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Figure 1. Given a casually captured video, Uni4D harnesses pretrained visual foundation models and multi-stage optimization to jointly
estimate camera poses, dynamic geometry, and dense 3D motion. The resulting camera poses and geometry are accurate, consistent, and
coherent both temporally and spatially. This is all done without any additional training or fine-tuning.

Abstract

This paper presents a unified approach to understanding dy-
namic scenes from casual videos. Large pretrained vision
foundation models, such as vision-language, video depth
prediction, motion tracking, and segmentation models, offer
promising capabilities. However, training a single model
for comprehensive 4D understanding remains challenging.
We introduce Uni4D, a multi-stage optimization framework
that harnesses multiple pretrained models to advance dy-
namic 3D modeling, including static/dynamic reconstruc-
tion, camera pose estimation, and dense 3D motion track-
ing. Our results show state-of-the-art performance in dy-
namic 4D modeling with superior visual quality. Notably,
Uni4D requires no retraining or fine- tuning, highlighting
the effectiveness of repurposing visual foundation models
for 4D understanding. Code and more results are available
at: https://davidyao99.github.io/unidd.

1. Introduction

Over the past two years, many visual foundation models
have emerged [4, 21, 23, 25, 27, 31, 44, 58, 63], achiev-
ing high accuracy on tasks like depth prediction, segmen-
tation, human parsing, normal estimation, few-view recon-
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struction, and motion tracking. These models leverage su-
pervised learning on large, diverse datasets, achieving im-
pressive accuracy and remarkable generalization. However,
these advances have not translated to 4D (time + geometry)
modeling, a longstanding challenge in computer vision. We
see two main reasons: first, collecting high-quality, ground-
truth 4D data from real-world environments remains com-
plex and resource-intensive. Second, 4D understanding is a
holistic problem involving interconnected tasks like camera
pose estimation, 3D reconstruction, and dynamics tracking.
Although each subtask shows progress, data-driven cues re-
main noisy, and more importantly, unifying them synergisti-
cally for holistic modeling remains challenging. This paper
seeks to answer: Can we harness the success of visual foun-
dation models for dynamic 4D modeling?

In this paper, we propose Uni4D, a novel framework
that reconstructs 4D scenes from a single video captured
in the wild. Our method integrates data-driven foundation
models and conventional model-driven dynamic structure-
from-motion, combining data-driven cues and model-based
knowledge synergistically. Our intuition is simple: each
data-driven visual cue, such as video segmentation, pixel-
level motion tracking, and video depth, is a partial pro-
jection from the 4D world to the 2D video. The key is
to create a 4D scene representation that coherently aligns
with each cue while incorporating strong prior knowledge


https://davidyao99.github.io/uni4d/

of real-world motion and shape to resolve temporary incon-
sistencies. To achieve this, we take an energy-minimization
perspective, framing the problem as an optimization task
that jointly infers camera poses, static and dynamic geom-
etry, and motion. The dynamic 4D modeling framework
is complex, as it involves various optimization variables,
visual cues, and constraints. To overcome the challenge
of joint reasoning, we carefully design a novel three-stage,
divide-and-conquer pipeline that progressively incorporates
camera poses, static geometry, and dynamic geometry and
motion into the optimization framework. Uni4D leverages
pretrained foundation models across different tasks, requir-
ing no task-specific retraining or fine-tuning. This design
sidesteps the need for 4D ground-truth data, a major chal-
lenge in the field. Through incorporating strong priors on
geometry and dynamic motion, our method produces realis-
tic 4D scenes that are coherent across space and time while
maintaining high accuracy.

We demonstrate the effectiveness of Uni4D on various
datasets. As shown in Fig. 1, our method effectively recov-
ers the clean geometry and motion of the scene, as well as
camera trajectories, from a single video. As shown in Fig. 2,
our model outperforms all dynamic 4D modeling baselines
in both camera pose and geometry.

2. Related Works

Structure from Motion and SLAM. Structure from Mo-
tion (SfM) is a classical problem in computer vision that
aims to jointly recover camera parameters and 3D structure
from images [2, 10, 41, 47, 48]. Simultaneous localization
and mapping (SLAM) is a similar problem that focuses on
real-time efficiency in an online setting [1 1, 13, 38, 53]. The
core idea for many approaches to SfM and SLAM is to opti-
mize a form of reprojection error with respect to both cam-
era parameters and 3D points, also known as bundle adjust-

ment [55]. This relies on the key assumption that the scene
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Figure 2. UnidD outperforms other recent 4D modeling methods
in both camera pose and geometry accuracy on the Sintel dataset.
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4D Understanding. The problem of non-rigid structure
from motion is highly ill-posed. Previous works on non-
rigid SfM leveraged various forms of priors or weaker as-
sumptions on shape and or motion to make the problem
solvable [3, 6, 28, 29, 70]. With the rise of modern segmen-
tation models, many works have studied category-specific
articulation and rigidity priors, focusing on object cate-
gories such as humans [17, 49, 52, 64], animals [60-62, 66],
and vehicles [18, 37]. The generality of such methods is
limited by their category-specific nature. Recently, several
works have also begun to leverage trained neural networks
as priors for 4D understanding in a more freeform man-
ner [30, 65, 68, 69]. However, these methods involve ei-
ther training a network [65, 69] or optimizing specific lay-
ers of an existing network [30, 68], making it difficult to
integrate newer models into the pipeline. Our method takes
the strategy further and integrates pretrained models in a
completely modular manner, fully unleashing their gener-
alization capabilities and allowing for seamless integration
of newer models. Note that various recent works have also
studied 4D reconstruction in an optimization-based frame-
work [15, 32, 35, 57, 59]. However, these methods have
additional rendering capacities and focus on rendering met-
rics, while we focus on recovering high-quality geometry.

Visual Foundation Models. In recent years, a number
of visual foundation models have been developed, achiev-
ing remarkable performance on tasks like depth estima-
tion [5, 20, 23, 44, 63], detection and segmentation [12,
27, 36, 46], human parsing [25], surface normal estima-
tion [4, 14], few-view reconstruction [34, 58], and point
tracking [21, 22, 31]. Our insight is that nearly all of these
models have the potential to contribute towards holistic 4D
understanding, and harnessing them in a unifying frame-
work can advance the state-of-the-art in tasks such as non-
rigid structure from motion. To this end, we integrate the
following pretrained models in Uni4D: UniDepthv2 [45]
for geometry initialization, CoTracker3 [22] for correspon-
dence initialization, and a collection of Recognize Any-
thing Model [67], ChatGPT [1], Grounding-SAM [27, 36],
and DEVA [9] for dynamic object segmentation. Through
multi-stage optimization with a few regularizing priors, we
are able to use these models to extract accurate pose and 4D
geometry from monocular video.

3. Method

In this paper, we are interested in recovering 4D geome-
try and camera parameters from a monocular casual video.
Our model is built on the intuition that the 2D visual cues
from the video can be seen as perspective projections of 4D
geometry and motion, where the video depth represents a
projection of 4D geometry, 2D dense tracking corresponds
to a projection of 4D motion, and segmentation reflects a
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Figure 3. Given a casually captured video, Uni4D exploits visual foundation models to extract dynamic segmentation, video depth, and
motion tracks. Static geometry and poses are obtained through tracklet-based structure-from-motion along with camera motion priors.
Dynamic geometry is improved through nonrigid bundle adjustment and scene motion priors. A final fusion densifies geometry to obtain
high quality 4D reconstruction.

projection of the 4D dynamic object silhouette. We propose
a novel, training-free, foundation-model-based energy min-
imization scheme that leverages visual cues to jointly infer
camera poses, geometry, and motion, enabling generaliza-
tion across diverse videos.

3.1. Pretrained Visual Cues

We first exploit foundation models to extract visual cues,
including dynamic segmentation, video depth, and motion
tracking. All of the models are pre-trained on large and
diverse datasets and exhibit strong generalization abilities.

Video Segmentation. Recognizing and segmenting dy-
namic objects is crucial for 4D scene understanding. We
leverage the latest advancements in video semantic segmen-
tation and tracking to estimate dynamic objects over time.
First, we use RAM [67] to identify semantic classes in the
video. These classes are then filtered through GPT-40 [1]
to exclude static and background elements (e.g., buildings,
poles), retaining only dynamic objects (e.g., humans, ani-
mals, vehicles). Next, Grounding-SAM [27, 36] performs
segmentation at each keyframe, and DEVA [9] tracks these
segments over time, resulting in accurate dynamic video
segmentation {My } 7.

Dense Motion Tracking. We use dense pixel tracking to
establish correspondences over time, which serve as mo-
tion cues to assist inference of geometry reconstruction and
dynamic object 3D motion. Unlike traditional 4D recon-
struction methods relying on optical flow [65, 68], dense
motion tracklets yield more correspondence pairs across
large viewpoints and structural changes. Pixel tracking also
outperforms sparse matching in density and surpasses flow
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propagation in robustness, making it ideal for dynamic 4D
reconstruction.We utilize Co-TrackerV3 [22] for its robust-
ness, as it employs a 4D cost volume with an attention
mechanism to track 2D points through occlusions, recently
proving to be effective for dynamic neural rendering. We
apply Co-Tracker bi-directionally on a dense grid every 10
frames to ensure thorough coverage. We filter and classify
tracklets using segmentation masks yielding a set of cor-
respondent point trajectories {Z; € RT*2}K - at visible
time steps determined by Co-Tracker.

Video Depth Estimation. Monocular depth reasoning,
while insufficient as a standalone tool for complete 4D
geometry recovery, provides strong geometry initialization
cues. In our model, we use UniDepthV2 [45], a monocular
depth estimation network, to estimate an initial depth map,
{D¢}L_,, and initial camera intrinsics, Kinit.

3.2. Energy Formulation

We now describe the energy formulation of our pro-
posed dynamic 4D reconstruction framework. Let M =
M}, D = {D¢}, Z = {Zs}, be the input dy-
namic segmentation, monocular depth, dense motion tra-
jectory extracted from the input video Z = {I;}]_. For-
mally, our goal is to obtain camera parameters C, namely
poses 7 and intrinsics K, and a set of 4D point clouds
P containing both dynamic and static parts separately as
P = {Pstatic, Payn}. Here, Pgatic does not change over
time and Payn = {pr € RT*3}; is a temporally vary-
ing point cloud, where each py is a dynamic point trajec-
tory. We represent the camera poses as rigid transforms
T = {&, € SE(3)}L,, and parameterize the rotations as
50(3) rotation vectors as a minimal representation for easy
optimization. We assume all frames share the same intrinsic
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Figure 4. Qualitative results of 4D reconstruction on the DAVIS [43] dataset. CasualSAM [68] suffers from slanted geometry, and
Monst3R [65] has unclear geometry and does not resolve conflicts from multiple views (note the wall in the bird’s-eye view). Both Casu-
alSAM and Monst3R lack clean dynamic reconstruction and segmentation. Uni4D achieves a realistic layout, thanks to joint optimization,
and provides accurate dynamic segmentation and reconstruction by leveraging foundation visual models as cues.

matrix K where we optimize focal lengths f, and f,. We
formulate the 4D joint reasoning problem as minimization
of the following energy function:

EBA (C7 Pstatic) +ENR (den> +Emotion (den) +Ecam (T)

1
where Epa(C, Pgtatic) is a bundle adjustment term that
measures the discrepancy between static-region correspon-
dences and the static 3D structure Pga¢;c through perspec-
tive reprojection. Exg (Payn) is a non-rigid structure-from-
motion energy term that measures the disagreement be-
tween the dynamic point cloud and their tracklet correspon-
dences, Ecam(7T) is a regularization term on the camera
motion smoothness, and Enotion (Payn) is a regularization
term on the dynamic structure and motion. Each energy
term is involved in different stages of the optimization pro-
cess, which will be described in Sec. 3.3.

Static Bundle Adjustment Term. The bundle adjustment
energy Epa(C, Pgtatic) measures the consistency between
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the pixel-level correspondences and the 3D structure of
static scene elements. Given the input pixel tracks Z =
{Z}} and video segmentation M, we filter all tracks corre-
sponding to static areas and minimize the distance between
the projected pixel location and the observed pixel location:

Epa(C, Patatic; Z,M) = Y > wicellzee—mk(Pr. &) 2
zrEM t
2

where zj, ; is the k-th 3D point’s corresponding pixel track’s
2D coordinates at time ¢, wi ¢ € {0, 1} is a visibility indi-
cator and 7k is the perspective projection function.

Non-Rigid Bundle Adjustment Term. For dynamic ob-
jects, we impose a nonrigid bundle adjustment term,
ENgr(Pdayn), which measures the discrepancy between the
dynamic point cloud and pixel tracklets. Here, each pixel
tracklet corresponds to a dynamic 3D point sequence,
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Figure 5. Qualitative results on Bonn dataset. Both CasualSAM
and MonST3R have trailing artifacts and incorrect dynamic esti-
mations. Uni4D provides clear dynamic and static geometry.

{Pk,. }+, optimized for each observed tracklet:

ENR(PayniC, 2, M) = > ) wicel|zna—mk (Pr.t: €)l2
zrEM t
3)

where py, ¢+ € R? is the k-th dynamic point’s location at ¢.

Camera Motion Prior. Considering that our input is a
video, we incorporate a temporal smoothness prior on cam-
era poses that penalizes sudden changes in relative pose:
& i1 = §;+11 - &,. We reweight this term based on the
magnitude of the relative motion: intuitively, if the relative
motion is large, we penalize change rates in relative mo-
tion less; if the relative motion is small, we apply a higher
penalty on change rate. Formally, we have:

Eeam(T) = Z Erot(Ric1t041) + Z Eirans(ti—1,4,141)
t ¢
“)

2|[rad(Re—¢q1)—rad(Re—14) |l

[[rad(Re—1-¢)[[+llrad(Re—e41) ]l
2t —teo1e|l L
and Etrans(ttfl,t,tJrl) = MeoioelFtemerall? rad converts

the rotation matrix into absolute radians.

where Eroi(Ri_1444+1) =

Dynamic Motion Prior. FEyotion(Payn) is a regulariza-
tion term that encodes the characteristics of the dynamic
structure. It contains two prior terms that are used to reg-
ularize the dynamic structure, both of which have demon-
strated effectiveness in previous work [39, 50]:

Emotion (den) = Earap (den) + Esmooth(den)~ (5)

Earap is an as-rigid-as-possible (ARAP) [50] prior that pe-
nalizes extreme deformations that compromise local rigid-
ity. Specifically, we obtain the nearest neighbors of each
dynamic control point k by applying KNN over the other
tracks and enforce that the relative distances between these
close-by pairs do not undergo sudden changes:

Earap = Z Z ka,t”d(pk,tv pm,t)_d(pk,t—i-la pm,t+1)||2
t (k,m)
(6)
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where d(-, ) is the L2 distance and Wy ¢ = 1 if all relevant
points are visible.

Fsmooth 1s a simple smoothness term that promotes tem-
poral smoothness for the dynamic point cloud:

Esmooth = E § Wkt

t pr€Payn

)

|pk,t — Pk,t+1 ||2~

Despite simplicity, both motion terms are crucial in our
formulation, as they significantly reduce ambiguities in 4D
dynamic structure estimation, which is highly ill-posed.
Unlike other methods, we do not assume strong model-
based motion priors, such as rigid motion [37], articulated
motion [61], or a linear motion basis [57].

3.3. Inference

Directly minimizing the energy defined in Eq. 1 is non-
trivial, as our energy function is highly non-linear and in-
volves millions of free variables. To address this, we de-
veloped a three-stage optimization pipeline, enabling us to
minimize the energy and estimate the scene variables in a
divide-and-conquer fashion.

Stage 1: Camera Initialization. We start by initializing
camera parameters. Combining video depth estimation D
and dense pixel motion Z allows us to establish 2D-to-3D
correspondences. This allows us to initialize and tune C
by minimizing the following energy function with respect
to camera parameters only. Specifically, we can unproject
each video frame’s depth at time ¢ back to 3D and minimize
the following energy function:

min 3 3 e —mc(mic (21,0 D€, €0 8)

(') 2 €~ M

where 7r;<1 is the unprojection function that maps 2D co-
ordinates into 3D world coordinates using estimated depth
D;. We perform this over all pairs within a temporal sliding
window of 5 frames, producing a good initial pose estimate
as shown in Tab. 4. Given camera initialization é we di-
rectly unproject our depth prediction into a common world
coordinate system, which provides an initial 4D structure
P. This is used as initialization for later optimization.

Stage 2: Bundle Adjustment. Our second stage jointly
optimizes camera pose and static geometry by minimizing
the static component-related energy in a bundle adjustment
fashion. Formally speaking, we solve the following:

min EBA (Ca Pstatic; Z7 M) + Ecam (T)

» L static

9

By enforcing consistency with each other, this improves
both the static geometry and the camera pose quality. We
perform a final scene integration by unprojecting correspon-
dences into 3D using improved pose and filtering outlier
noisy points in 3D.
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Figure 6. Qualitative results of 4D reconstruction on DAVIS dataset. CasualSAM [68] distorts the room geometry as evident from
the bird’s eye view. Dynamic elements have inconsistent geometry over time. MonST3R [65] has noisy static geometry in the room’s far
corner and incomplete dynamic object geometry evident in the green highlight. Uni4D has the cleanest dynamic object reconstruction and

segmentation results, with geometrically accurate

Stage 3: Non-Rigid Bundle Adjustment.

timated camera pose, our third stage focuse
dynamic structure. Note that we freeze cam
in this stage, as we find that incorrect geomet
evidence often harm camera pose estimation 1
prove it. Additionally, enabling camera pos:
introduces extra flexibility in this ill-posed p
ing robustness. Formally speaking, we solve

min ENR(den; C, Z, M) + Emotion (7

dyn

We initialize Pgqy, using video depth and

camera pose from Stage 2. We scale Egmooth anu marap
with constants 10 and 100 respectively which we found em-
pirically led to better dynamics. This energy optimization
might still leave some high-energy noisy points, often from
incorrect cues, motion boundaries, or occlusions. We filter
these outliers based on their energy values in a final step.

Fusion. From our energy minimization, we acquire a
semi-dense dynamic and static point cloud along with cam-
era parameters. To further densify the point cloud, enabling
each pixel to correspond to a 3D point, we perform depth-
based interpolation by computing a scale offset. Details can
be found in the supplementary.

To unify our outputs into a consistent 4D representation,
we use our camera parameters and static masks to project
the aligned depth maps into world coordinates. To handle
noisy depth values at boundaries, we create an edge mask
filter by thresholding gradients of the depth maps.

This process enables us to update the depth value for
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CasualSAM MonST3R

Figure 7. Qualitative results of 4D reconstruction on Sintel
dataset. We highlight and contrast performance on (1) dynamic
objects and (2) geometry on planar surfaces.

each high-confidence pixel, which we can then reproject
into 3D space to obtain the final dense dynamic geometry
reconstruction result, as shown in Fig. 1 and Fig. 3.

4. Experiments

Uni4D estimates camera pose, depth, and 3D motion from
a single video. We perform experiments evaluating its per-
formance with respect to baselines on these tasks.

4.1. Implementation Details

For optimization, we use the Adam optimizer with Re-
duceLROnPlateau and EarlyStopping in PyTorch [26, 42].
We perform 600 iterations per sliding window in stage 1,
2000 iterations in stage 2, and 1000 iterations in stage 3.



Sintel

TUM-dynamics Bonn

Category Method

ATE | RPEtrans | RPErot] |ATE | RPE trans | RPErot | |ATE | RPE trans | RPE rot]

Pose only DPVO*[54] 0.171 0.063 1.291 0.019 0.014 0.406 | 0.022 0.014 0.913
LEAP-VO*[8] 0.035 0.065 1.669 | 0.025 0.031 2.843 | 0.037 0.014 0.844

Joint depth Robust-CVD[30] 0.368 0.153 3.462 | 0.096 0.027 2.590 | 0.085 0.018 0.803
& pose  CasualSAM[68] 0.137 0.039 0.630 | 0.036 0.018 0.745 | 0.024 0.014 0.849
Monst3R[65] 0.108 0.043 0.729 | 0.108 0.022 1.371 ] 0.023 0.011 0.807

Uni4D 0.110 0.032 0.338 | 0.012 0.004 0.335 | 0.017 0.010 0.818

Uni4D* 0.092 0.033 0.141 | 0.012 0.004 0.331 | 0.016 0.010 0.817

Table 1. Camera Pose Evaluation on Sintel, TUM-dynamic, and Bonn datasets. We bold and underline the best and second best results

respectively. * indicates known camera intrinsic.

Sintel Bonn KITTI
Alignment Category  Method Abs Rel | 6<1.25 1|Abs Rel | 6<1.25 t|Abs Rel | § <1.25 1
Sinelo.t Metric3D[19] 0.205 71.9 0044 985 | 0.039 98.8
‘““fi;t;ame Depth-pro[5] 0280 605 | 0.049 0080 942
Unidepth[44] 0.198 728 0040 985 | 0.038 98.8
Per-sequence
scale & shift Video depth  DepthCrafter{20]  0.231 69.0 0.065 976 | 0.112 88.4
Robust-CVD[30] 0358  49.7 0.108 89.8 0.182 72.9
Joint video depth CasualSAM[68] 0292  56.9 0069 966 | 0.113 88.3
& pose Monst3r[65] 0358  52.1 0060 950 | 0.085 91.9
UnidD 0216 725 | 0.038 983 0.098 89.7
Per-sequence Joint depth & pose Monst3r[65] 0344 559 0.041 982 | 0.089 91.4
scale Joint depth & pose UnidD 0289  64.9 0.038 983 | 0.086 933

Table 2. Video depth evaluation on Sintel, Bonn, and KITTT datasets. We bold and underline the best and second best results respectively.

We initialize the learning rate at 1 x 103 for stage 1, and
1 x 10~ for stages 2 and 3, reducing all to 1 x 10~4. Our
entire framework takes roughly 5 minutes for a 50-frame
video on a RTX A6000 GPU. We include a detailed run-
time breakdown in the supplementary. We run all baselines
on the datasets using their official implementations and hy-
perparameters. Co-Trackers [22] are initialized at a dense
50x50 grid, with a 75x75 grid for Sintel to handle its large
camera perspective change. All optimization hyperparame-
ters are kept the same for all runs on all datasets.

4.2. Pose Estimation

Baselines. We compare with several recent methods for
pose estimation in dynamic scenes. LEAPVO [8] and
DPVO [54] are learning-based visual odometry methods.
Robust-CVD [30] optimizes for pose and depth deforma-
tion through an SFM pipeline. CasualSAM [68] further im-
proves on the idea by directly finetuning network weights
along with a novel uncertainty formulation. Monst3R [65]
is a very recent work that fine-tunes DUSt3R [58] for 4D
reconstruction through PnP [33].

Benchmarks and metrics. We evaluate pose estimation
on three dynamic datasets: Sintel [7], TUM-dynamics [51],
and Bonn [40]. We follow LEAP-VQO’s evaluation split for
Sintel and use all videos from TUM-dynamics and Bonn.
Following MonST3R [65], we subsample every 3 frames
from the first 270 frames from TUM-dynamics to save com-
pute. We follow the standard pose evaluation process of
aligning camera poses with Umeyama alignment [56]. We
report Absolute Translation Error (ATE), Relative Transla-
tion and Rotation Error (RPE trans and RPE rot).

Results. As reported in Tab. 1, Uni4D achieves competi-
tive results across all metrics and datasets, highlighting the
generalizability and performance of our pipeline. Uni4D is
flexible to the availability of camera intrinsics, showing fur-
ther improvement with known camera intrinsics. Training-
based approaches such as LEAP-VO achieves good results
on synthetic dataset like Sintel but does not generalize well
to real-world datasets. Our method matches performance
with MonST3R [65] on Sintel and achieves significantly
better results on real-world datasets even compared to meth-
ods using ground-truth intrinsics.



4.3. Video Depth Evaluation

Baselines. For video depth accuracy evaluations, we fo-
cus on the top performing metric depth estimators, namely
Metric3Dv2 [19], Depth-Pro [63], DepthCrafter [20] and
Unidepth [44]. Metric depth estimators are trained without
scale and shift alignment, making them strong baselines for
video depth estimation. We also include the same baselines
as our pose evaluations for joint 4D modeling approaches,
namely CasualSAM [68], RCVD [30], and MonST3R [65].

Benchmarks. We evaluate video depth estimates on Sin-
tel [7], Bonn [40] and KITTI [16]. We follow standard
video depth evaluation protocols [20] of aligning global
shift and scale to predicted video depthmaps. We report the
absolute relative error (Abs Rel) and percent of inlier points
(6 < 1.25). All methods are aligned in disparity space using
the same least-squares alignment. We additionally report
scale-aligned depth estimates similar to MonST3R.

Results. By leveraging the strong performance of single-
frame metric depth estimation models, Tab. 2 shows Uni4D
achieves competitive depth estimation results, with supe-
rior performance among joint depth and pose methods, and
closely matching the performance of single-frame depth es-
timation models on some datasets. With per-sequence scale,
our model produces more accurate depth estimates across
all datasets compared to recently released MonST3R. Our
method closely retains depth estimation accuracy of under-
lying Unidepth depthmaps, while significantly improving
its depth consistency shown in Sec. 4.5.

4.4. Qualitative

We further show qualitative results of our reconstructions
on the DAVIS [43] dataset. We apply MonST3R’s own
confidence-guided fusion for their reconstruction. We fuse
casualSAM’s depthmaps with dynamic masking by thresh-
olding its uncertainty prediction to output 4D reconstruc-
tion. We use highlights to indicate dynamic objects at
different timesteps. Throughout our qualitative results in
Figs. 4,5,6,7, CasualSAM produces warped geometry and
poor dynamic segmentations. MonST3R produces poor ge-
ometry in far regions and noisy dynamic masks and shapes.
Our model produces the cleanest dynamic segmentations,
along with the best dynamic and static geometry.

4.5. Ablation Study

We ablate our multi-stage optimization in Tab. 4, high-
lighting the importance of each stage. Joint 4D optimiza-
tion adds complexity that requires strong initialization for
optimal convergence. Stage 1 introduces drift, which Stage
2 rectifies, resulting in superior final pose estimates.
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Figure 8. Depth Consistency. Direct fusion of Unidepth [44]
predictions causes misaligned scene geometry visible as a layered
wall in bird’s-eye view, and jittering dynamic motion. Through
motion priors and alignment, Uni4D produces a thin, crisp wall
structure and smooth dynamic motion.

Sintel
Method SC|l 65¢c<0.011 d5¢c<0.051
Unidepth [44]  0.109 31.8 76.8
UnidD 0.043 69.3 88.1

Table 3. Video depth consistency on Sintel. Uni4D improves
Unidepth in consistency.

Sintel
Method ATE| RPEtrans| RPErot]
Uni4D (stage 1 only)  0.150 0.051 0.551
Uni4D (stage 2 only)  0.587 0.193 4.12
Uni4D (full) 0.110 0.032 0.338

Table 4. Multi-stage Ablation. We evaluate pose estimation re-
sults on Sintel for both stage 1 and stage 2.

Directly reprojecting Unidepth depth maps leads to flick-
ering geometry. We ablate our fused depthmap quantita-
tively in Tab. 3, showing that Uni4D significantly improves
consistency using Self-Consistency (SC) metrics [24]. SC
measures depth errors between estimated and reprojected
depth maps in static regions. Furthermore, we qualitatively
show the effectiveness of Uni4D in rectifying Unidepth in-
consistencies in Fig. 8. Our reconstruction achieves much
better geometric and temporal consistency over Unidepth.
Please refer to the supplementary for more ablative results
regarding choice of foundation models.

5. Conclusion

This paper presents Uni4D, a framework unifying visual
foundation models and structured energy minimization for
dynamic 4D modeling from casual video. Our key insight is
to optimize a 4D representation that aligns with visual cues
from foundation models while following motion and geom-
etry priors. Results show state-of-the-art performance with
superior visual quality on Sintel, DAVIS, TUM-Dynamics
and Bonn datasets, without any retraining or fine-tuning.
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