-
thetic generation are not equipped to effectively handle realistically
filling gaps in a partially specified sequence. This is challenging
for several reasons. First, sequence generation may be subject to
certain pre-specified constraints, e.g., location and time of a hot
spot being modeled. Second, the number of visits to insert into a
gap is unspecified. Finally, the filled-in visits must be specified with
not only a realistic visit location (based on an agent’s history), but
also an accompanying arrival time, visit duration, and travel time
that conform to the location choice. For example, if the location
choice is a dentist, we will likely not specify a 3 a.m. arrival time
and a four-hour visit after an eight-hour drive.

Existing models for next-location prediction or synthetic trajec-
tory generation lack the necessary mechanisms to constrain the
generated sequences of visits. Typically, these models predict only
the location of visits [34, 35]. While some recent methods have
attempted to model both location and time [2, 36], they have sig-
nificant limitations that affect their performance and the realism in
generated trajectories:

Assumption of independence between location and time: Existing
methods frequently treat location and time as independent factors,
relying heavily on an independence assumption that fails to hold
true in real-world scenarios. For example, suppose an agent leaves
their office at lunchtime and is equally likely to visit either a cof-
fee shop or a tea shop. It takes eight minutes to travel from the
office to the tea shop, while it takes only two minutes to reach the
coffee shop. A model that treats location and time independently
might predict the mean travel time (five minutes) regardless of the
actual destination, thereby introducing unrealistic artifacts into the
generated trajectory. We visualize this example in Figure 1a.

Temporal accuracy challenges in single-value time predictions:
Existing methods usually predict a single value of time, such as
an expected value derived from regression [36] or the most prob-
able value determined by the argmax of probability [2]. This ap-
proach can compromise the temporal accuracy of generated visit
sequences. For instance, traffic congestion around a school tends
to be significantly heavier on game days compared to other days.
To accurately predict realistic arrival times while considering such
factors, a model should implicitly distinguish between game days
and non-game days instead of simply averaging the two possibili-
ties. We illustrate this in Figure 1b.

These limitations are even more pronounced when the task in-
volves filling gaps within sequences rather than solely predicting
the next visit. Existing methods fail to offer effective solutions for

Hsu et al.

either i) generating a realistic sequence of visits with joint spa-

tiotemporal modeling or ii) adequately controlling the output of a

regression model while adhering to strict constraints.

To address these issues, we propose TrajGPT, a transformer-
based, multi-task, joint spatiotemporal generative model. TrajGPT
leverages the transformer architecture to predict locations, while
the visit duration and travel time between visits are approximated
by taking into account the predicted location. Taking inspiration
from recent large language models [1, 15], TrajGPT poses the prob-
lem of controlled trajectory generation as that of text infilling in
natural language. By allowing the pre-fixing of specific locations
and times within a sequence, TrajGPT can effectively fill in the gaps
in a manner that maintains spatiotemporal consistency.

TrajGPT also learns the parameters of a Gaussian mixture to
model the distributions of visit duration and travel time between
visit locations. The integration of spatial and temporal models is
facilitated through a Bayesian probability model, incorporated as a
nonparametric joint likelihood loss function. This innovative ap-
proach ensures that TrajGPT can fill gaps and generate sequences
that are both spatially and temporally consistent. It explicitly avoids
the problems illustrated in Figure 1 due to its joint probability rep-
resentation. This capability is crucial for applications requiring
precise control over synthetic trajectory generation, such as simu-
lating movement patterns in a partially known scenario.

Our extensive experiments on both public and private datasets
highlight the effectiveness of TrajGPT in controlled synthetic visit
generation. The results demonstrate that TrajGPT not only excels
in filling gaps within sequences but also outperforms competing
models in next-location prediction tasks. This superior performance
underscores the potential of TrajGPT to advance the field of human
mobility modeling by providing a robust and flexible solution for
generating controlled synthetic trajectories.’

In summary, the main contributions of this work are:

(1) We introduce the novel problem of “controlled” synthetic tra-
jectory generation, which addresses the need to fill gaps in
sequences with specific constraints on locations and times.

(2) We propose TrajGPT, a transformer-based, multi-task, joint
spatiotemporal generative model that integrates a Gaussian
mixture model and a Bayesian probability model to ensure
spatiotemporal consistency and accuracy.

(3) We demonstrate the effectiveness of TrajGPT through extensive
experiments on both public and private datasets, highlighting
its superior performance in controlled synthetic visit generation
and next-location prediction tasks compared to existing models.

In the remainder of the paper, we describe related work in Sec-
tion 2. Section 3 gives a precise definition of the new problem we
solve, and Section 4 presents our solution in the form of likelihood
maximization with probability distributions computed from a trans-
former model. Section 5 presents our performance evaluation on
trajectory data, showing how our approach is superior to the state-
of-the-art alternatives, as well as an ablation study. We conclude in
Section 6.

The code is available at https://github.com/ktxlh/TrajGPT.

TrajGPT: Controlled Synthetic Trajectory Generation Using a Multitask Transformer-Based Spatiotemporal M&€ISPATIAL °24, October 29-November 1, 2024, Atlanta, GA, USA

o
Destination-independent
I expectation

I i
| =
@ .]
2 4 6 8 10
Minutes it takes to travel from office to either shop

Coffee Shop

=
=)

Probability
o
3]

o
RS

(a) Importance of probabilistic dependence between location and
time: An agent at their office will travel to either the coffee shop
or tea shop, each with equal probability. It takes eight minutes to
reach the tea shop (lighter PDF curve) and two minutes to reach the
coffee shop (darker PDF curve). Without knowing the destination,
a model might predict an unrealistic five-minute travel time, the
average of the two.

1.0 . ;
> | Expectation
2 I
205 |
o
£ Normal Day I Game Day

1
0.0 - - 1 : - - -
0 1 2 3 4 5 6 7 8

Minutes it takes to travel from home to school

(b) Drawbacks of predicting expected value or most probable point:
An agent traveling from home to school faces variable traffic based
on whether a sports game is scheduled. Predicting the expected
time yields a low probability value, while predicting the most prob-
able timestamp misses all game day scenarios. Additionally, if the
predicted arrival time falls outside a gap in a sequence of visits,
there’s no clear method to adjust it to fit within the gap.

Figure 1: Examples motivating (a) spatiotemporal joint probability modeling and (b) Gaussian mixture models, with their

corresponding probability density functions (PDFs).

2 RELATED WORK

Human mobility data can be categorized into two types: point-
based and visit-based. While both are often grouped under the term
“trajectories,” they differ significantly. Point-based data consists
of a sequence of observations from sensors tracking an object’s
movement, such as GPS signals from a mobile phone [7, 10, 16, 41]
or a car’s navigation system [11, 26, 38]. This type of data is typically
dense, with observations collected at frequent intervals (e.g., every
30 seconds) and includes raw coordinates (latitude and longitude)
without any associated semantic information. On the other hand,
visit-based data captures the sequence of places an individual visits.
Each visit includes details such as location (both latitude/longitude
and semantic information like points of interest), arrival time, and
departure time.

For forecasting tasks such as next location prediction [12, 19, 42],
point-based data is rich and easier to predict due to its short and
regular inter-point intervals and additional contextual knowledge
like road networks [24]. However, this type of sequence is not the
focus of our paper.

Our focus is on visit-based data, which is typically sparser and
more challenging to predict. This data is often collected through
check-ins (e.g., from Foursquare [9] and Gowalla [3]) and usu-
ally includes 3-5 visits per person per day with irregular inter-
arrival times. Research on visit-based sequences often centers on
the downstream task of predicting the next location [2, 8, 21, 32—
36, 39, 40]. These locations are typically represented as Points-of-
Interest (POIs). Among the papers on POI recommendation, Deep-
JMT [2], MobTCast [35], GETNext [36], and STAR-HIT [34] are
the most relevant to our work as they employ transformers [31] as
the underlying encoder. While MobTCast and STAR-HiT predict
the subsequent POI without considering check-in time, MobTCast
integrates various contextual factors, including temporal, seman-
tic, social, and geographical contexts, alongside a consistency loss
mechanism. Conversely, STAR-HIT, featuring a hierarchical trans-
former architecture, employs stacked encoders and subsequence
fusion modules to capture multi-granularity spatiotemporal pat-
terns within user check-in sequences, facilitating interpretability.

Deep]JMT and GETNext predict location and time independently,
although the time spent at a location (e.g., coffee shop vs. gym) and
the time between locations are highly dependent on the specific
locations. For instance, GETNext employs a deterministic approach
to predict a single temporal value, while DeepJMT predicts a tem-
poral distribution during training and predicts the timestamp with
the highest probability for inference. While the assumption of inde-
pendence might not significantly impact the task of next location
prediction, it poses a challenge when predicting the arrival time or
duration of the next visit, as demonstrated in our experiments (see
Section 5) using these approaches as baselines. This issue becomes
even more pronounced when trying to fill in the visits between
known visits, which is the primary focus of our paper.

Although no existing work in human mobility modeling directly
addresses the task of filling visit gaps, related concepts can be
found in language modeling. Following the introduction of the trans-
former model and large language models (LLMs) [1, 5, 17, 22, 28, 37],
subsequent research adapted its encoder architecture for masked
language modeling (MLM), exemplified by BERT [15], and its au-
toregressive decoder for causal modeling, as demonstrated by GPT
[27]. However, these popular approaches each have their drawbacks
when it comes to filling in gaps. BERT can only fill known-length
gaps, which is inadequate given the variability in spans of gaps.
Conversely, GPT relies solely on the preceding context, lacking
the ability to leverage information following a gap in a sequence.
Consequently, neither model effectively addresses the challenge
of infilling variable-sized gaps constrained by contextual factors.
Some previous studies [4, 6, 29] have tackled this unknown-length
blank infilling problem; thus, we follow the infilling paradigm from
natural language processing (NLP) for our specific task of infer-
ring human visit sequences. Nevertheless, this infilling approach
cannot be directly applied to our problem due to the absence of a
spatial and temporal component, which is crucial in our context
where location, visit duration, and inter-arrival timings are impor-
tant. Therefore, we leverage Space2Vec [23] and Time2Vec [14] for
spatiotemporal representation learning and design spatiotemporal
joint prediction for controlled synthetic trajectory generation.

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

ri the region where visit i is located, such as a grid cell
t¢ | the arrival time of visit i

the departure time of visit i

Xi an attributes tuple (r;, tl.“, tlfi) of visit i

X | asequence of contiguous visits X = [x1, Xz, ..., x;]

X’ | asubsequence of X, input for tasks

P | atrue possibility mass or density function

P | an approximated possibility mass or density function
H | asequence of visit embeddings

AtT | the travel time from visit i — 1 to i

AtD | the duration of visit i

Table 1: Notable notations used in this article.

Geo-CETRA [20], a recent study, also addresses the problem
of constraint-based trajectory generation, but our work differs in
several key ways. In Geo-CETRA, the constraints are defined as
spatiotemporal ranges that the synthetic trajectory must satisfy,
whereas we define constraints as a set of known visits that the tra-
jectory is required to pass through. As a result, Geo-CETRA focus
on identifying realistic visits within the spatiotemporal boundaries,
while our approach, inspired by language models, concentrates on
filling in the visits between these fixed points. Due to the nature of
our discrete constraints, we discretize space into grid cells to con-
struct a “vocabulary” for our model, whereas Geo-CETRA operate
directly in a continuous spatiotemporal space.

3 PROBLEM STATEMENT

We give a precise definition of our problem here, followed by our
solution in Section 4.

3.1 Terminology

We formally define a visit as a tuple x = (r, t%, td), where r repre-
sents the location of the visit, such as a region or a Point-of-Interest
(POI), t* represents the arrival time of the visit, and td represents
the departure time of the visit. A sequence of visits X contains all
visits made by a single agent within a time range. We use P to de-
note the true possibility mass function (PMF) or possibility density
function (PDF), and P to denote the PMF or PDF approximated by
TrajGPT. We summarize the notations in Table 1.

3.2 Controlled Synthetic Trajectory Generation

The main problem we solve, “Controlled Synthetic Trajectory Gen-
eration,” is to, given an incomplete sequence of visits X', predict the
missing visits within X”’. Let X be a (complete) sequence of visits.
An incomplete sequence of visits, X', refers to any sub-sequence of
X that is missing at least one visit. If each contiguous span of miss-
ing visits is replaced with a placeholder marker (i.e., a blank), then,
the task is to predict the missing visits X for each blank, specifying
both the temporal ordering of such predicted missing visits and
the correspondence of the predicted missing visits to the blanks.
Given the predicted missing visits X and incomplete visit sequence
X', it is trivial to construct the resultant (complete) sequence of

Hsu et al.

visits. If x is the first missing visit within the incomplete visit se-
quence X', the probability distribution P(x|X’) can be rewritten
as P(x|X’) = P(r, t%,t9|X’) = P(r|X")P(t%|X’, r)P(t4|X’, r, t%) ac-
cording to the chain rule of probability.

3.3 Next Visit Prediction

As a byproduct of solving “Controlled Synthetic Trajectory Gen-
eration,” we can also solve “Next Visit Prediction,” which is a gen-
eralized version of the traditional “Next Location Prediction” task.
Given context X’ which consists of a contiguous sequence of visits,
we model not only the probability distribution P(r|X”) of the next
visit’s location r, but also the probability distribution P(t%|X’,r) of
the arrival time t of the visit, as well as the probability distribution
P (tle ’,r,t%) of the departure time t9 of the visit. Therefore, given
X = [x1,...xi—1], which is a sequence of consecutive visits, we
predict the next visit x;, which includes its region r;, its arrival time
tf, and its departure time tl.d. We make the trivial observation that
the Next Visit Prediction task is a special case of the Controlled
Synthetic Trajectory Generation task where the only missing visits,
X \ X, are those occurring in the future, following the last visit in
X'

4 METHODOLOGY

In this section, we introduce our solution to the problem of “Con-
trolled Synthetic Trajectory Generation.” To utilize techniques from
autoregressive sequence modeling, we begin by rearranging each
visit sequence, enabling the use of an autoregressive model for the
infilling task (Section 4.1). Subsequently, we design a spatiotem-
poral autoregressive model that learns its parameters from these
rearranged visit sequences (Section 4.2).

4.1 Visit Infilling

In order to: (1) train the model to be capable of infilling any number
of items into each blank, with one or more blanks at any point in
the sequence, and (2) take advantage of the auto-regressive nature
of transformers and allow efficient training of the model to do both
infilling and next-item prediction, we restructure our sequence
data for the infilling task (Section 3.2), following the approach
outlined by Donahue et al. [4]. Each visit sequence X is composed
of visits X = [x1, ..., xn], and each visit x; = (r;, tlfl, tlfl) is defined
by its region, arrival time, and departure time, respectively. The
dataset as it is in its innate form, which consists of many visit
sequences, can be used to train a transformer model to predict the
next visit, given a partial visit sequence. We then reframe our data
for the infilling task by applying the following process to each visit
sequence X = [x1, ..., xp].

To rearrange a visit sequence for the infilling task, we first add a
special SEP non-visit token to the end of the sequence to denote the
end of the original sequence. Then, we sample a Bernoulli distribu-
tion for each visit except for the first and last (x;;i € {2,3,..,n—1}).
Sampling a 1 means we drop the visit, and a 0 means we retain the
visit. For each contiguous span of visits we dropped, we insert a
single BLANK token where the span used to be located within the
sequence. Next, for each span we dropped, we append that span
and an ANS token to the end of the sequence; the ANS token marks
the end of each span. In this way, the reframed sequence contains

TrajGPT: Controlled Synthetic Trajectory Generation Using a Multitask Transformer-Based Spatiotemporal M&€ISPATIAL °24, October 29-November 1, 2024, Atlanta, GA, USA

the partially specified sequence in the first half and the ground
truth filled-in visits in the second half. Since this is an infilling task,
we never drop the first or last visit. See Figure 2 for an example.

Original Sequence

[X1, X2, X3, X4, X5, X, X7 |

|

Sampled Masking Pattern

[0,1,1,0,0,1,0]

|

Reframed Sequence

[[Xl’ [BLANK], X4, X5, [BLANK], X7, [SEP], X2, X3, [ANS], Xg» [ANS])]
Figure 2: Reframing sequence data for infilling.

The aim of the model is to predict the values after the SEP token
in order to complete a sequence. This coincides with the prediction
of the missing items. By rearranging each sequence and marking
special delimiters (BLANK, SEP, ANS), an autoregressive transformer
model can learn to attend to the positions of these special tokens.
In doing so, it can start infilling any number of items for the first
blank after the SEP token, declaring the first blank to have been
completely infilled by predicting an ANS token, and repeating this
process for subsequent blanks until the number of ANS tokens
matches the number of BLANK tokens. The task of interest is to
predict the visits in the reframed sequence after the SEP token.
Note that for our training, validation, and test split data, we assume
that we have access to complete visit sequences, to which we can
apply this reframing process. However, at inference time, we have
incomplete visit sequences to be infilled, which constitute the visits
before the SEP token.

4.2 Spatiotemporal Joint Modeling

In this section, we discuss the architecture of TrajGPT and explain
the process by which it learns the model parameters. We use this
architecture and learning process for both Controlled Synthetic
Trajectory Generation and Next Visit Prediction. It is important to
note that we employ teacher forcing throughout the training phase.
For instance, when predicting an arrival time, we use the actual
region as input rather than a predicted one.

4.2.1 Formulation. We derive a probabilistic model for spatiotem-
poral autoregressive sequence modeling as follows. As operational-
ized in Section 3.2, to predict the remaining visits X \ X’ given X’,
we parameterize a function P to approximate the conditional joint
probability P(x | X’), denoting the parameters as 0, and learn it
with maximum likelihood estimation (MLE):

0% = arg max l_[Py(x | X (1)
xeX\X’

For simplicity, throughout this article, X evolves as we add new,
inferred visits, and we will omit 6 from our notation going forward.

To achieve the approximation, we first factorize the targeted
joint probability using Bayes’ Rule:

P(x | X') =P(r, % t% | X')

’ a ’ d ’ a (2)
=P(r| X" Pt* | X', r) P(t* | X', 1, t%)

To approximate these factors, for each visit, we make TrajGPT
approximate the distribution of each attribute of x one by one as
follows. In other words, TrajGPT predicts region, arrival time, and
departure time of a visit sequentially, taking all previous predictions
into consideration when making a new prediction.

(1) Approximate region P(r | X”)

(2) Conditioned on region, approximate arrival time P(t* | X’, r)
(3) Conditioned on region and arrival time, approximate departure

time P(t? | X', r, t9)

We will elaborate on the realization of these steps in the subse-
quent sections. To define a loss function that encourages TrajGPT
to predict the truth, we follow the Maximum Likelihood Estimation
(MLE) paradigm and compute the negative log likelihood of predict-
ing the ground truth for each of these approximated distributions,
such as — log B(rn | X). Combining these likelihood variables with
Equation 1 and 2, we obtain this elegant, non-parametric, negative
log likelihood loss function for the joint probability?:

L=- Z log P(r | X') +log P(t% | X', r) +log P(t¢ | X', r,t%)
r.ta,td
)

where L stands for loss and sums over (r, t%, t4) € X\ X'.

4.2.2 Model Architecture. We illustrate the architecture of TrajGPT
in Figure 3. The process begins with fusing the spatiotemporal infor-
mation in the subsequence of visits X’ using a transformer encoder
(Section 4.2.3). Following this, the region head module predicts the
region r of the visit (Section 4.2.4) as a discrete probability mass
function over possible visit locations. Subsequently, the model em-
beds and conditions on the predicted region to forecast the travel
time of the visit using the travel time head. The travel time is then
arithmetically converted to arrival time (Section 4.2.5). The arrival
time is encoded and fed to the duration head to predict the duration
of the visit. Finally, the duration is converted to departure time
through arithmetic operations (Section 4.2.6).

4.2.3 Sequence Encoder. We design a sequence encoder to help
TrajGPT understand complex spatiotemporal sequences. For each
visit, we use Space2Vec [23] to encode the location /;, known as
location encoding, and Time2Vec [14] to encode the arrival and
departure times, referred to as arrival and departure time encoding.
To guide the model in recognizing region-specific information, such
as land use, we embed the region where each visit occurs and make
this embedding learnable, referring to it as region embedding. If a
visit is a “special token” visit, as described in Section 4.1, we use the
embedding of the special token instead of a region embedding since
this pseudo visit does not contribute spatiotemporal information to
the sequence. We then concatenate the location encoding, arrival
time encoding, departure time encoding, and region or special token
embedding. This sequence of concatenated embeddings is fed into

2For special tokens (see Section 4.1), region loss is replaced with the special token loss,
and there is no temporal loss.

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Hsu et al.

Input Visit Sequence X’

Location Encoding Arrival Encoding

Departure Encoding Region Embedding
| |

[Region Embedding Layer]
T

[Positional Encoder & Transformer Encoder]

§4.2.3 Sequence Encoder

Visit Embeddings H

Region Head

Region r 4'[Region Embedding Layer]
I
Region Embedding
§4.2.4 Region Prediction §4.2.5 Arrival Prediction

Travel Time Head

Travel Time AtT

Duration At?
1

Departure Time t¢

Arrival Encoding —>D

§4.2.6 Departure Prediction

Output Visit x

Figure 3: Overview of TrajGPT. Modules that share parameters are colored in the same shade.

the positional and transformer encoders proposed by [31]. The
sequence of outputs from the transformer encoder will be referred
to as visit embeddings H, which entails an implicit summary of the
input sequence.

H := TransformerEncoder(PositionalEncoder(X")) 4)

4.2.4 Region Prediction. We formulate the region prediction task
as a classification problem. To predict the region where a visit is
located, we feed the visit embeddings H to the region head, which
contains another transformer encoder, a linear layer, and a softmax
function for creating a proper probability mass function.

P(r; | X') := Softmax(Linear(TransformerEncoder(H))) (5)

4.2.5 Arrival Time Prediction. To account for spatiotemporal de-
pendencies, as shown in Figure 1a, we condition our arrival time
predictions on the predicted region.

Arithmetically, to predict the arrival time ¢ of visit i, we first
derive the travel time Ati(r from the preceding visit i — 1 to i, the
current one we are predicting.

AT =1 - (6)

1 1

To predict Atl.T, we approximate its potentially complex distri-
bution, as illustrated in Figure 1b, using a Gaussian Mixture Model
(GMM). We will show that this approximation effectively models
travel time based on visit-to-visit observations in the training data
in Section 5.

Pt | X, 1) = PT(AL)))

where P;r : R = RY is the probability density function (PDF) of
the GMM?3. To predict the parameters of the GMM, denoted as

3For inference, we clip the distribution by setting the probability of negative values to
zero and re-normalizing it.

Param(P;.T), we emulate the decoder of transformer [31] to enable
cross attention between r; and H:*

Param(P]") := FF(MHA(e;, H, H)) (8)

where e; = Embedding(r;) is embedded using the same region
embedding layer as Section 4.2.3; FF denotes feedforward neural
networks;> MHA stands for multi-head attention, which projects rj
to queries, and H to keys and values to perform cross attention:

MHA (e;, H, H) := Concat(heady, ..., headM)WO

©)
where head; := Attention(einQ, HWJK, HW]V)

where Concat denotes concatenation of vectors; WJQ, WjK R WJ.V are
parameter matrices.

4.2.6 Departure Time Prediction. Similar to how we predict arrival
time in Section 4.2.5, we first derive duration AtiD

AtD = 4 _ 4@ (10)

Then, we use cross attention and a GMM to predict the duration
AtiD of the visit

P(AEL | X!, 1y, 19) = PL(ALD) (11)

where PiD : R — R* is the PDF of the GMM. Different from arrival
time prediction, instead of using only the embedding of r; as the
query for MHA, we first concatenate e; = Embedding(r;) with the
encoding of t as input c;

¢; == Concat(e;, Time2Vec(t]")) (12)

4For brevity, we omit the residual connections and normalization layers in Equation 8
and 13. For details, please refer to Section 3 of the transformer paper [31].

5To ensure the predicted weights and scales of the GMM are always positive, we apply
a softplus function and add a small positive value to the output of the feedforward
network. Equations are omitted for brevity.

TrajGPT: Controlled Synthetic Trajectory Generation Using a Multitask Transformer-Based Spatiotemporal M&€ISPATIAL °24, October 29-November 1, 2024, Atlanta, GA, USA

where the encoding of ¢! is generated by the Time2Vec encoder in
Section 4.2.3. Then, we compute the cross attention between c; and
H to approximate the parameters of the GMM.

Param(P?) := FE(MHA(c;, H, H)) (13)

MHA(¢;, H, H) := Concat(heady, ..., headM)WO

(14)
where head; := Attention(cinQ, HWjK, HWJ-V)

In summary, in this section, we described how we train TrajGPT
to approximate each probability function of the joint probability in
Equation (2): P(r | X’) P(t* | X', r) Pt | X!, r, 19).

4.2.7 Inference. To conduct inference with a model trained using
the above methodology, one can replace teacher forcing with au-
toregression. In other words, to predict one visit, one can follow
these steps:

(1) Conditioned on X’, predict the region of the visit, denoted 7.
(2) Conditioned on X’, 7, predict the arrival time, denoted ia.
(3) Conditioned on X’, #, £4, predict the departure time.

Since the effectiveness of such an autoregressive procedure depends
on the choice of a decoding algorithm, such as beam search [25]
or nucleus sampling [13], which is not the focus of this work, we
resort to evaluating TrajGPT with teacher forcing in Section 5.

5 EVALUATION

5.1 Experimental Setup

5.1.1 Data. We employed two trajectory datasets, GeoLife and Mo-
bilitySim, for our experiments. GeoLife [41] is a public real-world
trajectory dataset based in Beijing, featuring data from 102 agents
collected between 2008 and 2009. To demonstrate the scalability
of our approach, we also utilized a private, simulated trajectory
dataset, MobilitySim. The dataset contains a realistic simulation
of 2,000 agents performing daily activities in San Francisco, over
a period of 30 days. The simulation contains second-by-second
location of each agent, as they perform recurring daily activities,
such as going to school or work, as well as occasional recreation
and maintenance activities, such as visits to restaurants, gym, and
doctors office. The simulation also incorporates daily and weekly
patterns, such as work schedules and days off. We summarize the
dataset statistics in Table 2.

5.1.2 Processing. To convert point-based trajectories into visit-
based sequences, we first identify visits [18]. A visit is operationally
defined as a (location, arrival time, departure time) tuple, describing
where and when an agent remains stationary for a contiguous
period of time. For GeoLife, we identify visits spatially within a
200-meter radius and temporally for a minimum duration of 10
minutes. For MobilitySim, we identify visits for each agent based
on a minimum period of 6 minutes during which the agent remains
perfectly stationary. After identifying visits, we form “regions” by
discretizing the locations using Uber’s H3 index [30]. For GeoLife,
we set the Uber H3 Resolution to 7, and for MobilitySim, we set it to
10. We convert the latitude and longitude of visits to the Universal
Transverse Mercator (UTM) coordinate system to ensure the two
dimensions of the geographical coordinates are on the same scale
(in meters). For timestamps, including arrival and departure times,

we subtract the oldest arrival time in each dataset from all other
timestamps, converting these time differences into seconds. To
prevent exploding gradients during training, we normalize the
duration and travel time: the duration is scaled to days, and the
travel time is scaled to hours.

For Controlled Synthetic Trajectory Generation (Sections 5.2 and
5.4), we treat each agent’s visit sequence as an individual instance
and divide the set of agents into training, validation, and test sets
in an 8:1:1 ratio. Following a strategy similar to dynamic masking
in RoBERTa [22], we treat “masking each visit” as an independent
Bernoulli trial with a 20% probability. However, after dynamic mask-
ing, we replace each contiguous subsequence of masked visits with
a BLANK. The model is then tasked with predicting an unknown
number of visits for each blank.

For Next Visit Prediction (Section 5.3), we followed previous
work [34, 36] by using a rolling window to extract instances, sorting
them chronologically, and splitting them into training, validation,
and test sets in an 8:1:1 ratio. We set the size of the rolling window
to 128 visits, following [34].

5.1.3 Metrics. We evaluate the models with teacher forcing for
these metrics: Acc@k presents the top-k accuracy for location
prediction. Note that we report the evaluation on infilling location
predictions, not on the predicting the special ANS token which
indicates the model is finished predicting for the corresponding
blank. Pt shows the proportion (for scalar®) or probability (for
distribution) of predictions that fall into the g + t minutes interval,
where g is the ground truth.

5.1.4 Baselines. Since controlled synthetic trajectory generation
is a new task we propose, we resort to compare with studies in next
POI recommendation. We selected the following state-of-the-art
baselines:

e STAR-HIT [34]: Hierarchical transformer for next POI rec-
ommendation with subsequence aggregation technique.

e GETNext [36]: Transformer for next POI recommendation
with an auxiliary next check-in time prediction task, assum-
ing next POI and next check-in time are independent.

Note that GETNext uses POI category information. As our datasets
are generated from raw trajectories, not sequences of POIs, they
do not contain such information. Hence, throughout this section,
we remove its POI category components.

5.2 Controlled Synthetic Trajectory Generation

Since controlled synthetic trajectory generation is a new task we
proposed, we aimed to evaluate the effectiveness of TrajGPT com-
pared to existing models. For this purpose, we selected GETNext
[36], the state-of-the-art model for human mobility that concur-
rently models both space and time. We adapted GETNext for the
visit infilling task, naming it GETNext", by incorporating special-
token visits into the input sequences, as detailed in Section 3, and
adding an additional departure time head with the same architec-
ture as its original arrival time head.

As shown in Table 3, TrajGPT maintains similar accuracy in
region prediction while achieving significantly higher accuracy in

®For fair comparison with clipped distribution (see Footnote 3), we replace negative
predictions with zeros.

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

Hsu et al.

Dataset ‘ #agent #region #visit #trajectory” Avg. #visit/agent Avg. #visit/region
Geolife 102 1,369 20,278 11,724 198.80 14.81
MobilitySim | 2,000 3,481 191,963 6,178 95.98 55.15

Table 2: Data Statistics. #trajectory denotes the number of trajectories for next visit prediction (see Section 5.1.2).

arrival and departure time prediction. This outcome is expected
because, although GETNext models both the next point of interest
(POI) and the next check-in time, its primary focus is on next POI
prediction. In fact, GETNext does not report metrics for temporal
prediction, which explains the inferior accuracy in its temporal
predictions compared to TrajGPT.

5.3 Next Visit Prediction

To ensure a fair comparison with existing approaches, we also
adapted TrajGPT to predict the next visit rather than filling in
gaps. This modification aligns the task more closely with next
POI recommendation, which the baseline models are specifically
designed for. The results of this comparison are presented in Table 4.
Certain cells within the table intentionally remain unpopulated due
to the inherent characteristics of STAR-HiT and GETNext: STAR-
HiT is not designed to predict timestamps; GETNext predicts only
one timestamp for each visit, and we opt to forecast the arrival
time.

In the domain of next visit prediction, TrajGPT exhibits notable
superiority over GETNext in temporal forecasting, with minimal
adverse effects on its region prediction performance. Notably, Tra-
jGPT achieves this without relying on the supplementary trajectory
flow map and transition attention map proposed by GETNext. Fur-
thermore, both GETNext and TrajGPT significantly outperform
STAR-HIT, this suggests that learning a multi-task, spatiotemporal
model, might help predict locations better.

The use of teacher forcing ensures that TrajGPT has access to
the actual region when predicting arrival times, whereas GETNext,
by design, lacks this advantage as it predicts both region and arrival
time simultaneously and independently. To peek into the potential
of TrajGPT during inference without teacher forcing, imagine the
worst case: If the predicted, most-probable region were incorrect,
the arrival time accuracy would be zero. In this case, we can multiply
the arrival time accuracy of TrajGPT with its Acc@1 of region
prediction. This minimum threshold of its arrival time accuracy
will still surpass that of GETNext by a significant margin.

5.4 Ablation Study

To demonstrate the effectiveness of the key components of TrajGPT,
we conducted an ablation study for the infilling task, with results
shown in Table 5.

o The TrajGPT w Independence variant predicts the region, ar-
rival time, and departure time independently, reflecting the spatio-
temporal-independence assumption made by Deep]MT [2] and
GETNext [36]. This assumption is expressed as:

P(ri,t&,t? | X') = P(ri | X)P(t2 | X)P(td | X') (15)

o The TrajGPT w Regression variant replaces the GMM used
for predicting arrival and departure times (Sections 4.2.5 and

4.2.6) with a regression head, mimicking the approach used by
GETNext [36].

The results demonstrate that TrajGPT significantly outperforms
both variants in predicting arrival and departure times, while also
maintaining exceptional accuracy in regional predictions. This un-
derscores the effectiveness of the proposed spatiotemporal model-
ing approach.

Replacing joint modeling with independent modeling greatly
reduces the accuracy of departure time predictions. This suggests
that the duration of a visit, which influences the departure time,
varies significantly depending on the visit’s location (i.e. the region).

Replacing GMM with regression significantly weakens the model’s
ability to predict time, highlighting the importance of learning a
time distribution rather than relying on a single point estimate.
The accuracy drop is particularly pronounced for departure time
predictions, suggesting that predicting a point is even less suitable
for duration than for travel time.

The performance drop appears more pronounced for temporal
predictions than for region predictions. This may be because each
variant directly impacts temporal predictions by altering either the
input (TrajGPT w Independence) or the output (TrajGPT w Re-
gression), whereas region predictions are only indirectly affected
through the combined influence of the loss function and optimiza-
tion process.

In summary, the ablation study demonstrates that each of the
two key components of TrajGPT, including joint modeling and
GMM-based temporal distribution learning, plays a crucial role in
achieving high prediction accuracy. Removing or replacing these
components leads to a substantial decrease in performance, further
confirming their necessity in capturing the complex spatiotemporal
patterns of human mobility trajectory data.

6 CONCLUSION

In this paper we introduced the novel problem of “controlled” syn-
thetic trajectory generation, addressing the need to fill gaps in visit
sequences with specific constraints on locations and times. Filling
gaps is useful for imputing missing data and for generating syn-
thetic visit sequences that have some preordained visits. The task
is challenging because the filled-in visits, along with travel times,
must fill the gap exactly, and the visit locations and durations must
be realistic.

As a solution we presented TrajGPT, a transformer-based, multi-
task, joint spatiotemporal generative model. TrajGPT leverages
the transformer architecture to predict locations while separately
approximating the visit duration and travel time between visits
using a Gaussian mixture model. This innovative approach ensures
that TrajGPT can generate sequences that are both spatially and
temporally realistic by adhering to the statistical dependencies
between visit locations, visit durations, and travel times.

TrajGPT: Controlled Synthetic Trajectory Generation Using a Multitask Transformer-Based Spatiotemporal M&€ISPATIAL °24, October 29-November 1, 2024, Atlanta, GA, USA

Region Arrival Time Departure Time
Dataset | Method
atase ‘ eHo ‘ Acc@1 Acc@5 Acc@10 Acc@20 ‘ Pys Pi1o Pigo ‘ P.is Pi1o Pioo
GeoLife GETNext” 7.64 36.87 46.83 51.87 0.16 0.38 0.73 1.41 2.87 7.91
TrajGPT 19.87 40.57 44.78 52.21 | 65.72 75.53 85.31 | 36.08 50.81 64.23

Table 3: Comparison of TrajGPT for the infilling task with GETNext*, which we adapted from GETNext, showing the effectiveness

of TrajGPT. The best results are highlighted in bold.

Dataset Method Region Arrival Time Departure Time
Acc@1 Acc@5 Acc@10 Acc@20 Pys Pi1o Pioo Pys Pi1o Pioo

STAR-HIT 17.92 40.78 48.98 56.40 - - - - - -

GeolLife GETNext 38.74 66.38 72.78 77.13 2.39 4.27 8.62 - - -
TrajGPT 35.06 62.08 70.77 77.63 | 64.28 71.70 80.02 | 35.01 48.40 60.82

STAR-HIiT 42.79 62.87 70.25 75.74 - - - - - -

MobilitySim | GETNext 51.46 80.91 91.59 94.50 1.29 291 5.50 - - -
TrajGPT 54.53 80.26 92.88 94.66 89.33 94.01 98.07 | 52.57 62.05 71.20

Table 4: Comparison of TrajGPT with baseline models for the next visit prediction task. The best results are highlighted in bold.

Dataset Method Region Arrival Time Departure Time
Acc@1 Acc@5 Acc@10 Acc@20 P.s P11 P.og Pis P.iyo P.og
TrajGPT w Independence | 39.71 79.52 83.21 85.80 68.77 8191 90.54 | 31.85 40.48 46.33
MobilitySim | TrajGPT w Regression 43.61 80.87 86.31 90.40 | 3149 5691 7816 | 1.53 3.21 6.42
TrajGPT 44.15 81.04 86.11 89.71 73.71 84.40 91.67 | 42.65 50.45 57.70

Table 5: Comparison of TrajGPT with its variants for the infilling task, demonstrating the effectiveness of TrajGPT’s design.

The best results are highlighted in bold.

We validated our approach on a public and private dataset, com-
paring against state-of-the-art methods for predicting next loca-
tions. We observed that TrajGPT not only demonstrates proficiency
in gap filling but also surpasses competing methods in predicting
the next visit. On average, TrajGPT achieves a remarkable 26-fold
enhancement in temporal prediction accuracy while preserving
over 98% of the spatial accuracy achieved by state-of-the-art ap-
proach.

ACKNOWLEDGMENTS

Research supported by the Intelligence Advanced Research Projects
Activity (IARPA) via the Department of Interior/Interior Business
Center (DOI/IBC) contract number 140D0423C0033. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Gov-
ernmental purposes, notwithstanding any copyright annotation
thereon. Disclaimer: The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of IARPA or the U.S. Government. This research project
has benefited from the Microsoft Accelerate Foundation Models
Research (AFMR) grant program through which leading founda-
tion models hosted by Microsoft Azure along with access to Azure
credits were provided to conduct the research.

REFERENCES

[1] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot Learners. In Advances in
Neural Information Processing Systems, Vol. 33. 1877-1901.

[2] Yile Chen, Cheng Long, Gao Cong, and Chenliang Li. 2020. Context-aware
deep model for joint mobility and time prediction. In Proceedings of the 13th
International Conference on Web Search and Data Mining. 106-114.

[3] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility:

user movement in location-based social networks. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining. ACM,

1082-1090.

Chris Donahue, Mina Lee, and Percy Liang. 2020. Enabling Language Models to

Fill in the Blanks. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics. 2492-2501.

[5] LiDong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu, Yu Wang, Jianfeng
Gao, Ming Zhou, and Hsiao-Wuen Hon. 2019. Unified language model pre-
training for natural language understanding and generation. Advances in neural
information processing systems 32 (2019).

[6] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and
Jie Tang. 2022. GLM: General Language Model Pretraining with Autoregressive
Blank Infilling. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). 320-335.

[7] Nathan Eagle and Alex Pentland. 2006. Reality mining: sensing complex social
systems. Personal and ubiquitous computing 10 (2006), 255-268.

[8] Jun Feng, Xiang Li, Ji Zhang, Changging Zhang, Jun Han, and Ke Li. 2018. Deep-
Move: Predicting Human Mobility with Attentional Recurrent Networks. In
Proceedings of the 2018 World Wide Web Conference. ACM, 1459-1468.

[9] Foursquare. 2018. Foursquare Check-in Dataset. https://sites.google.com/site/
yangdingqi/home/foursquare-dataset Accessed: 2024-06-04.

[10] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. 2008. Under-

standing individual human mobility patterns. nature 453, 7196 (2008), 779-782.

=

SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA

[11

Hanshin Expressway Company Limited. 2024. Zen Traffic Data. https://zen-

traffic-data.net/english/ Accessed: 2024-06-04.

[12] Wenchong He, Zhe Jiang, Tingsong Xiao, Zelin Xu, Shigang Chen, Ronald Fick,
Miles Medina, and Christine Angelini. 2024. A hierarchical spatial transformer
for massive point samples in continuous space. Advances in Neural Information
Processing Systems 36 (2024).

[13] AriHoltzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The curious

case of neural text degeneration. arXiv preprint arXiv:1904.09751 (2019).

Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet

Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus

Brubaker. 2019. Time2vec: Learning a vector representation of time. arXiv

preprint arXiv:1907.05321 (2019).

[15] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL-HLT. 4171-4186.

[16] Niko Kiukkonen, Jan Blom, Olivier Dousse, Daniel Gatica-Perez, and Juha Laurila.
2010. Towards rich mobile phone datasets: Lausanne data collection campaign.
Proc. ICPS, Berlin 68, 7 (2010).

[17] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman

Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:

Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,

Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of

the Association for Computational Linguistics. Association for Computational

Linguistics.

Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, and Wei-Ying Ma.

2008. Mining user similarity based on location history. In Proceedings of the 16th

ACM SIGSPATIAL international conference on Advances in geographic information

systems. 1-10.

Haowen Lin, Yao-Yi Chiang, Li Xiong, and Cyrus Shahabi. 2024. Unified Modeling

and Clustering of Mobility Trajectories with Spatiotemporal Point Processes.

In Proceedings of the 2024 SIAM International Conference on Data Mining (SDM).

SIAM, 625-633.

Haowen Lin, John Krumm, Cyrus Shahabi, and Li Xiong. 2024. Controllable Visit

Trajectory Generation with Spatiotemporal Constraints. In 2024 IEEE Interna-

tional Conference on Data Mining (ICDM). IEEE.

[21] Xin Liu, Xiangnan He, Bingzhe Tian, Jianhui Wang, and Tat-Seng Chua. 2019.
STAN: Spatio-Temporal Attention Network for Next Location Recommendation.
In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management. ACM, 2193-2196.

[22] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692

(2019).

Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. 2020.

Multi-Scale Representation Learning for Spatial Feature Distributions using Grid

Cells. In 8th International Conference on Learning Representations, ICLR 2020.

[24] Paul Newson and John Krumm. 2009. Hidden Markov map matching through
noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems. 336—343.

[25] Peng Si Ow and Thomas E Morton. 1988. Filtered beam search in scheduling.

The International Journal Of Production Research 26, 1 (1988), 35-62.

Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Grossglauser. 2022.

CRAWDAD epfl/mobility. https://doi.org/10.15783/C7]J010

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.

Improving language understanding by generative pre-training. (2018).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits

of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine

Learning Research 21, 140 (2020), 1-67.

[29] Tianxiao Shen, Victor Quach, Regina Barzilay, and Tommi Jaakkola. 2020. Blank

Language Models. In Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP). 5186-5198.

Inc. Uber Technologies. 2023. H3: A Hexagonal Hierarchical Spatial Index. https:

//h3geo.org/ Accessed: 2024-06-04.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[32] Xinglei Wang, Meng Fang, Zichao Zeng, and Tao Cheng. 2023. Where would i
go next? large language models as human mobility predictors. arXiv preprint
arXiv:2308.15197 (2023).

[33] Yu Wang, Jun Feng, Zhicheng Liu, Xiang Wang, Tat-Seng Chua, and Xiangnan
He. 2021. STGN: Spatio-Temporal Gated Network for Human Mobility Prediction.
IEEE Transactions on Knowledge and Data Engineering (2021).

[34] Jiayi Xie and Zhenzhong Chen. 2023. Hierarchical transformer with spatio-

temporal context aggregation for next point-of-interest recommendation. ACM

Transactions on Information Systems 42, 2 (2023), 1-30.

Hao Xue, Flora Salim, Yongli Ren, and Nuria Oliver. 2021. MobTCast: Leveraging

auxiliary trajectory forecasting for human mobility prediction. Advances in

[14

(18

[19

[20

[23

[26

[28

[30

[35

Hsu et al.

Neural Information Processing Systems 34 (2021), 30380-30391.

Song Yang, Jiamou Liu, and Kaiqi Zhao. 2022. GETNext: trajectory flow map

enhanced transformer for next POI recommendation. In Proceedings of the 45th

International ACM SIGIR Conference on research and development in information

retrieval. 1144-1153.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language

understanding. Advances in neural information processing systems 32 (2019).

[38] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. T-drive: Enhancing

driving directions with taxi drivers’ intelligence. IEEE Transactions on Knowledge

and Data Engineering 25, 1 (2011), 220-232.

Kangzhi Zhao, Yong Zhang, Hongzhi Yin, Jin Wang, Kai Zheng, Xiaofang Zhou,

and Chunxiao Xing. 2020. Discovering subsequence patterns for next POI rec-

ommendation.. In IJCAL Vol. 2020. 3216-3222.

Pengpeng Zhao, Anjing Luo, Yanchi Liu, Jiajie Xu, Zhixu Li, Fuzhen Zhuang,

Victor S Sheng, and Xiaofang Zhou. 2020. Where to go next: A spatio-temporal

gated network for next poi recommendation. IEEE Transactions on Knowledge

and Data Engineering 34, 5 (2020), 2512-2524.

Yu Zheng, Xing Xie, Wei-Ying Ma, et al. 2010. GeoLife: A collaborative social

networking service among user, location and trajectory. IEEE Data Eng. Bull. 33,

2 (2010), 32-39.

[42] Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. 2022. Neu-
ral point process for learning spatiotemporal event dynamics. In Learning for
Dynamics and Control Conference. PMLR, 777-789.

[36

(37

[39

[40

[41

A EXPERIMENTAL SETTINGS

For all experiments with TrajGPT, the following settings remain
consistent for both GeoLife and MobilitySim: We implement Tra-
jGPT in PyTorch and train it with an AMD EPYC 7V13 64-core
CPU and an NVIDIA A100 80GB GPU. The number of scales for
Space2Vec is 64. The largest scale of Space2Vec is set to the diameter
of the region of interest, and the smallest scale is set to 1 meter.
The dropout in the transformer is set to 0.1. The epsilon of layer
normalization for the transformer is set to le-5. The learning rate
is set to le-4. The patience for early stopping is set to 10 epochs.
The random seed is set to 0.

We determine the rest of the hyperparameters of TrajGPT through
grid search, using the validation loss as the selection criterion. For
experiments on GeoLife, we set the number of layers for all trans-
former encoders to 2, the number of attention heads for all multi-
head attention modules to 8, and the feedforward dimension to
32. GMM contains 3 components. Region and special token em-
beddings are each 32 dimensions. Each training batch contains 64
instances. For experiments on MobilitySim, we utilize 4-layer trans-
former encoders with a feedforward dimension of 256. The number
of heads is 2 for all multi-head attention modules. GMM contains 5
components. Embedding size is 64. The batch size is 128.

For both GETNext and STAR-HiT, we employ the implementa-
tions from their respective repositories, which are linked to in their
papers, and set all hyperparameters according to the papers.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Terminology
	3.2 Controlled Synthetic Trajectory Generation
	3.3 Next Visit Prediction

	4 Methodology
	4.1 Visit Infilling
	4.2 Spatiotemporal Joint Modeling

	5 Evaluation
	5.1 Experimental Setup
	5.2 Controlled Synthetic Trajectory Generation
	5.3 Next Visit Prediction
	5.4 Ablation Study

	6 Conclusion
	Acknowledgments
	References
	A Experimental Settings

