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ABSTRACT

Human mobility modeling from GPS-trajectories and synthetic

trajectory generation are crucial for various applications, such as

urban planning, disaster management and epidemiology. Both of

these tasks often require �lling gaps in a partially speci�ed sequence

of visits, – a new problem that we call “controlled” synthetic tra-

jectory generation. Existing methods for next-location prediction

or synthetic trajectory generation cannot solve this problem as

they lack the mechanisms needed to constrain the generated se-

quences of visits. Moreover, existing approaches (1) frequently treat

space and time as independent factors, an assumption that fails to

hold true in real-world scenarios, and (2) su�er from challenges

in accuracy of temporal prediction as they fail to deal with mixed

distributions and the inter-relationships of di�erent modes with

latent variables (e.g., day-of-the-week). These limitations become

even more pronounced when the task involves �lling gaps within

sequences instead of solely predicting the next visit.

We introduce TrajGPT, a transformer-based, multi-task, joint

spatiotemporal generative model to address these issues. Taking

inspiration from large language models, TrajGPT poses the problem

of controlled trajectory generation as that of text in�lling in natural

language. TrajGPT integrates the spatial and temporal models in a

transformer architecture through a Bayesian probability model that

ensures that the gaps in a visit sequence are �lled in a spatiotem-

porally consistent manner. Our experiments on public and private

datasets demonstrate that TrajGPT not only excels in controlled

synthetic visit generation but also outperforms competing models

in next-location prediction tasks–Relatively, TrajGPT achieves a

26-fold improvement in temporal accuracy while retaining more

than 98% of spatial accuracy on average.

This work is licensed under a Creative Commons Attribution International 4.0 
License.
SIGSPATIAL ’24, October 29-November 1, 2024, Atlanta, GA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1107-7/24/10
https://doi.org/10.1145/3678717.3691303

CCS CONCEPTS

• Information systems → Location based services; • Comput-

ing methodologies→ Mixture models; Bayesian network models;

Neural networks.

KEYWORDS

Spatiotemporal modeling, human mobility modeling, Synthetic

Trajectory generation, Transformers

ACM Reference Format:

Shang-Ling Hsu, Emmanuel Tung, John Krumm, Cyrus Shahabi, and Khur-

ram Sha�que. 2024. TrajGPT: Controlled Synthetic Trajectory Generation

Using a Multitask Transformer-Based Spatiotemporal Model. In The 32nd

ACM International Conference on Advances in Geographic Information Sys-

tems (SIGSPATIAL ’24), October 29-November 1, 2024, Atlanta, GA, USA.ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3678717.3691303

1 INTRODUCTION

Modeling human mobility is important for understanding tra�c,

urban dynamics, commerce, health, and equity. Ideally, researchers

and practitioners would have access to relevant, detailed visit se-

quences of large numbers of people. In reality, however, it is di�cult

to get a large volume of high-quality visit sequences, due to con-

cerns about privacy, con�dentiality, low-resolution measurements,

missing observations, the cost of commercially available data, or

minimal motivation for people to measure and share their location

data.

To solve this problem, researchers and practitioners can attempt

to �x low-quality visit sequences from real people, or they can

generate completely synthetic visit sequences. Both approaches

lead to the problem of �lling gaps in the sequence. In the case of a

real visit sequence, with missing parts due to privacy concerns, poor

measurements, or dropouts, we have a partially speci�ed sequence.

The gaps can be �lled with purely the most likely computed visits,

or they can be �lled with visits that meet some prior background

knowledge of where the person went, such as a time-space cube.

For instance, the gap may come with only an approximate location,

such as somewhere in the vicinity of certain cell tower, which

constrains the �lled-in visits.

Likewise, for synthetic sequences, we may want to intentionally

drop certain visits and replace them with other, loosely speci�ed
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visits to simulate certain behavior. This is a way to simulate tem-

porarily popular hot spots (e.g. a concert) or travel to new points

of interest or newly developed neighborhoods.

For both cases, �lling visits in real data or replacing visits in

synthetic data, the problem becomes one of replacing gaps with

likely visits to complete the sequence, with possible constraints on

the �lled-in visits. We de�ne this problem of �lling gaps as a new

challenge that we call “controlled” synthetic trajectory generation.

Gaps in the data present unique challenges, and to the best of

our knowledge there are currently no methods designed for this

problem. Traditional models for next-location prediction or syn-

thetic generation are not equipped to e�ectively handle realistically

�lling gaps in a partially speci�ed sequence. This is challenging

for several reasons. First, sequence generation may be subject to

certain pre-speci�ed constraints, e.g., location and time of a hot

spot being modeled. Second, the number of visits to insert into a

gap is unspeci�ed. Finally, the �lled-in visits must be speci�ed with

not only a realistic visit location (based on an agent’s history), but

also an accompanying arrival time, visit duration, and travel time

that conform to the location choice. For example, if the location

choice is a dentist, we will likely not specify a 3 a.m. arrival time

and a four-hour visit after an eight-hour drive.

Existing models for next-location prediction or synthetic trajec-

tory generation lack the necessary mechanisms to constrain the

generated sequences of visits. Typically, these models predict only

the location of visits [34, 35]. While some recent methods have

attempted to model both location and time [2, 36], they have sig-

ni�cant limitations that a�ect their performance and the realism in

generated trajectories:

Assumption of independence between location and time: Existing

methods frequently treat location and time as independent factors,

relying heavily on an independence assumption that fails to hold

true in real-world scenarios. For example, suppose an agent leaves

their o�ce at lunchtime and is equally likely to visit either a cof-

fee shop or a tea shop. It takes eight minutes to travel from the

o�ce to the tea shop, while it takes only two minutes to reach the

co�ee shop. A model that treats location and time independently

might predict the mean travel time (�ve minutes) regardless of the

actual destination, thereby introducing unrealistic artifacts into the

generated trajectory. We visualize this example in Figure 1a.

Temporal accuracy challenges in single-value time predictions:

Existing methods usually predict a single value of time, such as

an expected value derived from regression [36] or the most prob-

able value determined by the argmax of probability [2]. This ap-

proach can compromise the temporal accuracy of generated visit

sequences. For instance, tra�c congestion around a school tends

to be signi�cantly heavier on game days compared to other days.

To accurately predict realistic arrival times while considering such

factors, a model should implicitly distinguish between game days

and non-game days instead of simply averaging the two possibili-

ties. We illustrate this in Figure 1b.

These limitations are even more pronounced when the task in-

volves �lling gaps within sequences rather than solely predicting

the next visit. Existing methods fail to o�er e�ective solutions for

either i) generating a realistic sequence of visits with joint spa-

tiotemporal modeling or ii) adequately controlling the output of a

regression model while adhering to strict constraints.

To address these issues, we propose TrajGPT, a transformer-

based, multi-task, joint spatiotemporal generative model. TrajGPT

leverages the transformer architecture to predict locations, while

the visit duration and travel time between visits are approximated

by taking into account the predicted location. Taking inspiration

from recent large language models [1, 15], TrajGPT poses the prob-

lem of controlled trajectory generation as that of text in�lling in

natural language. By allowing the pre-�xing of speci�c locations

and times within a sequence, TrajGPT can e�ectively �ll in the gaps

in a manner that maintains spatiotemporal consistency.

TrajGPT also learns the parameters of a Gaussian mixture to

model the distributions of visit duration and travel time between

visit locations. The integration of spatial and temporal models is

facilitated through a Bayesian probability model, incorporated as a

nonparametric joint likelihood loss function. This innovative ap-

proach ensures that TrajGPT can �ll gaps and generate sequences

that are both spatially and temporally consistent. It explicitly avoids

the problems illustrated in Figure 1 due to its joint probability rep-

resentation. This capability is crucial for applications requiring

precise control over synthetic trajectory generation, such as simu-

lating movement patterns in a partially known scenario.

Our extensive experiments on both public and private datasets

highlight the e�ectiveness of TrajGPT in controlled synthetic visit

generation. The results demonstrate that TrajGPT not only excels

in �lling gaps within sequences but also outperforms competing

models in next-location prediction tasks. This superior performance

underscores the potential of TrajGPT to advance the �eld of human

mobility modeling by providing a robust and �exible solution for

generating controlled synthetic trajectories.1

In summary, the main contributions of this work are:

(1) We introduce the novel problem of “controlled” synthetic tra-

jectory generation, which addresses the need to �ll gaps in

sequences with speci�c constraints on locations and times.

(2) We propose TrajGPT, a transformer-based, multi-task, joint

spatiotemporal generative model that integrates a Gaussian

mixture model and a Bayesian probability model to ensure

spatiotemporal consistency and accuracy.

(3) We demonstrate the e�ectiveness of TrajGPT through extensive

experiments on both public and private datasets, highlighting

its superior performance in controlled synthetic visit generation

and next-location prediction tasks compared to existing models.

In the remainder of the paper, we describe related work in Sec-

tion 2. Section 3 gives a precise de�nition of the new problem we

solve, and Section 4 presents our solution in the form of likelihood

maximization with probability distributions computed from a trans-

former model. Section 5 presents our performance evaluation on

trajectory data, showing how our approach is superior to the state-

of-the-art alternatives, as well as an ablation study. We conclude in

Section 6.

1The code is available at https://github.com/ktxlh/TrajGPT.
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(a) Importance of probabilistic dependence between location and

time: An agent at their o�ce will travel to either the co�ee shop

or tea shop, each with equal probability. It takes eight minutes to

reach the tea shop (lighter PDF curve) and two minutes to reach the

co�ee shop (darker PDF curve). Without knowing the destination,

a model might predict an unrealistic �ve-minute travel time, the

average of the two.

(b) Drawbacks of predicting expected value or most probable point:

An agent traveling from home to school faces variable tra�c based

on whether a sports game is scheduled. Predicting the expected

time yields a low probability value, while predicting the most prob-

able timestamp misses all game day scenarios. Additionally, if the

predicted arrival time falls outside a gap in a sequence of visits,

there’s no clear method to adjust it to �t within the gap.

Figure 1: Examples motivating (a) spatiotemporal joint probability modeling and (b) Gaussian mixture models, with their

corresponding probability density functions (PDFs).

2 RELATED WORK

Human mobility data can be categorized into two types: point-

based and visit-based. While both are often grouped under the term

“trajectories,” they di�er signi�cantly. Point-based data consists

of a sequence of observations from sensors tracking an object’s

movement, such as GPS signals from a mobile phone [7, 10, 16, 41]

or a car’s navigation system [11, 26, 38]. This type of data is typically

dense, with observations collected at frequent intervals (e.g., every

30 seconds) and includes raw coordinates (latitude and longitude)

without any associated semantic information. On the other hand,

visit-based data captures the sequence of places an individual visits.

Each visit includes details such as location (both latitude/longitude

and semantic information like points of interest), arrival time, and

departure time.

For forecasting tasks such as next location prediction [12, 19, 42],

point-based data is rich and easier to predict due to its short and

regular inter-point intervals and additional contextual knowledge

like road networks [24]. However, this type of sequence is not the

focus of our paper.

Our focus is on visit-based data, which is typically sparser and

more challenging to predict. This data is often collected through

check-ins (e.g., from Foursquare [9] and Gowalla [3]) and usu-

ally includes 3-5 visits per person per day with irregular inter-

arrival times. Research on visit-based sequences often centers on

the downstream task of predicting the next location [2, 8, 21, 32–

36, 39, 40]. These locations are typically represented as Points-of-

Interest (POIs). Among the papers on POI recommendation, Deep-

JMT [2], MobTCast [35], GETNext [36], and STAR-HiT [34] are

the most relevant to our work as they employ transformers [31] as

the underlying encoder. While MobTCast and STAR-HiT predict

the subsequent POI without considering check-in time, MobTCast

integrates various contextual factors, including temporal, seman-

tic, social, and geographical contexts, alongside a consistency loss

mechanism. Conversely, STAR-HiT, featuring a hierarchical trans-

former architecture, employs stacked encoders and subsequence

fusion modules to capture multi-granularity spatiotemporal pat-

terns within user check-in sequences, facilitating interpretability.

DeepJMT and GETNext predict location and time independently,

although the time spent at a location (e.g., co�ee shop vs. gym) and

the time between locations are highly dependent on the speci�c

locations. For instance, GETNext employs a deterministic approach

to predict a single temporal value, while DeepJMT predicts a tem-

poral distribution during training and predicts the timestamp with

the highest probability for inference. While the assumption of inde-

pendence might not signi�cantly impact the task of next location

prediction, it poses a challenge when predicting the arrival time or

duration of the next visit, as demonstrated in our experiments (see

Section 5) using these approaches as baselines. This issue becomes

even more pronounced when trying to �ll in the visits between

known visits, which is the primary focus of our paper.

Although no existing work in human mobility modeling directly

addresses the task of �lling visit gaps, related concepts can be

found in languagemodeling. Following the introduction of the trans-

former model and large language models (LLMs) [1, 5, 17, 22, 28, 37],

subsequent research adapted its encoder architecture for masked

language modeling (MLM), exempli�ed by BERT [15], and its au-

toregressive decoder for causal modeling, as demonstrated by GPT

[27]. However, these popular approaches each have their drawbacks

when it comes to �lling in gaps. BERT can only �ll known-length

gaps, which is inadequate given the variability in spans of gaps.

Conversely, GPT relies solely on the preceding context, lacking

the ability to leverage information following a gap in a sequence.

Consequently, neither model e�ectively addresses the challenge

of in�lling variable-sized gaps constrained by contextual factors.

Some previous studies [4, 6, 29] have tackled this unknown-length

blank in�lling problem; thus, we follow the in�lling paradigm from

natural language processing (NLP) for our speci�c task of infer-

ring human visit sequences. Nevertheless, this in�lling approach

cannot be directly applied to our problem due to the absence of a

spatial and temporal component, which is crucial in our context

where location, visit duration, and inter-arrival timings are impor-

tant. Therefore, we leverage Space2Vec [23] and Time2Vec [14] for

spatiotemporal representation learning and design spatiotemporal

joint prediction for controlled synthetic trajectory generation.
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Ĩğ the region where visit ğ is located, such as a grid cell

Īėğ the arrival time of visit ğ

ĪĚğ the departure time of visit ğ

Įğ an attributes tuple (Ĩğ , Ī
ė
ğ , Ī

Ě
ğ ) of visit ğ

Ĕ a sequence of contiguous visits Ĕ = [Į1, Į2, ..., Įğ ]

Ĕ ′ a subsequence of Ĕ , input for tasks

Č a true possibility mass or density function

Č̂ an approximated possibility mass or density function

Ą a sequence of visit embeddings

�ĪT
ğ

the travel time from visit ğ − 1 to ğ

�ĪD
ğ

the duration of visit ğ

Table 1: Notable notations used in this article.

Geo-CETRA [20], a recent study, also addresses the problem

of constraint-based trajectory generation, but our work di�ers in

several key ways. In Geo-CETRA, the constraints are de�ned as

spatiotemporal ranges that the synthetic trajectory must satisfy,

whereas we de�ne constraints as a set of known visits that the tra-

jectory is required to pass through. As a result, Geo-CETRA focus

on identifying realistic visits within the spatiotemporal boundaries,

while our approach, inspired by language models, concentrates on

�lling in the visits between these �xed points. Due to the nature of

our discrete constraints, we discretize space into grid cells to con-

struct a “vocabulary” for our model, whereas Geo-CETRA operate

directly in a continuous spatiotemporal space.

3 PROBLEM STATEMENT

We give a precise de�nition of our problem here, followed by our

solution in Section 4.

3.1 Terminology

We formally de�ne a visit as a tuple Į = (Ĩ, Īė, ĪĚ ), where Ĩ repre-

sents the location of the visit, such as a region or a Point-of-Interest

(POI), Īė represents the arrival time of the visit, and ĪĚ represents

the departure time of the visit. A sequence of visits Ĕ contains all

visits made by a single agent within a time range. We use Č to de-

note the true possibility mass function (PMF) or possibility density

function (PDF), and Č̂ to denote the PMF or PDF approximated by

TrajGPT. We summarize the notations in Table 1.

3.2 Controlled Synthetic Trajectory Generation

The main problem we solve, “Controlled Synthetic Trajectory Gen-

eration,” is to, given an incomplete sequence of visitsĔ ′, predict the

missing visits within Ĕ ′. Let Ĕ be a (complete) sequence of visits.

An incomplete sequence of visits, Ĕ ′, refers to any sub-sequence of

Ĕ that is missing at least one visit. If each contiguous span of miss-

ing visits is replaced with a placeholder marker (i.e., a blank), then,

the task is to predict the missing visits Ĕ̂ for each blank, specifying

both the temporal ordering of such predicted missing visits and

the correspondence of the predicted missing visits to the blanks.

Given the predicted missing visits Ĕ̂ and incomplete visit sequence

Ĕ ′, it is trivial to construct the resultant (complete) sequence of

visits. If Į is the �rst missing visit within the incomplete visit se-

quence Ĕ ′, the probability distribution Č (Į |Ĕ ′) can be rewritten

as Č (Į |Ĕ ′) = Č (Ĩ, Īė, ĪĚ |Ĕ ′) = Č (Ĩ |Ĕ ′)Č (Īė |Ĕ ′, Ĩ )Č (ĪĚ |Ĕ ′, Ĩ , Īė) ac-

cording to the chain rule of probability.

3.3 Next Visit Prediction

As a byproduct of solving “Controlled Synthetic Trajectory Gen-

eration,” we can also solve “Next Visit Prediction,” which is a gen-

eralized version of the traditional “Next Location Prediction” task.

Given context Ĕ ′ which consists of a contiguous sequence of visits,

we model not only the probability distribution Č (Ĩ |Ĕ ′) of the next

visit’s location Ĩ , but also the probability distribution Č (Īė |Ĕ ′, Ĩ ) of

the arrival time Īė of the visit, as well as the probability distribution

Č (ĪĚ |Ĕ ′, Ĩ , Īė) of the departure time ĪĚ of the visit. Therefore, given

Ĕ = [Į1, ..., Įğ−1], which is a sequence of consecutive visits, we

predict the next visit Įğ , which includes its region Ĩğ , its arrival time

Īėğ , and its departure time ĪĚğ . We make the trivial observation that

the Next Visit Prediction task is a special case of the Controlled

Synthetic Trajectory Generation task where the only missing visits,

Ĕ \ Ĕ ′, are those occurring in the future, following the last visit in

Ĕ ′.

4 METHODOLOGY

In this section, we introduce our solution to the problem of “Con-

trolled Synthetic Trajectory Generation.” To utilize techniques from

autoregressive sequence modeling, we begin by rearranging each

visit sequence, enabling the use of an autoregressive model for the

in�lling task (Section 4.1). Subsequently, we design a spatiotem-

poral autoregressive model that learns its parameters from these

rearranged visit sequences (Section 4.2).

4.1 Visit In�lling

In order to: (1) train the model to be capable of in�lling any number

of items into each blank, with one or more blanks at any point in

the sequence, and (2) take advantage of the auto-regressive nature

of transformers and allow e�cient training of the model to do both

in�lling and next-item prediction, we restructure our sequence

data for the in�lling task (Section 3.2), following the approach

outlined by Donahue et al. [4]. Each visit sequence Ĕ is composed

of visits Ĕ = [Į1, ..., ĮĤ], and each visit Įğ = (Ĩğ , Ī
ė
ğ , Ī

Ě
ğ ) is de�ned

by its region, arrival time, and departure time, respectively. The

dataset as it is in its innate form, which consists of many visit

sequences, can be used to train a transformer model to predict the

next visit, given a partial visit sequence. We then reframe our data

for the in�lling task by applying the following process to each visit

sequence Ĕ = [Į1, ..., ĮĤ].

To rearrange a visit sequence for the in�lling task, we �rst add a

special SEP non-visit token to the end of the sequence to denote the

end of the original sequence. Then, we sample a Bernoulli distribu-

tion for each visit except for the �rst and last (Įğ ; ğ ∈ {2, 3, ..., Ĥ−1}).

Sampling a 1 means we drop the visit, and a 0 means we retain the

visit. For each contiguous span of visits we dropped, we insert a

single BLANK token where the span used to be located within the

sequence. Next, for each span we dropped, we append that span

and an ANS token to the end of the sequence; the ANS token marks

the end of each span. In this way, the reframed sequence contains
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the partially speci�ed sequence in the �rst half and the ground

truth �lled-in visits in the second half. Since this is an in�lling task,

we never drop the �rst or last visit. See Figure 2 for an example.

Figure 2: Reframing sequence data for in�lling.

The aim of the model is to predict the values after the SEP token

in order to complete a sequence. This coincides with the prediction

of the missing items. By rearranging each sequence and marking

special delimiters (BLANK, SEP, ANS), an autoregressive transformer

model can learn to attend to the positions of these special tokens.

In doing so, it can start in�lling any number of items for the �rst

blank after the SEP token, declaring the �rst blank to have been

completely in�lled by predicting an ANS token, and repeating this

process for subsequent blanks until the number of ANS tokens

matches the number of BLANK tokens. The task of interest is to

predict the visits in the reframed sequence after the SEP token.

Note that for our training, validation, and test split data, we assume

that we have access to complete visit sequences, to which we can

apply this reframing process. However, at inference time, we have

incomplete visit sequences to be in�lled, which constitute the visits

before the SEP token.

4.2 Spatiotemporal Joint Modeling

In this section, we discuss the architecture of TrajGPT and explain

the process by which it learns the model parameters. We use this

architecture and learning process for both Controlled Synthetic

Trajectory Generation and Next Visit Prediction. It is important to

note that we employ teacher forcing throughout the training phase.

For instance, when predicting an arrival time, we use the actual

region as input rather than a predicted one.

4.2.1 Formulation. We derive a probabilistic model for spatiotem-

poral autoregressive sequence modeling as follows. As operational-

ized in Section 3.2, to predict the remaining visits Ĕ \ Ĕ ′ given Ĕ ′,

we parameterize a function Č̂ to approximate the conditional joint

probability Č (Į | Ĕ ′), denoting the parameters as Ă , and learn it

with maximum likelihood estimation (MLE):

Ă∗ = argmax
Ă

∏

Į∈Ĕ\Ĕ ′

Č̂Ă (Į | Ĕ ′) (1)

For simplicity, throughout this article, Ĕ ′ evolves as we add new,

inferred visits, and we will omit Ă from our notation going forward.

To achieve the approximation, we �rst factorize the targeted

joint probability using Bayes’ Rule:

Č (Į | Ĕ ′) = Č (Ĩ, Īė, ĪĚ | Ĕ ′)

= Č (Ĩ | Ĕ ′) Č (Īė | Ĕ ′, Ĩ ) Č (ĪĚ | Ĕ ′, Ĩ , Īė)
(2)

To approximate these factors, for each visit, we make TrajGPT

approximate the distribution of each attribute of Į one by one as

follows. In other words, TrajGPT predicts region, arrival time, and

departure time of a visit sequentially, taking all previous predictions

into consideration when making a new prediction.

(1) Approximate region Č (Ĩ | Ĕ ′)

(2) Conditioned on region, approximate arrival time Č (Īė | Ĕ ′, Ĩ )

(3) Conditioned on region and arrival time, approximate departure

time Č (ĪĚ | Ĕ ′, Ĩ , Īė)

We will elaborate on the realization of these steps in the subse-

quent sections. To de�ne a loss function that encourages TrajGPT

to predict the truth, we follow the Maximum Likelihood Estimation

(MLE) paradigm and compute the negative log likelihood of predict-

ing the ground truth for each of these approximated distributions,

such as − log Č̂ (ĨĤ | Ĕ ′). Combining these likelihood variables with

Equation 1 and 2, we obtain this elegant, non-parametric, negative

log likelihood loss function for the joint probability2:

L = −
∑

Ĩ,Īė,ĪĚ

log Č̂ (Ĩ | Ĕ ′) + log Č̂ (Īė | Ĕ ′, Ĩ ) + log Č̂ (ĪĚ | Ĕ ′, Ĩ , Īė)

(3)

where Ĉ stands for loss and sums over (Ĩ, Īė, ĪĚ ) ∈ Ĕ \ Ĕ ′.

4.2.2 Model Architecture. We illustrate the architecture of TrajGPT

in Figure 3. The process begins with fusing the spatiotemporal infor-

mation in the subsequence of visits Ĕ ′ using a transformer encoder

(Section 4.2.3). Following this, the region head module predicts the

region Ĩ of the visit (Section 4.2.4) as a discrete probability mass

function over possible visit locations. Subsequently, the model em-

beds and conditions on the predicted region to forecast the travel

time of the visit using the travel time head. The travel time is then

arithmetically converted to arrival time (Section 4.2.5). The arrival

time is encoded and fed to the duration head to predict the duration

of the visit. Finally, the duration is converted to departure time

through arithmetic operations (Section 4.2.6).

4.2.3 Sequence Encoder. We design a sequence encoder to help

TrajGPT understand complex spatiotemporal sequences. For each

visit, we use Space2Vec [23] to encode the location Ģğ , known as

location encoding, and Time2Vec [14] to encode the arrival and

departure times, referred to as arrival and departure time encoding.

To guide the model in recognizing region-speci�c information, such

as land use, we embed the region where each visit occurs and make

this embedding learnable, referring to it as region embedding. If a

visit is a “special token” visit, as described in Section 4.1, we use the

embedding of the special token instead of a region embedding since

this pseudo visit does not contribute spatiotemporal information to

the sequence. We then concatenate the location encoding, arrival

time encoding, departure time encoding, and region or special token

embedding. This sequence of concatenated embeddings is fed into

2For special tokens (see Section 4.1), region loss is replaced with the special token loss,
and there is no temporal loss.
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Figure 3: Overview of TrajGPT. Modules that share parameters are colored in the same shade.

the positional and transformer encoders proposed by [31]. The

sequence of outputs from the transformer encoder will be referred

to as visit embeddings Ą , which entails an implicit summary of the

input sequence.

Ą := TransformerEncoder(PositionalEncoder(Ĕ ′)) (4)

4.2.4 Region Prediction. We formulate the region prediction task

as a classi�cation problem. To predict the region where a visit is

located, we feed the visit embeddings Ą to the region head, which

contains another transformer encoder, a linear layer, and a softmax

function for creating a proper probability mass function.

Č̂ (Ĩğ | Ĕ
′) := Softmax(Linear(TransformerEncoder(Ą ))) (5)

4.2.5 Arrival Time Prediction. To account for spatiotemporal de-

pendencies, as shown in Figure 1a, we condition our arrival time

predictions on the predicted region.

Arithmetically, to predict the arrival time Īėğ of visit ğ , we �rst

derive the travel time �ĪT
ğ

from the preceding visit ğ − 1 to ğ , the

current one we are predicting.

�ĪTğ = Īėğ − ĪĚğ−1 (6)

To predict �ĪT
ğ
, we approximate its potentially complex distri-

bution, as illustrated in Figure 1b, using a Gaussian Mixture Model

(GMM). We will show that this approximation e�ectively models

travel time based on visit-to-visit observations in the training data

in Section 5.

Č̂ (�ĪTğ | Ĕ ′, Ĩğ ) := ČT
ğ (�ĪTğ ) (7)

where ČT
ğ

: R → R+ is the probability density function (PDF) of

the GMM3. To predict the parameters of the GMM, denoted as

3For inference, we clip the distribution by setting the probability of negative values to
zero and re-normalizing it.

Param(ČT
ğ
), we emulate the decoder of transformer [31] to enable

cross attention between Ĩğ and Ą :4

Param(ČT
ğ ) := FF(MHA(ěğ , Ą, Ą )) (8)

where ěğ = Embedding(Ĩğ ) is embedded using the same region

embedding layer as Section 4.2.3; FF denotes feedforward neural

networks;5 MHA stands for multi-head attention, which projects ri
to queries, and Ą to keys and values to perform cross attention:

MHA(ěğ , Ą, Ą ) := Concat(head1, ..., headĉ )ēċ

where headĠ := Attention(ěğē
č
Ġ
, Ąēć

Ġ , Ąē
Ē
Ġ )

(9)

where Concat denotes concatenation of vectors;ē
č
Ġ
;ēć

Ġ ,ē
Ē
Ġ

are

parameter matrices.

4.2.6 Departure Time Prediction. Similar to how we predict arrival

time in Section 4.2.5, we �rst derive duration �ĪD
ğ

�ĪDğ = ĪĚğ − Īėğ (10)

Then, we use cross attention and a GMM to predict the duration

�ĪD
ğ

of the visit

Č̂ (�ĪDğ | Ĕ ′, Ĩğ , Ī
ė
ğ ) := ČD

ğ (�ĪDğ ) (11)

where ČD
ğ

: R→ R+ is the PDF of the GMM. Di�erent from arrival

time prediction, instead of using only the embedding of Ĩğ as the

query for MHA, we �rst concatenate ěğ = Embedding(Ĩğ ) with the

encoding of Īėğ as input ęğ

ęğ := Concat(ěğ ,Time2Vec(Īėğ )) (12)

4For brevity, we omit the residual connections and normalization layers in Equation 8
and 13. For details, please refer to Section 3 of the transformer paper [31].
5To ensure the predicted weights and scales of the GMM are always positive, we apply
a softplus function and add a small positive value to the output of the feedforward
network. Equations are omitted for brevity.
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where the encoding of Īėğ is generated by the Time2Vec encoder in

Section 4.2.3. Then, we compute the cross attention between ęğ and

Ą to approximate the parameters of the GMM.

Param(ČD
ğ ) := FF(MHA(ęğ , Ą, Ą )) (13)

MHA(ęğ , Ą, Ą ) := Concat(head1, ..., headĉ )ēċ

where headĠ := Attention(ęğē
č
Ġ
, Ąēć

Ġ , Ąē
Ē
Ġ )

(14)

In summary, in this section, we described how we train TrajGPT

to approximate each probability function of the joint probability in

Equation (2): Č (Ĩ | Ĕ ′) Č (Īė | Ĕ ′, Ĩ ) Č (ĪĚ | Ĕ ′, Ĩ , Īė).

4.2.7 Inference. To conduct inference with a model trained using

the above methodology, one can replace teacher forcing with au-

toregression. In other words, to predict one visit, one can follow

these steps:

(1) Conditioned on Ĕ ′, predict the region of the visit, denoted Ĩ̂ .

(2) Conditioned on Ĕ ′, Ĩ̂ , predict the arrival time, denoted Ī̂ė .

(3) Conditioned on Ĕ ′, Ĩ̂ , Ī̂ė , predict the departure time.

Since the e�ectiveness of such an autoregressive procedure depends

on the choice of a decoding algorithm, such as beam search [25]

or nucleus sampling [13], which is not the focus of this work, we

resort to evaluating TrajGPT with teacher forcing in Section 5.

5 EVALUATION

5.1 Experimental Setup

5.1.1 Data. We employed two trajectory datasets, GeoLife and Mo-

bilitySim, for our experiments. GeoLife [41] is a public real-world

trajectory dataset based in Beijing, featuring data from 102 agents

collected between 2008 and 2009. To demonstrate the scalability

of our approach, we also utilized a private, simulated trajectory

dataset, MobilitySim. The dataset contains a realistic simulation

of 2,000 agents performing daily activities in San Francisco, over

a period of 30 days. The simulation contains second-by-second

location of each agent, as they perform recurring daily activities,

such as going to school or work, as well as occasional recreation

and maintenance activities, such as visits to restaurants, gym, and

doctors o�ce. The simulation also incorporates daily and weekly

patterns, such as work schedules and days o�. We summarize the

dataset statistics in Table 2.

5.1.2 Processing. To convert point-based trajectories into visit-

based sequences, we �rst identify visits [18]. A visit is operationally

de�ned as a (location, arrival time, departure time) tuple, describing

where and when an agent remains stationary for a contiguous

period of time. For GeoLife, we identify visits spatially within a

200-meter radius and temporally for a minimum duration of 10

minutes. For MobilitySim, we identify visits for each agent based

on a minimum period of 6 minutes during which the agent remains

perfectly stationary. After identifying visits, we form “regions” by

discretizing the locations using Uber’s H3 index [30]. For GeoLife,

we set the Uber H3 Resolution to 7, and for MobilitySim, we set it to

10. We convert the latitude and longitude of visits to the Universal

Transverse Mercator (UTM) coordinate system to ensure the two

dimensions of the geographical coordinates are on the same scale

(in meters). For timestamps, including arrival and departure times,

we subtract the oldest arrival time in each dataset from all other

timestamps, converting these time di�erences into seconds. To

prevent exploding gradients during training, we normalize the

duration and travel time: the duration is scaled to days, and the

travel time is scaled to hours.

For Controlled Synthetic Trajectory Generation (Sections 5.2 and

5.4), we treat each agent’s visit sequence as an individual instance

and divide the set of agents into training, validation, and test sets

in an 8:1:1 ratio. Following a strategy similar to dynamic masking

in RoBERTa [22], we treat “masking each visit” as an independent

Bernoulli trial with a 20% probability. However, after dynamic mask-

ing, we replace each contiguous subsequence of masked visits with

a BLANK. The model is then tasked with predicting an unknown

number of visits for each blank.

For Next Visit Prediction (Section 5.3), we followed previous

work [34, 36] by using a rolling window to extract instances, sorting

them chronologically, and splitting them into training, validation,

and test sets in an 8:1:1 ratio. We set the size of the rolling window

to 128 visits, following [34].

5.1.3 Metrics. We evaluate the models with teacher forcing for

these metrics: Acc@k presents the top-k accuracy for location

prediction. Note that we report the evaluation on in�lling location

predictions, not on the predicting the special ANS token which

indicates the model is �nished predicting for the corresponding

blank. P±Ī shows the proportion (for scalar6) or probability (for

distribution) of predictions that fall into the ĝ ± Ī minutes interval,

where ĝ is the ground truth.

5.1.4 Baselines. Since controlled synthetic trajectory generation

is a new task we propose, we resort to compare with studies in next

POI recommendation. We selected the following state-of-the-art

baselines:

• STAR-HiT [34]: Hierarchical transformer for next POI rec-

ommendation with subsequence aggregation technique.

• GETNext [36]: Transformer for next POI recommendation

with an auxiliary next check-in time prediction task, assum-

ing next POI and next check-in time are independent.

Note that GETNext uses POI category information. As our datasets

are generated from raw trajectories, not sequences of POIs, they

do not contain such information. Hence, throughout this section,

we remove its POI category components.

5.2 Controlled Synthetic Trajectory Generation

Since controlled synthetic trajectory generation is a new task we

proposed, we aimed to evaluate the e�ectiveness of TrajGPT com-

pared to existing models. For this purpose, we selected GETNext

[36], the state-of-the-art model for human mobility that concur-

rently models both space and time. We adapted GETNext for the

visit in�lling task, naming it GETNext*, by incorporating special-

token visits into the input sequences, as detailed in Section 3, and

adding an additional departure time head with the same architec-

ture as its original arrival time head.

As shown in Table 3, TrajGPT maintains similar accuracy in

region prediction while achieving signi�cantly higher accuracy in

6For fair comparison with clipped distribution (see Footnote 3), we replace negative
predictions with zeros.
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Dataset #agent #region #visit #trajectory* Avg. #visit/agent Avg. #visit/region

GeoLife 102 1,369 20,278 11,724 198.80 14.81

MobilitySim 2,000 3,481 191,963 6,178 95.98 55.15

Table 2: Data Statistics. #trajectory denotes the number of trajectories for next visit prediction (see Section 5.1.2).

arrival and departure time prediction. This outcome is expected

because, although GETNext models both the next point of interest

(POI) and the next check-in time, its primary focus is on next POI

prediction. In fact, GETNext does not report metrics for temporal

prediction, which explains the inferior accuracy in its temporal

predictions compared to TrajGPT.

5.3 Next Visit Prediction

To ensure a fair comparison with existing approaches, we also

adapted TrajGPT to predict the next visit rather than �lling in

gaps. This modi�cation aligns the task more closely with next

POI recommendation, which the baseline models are speci�cally

designed for. The results of this comparison are presented in Table 4.

Certain cells within the table intentionally remain unpopulated due

to the inherent characteristics of STAR-HiT and GETNext: STAR-

HiT is not designed to predict timestamps; GETNext predicts only

one timestamp for each visit, and we opt to forecast the arrival

time.

In the domain of next visit prediction, TrajGPT exhibits notable

superiority over GETNext in temporal forecasting, with minimal

adverse e�ects on its region prediction performance. Notably, Tra-

jGPT achieves this without relying on the supplementary trajectory

�ow map and transition attention map proposed by GETNext. Fur-

thermore, both GETNext and TrajGPT signi�cantly outperform

STAR-HiT, this suggests that learning a multi-task, spatiotemporal

model, might help predict locations better.

The use of teacher forcing ensures that TrajGPT has access to

the actual region when predicting arrival times, whereas GETNext,

by design, lacks this advantage as it predicts both region and arrival

time simultaneously and independently. To peek into the potential

of TrajGPT during inference without teacher forcing, imagine the

worst case: If the predicted, most-probable region were incorrect,

the arrival time accuracywould be zero. In this case, we canmultiply

the arrival time accuracy of TrajGPT with its Acc@1 of region

prediction. This minimum threshold of its arrival time accuracy

will still surpass that of GETNext by a signi�cant margin.

5.4 Ablation Study

To demonstrate the e�ectiveness of the key components of TrajGPT,

we conducted an ablation study for the in�lling task, with results

shown in Table 5.

• The TrajGPT w Independence variant predicts the region, ar-

rival time, and departure time independently, re�ecting the spatio-

temporal-independence assumption made by DeepJMT [2] and

GETNext [36]. This assumption is expressed as:

Č (Ĩğ , Ī
ė
ğ , Ī

Ě
ğ | Ĕ ′) = Č (Ĩğ | Ĕ

′)Č (Īėğ | Ĕ ′)Č (ĪĚğ | Ĕ ′) (15)

• The TrajGPT w Regression variant replaces the GMM used

for predicting arrival and departure times (Sections 4.2.5 and

4.2.6) with a regression head, mimicking the approach used by

GETNext [36].

The results demonstrate that TrajGPT signi�cantly outperforms

both variants in predicting arrival and departure times, while also

maintaining exceptional accuracy in regional predictions. This un-

derscores the e�ectiveness of the proposed spatiotemporal model-

ing approach.

Replacing joint modeling with independent modeling greatly

reduces the accuracy of departure time predictions. This suggests

that the duration of a visit, which in�uences the departure time,

varies signi�cantly depending on the visit’s location (i.e. the region).

ReplacingGMMwith regression signi�cantlyweakens themodel’s

ability to predict time, highlighting the importance of learning a

time distribution rather than relying on a single point estimate.

The accuracy drop is particularly pronounced for departure time

predictions, suggesting that predicting a point is even less suitable

for duration than for travel time.

The performance drop appears more pronounced for temporal

predictions than for region predictions. This may be because each

variant directly impacts temporal predictions by altering either the

input (TrajGPT w Independence) or the output (TrajGPT w Re-

gression), whereas region predictions are only indirectly a�ected

through the combined in�uence of the loss function and optimiza-

tion process.

In summary, the ablation study demonstrates that each of the

two key components of TrajGPT, including joint modeling and

GMM-based temporal distribution learning, plays a crucial role in

achieving high prediction accuracy. Removing or replacing these

components leads to a substantial decrease in performance, further

con�rming their necessity in capturing the complex spatiotemporal

patterns of human mobility trajectory data.

6 CONCLUSION

In this paper we introduced the novel problem of “controlled” syn-

thetic trajectory generation, addressing the need to �ll gaps in visit

sequences with speci�c constraints on locations and times. Filling

gaps is useful for imputing missing data and for generating syn-

thetic visit sequences that have some preordained visits. The task

is challenging because the �lled-in visits, along with travel times,

must �ll the gap exactly, and the visit locations and durations must

be realistic.

As a solution we presented TrajGPT, a transformer-based, multi-

task, joint spatiotemporal generative model. TrajGPT leverages

the transformer architecture to predict locations while separately

approximating the visit duration and travel time between visits

using a Gaussian mixture model. This innovative approach ensures

that TrajGPT can generate sequences that are both spatially and

temporally realistic by adhering to the statistical dependencies

between visit locations, visit durations, and travel times.
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Dataset Method
Region Arrival Time Departure Time

Acc@1 Acc@5 Acc@10 Acc@20 P±5 P±10 P±20 P±5 P±10 P±20

GeoLife
GETNext* 7.64 36.87 46.83 51.87 0.16 0.38 0.73 1.41 2.87 7.91

TrajGPT 19.87 40.57 44.78 52.21 65.72 75.53 85.31 36.08 50.81 64.23

Table 3: Comparison of TrajGPT for the in�lling taskwithGETNext*, whichwe adapted fromGETNext, showing the e�ectiveness

of TrajGPT. The best results are highlighted in bold.

Dataset Method
Region Arrival Time Departure Time

Acc@1 Acc@5 Acc@10 Acc@20 P±5 P±10 P±20 P±5 P±10 P±20

GeoLife

STAR-HiT 17.92 40.78 48.98 56.40 - - - - - -

GETNext 38.74 66.38 72.78 77.13 2.39 4.27 8.62 - - -

TrajGPT 35.06 62.08 70.77 77.63 64.28 71.70 80.02 35.01 48.40 60.82

MobilitySim

STAR-HiT 42.79 62.87 70.25 75.74 - - - - - -

GETNext 51.46 80.91 91.59 94.50 1.29 2.91 5.50 - - -

TrajGPT 54.53 80.26 92.88 94.66 89.33 94.01 98.07 52.57 62.05 71.20

Table 4: Comparison of TrajGPT with baseline models for the next visit prediction task. The best results are highlighted in bold.

Dataset Method
Region Arrival Time Departure Time

Acc@1 Acc@5 Acc@10 Acc@20 P±5 P±10 P±20 P±5 P±10 P±20

MobilitySim

TrajGPT w Independence 39.71 79.52 83.21 85.80 68.77 81.91 90.54 31.85 40.48 46.33

TrajGPT w Regression 43.61 80.87 86.31 90.40 31.49 56.91 78.16 1.53 3.21 6.42

TrajGPT 44.15 81.04 86.11 89.71 73.71 84.40 91.67 42.65 50.45 57.70

Table 5: Comparison of TrajGPT with its variants for the in�lling task, demonstrating the e�ectiveness of TrajGPT’s design.

The best results are highlighted in bold.

We validated our approach on a public and private dataset, com-

paring against state-of-the-art methods for predicting next loca-

tions. We observed that TrajGPT not only demonstrates pro�ciency

in gap �lling but also surpasses competing methods in predicting

the next visit. On average, TrajGPT achieves a remarkable 26-fold

enhancement in temporal prediction accuracy while preserving

over 98% of the spatial accuracy achieved by state-of-the-art ap-

proach.
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A EXPERIMENTAL SETTINGS

For all experiments with TrajGPT, the following settings remain

consistent for both GeoLife and MobilitySim: We implement Tra-

jGPT in PyTorch and train it with an AMD EPYC 7V13 64-core

CPU and an NVIDIA A100 80GB GPU. The number of scales for

Space2Vec is 64. The largest scale of Space2Vec is set to the diameter

of the region of interest, and the smallest scale is set to 1 meter.

The dropout in the transformer is set to 0.1. The epsilon of layer

normalization for the transformer is set to 1e-5. The learning rate

is set to 1e-4. The patience for early stopping is set to 10 epochs.

The random seed is set to 0.

We determine the rest of the hyperparameters of TrajGPT through

grid search, using the validation loss as the selection criterion. For

experiments on GeoLife, we set the number of layers for all trans-

former encoders to 2, the number of attention heads for all multi-

head attention modules to 8, and the feedforward dimension to

32. GMM contains 3 components. Region and special token em-

beddings are each 32 dimensions. Each training batch contains 64

instances. For experiments on MobilitySim, we utilize 4-layer trans-

former encoders with a feedforward dimension of 256. The number

of heads is 2 for all multi-head attention modules. GMM contains 5

components. Embedding size is 64. The batch size is 128.

For both GETNext and STAR-HiT, we employ the implementa-

tions from their respective repositories, which are linked to in their

papers, and set all hyperparameters according to the papers.
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