
Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for

GeoAI Applications

Maria Despoina Siampou * 1 Jialiang Li * 2 John Krumm 1 Cyrus Shahabi 1 Hua Lu 3

Abstract

Encoding geospatial objects is fundamental for

geospatial artificial intelligence (GeoAI) appli-

cations, which leverage machine learning (ML)

models to analyze spatial information. Common

approaches transform each object into known for-

mats, like image and text, for compatibility with

ML models. However, this process often discards

crucial spatial information, such as the object’s po-

sition relative to the entire space, reducing down-

stream task effectiveness. Alternative encoding

methods that preserve some spatial properties are

often devised for specific data objects (e.g., point

encoders), making them unsuitable for tasks that

involve different data types (i.e., points, poly-

lines, and polygons). To this end, we propose

POLY2VEC, a polymorphic Fourier-based encod-

ing approach that unifies the representation of

geospatial objects, while preserving the essen-

tial spatial properties. POLY2VEC incorporates a

learned fusion module that adaptively integrates

the magnitude and phase of the Fourier transform

for different tasks and geometries. We evaluate

POLY2VEC on five diverse tasks, organized into

two categories. The first empirically demonstrates

that POLY2VEC consistently outperforms object-

specific baselines in preserving three key spatial

relationships: topology, direction, and distance.

The second shows that integrating POLY2VEC

into a state-of-the-art GeoAI workflow improves

the performance in two popular tasks: population

prediction and land use inference.

*Equal contribution 1Department of Computer Science, Univer-
sity of Southern California, Los Angeles, USA 2Department of Peo-
ple and Technology, Roskilde University, Denmark 3Department
of Computer Science, Aalborg University (Copenhagen cam-
pus), Denmark. Correspondence to: Maria Despoina Siampou
<siampou@usc.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction

The increasing availability of geospatial data from sources

such as satellites, ground-based sensors, and crowdsourced

platforms like OpenStreetMap (OSM)1 (Lee & Kang, 2015;

Jokar Arsanjani et al., 2015; Basiri et al., 2019), com-

bined with the recent advancements in machine learning

(ML) (Vaswani, 2017; Bommasani et al., 2021), has fu-

eled significant progress in geospatial artificial intelligence

(GeoAI) (Smith, 1984; Couclelis, 1986; Janowicz et al.,

2020; Gao et al., 2023). GeoAI leverages ML models

to analyze geospatial objects, such as points of interest

(POIs), building footprints, and vehicle trajectories, thereby

extracting valuable insights that enable a variety of decision-

making applications, including transportation network op-

timization (Li et al., 2017; Mirowski et al., 2018), urban

planning (Zhang et al., 2021; Wu et al., 2022), energy man-

agement (Sun et al., 2020), and improved emergency re-

sponse strategies (Kyrkou et al., 2022), to name a few.

A fundamental step in GeoAI pipelines is the transforma-

tion of geospatial data into latent representations that can

be easily processed by ML models, a step formally known

as encoding. A common approach to encoding converts

coordinate-based geospatial data into formats compatible

with established feature extraction models. Although effec-

tive for specific tasks, this conversion often discards crucial

spatial information, significantly limiting the generalizabil-

ity of these models. For example, building footprints are

frequently rasterized into images and processed with vision-

based models for urban prediction tasks (Li et al., 2023;

Balsebre et al., 2024). While this approach captures object

shapes, it neglects important spatial relationships, such as

the relative positioning and alignment of objects within the

area. Similarly, POIs that are represented as text, by using

attributes like category as input to language-based models,

capture semantic relationships but omit precise spatial loca-

tions (Huang et al., 2022). As a result, these approaches are

application-specific and struggle to generalize across tasks

that require a deeper understanding of spatial relationships.

To address the aforementioned limitations, spatially explicit

encoding techniques have been proposed. These methods

1https://openstreetmap.org

1

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

(a) (b) (c)

Figure 1: Visualization of the Fourier transform magnitude

and phase of (a) road segment, (b) building, and (c) POI.

preserve crucial spatial properties, while remaining com-

patible with downstream ML models. For instance, THE-

ORY (Mai et al., 2020) encodes the absolute positions of

POIs using sinusoidal functions with varying frequencies.

Xu et al. (2018) directly encodes the coordinates of trajec-

tories using multi-layer perceptons and feeds it to a GRU,

capturing their sequential nature. For polygons, NUFT-

SPEC (Mai et al., 2023b) maps geometries into the spectral

domain, effectively preserving key polygon properties such

as topology awareness. However, the design of these meth-

ods inherently limits their applicability, as they only capture

the properties of the specific geospatial object they are de-

vised for. This restricts their generalizability in tasks involv-

ing mixed geospatial object types, such as land use classifi-

cation, where integrating points (e.g., POIs) and polygons

(e.g., buildings) requires simultaneously preserving their

spatial properties as well as relationships between them.

In this work, we introduce POLY2VEC, a polymorphic en-

coding framework that unifies the representation of 2D

geospatial objects, including points, polylines, and poly-

gons. At its core, POLY2VEC leverages the Fourier trans-

form to encode essential spatial properties, transforming the

input geometries2 into the frequency domain. Given that

this transformation results in complex-valued features, the

magnitude and phase components are extracted. As shown

in Figure 1, these components complement each other: the

magnitude reflects spatial extent, being uniform for points

with no shape and varying for polygons and polylines, while

the phase highlights directionality, such as the alignment of

a polyline. To combine these components into a single repre-

sentation, POLY2VEC incorporates a learned fusion module

that adaptively balances their contributions based on the

task and geometry type, producing a real-valued geometry

embedding that ensures compatibility with ML models.

We formally define four key properties, shape preservation,

direction preservation, distance preservation, and task flexi-

bility, as essential criteria for evaluating the effectiveness of

2We refer to geometries and geospatial objects interchangeably.

geometry encoding. These properties ensure the produced

embeddings accurately capture the essential geometry char-

acteristics while remaining versatile across different tasks.

To demonstrate that POLY2VEC preserves these proper-

ties, we conduct a two-part evaluation. First, we evaluate

POLY2VEC on spatial reasoning tasks, showing that it out-

performs the state-of-the-art specialized baselines by up

to 17% for topological classification, 26% for directional

classification, and 75% for distance estimation. Second,

we show that integrating POLY2VEC into a state-of-the-art

GeoAI workflow reduces prediction error by 14% and 5%

in population prediction and land use inference.

In summary, our contributions are:

• We introduce POLY2VEC, the first encoding framework

that unifies the representation of various 2D geometries.

• We propose a 2D continuous Fourier transform-based

encoding approach to capture crucial spatial properties, in-

cluding shape, distance, and direction.

• We design a learned fusion strategy to adaptively combine

Fourier magnitude and phase for diverse objects and tasks.

• Our experiments show that POLY2VEC preserves crucial

geometry encoding properties, demonstrating its versatility

in handling diverse geospatial objects, and task-flexibility

when integrated into state-of-the-art GeoAI pipelines.

2. Preliminaries

2.1. Problem Formulation

Definition 1 (Geospatial Object). A geospatial object g ∈
R

2 is represented by an array P ∈ R
N×2, where each row is

a point (x, y), and N is the total number of points. The type

of geometry (e.g., point, polyline, or polygon) is determined

by the organization and relationships among these points.

Polymorphic Encoding of Geospatial Objects. Given

a dataset of geospatial objects G = {g} ∈ R
N×2, the

goal is to define an encoding function eθ(g) : RN×2 →
R

d, parameterized by θ, that maps each geometry g to a d-

dimensional vector v, termed as geometry embedding. The

embedding dimension d remains constant across different

geometry types, making eθ polymorphic. The encoding is

intended to capture the following key properties.

Property 1 (Shape Preservation). For any geometry g ∈ G,

its embedding v, should capture its structural characteristics:

shape and boundary for polygons, length for polylines, and

the lack of spatial extent for points.

Property 2 (Direction Preservation). For any geometries

gi, gj ∈ G, eθ should ensure their embeddings vi, vj reflect

their relative orientation.

Property 3 (Distance Preservation). For any geometries

gi, gj ∈ G, the similarity of their embeddings vi,vj should

monotonically decrease as their spatial distance ∥gi − gj∥
increases, and vice versa.

2

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

��(ý, þ)
��(ý, þ)
���(ý, þ)

�
� �����(ý, þ)

{���(ý, þ)}
{�� ý, þ , �, �}

{���(ÿ, Ā)}
ℎ

(a) The workflow of POLY2VEC.

a b
c

− 12 12rect(x)

q
r s

a b
c s

q r
(i) Affine transform from the

arbitrary line segment � to the

canonical line segment ��.

��
�

(ii) Affine transform from the triangle△ with vertices ÿĀā to the canonical

triangle ⊿ with vertices ÿĀā.

(b) Affine transform arbitrary geometry to its corre-
sponding canonical geometry.

Figure 2: Overview of POLY2VEC.

Property 4 (Task Flexibility). The encoder eθ should facil-

itate multiple tasks without requiring modifications.

Properties 1-3 ensure that v captures all essential spatial

information, while Property 4 guarantees flexibility for use

across GeoAI models. Section 4 empirically demonstrates

that our proposed eθ satisfies these properties.

2.2. 2D Continuous Fourier Transform Properties

A key component of our encoding approach is the computa-

tion of the 2D continuous Fourier transform (CFT) 3. For a

given 2D function f(x, y), its Fourier transform is denoted

as F{f(x, y)} = F (u, v)4 and is formally defined as:

F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−j2π(ux+vy)dx dy (1)

where j =
√
−1 and u, v are the frequency samples.

We now summarize Fourier transform properties relevant to

our approach following (Gaskill, 1978).

Linearity. The Fourier transform of a sum of functions de-

noted as fi(x, y), is the sum of their corresponding Fourier

transforms Fi(u, v):

F

{

n
∑

i=1

aifi(x, y)

}

=
n
∑

i=1

aiFi(u, v), ai ∈ C (2)

Affine Transformation. For an affine-transformed function

f(Ax+ τττ), where x = [x, y]¦, its Fourier transform is:

F{f(Ax+τττ)} =
1

| det(A)|e
−j2πτττ¦

A
−¦

uF (A−¦u) (3)

where u = [u, v]¦, A ∈ R
2×2 is the affine matrix, and

τττ ∈ R
2 is the translation vector.

Hermitian Symmetry. For real-valued functions f(x, y),
F (u, v) satisfies F (u, v) = F ∗(−u,−v), where F ∗(u, v)
denotes the complex conjugate.

3We use Fourier Transform and CFT interchangeably.
4For compactness, we use F (u, v) to describe the CFT.

Magnitude and Phase. The Fourier Transform F (u, v)
is a complex-valued function composed of a real part,

Re(F (u, v)), and an imaginary part, Im(F (u, v)). The mag-

nitude z(u, v) and phase φ(u, v) are defined as:

z(u, v) =
√

Re(F (u, v))2 + Im(F (u, v))2 (4)

φ(u, v) = atan2(Im(F (u, v)),Re(F (u, v))) (5)

3. Methodology

Figure 2 illustrates our proposed POLY2VEC, which uni-

formly encodes arbitrary geospatial objects for GeoAI ap-

plications. We first describe how the Fourier transform is

derived for each geometry type, and then outline the learned

fusion module for deriving the final geometry embeddings.

3.1. 2D Continious Fourier Transform of Geometries

3.1.1. FOURIER TRANSFORM OF A POINT

A point p = (xp, yp) ∈ R
2 is modeled as a 2D Dirac

delta function, which represents the point as a distribution

concentrated entirely at (xp, yp), and can be expressed as:

fp(x, y) = δ(x− xp, y − yp) (6)

To that extent, the Fourier transform of fp(x, y) is given by:

Fp(u, v) = e−j2π(xpu+ypv) (7)

where (u, v) are the frequency components.

The Fourier transform magnitude for any point is constant,

zp(u, v) = 1, while the phase φp(u, v) encodes its location.

As shown in Figure 2, deriving the Fourier transform for

polylines and polygons involves additional steps. Polylines

are divided into line segments, and polygons are triangulated

into non-overlapping triangles. The Fourier transform is

computed for each component by affine transforming them

to their canonical geometry, and the linearity property of

Eq. (2) is used to compute the Fourier transform of the

3

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

original geometry5. Details for polylines and polygons are

specified below, with derivation details in Appendix A.2.

3.1.2. FOURIER TRANSFORM OF A POLYLINE

We begin by deriving the Fourier transform of a canoni-

cal line segment and then generalize to any arbitrary line

segments. Consider the canonical line segment lc, which

extends from a = (− 1
2 , 0) to b = (12 , 0) in R

2, as shown in

Figure 2b. Then, lc can be represented as:

flc(x, y) = rect(x)δ(y) (8)

where δ(y) represents a Dirac delta function ridge along the

x-axis, and rect(x) restricts the ridge to the interval |x| f 1
2 .

The Fourier transform of flc(x, y) is given by:

Flc(u, v) = sinc(u) (9)

Now consider an arbitrary line segment l with endpoints

q = (xq, yq) and r = (xr, yr). To compute the Fourier

transform of l, we map it to the canonical line segment

lc, using the affine transformation property. To compute

this, we first introduce an auxiliary point c = (12 , 1) to the

structure of lc so that it is not colinear with ab. This point

maps to another auxiliary point s introduced in the structure

of the arbitrary line segment l. The auxiliary point s is

defined as s = r + n, where n = (yq − yr, xr − xq)
¦,

representing a 90◦ clockwise rotation of the vector r − q.

Note that the line segments qr and rs have the same length.

Given the points q, r, s and a,b, c we then construct the

affine transformation matrix A = [a b c][q r s]−1. By

applying Eq. (3), the Fourier transform of an arbitrary line

segment l, with endpoints q, r, is expressed as:

Fl(u, v) =
1

| det(A)|e
−j2πτ¦

A
−¦

uFlc(A
−¦u)

= ∥q− r∥2e−j2π(q+r

2)usinc(u¦(r− q)) (10)

At (u, v) = (0, 0), the Fourier transform is Fl(0, 0) =
∥q− r∥2, the squared length of the line segment.

Finally, following Eq. (2), the Fourier transform of an arbi-

trary polyline pl is computed as:

Fpl(u, v) =

Tl
∑

i=1

Fli(u, v) (11)

where Fli(u, v) is the Fourier transform of the i-th line

segment and Tl is the total number of line segments. The

term ai = 1, since the line segments are non-overlapping.

5The same methodology can be adopted to compute the CFT
of multi-polygons.

3.1.3. FOURIER TRANSFORM OF A POLYGON

To compute the Fourier transform of a polygon we decom-

pose it into a set of non-overlapping triangles using standard

triangulation techniques6. We thus begin with the Fourier

transform of a canonical isosceles right triangle and then

generalize to its computation for arbitrary triangles.

Consider the canonical isosceles right triangle c with ver-

tices a=(0, 0), b=(1, 0), and c=(1, 1), represented as:

f
c
(x, y) =

{

1, if 0 f x f 1 and 0 f y f x,

0, otherwise.
(12)

The Fourier transform of f
c
(x, y) is then given by7:

F
c
(u, v) =

∫ 1

0

∫ x

0

e−j2π(ux+vy) dy dx

=
1

4π2uv(u+ v)

[

(

(u+ v) cos(2πu)

− u cos(2π(u+ v))− v
)

− j
(

(u+ v) sin(2πu)

− u sin(2π(u+ v))
)

]

(13)

Next, we compute the Fourier Transform of an arbitrary

triangle ∆, with vertices q = (xq, yq), r = (xr, yr), and

s = (xs, ys), by mapping it to the canonical triangle using

the affine transformation property (Figure 2b). The affine

transformation matrix is defined as A = [a b c][q r s]−1.

By substituting the vertices of ∆ into A and applying

Eq. (3), the Fourier Transform of the triangle F∆(u, v) can

be calculated. In this computation, the determinant of A,

| det(A)| = 1
2α , where α is the area of the triangle ∆.

Finally, the Fourier transform of an arbitrary polygon pg,

given the linearity property of Eq. (2), can be computed as:

Fpg(u, v) =

Tpg
∑

i=1

F∆i
(u, v) (14)

where F∆i
(u, v) is the Fourier transform of the i-th triangle,

and Tpg is the total number of extracted triangles. The term

ai = 1, since the triangles are non-overlapping.

Building on the Fourier transform computation described

earlier, we can now extract the frequency representation of

a given geometry g, expressed as a spatial function fg(x, y)
over R2 as, Fg = [F1,F2, . . . ,FW]¦ ∈ C

W , where W is

the number of frequency components, and Fi = F (ui, vi)
represents the value of the Fourier transform evaluated at

the specific frequency coordinates (ui, vi).

6We adopt Constraint Delauney triangulation in this paper.
7Special cases where u, v, and u+v approach zero are handled

separately, and presented in Appendix A.2.3.

4

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

To sample the frequency components, we employ a geomet-

ric series sampling strategy (Mai et al., 2020; 2023b), which

balances low and high-frequency components to capture

both global and local details. We also experimented with

learned frequencies in Appendix A.3.2 but found that the

two strategies produced nearly identical results.

3.2. Learned Fusion of Fourier Transform Features

Given that Fg consists of complex values, we decompose

it in two real-valued vectors of the magnitude z and the

phase φφφ, computed as in Eqs. (4) and (5), respectively. This

transformation ensures the representation is compatible with

downstream ML models, which typically operate on real-

valued inputs. Furthermore, the magnitude z captures the

intensity of contributions at different frequencies, reflect-

ing the geometry’s size and overall shape, while the phase

φφφ encodes positional and orientational information of the

geometry’s features (Zahn & Roskies, 1972).

While the final geometry embedding can be created by

simply concatenating z and φφφ, their relative importance

should vary with the geometry type and the downstream

task. For instance, the magnitude of points is always 1,

whereas it encodes the shape and size of polygons. There-

fore, when encoding points, the phase should contribute

more than the magnitude in the representation. To this

end, POLY2VEC adaptively learns the importance of mag-

nitude and phase through two separate transformations

z∗=hz(z) and φφφ∗=hφ(φφφ), where hz: RW → R
W and hφ:

R
W → R

W are separate MLPs for z and φ respectively.

Finally, the transformed vectors z∗ ∈ R
W and φφφ∗ ∈

R
W are concatenated and passed through a final MLP

h : RW → R
d to produce the final geometry embedding

v = h([z∗;φφφ∗]) ∈ R
d, which can be inputted to any ma-

chine learning model M , such that M(v) → y, where y

represents task-specific outputs. We will empirically verify

that v preserves the key properties in Section 4.

4. Experiments

In this section, we conduct experiments to evaluate the effec-

tiveness of POLY2VEC across four key research questions:

[RQ1] Does POLY2VEC effectively preserve the critical

geometric properties of shape, direction, and distance?

[RQ2] How does POLY2VEC perform in comparison to

baseline encoding methods tailored for specific object types?

[RQ3] Can integrating POLY2VEC into existing workflows

lead to improvements in their performance?

[RQ4] Does learned fusion boost POLY2VEC performance?

4.1. Spatial Reasoning Tasks

This section addresses RQ1 and RQ2, empirically eval-

uating POLY2VEC’s ability to preserve the properties of

Section 2.1, against specialized baselines. We categorize

these evaluations as spatial reasoning tasks, which are fun-

damental to broader applications like geospatial question

answering (GeoQA), relying on precise spatial understand-

ing (Punjani et al., 2018; Papamichalopoulos et al., 2024).

Datasets. We evaluate two OSM datasets from Singapore

and New York, containing POIs (points), main roads (poly-

lines), and buildings (polygons).

Baselines. We include three categories of baselines: point

encoders: (i) DIRECT, directly utilizing coordinates (Chu

et al., 2019), (ii) TILE, a discretization method (Berg

et al., 2014), (iii) WRAP, a coordinate wrapping mecha-

nism (Mac Aodha et al., 2019), (iv) GRID, inspired by posi-

tion encoding (Mai et al., 2020), and (v) THEORY, a multi-

scale encoder (Mai et al., 2020). All point encoders are

extended to other geometries handling them as sequences of

points, following Rao et al. (2020); Xu et al. (2018). poly-

line encoder: (i) T2VEC a classic trajectory encoder (Li

et al., 2018). polygon encoders: (i) RESNET1D (Mai et al.,

2023b) and (ii) NUFTSPEC (Mai et al., 2023b).

Input geometry coordinates are normalized to [−1, 1] ×
[−1, 1]. More experimental details are in Appendix A.4.

4.1.1. TOPOLOGICAL RELATIONSHIP CLASSIFICATION

This task classifies topological relationships defined by the

DE-9IM model (Clementini et al., 1993) for geospatial ob-

ject pairs. Supported relationships are in Table 3.

Settings. The geometry embeddings of each pair are con-

catenated, passed through a 2-layer MLP with NC output

units (number of relationships). We adopt cross-entropy

loss for optimization. Performance is measured by accu-

racy, precision, recall, and F1-score. Accuracy results are in

Table 1, with the rest in Appendix A.4.6.

Results. From Table 1, we observe that POLY2VEC con-

sistently outperforms all baselines across all experiments.

Unlike specialized encoders that excel only for specific

pairs, POLY2VEC’s performance is consistent across all

geometries, highlighting its versatility and generalization

capabilities. The second-best performing models vary by

geometry type, with T2VEC for polylines and NUFTSPEC

for polygons. This shows that simply extending point en-

coders to handle all geospatial objects is not adequate, as it

fails to preserve characteristics like the object’s shape and

position, leading to decreased performance. Finally, all mod-

els perform better when detecting relationship is a binary

classification (e.g., point-polyline in Table 3), compared

to multi-classification (e.g., polygon-polygon in Table 3).

This is expected, as the latter requires capturing fine-grained

spatial nuances, posing greater difficulty. In summary, these

results emphasize the importance of preserving shape (Prop-

erty1), and distance (Property 3) in geometry embeddings.

5

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 1: Model accuracy on topological relationship classification. Best and second best are highlighted.

Methods
Singapore New York

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

RESNET1D - - - - 0.4570.017 - - - - 0.4520.033

NUFTSPEC - - - - 0.6020.009 - - - - 0.5850.008

T2VEC - - 0.728 0.023 - - - - 0.8070.121 - -

DIRECT 0.8230.013 0.8430.005 0.7330.007 0.3680.010 0.3570.018 0.8460.011 0.9090.018 0.7450.008 0.4950.009 0.4460.023

TILE 0.7900.021 0.7000.010 0.5050.005 0.4590.013 0.4110.009 0.6590.013 0.7830.007 0.5020.009 0.4940.038 0.4050.005

WRAP 0.8860.003 0.8800.008 0.7160.011 0.4760.010 0.3490.004 0.8860.006 0.8800.017 0.7330.009 0.5500.011 0.3810.007

GRID 0.8460.004 0.8440.004 0.6970.031 0.4580.004 0.3350.012 0.8220.039 0.8910.004 0.7390.009 0.5160.008 0.3810.031

THEORY 0.8920.003 0.9000.005 0.7190.008 0.4500.010 0.4610.041 0.8970.008 0.9090.008 0.7340.008 0.5910.006 0.4550.041

POLY2VEC 0.9550.007 0.9490.002 0.8120.010 0.5090.008 0.7020.006 0.9530.003 0.9800.002 0.8300.004 0.6410.062 0.6840.008

Table 2: Model accuracy on directional relationship classification. Best and second best are highlighted.

Methods
Singapore New York

point-

point

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

point-

point

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

RESNET1D - - - - - 0.8190.010 - - - - - 0.7470.010

NUFTSPEC - - - - - 0.8070.008 - - - - - 0.6980.017

T2VEC - - - 0.2680.075 - - - - - 0.2490.032 - -

DIRECT 0.8800.006 0.8410.007 0.8440.006 0.8200.002 0.8300.005 0.7520.017 0.8770.004 0.7660.005 0.8360.008 0.6530.007 0.7840.004 0.6940.004

TILE 0.2530.001 0.2680.002 0.2730.008 0.3260.010 0.4540.001 0.3940.003 0.2450.009 0.2580.005 0.3160.005 0.2170.001 0.4660.001 0.3490.012

WRAP 0.8610.018 0.8040.009 0.8030.004 0.7810.002 0.8310.002 0.7780.001 0.8090.004 0.6690.001 0.7490.018 0.5960.019 0.7720.002 0.6020.006

GRID 0.8820.007 0.7280.007 0.7710.003 0.6990.001 0.6410.016 0.5340.138 0.8680.002 0.5900.003 0.6460.049 0.4380.004 0.7520.001 0.4850.079

THEORY 0.9120.014 0.8670.009 0.8580.004 0.8340.012 0.8600.006 0.7350.044 0.8920.017 0.7600.007 0.8260.008 0.6840.009 0.7750.005 0.5550.012

POLY2VEC 0.9320.006 0.9350.032 0.9250.002 0.9060.010 0.9070.007 0.8330.006 0.9090.012 0.8910.004 0.8830.013 0.8630.007 0.8760.009 0.7850.003

Table 3: Topological relationships of geometry pairs.

Geometry Pair Topological Relationships (a relationship b)

point-polyline disjoint, intersects

point-polygon disjoint, contains

polyline-polyline disjoint, intersects

polyline-polygon disjoint, touches, intersects, within

polygon-polygon disjoint, touches, intersects, contains, within, equals

POLY2VEC’s ability to do so, along with its unified frame-

work, enables it to consistently outperform baselines.

4.1.2. DIRECTIONAL RELATIONSHIP CLASSIFICATION

This task classifies the directional relationships defined by

the 16-compass direction model of two geospatial objects .

Settings. We follow the same setting as in Section 4.1.1,

with Nc = 16, and report the same metrics. Accuracy

results are in Table 2, with the rest in Appendix A.4.6.

Results. From Table 2, we observe that POLY2VEC consis-

tently outperforms all baselines across all experiments. This

demonstrates its ability to effectively preserve the direction

(Property 2) among diverse geometry types. While polygon

encoders outperform the extended point encoders also in this

task, T2VEC underperforms. This is due to T2VEC’s strat-

egy of assigning coordinates to grid cells during encoding,

which is effective for trajectory-related tasks, but introduces

discretization artifacts that affect angular relationships. A

similar limitation is observed in the performance of TILE,

which also relies on discretizing points into grid cells. In

contrast, POLY2VEC encodes geometries holistically, pre-

serving their relative orientation and avoiding these pitfalls.

4.1.3. DISTANCE ESTIMATION

This task evaluates whether geometry embeddings preserve

pairwise distances (Property 3).

Settings. The original distance is estimated by the Euclidean

distance of the geometry embeddings. The mean squared

error (MSE) is adopted as loss function. We compare the

differences between the predicted and original distances

in Figure 3 and report the mean absolute error (MAE) in

Appendix A.4.6.

Results. Figure 3 depicts that the predicted distances gener-

ated by POLY2VEC are closely aligned with the original dis-

tances, whereas the predicted distances from other point en-

6

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Figure 3: Distance scatter plots of point-polygon pairs on Singapore dataset for different encoders.

coders appear more scattered. This highlights POLY2VEC’s

superior ability to preserve spatial distance relationships

across various geometry types. Methods like DIRECT are

overly simplistic, while approaches such as TILE, GRID, and

WRAP introduce location distortions through discretization

or periodic transformations, affecting the distance preser-

vation. By leveraging the Fourier transform, POLY2VEC

effectively captures both the positions and relative spatial

relationships of the geometry pairs, enabling it to implicitly

encode distance as a core property into its embeddings. A

table reporting the Mean Absolute Error across baselines,

and the additional figures, is provided in Appendix A.4.6.

4.2. Integration In an End-to-End GeoAI Pipeline

The section addresses RQ3, demonstrating the benefits of

integrating POLY2VEC into an existing GeoAI workflow.

Dataset. We utilize the same dataset as in Section 4.1. The

regions for both cities are extracted using the administrative

boundaries of Singapore Subzones and NYC Census Tracts.

Baseline. We adopt REGIONDCL (Li et al., 2023), an

unsupervised urban region representation learning frame-

work that uses buildings and POIs from OSM for land

use inference (predicting urban functional distributions)

and population prediction (estimating region population).

REGIONDCL encodes buildings by transforming their foot-

prints into images and extracting features using ResNet18

while using categorical features for POIs. To address the loss

of location information, REGIONDCL employs a distance-

biased transformer, which introduces a bias in the self-

attention mechanism to prioritize closer objects.

Settings. We evaluate three variants: (1) REGIONDCL,

the original framework, (2) REGIONDCL w/o distance-bias

removes the distance-biased term, and (3) REGIONDCL w/

Poly2Vec removes the distance-biased term and replaces the

encodings with POLY2VEC. The training and evaluation

strategies remain unchanged across the variants following

the original work. For land use inference, we report L1-

distance, KL-divergence, and cosine similarity metrics. For

population prediction, we report MAE, root mean squared

error (RMSE), and coefficient of determination (R2).

Results. The results for both tasks are presented in Table 4.

Removing the distance-bias term from REGIONDCL leads

to a noticeable drop in performance, emphasizing the im-

portance of encoding the spatial location and alignment of

objects for accurate land use and population predictions.

When POLY2VEC is added, the performance improves sig-

nificantly. This shows that POLY2VEC can adequately cap-

ture the shape and orientation of objects, similar to the

initial image-based features, while also benefiting from the

inclusion of object’s location. Overall, POLY2VEC encodes

spatial information directly into its embeddings, removing

the need for additional mechanisms like the distance-bias

term. This improves performance while simplifying the

pipeline, showcasing the task flexibility of POLY2VEC and

its potential for effective integration into GeoAI workflows.

4.3. Ablation Study

This section addresses RQ4, highlighting the benefits of the

proposed learned fusion module.

Settings. We include three variants: (1) w/mag uses only

the Fourier transform magnitude, (2) w/phase uses only the

phase, and (3) w/concat combines both via concatenation.

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc

ur
ac

y

(a) Topological relationship
 classification

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc

ur
ac

y

(b) Directional relationship
 classification

 Singapore New York0.00
0.05
0.10
0.15
0.20
0.25

M
A

E

(c) Distance estimation

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 4: Ablation study for the point-polygon dataset.

Results. As shown in Figure 4, among the variants, w/ mag

performs the worst across all tasks, particularly in direc-

tional relationship classification, as the Fourier transform

magnitude primarily captures shape, which is insufficient on

its own to address these tasks. In contrast, w/ phase, which

encodes location information, performs better since relative

location, here, is more crucial. Combining both through w/

concat shows improvements, highlighting the importance of

integrating both shape and location information. In contrast,

POLY2VEC outperforms all variants by employing a learned

fusion strategy that adaptively balances the contribution of

magnitude and phase based on the task and geometry type.

Particularly, this strategy benefits POLY2VEC more in tasks

such as point-related distance estimation, where points lack

7

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 4: Comparison of methods for Land Use Classification and Population Prediction. Best values are highlighted.

Land Use Classification

Methods Singapore New York

L1 ³ KL ³ Cosine ↑ L1 ³ KL ³ Cosine ↑
RegionDCL 0.498 ± 0.038 0.294 ± 0.047 0.879 ± 0.021 0.418 ± 0.012 0.229 ± 0.013 0.912 ± 0.006

RegionDCL w/o distance-bias 0.558 ± 0.043 0.369 ± 0.067 0.844 ± 0.023 0.439 ± 0.012 0.244 ± 0.012 0.904 ± 0.005

RegionDCL w/ Poly2Vec 0.484 ± 0.021 0.278 ± 0.025 0.881 ± 0.012 0.397 ± 0.010 0.212 ± 0.011 0.923 ± 0.007

Population Prediction

Methods Singapore New York

MAE ³ RMSE ³ R2 ↑ MAE ³ RMSE ³ R2 ↑
RegionDCL 5807.54 ± 522.74 7942.74 ± 779.44 0.427 ± 0.108 5020.20 ± 216.63 6960.51 ± 282.35 0.575 ± 0.039

RegionDCL w/o distance-bias 6018.94 ± 641.71 8214.58 ± 931.11 0.385 ± 0.087 5293.04 ± 277.31 7348.86 ± 374.62 0.532 ± 0.030

RegionDCL w/ Poly2Vec 4957.58 ± 506.02 6874.47 ± 851.73 0.561 ± 0.117 4602.75 ± 179.66 6393.38 ± 279.70 0.621 ± 0.037

spatial extent, and thus magnitude should contribute signifi-

cantly less than the phase containing location information.

5. Related Work

Existing geometry encoding approaches often focus on one

shape type, with point encoders receiving the most atten-

tion. Direct point encoding methods simply feed raw co-

ordinates into neural networks but fail to capture details of

location distributions (Xu et al., 2018; Chu et al., 2019). Dis-

cretization methods assign points to predefined grid cells,

as seen in approaches leveraging location context for im-

age classification (Tang et al., 2015; Berg et al., 2014), but

struggle with fixed resolution and imprecise representations.

Sinusoidal methods encode normalized coordinates using

sinusoidal functions, such as WRAP, which captures cyclic

patterns (Mac Aodha et al., 2019). Extensions like multi-

scale encoder (Zhong et al., 2019) introduce multiple si-

nusoidal scales. THEORY improves this by computing the

dot product of coordinates with unit vectors separated by

120◦ (Mai et al., 2020). There are also point encoders that

jointly model location and neighborhood features. (Qi et al.,

2017; Yin et al., 2019; Zhou & Tuzel, 2018).

Unlike points, there are no dedicated approaches for encod-

ing polylines in their generic form. The closest relevant

work lies in trajectory encoding, where trajectories are often

represented as ordered sequences of points. Most such ap-

proaches rely on discretization. For instance, Li et al. (2018)

uses grid-based encoding, training an RNN on degraded data

to infer missing information and embedding grid cells to

capture relative spatial positions. Other approaches directly

use coordinates, leveraging sequential models (i.e. RNNs)

to process the encodings (Feng et al., 2018; Xue et al., 2021;

Rao et al., 2020; Xu et al., 2018), but require strict sequential

ordering and may overlook geometric relationships.

Polygon encoding has gained significant attention. Veer et al.

(2018) employ elliptic Fourier descriptors to approximate

polygon outlines and utilize bidirectional LSTM and 1D

CNNs to encode vertex sequences. Mai et al. (2023b) used

a 1D ResNet architecture with circular padding for loop

origin invariance. Other approaches use the non-uniform

Fourier transform (NUFT) to map polygons to the spec-

tral domain, converting them back into images via inverse

Fourier transforms (IDFT), though this suffers from the limi-

tations of grid-based approaches (Jiang et al., 2019a;b). Mai

et al. (2023b) refine this approach by omitting the IDFT.

POLYGONGNN (Yu et al., 2024) encodes multipolygons,

modeling their shape details and inter-polygonal relation-

ships through heterogeneous visibility graphs.

While effective for specific geometry types, existing ap-

proaches are devised for specific geospatial objects. En-

coding heterogeneous coordinate-based data remains a chal-

lenge, as current methods, in such cases, either use separate

encoders for different object types, thereby adding complex-

ity, or convert geometries into known formats (i.e., image,

text), leading to a loss of spatial precision. This limitation

is particularly critical for GeoAI models that aim to in-

corporate coordinate-based geospatial data as an additional

modality (Zhang et al., 2024; Mai et al., 2023a). POLY2VEC

addresses this gap by uniformly encoding points, polylines,

and polygons within the same framework, offering a level

of versatility not demonstrated by prior methods.

6. Conclusion and Future Work

We proposed POLY2VEC, a unified encoding framework for

geospatial objects that preserves essential spatial properties,

including topology, directionality, and distance. By out-

performing object-specific baselines and improving down-

stream tasks like population prediction and land use infer-

ence, POLY2VEC demonstrates its versatility and effective-

8

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

ness in GeoAI pipelines. Future work will explore extending

POLY2VEC to higher-dimensional geometries, including 3D

shapes, and its integration into Geo-Foundation models as a

unified representation for coordinate data modalities.

7. Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none of which we feel must be

specifically highlighted here. Our improved representation

of 2D geometry for deep models could lead to more accu-

rate, versatile GeoAI applications, leading to better under-

standing the Earth and improvements for the environment,

transportation efficiency, and access equity.

References

Adams, B., McKenzie, G., and Gahegan, M. Frankenplace:

interactive thematic mapping for ad hoc exploratory

search. In Proceedings of the 24th international con-

ference on world wide web, pp. 12–22, 2015.

Balsebre, P., Huang, W., Cong, G., and Li, Y. City founda-

tion models for learning general purpose representations

from openstreetmap. In Proceedings of the 33rd ACM

International Conference on Information and Knowledge

Management, pp. 87–97, 2024.

Basiri, A., Haklay, M., Foody, G., and Mooney, P. Crowd-

sourced geospatial data quality: Challenges and future

directions, 2019.

Berg, T., Liu, J., Woo Lee, S., Alexander, M. L., Jacobs,

D. W., and Belhumeur, P. N. Birdsnap: Large-scale fine-

grained visual categorization of birds. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pp. 2011–2018, 2014.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,

Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-

lut, A., Brunskill, E., et al. On the opportunities and risks

of foundation models. arXiv preprint arXiv:2108.07258,

2021.

Chu, G., Potetz, B., Wang, W., Howard, A., Song, Y.,

Brucher, F., Leung, T., and Adam, H. Geo-aware net-

works for fine-grained recognition. In Proceedings of the

IEEE/CVF International Conference on Computer Vision

Workshops, pp. 0–0, 2019.

Clementini, E., Di Felice, P., and Van Oosterom, P. A small

set of formal topological relationships suitable for end-

user interaction. In International symposium on spatial

databases, pp. 277–295. Springer, 1993.

Couclelis, H. Artificial intelligence in geography: Conjec-

tures on the shape of things to come. The professional

geographer, 38(1):1–11, 1986.

Feng, J., Li, Y., Zhang, C., Sun, F., Meng, F., Guo, A.,

and Jin, D. Deepmove: Predicting human mobility with

attentional recurrent networks. In Proceedings of the

2018 world wide web conference, pp. 1459–1468, 2018.

Gao, S., Hu, Y., and Li, W. Handbook of geospatial artificial

intelligence, 2023.

Gaskill, J. D. Linear systems, Fourier transforms, and optics.

John Wiley & Sons, 1978.

Huang, J., Wang, H., Sun, Y., Shi, Y., Huang, Z., Zhuo,

A., and Feng, S. Ernie-geol: A geography-and-language

pre-trained model and its applications in baidu maps. In

Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, pp. 3029–3039,

2022.

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., and Bhaduri,

B. Geoai: spatially explicit artificial intelligence tech-

niques for geographic knowledge discovery and beyond,

2020.

Jiang, C., Lansigan, D., Marcus, P., Nießner, M., et al. Ddsl:

Deep differentiable simplex layer for learning geometric

signals. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pp. 8769–8778, 2019a.

Jiang, C., Wang, D., Huang, J., Marcus, P., Nießner, M.,

et al. Convolutional neural networks on non-uniform ge-

ometrical signals using euclidean spectral transformation.

arXiv preprint arXiv:1901.02070, 2019b.

Jokar Arsanjani, J., Zipf, A., Mooney, P., and Helbich, M.

An introduction to openstreetmap in geographic infor-

mation science: Experiences, research, and applications.

OpenStreetMap in GIScience: Experiences, research, and

applications, pp. 1–15, 2015.

Kyrkou, C., Kolios, P., Theocharides, T., and Polycarpou,

M. Machine learning for emergency management: A

survey and future outlook. Proceedings of the IEEE, 111

(1):19–41, 2022.

Lee, J.-G. and Kang, M. Geospatial big data: challenges

and opportunities. Big Data Research, 2(2):74–81, 2015.

Li, X., Zhao, K., Cong, G., Jensen, C. S., and Wei, W. Deep

representation learning for trajectory similarity computa-

tion. In 2018 IEEE 34th international conference on data

engineering (ICDE), pp. 617–628. IEEE, 2018.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion con-

volutional recurrent neural network: Data-driven traffic

forecasting. arXiv preprint arXiv:1707.01926, 2017.

9

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Li, Y., Huang, W., Cong, G., Wang, H., and Wang, Z. Urban

region representation learning with openstreetmap build-

ing footprints. In Proceedings of the 29th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining,

pp. 1363–1373, 2023.

Mac Aodha, O., Cole, E., and Perona, P. Presence-only geo-

graphical priors for fine-grained image classification. In

Proceedings of the IEEE/CVF International Conference

on Computer Vision, pp. 9596–9606, 2019.

Mai, G., Janowicz, K., Yan, B., Zhu, R., Cai, L., and

Lao, N. Multi-scale representation learning for spa-

tial feature distributions using grid cells. arXiv preprint

arXiv:2003.00824, 2020.

Mai, G., Huang, W., Sun, J., Song, S., Mishra, D., Liu, N.,

Gao, S., Liu, T., Cong, G., Hu, Y., et al. On the opportu-

nities and challenges of foundation models for geospatial

artificial intelligence. arXiv preprint arXiv:2304.06798,

2023a.

Mai, G., Jiang, C., Sun, W., Zhu, R., Xuan, Y., Cai, L.,

Janowicz, K., Ermon, S., and Lao, N. Towards general-

purpose representation learning of polygonal geometries.

GeoInformatica, 27(2):289–340, 2023b.

Mirowski, P., Grimes, M., Malinowski, M., Hermann,

K. M., Anderson, K., Teplyashin, D., Simonyan, K.,

kavukcuoglu, k., Zisserman, A., and Hadsell, R. Learning

to navigate in cities without a map. In Bengio, S., Wal-

lach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,

and Garnett, R. (eds.), Advances in Neural Information

Processing Systems, volume 31. Curran Associates, Inc.,

2018. URL https://proceedings.neurips.

cc/paper_files/paper/2018/file/

e034fb6b66aacc1d48f445ddfb08da98-Paper.

pdf.

Papamichalopoulos, M., Papadakis, G., Mandilaras, G.,

Siampou, M., Mamoulis, N., and Koubarakis, M. Three-

dimensional geospatial interlinking with jedai-spatial.

Journal of Web Semantics, 81:100817, 2024.

Punjani, D., Singh, K., Both, A., Koubarakis, M., Angelidis,

I., Bereta, K., Beris, T., Bilidas, D., Ioannidis, T., Karalis,

N., et al. Template-based question answering over linked

geospatial data. In Proceedings of the 12th workshop on

geographic information retrieval, pp. 1–10, 2018.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep

learning on point sets for 3d classification and segmenta-

tion. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 652–660, 2017.

Rao, J., Gao, S., Kang, Y., and Huang, Q. Lstm-trajgan: A

deep learning approach to trajectory privacy protection.

arXiv preprint arXiv:2006.10521, 2020.

Smith, T. R. Artificial intelligence and its applicability to

geographical problem solving. The Professional Geogra-

pher, 36(2):147–158, 1984.

Sun, J., Zheng, Y., Hao, J., Meng, Z., and Liu, Y. Continu-

ous multiagent control using collective behavior entropy

for large-scale home energy management. In Proceed-

ings of the AAAI Conference on Artificial Intelligence,

volume 34, pp. 922–929, 2020.

Tang, K., Paluri, M., Fei-Fei, L., Fergus, R., and Bourdev,

L. Improving image classification with location context.

In Proceedings of the IEEE international conference on

computer vision, pp. 1008–1016, 2015.

Vaswani, A. Attention is all you need. Advances in Neural

Information Processing Systems, 2017.

Veer, R. v., Bloem, P., and Folmer, E. Deep learning for

classification tasks on geospatial vector polygons. arXiv

preprint arXiv:1806.03857, 2018.

Wu, S., Yan, X., Fan, X., Pan, S., Zhu, S., Zheng, C., Cheng,

M., and Wang, C. Multi-graph fusion networks for urban

region embedding. arXiv preprint arXiv:2201.09760,

2022.

Xu, Y., Piao, Z., and Gao, S. Encoding crowd interaction

with deep neural network for pedestrian trajectory predic-

tion. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pp. 5275–5284, 2018.

Xue, H., Salim, F., Ren, Y., and Oliver, N. Mobtcast: Lever-

aging auxiliary trajectory forecasting for human mobility

prediction. Advances in Neural Information Processing

Systems, 34:30380–30391, 2021.

Yin, Y., Liu, Z., Zhang, Y., Wang, S., Shah, R. R., and

Zimmermann, R. Gps2vec: Towards generating world-

wide gps embeddings. In Proceedings of the 27th ACM

SIGSPATIAL International Conference on Advances in

Geographic Information Systems, pp. 416–419, 2019.

Yu, D., Hu, Y., Li, Y., and Zhao, L. Polygongnn: Represen-

tation learning for polygonal geometries with heteroge-

neous visibility graph. In Proceedings of the 30th ACM

SIGKDD Conference on Knowledge Discovery and Data

Mining, pp. 4012–4022, 2024.

Zahn, C. T. and Roskies, R. Z. Fourier descriptors for plane

closed curves. IEEE Transactions on computers, 100(3):

269–281, 1972.

Zhang, M., Li, T., Li, Y., and Hui, P. Multi-view joint

graph representation learning for urban region embed-

ding. In Proceedings of the twenty-ninth international

conference on international joint conferences on artificial

intelligence, pp. 4431–4437, 2021.

10

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Zhang, W., Han, J., Xu, Z., Ni, H., Liu, H., and Xiong,

H. Urban foundation models: A survey. In Proceedings

of the 30th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining, pp. 6633–6643, 2024.

Zhong, E. D., Bepler, T., Davis, J. H., and Berger, B. Recon-

structing continuous distributions of 3d protein structure

from cryo-em images. arXiv preprint arXiv:1909.05215,

2019.

Zhou, Y. and Tuzel, O. Voxelnet: End-to-end learning for

point cloud based 3d object detection. In Proceedings

of the IEEE conference on computer vision and pattern

recognition, pp. 4490–4499, 2018.

11

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

A. Appendix

A.1. Geospatial Objects Definitions

Definition 2 (Point). A point is a zero-dimensional geomet-

ric entity in R
2, defined by a single coordinate (x, y), where

x, y ∈ R. A point represents a specific location in the plane

but has no extent, size, nor dimension.

Definition 3 (Line Segment). A line segment is a one-

dimensional geometric object in R
2, defined as a straight

line segment between two distinct endpoints p1 = (x1, y1)
and p2 = (x2, y2).

Definition 4 (Polyline). A polyline is a one-dimensional

object in R
2, represented by an array P ∈ R

N×2, where

each row is a point pi = (xi, yi). It consists of connected

line segments formed by consecutive points pi and pi+1 for

1 f i < N , with p1 ̸= pN .

Definition 5 (Polygon). A polygon is a two-dimensional

geometric object in R
2, represented as a closed sequence of

points forming its boundary. It is defined by an array P ∈
R

N×2, where each row corresponds to a point (xi, yi) ∈ R
2

and (x1, y1) = (xN , yN).

A.2. Analytical Calculations of Fourier Transform

A.2.1. FOURIER TRANSFORM OF A POINT

By representing a point p = (xp, yp) ∈ R
2 as a 2D Dirac

delta function fp(x, y) = δ(x − xp, y − yp) the Fourier

transform of fp(x, y) can be derived as follows:

Fp(u, v) = F{fp(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
fp(x, y)e

−j2π(ux+vy)dx dy

=

∫ ∞

−∞

∫ ∞

−∞
δ(x− xp, y − yp)e

−j2π(ux+vy)dx dy

= e−j2π(xpu+ypv)

where (u, v) are the frequency components.

A.2.2. FOURIER TRANSFORM OF A POLYLINE

Canonical line segment. We express the canonical line

segment lc extending from a = (− 1
2 , 0) to b = (12 , 0), as

flc(x, y) = rect(x)δ(y). where rect(x) restricts the ridge to

|x| f 1
2 , and δ(y) represents a Dirac delta function along

the x-axis. The Fourier transform of flc(x, y) is :

Flc(u, v) = F{flc(x, y)}

=

∫ ∞

−∞

∫ ∞

−∞
flc(x, y)e

−j2π(ux+vy) dx dy

=

∫ ∞

−∞

∫ ∞

−∞
rect(x)δ(y)e−j2π(ux+vy) dx dy

Using the sifting property of the Dirac delta function, the

integral over y evaluates to the value of the integrand at

y = 0:

Flc(u, v) =

∫ ∞

−∞
rect(x)e−j2πuxe−j2πv(0) dx

=

∫ ∞

−∞
rect(x)e−j2πux dx

= sinc(u)

where (u, v) are the frequency components and v = 0.

Arbitrary line segment. We consider an arbitrary line

segment l with endpoints q = (xq, yq) and r = (xr, yr),
to compute the Fl(u, v), we map it to the canonical line

segment lc using affine transformation. For this purpose, we

introduce an auxiliary point c = (12 , 1) at the structure of lc
so that it is not colinear with ab. This point maps to another

auxiliary point s introduced at the arbitrary line segment

l. The auxiliary point s is defined as s = r + n, where

n = (yq − yr, xr − xq)
¦, representing a 90◦ clockwise

rotation of the vector r− q. Note that the vectors qr and rs

are the same length.

Given all the above, the affine transformation matrix A is

defined as:

A =





a1 b1 c1
a2 b2 c2
0 0 1





Then the values of A are computed as follows:

A [q r s] = [a b c]

A = [a b c][q r s]−1

=





− 1
2

1
2

1
2

0 0 1
0 0 1









xq xr xr + yq − yr
yq yr yr + xr − xq

1 1 1





−1

= D





−xq + xr −yq + yr
(x2

q+y2
q−x2

r−y2
r)

2
yq − yr −xq + xr −yqxr + xqyr

0 0 1
D





where

|D| = det(A) =
1

(xq − xr)2 + (yq − yr)2

is the determinant of A.

Following the affine Fourier transform property from Eq. (3),

the Fourier transform of an arbitrary line segment l with

endpoints (xq, yq) and (xr, yr) is:

Fl(u, v) = F{flc(x, y)}

=
1

| det(A)|e
−j2πc¦

A
−¦

uF (A−¦u)

12

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

which can be rewritten as:

Fl(u, v) =

=
1

|D|e
−j2π(x0u+y0v)F

(

b2u− a2v

|D| ,−b1u+ a1v

|D|

)

(15)

where x0 = 1
|D| (b1c2 − b2c1) and y0 = 1

|D| (a2c1 − a1c2).

By substituting the specific values into Eq. (15), Fl(u, v)
can be simplified to:

Fl(u, v) =
1

(xq − xr)2 + (yq − yr)2

[

e−j2π
(

xq+xr
2 u+

yq+yr
2 v

)

sinc
(

(xr − xq)u+ (yr − yq)v
)

]

A.2.3. FOURIER TRANSFORM OF A POLYGON

Isosceles canonical right triangle. The canonical isosceles

right triangle c with vertices a = (0, 0), b = (1, 0), and

c = (1, 1), is represented by the function f
c
(x, y) which

equals 1 inside the triangle and 0 otherwise.

The Fourier transform of f
c
(x, y) is computed as:

F
c
(u, v) = F{f

c
(x, y)}

=

∫ ∫

f
c
(x, y)e−j2π(ux+vy) dy dx

=

∫ 1

0

∫ x

0

e−j2π(ux+vy) dy dx

=

∫ 1

0

1

−j2πv

(

e−j2π(u+v)x − e−j2πux
)

dx

=
1

−j2πv

[
∫ 1

0

e−j2π(u+v)x dx−
∫ 1

0

e−j2πux dx

]

=
1

4π2v(u+ v)

[

(u+ v)e−j2πu − ue−j2π(u+v) − v
]

(16)

Using Euler’s formula (ejθ = cos θ + j sin θ), we can ex-

pand Eq. (16) to:

F
c
(u, v) =

1

4π2uv(u+ v)

[

(

(u+ v) cos(2πu)

− u cos(2π(u+ v))− v
)

− j
(

(u+ v) sin(2πu)

− u sin(2π(u+ v))
)

]

This equation is undefined for some values of (u, v). We

present the Fourier transform for each special case:

• F
c
(0, 0) =

1

2

• F
c
(0, v) = − 1

4π2v2

(

j2πv + cos(2πv)

− j sin(2πv)− 1
)

• F
c
(u, 0) =

1

4π2u2

[

(

cos(2πu) + 2πu sin(2πu)− 1
)

− j
(

sin(2πu)− 2πu cos(2πu)
)

]

• F
c
(−v, v) = − 1

4π2v2

(

− j2πv + cos(2πv)

+ j sin(2πv)− 1
)

Arbitrary triangle. We calculate the Fourier transform of

an arbitrary triangle ∆, with vertices q, r, s by using the

affine transformation property. To that extent the affine

transformation matrix A is defined as:

A =





a1 b1 c1
a2 b2 c2
0 0 1





Then the values of A are computed as follows:

A [q r s] = [a b c]

A = [a b c][q r s]−1

=





0 1 1
0 0 1
1 1 1









xq xr xr + yq − yr
yq yr yr + xr − xq

1 1 1





−1

= D





ys − yr xr − xs yq(xs − xr) + xq(yr − ys)
yq − yr xr − xq xqyr − yqxr

0 0 D





where

|D| = 1

xq(yr − ys) + xr(ys − yq) + xs(yq − yr)

is the determinant of A.

If the area of ∆ is α, then D = 1
2α .

Finally the Fourier transform F∆(u, v) can be calculated by

substituting the affine transform parameters into Eq. (3).

For the case of (0, 0) we get that :

F∆(0, 0) =
1

D
F

c
(0, 0) =

1

2D
= α

which is the area of ∆.

A.3. Frequency Sampling Strategy

A.3.1. GEOMETRIC SAMPLING

We sample frequencies as a geometric series to balance the

contribution of low and high-frequency frequency compo-

13

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

nents. Formally,

fi = fmin · ρi, i = 0, 1, . . . ,W − 1

where fi is the i-th frequency, fmin, fmax correspond to the

minimum and maximum frequencies and W is the number

of sampled frequencies in each dimension. ρi is the step

ratio and is defined as ρi =
(

fmax

fmin

)
1

(W−1)

.

Using this sequence, we construct a 2D meshgrid of fre-

quencies, denoted as (U,V), centered around zero. Due to

the Hermitian symmetry property of the Fourier transform,

we only compute frequencies for half of the plane.

While uniform sampling is an alternative, previous studies

suggest geometric sampling is better suited for tasks like

ours, as it naturally balances the significance of low- and

high-frequency components (Mai et al., 2020; 2023b).

A.3.2. ADDITIONAL EXPERIMENTS ON LEARNED

FREQUENCY SAMPLING

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc
ur
ac
y

(a) Topological relationship
 classification

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc
ur
ac
y

(b) Directional relationship
 classification

 Singapore New York0.00
0.01
0.02
0.03
0.04
0.05

M
A
E

(c) Distance estimation

learned sampling geometric frequency mapping

Figure 5: The effect of frequency sampling strategy on

point-polygon pairs.

To investigate whether learning the frequency values would

improve performance, we conducted an experiment where

the frequencies were treated as learnable parameters and

optimized alongside the model. Our results are reported in

Figure 5. We observe that learning the frequencies does not

yield significant improvements over fixing the frequencies in

any of the tasks. This suggests that the geometric sampling

approach is sufficiently effective for balancing low- and

high-frequency contributions, and learning the frequencies

does not provide additional benefits for the tasks considered.

A.4. Supplementary Experimental Study

A.4.1. DATASET DETAILS

We utilized publicly available OpenStreetMap (OSM)

datasets for Singapore and New York, obtained from Geo-

fabrik8 in .osm.pbf format. Geospatial objects, includ-

ing POIs, roads, and buildings, were extracted using OSM-

specific tags (amenity, shop, tourism, leisure for POIs, mo-

torway, trunk, primary, secondary for roads, and building for

buildings). Region partitions were derived from Singapore

8https://download.geofabrik.de/

Subzones9 and NYC Census Tracts10. Dataset statistics are

presented in Table 5.

City # POIs # roads # buildings # regions

Singapore 4,347 45,634 109,877 304

New York 14,943 139,512 1,153,088 2,324

Table 5: Statistics of the Singapore and New York datasets.

Labels for the land use classification task were sourced

from the Singapore Master Plan 201911 and NYC Map-

PLUTO12. Following previous approaches (Li et al., 2023),

we merge the fine-grained land use classes into five major

categories, including Residential, Industrial, Commercial,

Open Space, and Others. Population estimation labels

were obtained from WorldPop13 for both cities.

For the remaining tasks, the labels are generated manually.

Specifically, for the topological classification task, the num-

ber of relationships depends on the types of objects being

compared. Point/polyline, point/polygon, and polyline/poly-

line pairs can belong to one of two classes: disjoint or not

disjoint. Polyline/polygon pairs, however, have four distinct

relationship classes, while polygon/polygon pairs include

six classes, following the DE9IM model. To eliminate redun-

dancy, we remove equivalent relationships such as within

and contains, keeping only one representative relationship

from each pair of equivalents. To create a balanced dataset

across all relationship classes, we generate geometry pairs

by slightly adjusting the positions of the original geospatial

objects and randomly selecting 5,000 pairs for each class

within a group.

For the directional relationship classification task, we

classify the spatial relationships between two geometries

into one of 16 compass directions based on their angular

relationship. These 16 classes are derived from the cardinal

and intercardinal directions: north, northeast, east, south-

east, south, southwest, west, northwest, and their boundary

counterparts (e.g., north-northeast, east-northeast). Labels

are computed based on the relative orientation of the ge-

ometries’ centroids. Similar to the topological classification

task, we randomly select 5,000 pairs for each directional

class to ensure a balanced dataset.

9https://data.gov.sg/collections/1749/

view
10https://www.nyc.gov/site/

planning/data-maps/open-data/

census-download-metadata.page
11https://data.gov.sg/dataset/

master-plan-2019-land-use-laye
12https://www.nyc.gov/site/planning/

data-maps/open-data/dwn-pluto-mappluto.page
13https://hub.worldpop.org/geodata/

listing?id=77

14

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

For the distance estimation task, labels are computed us-

ing the actual spatial distance between the centroids of the

two geometries. The spatial distance is calculated using Eu-

clidean distance for planar geometries, for topological and

directional relationship classification. We randomly select

10,000 geometry pairs for this task.

A.4.2. BASELINES

We now describe the baseline methods used to evaluate

POLY2VEC.

1. Point encoders

• DIRECT: Feeds directly the geometry’s input coordinates

to the downstream model, without any encoding mechanism.

• TILE: Partitions the study area into a uniform grid with

cells of size c. Each grid cell is assigned an embedding,

which serves as the encoding for the points assigned to that

cell (Berg et al., 2014; Adams et al., 2015; Tang et al., 2015).

• WRAP: Uses a wrapping mechanism [sin(πp); cos(πp)]
to encode a point p (Mac Aodha et al., 2019).

• GRID: Follows the Transformer’s position encoding

model (Vaswani, 2017), representing spatial positions

through multi-scale sine and cosine transformations. At

each scale s, the encoding is given by PE
(g)
s (p) =

[

cos

(

p

λmin·g
s

S−1

)

, sin

(

p

λmin·g
s

S−1

)]

, where g = λmax

λmin

controls the frequency range. The final encoding concate-

nates these multi-scale representations, capturing spatial

structures across different resolutions (Mai et al., 2020).

• THEORY: Encodes spatial positions using dot prod-

ucts with unit vectors separated by 120◦. At each

scale s, the encoding is given by PE
(t)
s,j(p) =

[

cos

(

ïp,ajð
λmin·g

s
S−1

)

, sin

(

ïp,ajð
λmin·g

s
S−1

)]

∀j ∈ {1, 2, 3},

where a1 = [1, 0]T , a2 = [− 1
2 ,

√
3
2]T , and a3 =

[− 1
2 ,−

√
3
2]T are unit vectors spaced at 120◦. The final en-

coding concatenates these multi-scale representations across

all vectors (Mai et al., 2020).

2. Polyline encoders

• T2VEC: First uniformly partitions the whole space into

grid cells, and map each trajectory point into the grid cell.

Through this tokenization, each trajectory is converted to a

sequence of grid cell IDs. Then adopts a GRU encoder to

encode the sequence and an end-to-end training paradigm

that amis to reconstruct the original trajectories from the

distorted/downsampled ones (Li et al., 2018).

3. Polygon encoders

• RESNET1D: Adapts the 1D variant of the Residual Net-

work (ResNet) architecture, incorporating circular padding

to effectively encode the exterior vertices of polygons (Mai

et al., 2023b).

• NUFTSPEC: Transforms polygons into the spectral

domain using the Non-Uniform Fourier Transformation

(NUFT) and j-simplex meshes and then learns polygon

embeddings from these spectral features using MLPs (Mai

et al., 2023b).

A.4.3. HYPERPARAMETER CONFIGURATION

The coordinates of the input geometries are normalized to

lie within the range [−1, 1]× [−1, 1], based on the bound-

ing box of the corresponding area of interest. We set the

minimum frequency fmin = 0.1, the maximum frequency

fmax = 1.0 and W = 10, resulting in 210 frequencies. We

set the final size of the geometry embedding v to d = 32.

All the MLPs consist of two layers with ReLU activation

functions.

Hyperparameters of spatial reasoning tasks. For training

on the spatial reasoning tasks, we utilize the AdamW opti-

mizer and set the learning rate lr = 10−4 and weight decay

wd = 10−8. The batch size is set to 128, and the down-

stream models were trained for 20 epochs. The training,

validation, and testing ratios for the datasets corresponding

to these tasks is 60:20:20. All experiments were run 5 times

and we report average performances and standard deviation.

Hyperparameters of GeoAI tasks. We follow the same

hyperparameters as presented by Li et al. (2023), to keep

our comparison consistent.

Hyperparameters of other baselines. The implementation

of baselines follows the corresponding papers, along which

each method’s specific hyperparameters. The rest of hyper-

parameters related to downstream tasks are kept consistent

with our approach.

A.4.4. EXPERIMENTAL ENVIRONMENT

Our experiments are performed on a cluster node equipped

with an 18-core Intel i9-9980XE CPU, 125 GB of memory,

and two 11 GB NVIDIA GeForce RTX 2080 Ti GPUs.

Furthermore, all neural network models are implemented

based on PyTorch version 2.3.0 with CUDA 11.8 using

Python version 3.9.19.

A.4.5. TRAINING DETAILS OF EVALUATION TASKS

We use cross entropy loss to train the downstream model

on the topological and directional relationship classification

tasks. The loss is defined as:

LCE(θ) = − 1

N

N
∑

i=1

C
∑

c=1

yi,c log(ŷi,c),

15

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

where N is the number of samples, C is the number of

classes (C = 2 for binary classification), yi,c ∈ {0, 1}
is the one-hot encoded ground-truth label for class c, and

ŷi,c ∈ [0, 1] is the predicted probability for class c.

For the distance preservation task, the model is evaluated

using the mean squared error (MSE) loss, defined as:

LMSE(θ) =
1

N

N
∑

i=1

(yi − ŷi)
2
,

where yi is the ground-truth distance for the i-th sample,

and ŷi is the predicted distance.

We note that for the population prediction and land use clas-

sification tasks, POLY2VEC is used as input to the pretrained

urban region representation model REGIONDCL (Li et al.,

2023), and thus we follow the same training and evaluation

procedure as was originally presented by the authors.

A.4.6. SUPPLEMENTARY RESULTS OF SPATIAL

REASONING TASKS

We report each model’s performance on topological and

directional relationship classification in Table 7 and Table 8,

respectively, including Precision, Recall, and F1. MAE for

the distance preservation task is provided in Table 6. We also

present the rest of the distance scatter Figures 10,11,12,13,

14. We overall observe similar trends as in the main evalua-

tion.

Table 6: Overall model performance on distance estimation.

Best and second best are highlighted.

Dataset Model
point-

point

point-

polyline

point-

polygon

Singapore

DIRECT 0.088±0.041 0.093±0.013 0.084±0.021

TILE 0.252 ±0.002 0.177±0.007 0.157±0.001

WRAP 0.085±0.009 0.106±0.012 0.102±0.007

GRID 0.087±0.006 0.107±0.003 0.108±0.002

THEORY 0.065±0.019 0.083±0.027 0.079±0.028

POLY2VEC 0.016±0.001 0.043±0.011 0.029±0.009

New York

DIRECT 0.075±0.017 0.126±0.041 0.115±0.033

TILE 0.271±0.005 0.170±0.004 0.189±0.004

WRAP 0.106±0.003 0.148±0.001 0.146±0.009

GRID 0.073±0.001 0.124±0.004 0.118±0.011

THEORY 0.068±0.008 0.089±0.074 0.102±0.061

POLY2VEC 0.030±0.007 0.049±0.004 0.042±0.021

A.4.7. SUPPLEMENTARY ABLATION STUDIES

We’ve shown the effect of learned fusion on point-polygon

tasks in Section 4.3. We demonstrate its effect on the rest of

spatial reasoning tasks in Figures 6, 7, 8, and 9. We again

observe similar trends as reported in the main evaluation.

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

(a) Directional relationship
 classification

 Singapore New York0.00
0.11
0.22
0.33
0.44
0.55

M
A
E

(b) Distance estimation

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 6: Ablation study on point-point pairs.

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc
ur
ac
y

(a) Topological relationship
 classification

 Singapore New York0.40
0.52
0.64
0.76
0.88
1.00

A
cc
ur
ac
y

(b) Directional relationship
 classification

 Singapore New York0.0
0.1
0.2
0.3
0.4
0.5

M
A
E

(c) Distance estimation

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 7: Ablation study on point-polyline pairs.

 Singapore New York0.2
0.3
0.4
0.5
0.6
0.7

A
cc

ur
ac

y

(a) Topological relationship
 classification

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

(b) Directional relationship
 classification

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 8: Ablation study on polyline-polygon pairs.

 Singapore New York0.2
0.3
0.4
0.5
0.6
0.7

A
cc

ur
ac

y

(a) Topological relationship
 classification

 Singapore New York0.0
0.2
0.4
0.6
0.8
1.0

A
cc

ur
ac

y

(b) Directional relationship
 classification

w/ Mag w/ Phase w/ concat Poly2Vec

Figure 9: Ablation study on polygon-polygon pairs.

16

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Table 7: Overall model Performance on topological relationship classification. Best and second best are highlighted.

Metric Methods

Singapore New York

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

Precision

RESNET1D - - - - 0.3980.018 - - - - 0.4210.051

NUFTSPEC - - - - 0.5880.041 - - - - 0.5620.032

T2VEC - - 0.7680.021 - - - - 0.7450.012 - -

DIRECT 0.8590.007 0.8310.017 0.6370.032 0.4150.037 0.328 0.04 0.8350.032 0.9330.007 0.6610.032 0.4980.003 0.4390.024

TILE 0.7350.039 0.7050.056 0.5050.007 0.4900.006 0.4390.005 0.6640.018 0.7890.005 0.5020.009 0.4940.074 0.4180.005

WRAP 0.8740.011 0.8650.015 0.6450.009 0.4530.028 0.4050.010 0.8790.015 0.9150.006 0.6550.013 0.5860.005 0.4050.010

GRID 0.7990.037 0.8410.010 0.6260.027 0.4050.066 0.2880.013 0.7680.034 0.9040.015 0.6580.014 0.5130.012 0.3550.017

THEORY 0.9030.037 0.8740.004 0.6510.009 0.4320.018 0.4780.023 0.8860.044 0.8930.017 0.7180.007 0.6020.008 0.4310.009

POLY2VEC 0.9130.007 0.9240.017 0.7790.001 0.5060.013 0.6940.007 0.9210.016 0.9790.021 0.7450.002 0.6310.017 0.6980.006

Recall

RESNET1D - - - - 0.4550.011 - - - - 0.4520.035

NUFTSPEC - - - - 0.5720.032 - - - - 0.5920.029

T2VEC - - 0.7320.024 - - - - 0.7180.032 - -

DIRECT 0.7920.012 0.8380.027 0.9970.019 0.4140.031 0.4500.014 0.8380.035 0.8880.004 0.9870.22 0.4970.003 0.4310.003

TILE 0.8940.035 0.6950.074 1.00.001 0.4630.008 0.4130.004 0.6590.009 0.7690.011 1.000.001 0.4990.039 0.4050.004

WRAP 0.9030.005 0.9010.033 0.9920.007 0.4770.012 0.3800.006 0.8940.030 0.8420.031 0.9860.005 0.5510.008 0.3800.006

GRID 0.9210.035 0.8480.014 0.9800.016 0.4650.007 0.3390.013 0.9330.045 0.8810.004 0.9950.002 0.5140.012 0.3820.035

THEORY 0.9860.028 0.9330.007 0.9720.012 0.4510.012 0.4670.015 0.9230.044 0.9120.017 0.7820.007 0.6150.008 0.4120.009

POLY2VEC 1.00.000 0.9740.023 1.00.000 0.4980.007 0.6970.003 1.00.000 0.9890.032 1.00.000 0.6380.009 0.6970.007

F1

RESNET1D - - - - 0.3990.017 - - - - 0.3990.041

NUFTSPEC - - - - 0.5740.013 - - - - 0.5810.021

T2VEC - - 0.7320.002 - - - - 0.7410.007 - -

DIRECT 0.8240.006 0.8340.031 0.7770.022 0.4020.027 0.3140.014 0.8360.004 0.9100.003 0.7920.027 0.4630.003 0.4030.013

TILE 0.8050.013 0.6940.017 0.6710.004 0.4120.009 0.3840.005 0.6610.008 0.7790.004 0.6680.008 0.4530.061 0.3690.003

WRAP 0.8880.005 0.8820.009 0.7810.008 0.4500.020 0.3390.006 0.8860.009 0.8760.019 0.7870.010 0.5170.005 0.3390.006

GRID 0.8550.007 0.8440.002 0.7640.015 0.4110.026 0.2670.018 0.8420.032 0.8920.006 0.7920.009 0.4630.046 0.3220.038

THEORY 0.9380.014 0.9030.004 0.7880.007 0.4380.012 0.4250.006 0.8830.044 0.8910.017 0.7260.007 0.5490.059 0.4190.009

POLY2VEC 0.9550.011 0.9480.008 0.8310.002 0.4830.013 0.6820.003 0.9590.008 0.9840.012 0.8540.002 0.5880.012 0.6790.005

Table 8: Overall model Performance on directional relationship classification. Best and second best are highlighted.

Metric Methods

Singapore New York

point-

point

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

point-

point

point-

polyline

point-

polygon

polyline-

polyline

polyline-

polygon

polygon-

polygon

Precision

NUFTRESNET - - - - - 0.8280.009 - - - - - 0.7830.010

NUFTSPEC - - - - - 0.8320.021 - - - - - 0.7150.014

T2VEC - - - 0.2270.021 - - - - - 0.2320.012 - -

DIRECT 0.8820.006 0.8460.006 0.8470.005 0.8250.002 0.8130.005 0.7650.014 0.8800.003 0.7670.004 0.8430.002 0.6870.003 0.7940.003 0.7740.001

TILE 0.2590.001 0.2600.026 0.2860.038 0.3700.005 0.4660.001 0.4150.010 0.2930.001 0.2790.013 0.3220.005 0.2800.005 0.4960.002 0.3760.026

WRAP 0.8630.003 0.8100.007 0.8060.004 0.7900.002 0.8350.002 0.7890.001 0.8090.004 0.6840.002 0.7590.016 0.6100.021 0.7810.001 0.6670.007

GRID 0.8840.007 0.7330.007 0.7750.002 0.7080.001 0.6530.015 0.5450.144 0.8720.002 0.6050.001 0.6700.040 0.4410.003 0.7660.003 0.5140.074

THEORY 0.9080.017 0.8720.012 0.8630.004 0.8150.012 0.8380.006 0.7290.044 0.8810.017 0.7740.007 0.8090.008 0.6920.009 0.7890.005 0.5380.012

POLY2VEC 0.9280.016 0.9420.012 0.9180.004 0.9110.013 0.8980.021 0.8300.007 0.9210.006 0.8890.016 0.8750.004 0.8890.013 0.8530.007 0.7920.009

Recall

NUFTRESNET - - - - - 0.8190.010 - - - - - 0.7470.010

NUFTSPEC - - - - - 0.7920.003 - - - - - 0.6850.004

T2VEC - - - 0.2160.023 - - - - - 0.2530.032 - -

DIRECT 0.8790.006 0.8410.006 0.8450.006 0.8200.002 0.8300.005 0.7520.017 0.8770.004 0.7660.005 0.8360.002 0.6530.007 0.7840.003 0.6940.003

TILE 0.2530.001 0.2690.002 0.2730.008 0.3240.001 0.4540.001 0.3950.003 0.2480.001 0.2570.004 0.3160.005 0.2170.001 0.4660.001 0.3480.012

WRAP 0.8610.003 0.8040.009 0.8030.004 0.7820.003 0.8310.002 0.7790.001 0.8100.004 0.6690.001 0.7590.016 0.5980.018 0.7720.002 0.6020.006

GRID 0.8820.002 0.7290.007 0.7720.002 0.6990.001 0.6410.016 0.5330.139 0.8680.002 0.5900.002 0.6470.050 0.4370.002 0.7520.003 0.4830.078

THEORY 0.8830.024 0.8670.009 0.8550.004 0.8630.012 0.5020.012 0.8970.014 0.7830.021 0.7910.007 0.8230.008 0.7090.009 0.8030.005 0.5670.012

POLY2VEC 0.9460.017 0.9470.021 0.9330.011 0.9030.008 0.8380.022 0.8260.007 0.9230.017 0.8940.012 0.8860.024 0.8780.013 0.8750.011 0.7930.012

F1

NUFTRESNET - - - - - 0.8210.010 - - - - - 0.7560.010

NUFTSPEC - - - - - 0.8020.028 - - - - - 0.6670.023

T2VEC - - - 0.2190.007 - - - - - 0.2520.018 - -

DIRECT 0.8800.006 0.8410.006 0.8450.006 0.8210.002 0.8400.005 0.7540.016 0.8760.004 0.7690.005 0.8380.002 0.6560.009 0.7840.004 0.7120.002

TILE 0.2150.001 0.2260.005 0.2470.015 0.3090.003 0.4470.001 0.3880.004 0.2360.001 0.2120.011 0.2880.012 0.1930.002 0.4390.002 0.3390.018

WRAP 0.8610.003 0.8040.009 0.8030.004 0.7820.002 0.8310.002 0.7800.001 0.8090.004 0.6680.002 0.7520.017 0.5900.021 0.7690.002 0.6130.005

GRID 0.8820.007 0.7280.007 0.7720.002 0.6980.001 0.6400.017 0.5300.150 0.8680.002 0.5880.002 0.6490.049 0.4090.003 0.7490.003 0.4600.077

THEORY 0.9030.015 0.8520.009 0.8550.004 0.8420.012 0.8450.006 0.7410.044 0.8840.017 0.7520.007 0.8120.008 0.6680.009 0.7560.025 0.5370.22

POLY2VEC 0.9280.015 0.9270.032 0.9180.029 0.9010.017 0.8990.016 0.8270.022 0.8920.012 0.8830.014 0.9030.013 0.8770.004 0.8320.003 0.7690.019

17

Poly2Vec: Polymorphic Fourier-Based Encoding of Geospatial Objects for GeoAI Applications

Figure 10: Distance scatters of point-polygon pairs on NewYork dataset for different encoders.

Figure 11: Distance scatters of point-polyline pairs on Singapore dataset for different encoders.

Figure 12: Distance scatters of point-polyline pairs on NewYork dataset for different encoders.

Figure 13: Distance scatters of point-point pairs on Singapore dataset for different encoders.

Figure 14: Distance scatters of point-point pairs on NewYork dataset for different encoders.

18

