LeaPformer: Enabling Linear Transformers for Autoregressive and
Simultaneous Tasks via Learned Proportions

Victor Agostinelli'! Sanghyun Hong' Lizhong Chen'

Abstract

A promising approach to preserving model per-
formance in linearized transformers is to employ
position-based re-weighting functions. However,
state-of-the-art re-weighting functions rely heav-
ily on target sequence lengths, making it diffi-
cult or impossible to apply them to autoregres-
sive and simultaneous tasks, where the target
and sometimes even the input sequence length
are unknown. To address this issue, we propose
Learned Proportions (LeaP) and LeaPformers?.
Our contribution is built on two major compo-
nents. First, we generalize the dependence on
explicit positional representations and sequence
lengths into dependence on sequence proportions
for re-weighting. Second, we replace static posi-
tional representations with dynamic proportions
derived via a compact module, enabling more
flexible attention concentration patterns. We eval-
uate LeaPformer against eight representative ef-
ficient transformers on the Long-Range Arena
benchmark, showing that LeaPformer achieves
the best quality-throughput trade-off, as well as
LeaPformer to Wikitext-103 autoregressive lan-
guage modeling and simultaneous speech-to-text
translation for two language pairs, achieving com-
petitive results.

1. Introduction

Transformers (Vaswani et al., 2017) are dominant in the nat-
ural language processing (NLP) solution space, demonstrat-
ing state-of-the-art performance for a range of applications.
With the advent of widely accessible large language models
(LLMs), transformers as a class of models are being studied

'Oregon State University, OR USA. Correspondence to:
Lizhong Chen <chenliz@oregonstate.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

https://github.com/OSU-STARLAB/
LeaPformer

61

Transformer
60 10.77 GB Better Tradeoff
LeaPformer-1.5%
< Skyformer Reformer 1.60 GB
S 59 y
> 3.15GB 299 GB LeaPformer-0.2%
] , 1.42 GB
5 W
8 58 ’
)
E Bigbird
S 49768 RopE
a 1.24 GB
o > Performer cosFormer
8 2.15GB 138 GB
f; 56 Linear
@ Transformer
& 1.04 GB
E
S 55
Linformer
54 1.89GB
53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Training Speed (itr/sec)

Figure 1. Contrasting accuracy-throughput trade-offs between
LeaPformers and baselines. Throughput for 4k sequence length
tasks (x-axis) vs. average accuracy score (y-axis) across the five
tasks in the Long-Range Arena benchmark. The memory footprint
of each mechanisim is specified in labels and represented by circle
size. LeaPformers provide the best average inference accuracy-
throughput trade-off while achieving the second best overall score
with only up to a 1.5% increase to parameter count.

more closely than ever. Unfortunately, the quadratic com-
plexity of the attention mechanisms of typical transformers
limits the lengths of the sequences that they can process,
rendering them sub-optimal or even impossible to apply for
tasks with long sequences.

Naturally, an active area of possible improvement for clas-
sical transformers are efficient attention mechanisms that
reduce the sometimes prohibitive quadratic run-time and
memory complexity of softmax attention with respect to
sequence lengths. Many efficient transformer variants
have been proposed, including both sub-quadratic attention
mechanisms, usually with key assumptions or experimental
bounds surrounding their construction, and truly linear atten-
tion mechanisms with no prior environmental assumptions
(Katharopoulos et al., 2020; Choromanski et al., 2020; Peng
et al., 2021; Chen et al., 2021; Qin et al., 2022b). While
the aforementioned linear transformers are often effective
for specific tasks, they tend to exhibit varying degrees of
performance degradation when generalized.

https://github.com/OSU-STARLAB/LeaPformer
https://github.com/OSU-STARLAB/LeaPformer

LeaPformer: Enabling Linear Transformers via Learned Proportions

To address this issue, re-weighting functions have been
recently formalized (Su et al., 2022; Qin et al., 2022b)
in linear transformers and serve to concentrate attention
scores. Although promising, state-of-the-art position-based
re-weighting functions rely on explicit token positions and
sequence lengths (Qin et al., 2022b). This reliance on know-
ing the sequence length beforehand make it difficult to apply
those re-weighting functions and linear transformers to au-
toregressive tasks without specialized solutions (Agostinelli
& Chen, 2023) and renders it impossible to apply them
to simultaneous tasks. Furthermore, existing re-weighting
functions’ reliance on explicit positional representations usu-
ally produce static attention concentration patterns, which
can severely limit their generalizability when an attention
concentration pattern is ill-suited to a given task.

To solve this reliance on explicit positional representations
and enable linear transformers for a wider range of tasks, we
propose a novel approach that we refer to as Learned Pro-
portions (LeaP) and call models we apply it to LeaPformers.
This contribution is composed of two major aspects: gen-
eralization to proportions and learned behavior. First, we
generalize the dependence on explicit positional represen-
tations and sequence lengths into an intuitive dependence
on proportions of a sequence for re-weighting, removing
theoretical dependence on sequence lengths. Second, in-
stead of employing static positional representations, we
construct and deploy a compact module that dynamically
derives sequence proportions for a given token during train-
ing and inference. These straightforward, but critical, contri-
butions ultimately remove any reliance that current position-
based re-weighting functions may have on sequence length,
enabling them for tasks where the sequence length is not
known beforehand (and cannot be estimated) and/or where
attention concentration patterns are more complex.

To validate our proposed approach, we primarily test LeaP-
former against cosFormer, the state-of-the-art position-
based linear transformer, by adapting cosFormer’s cosine-
based re-weighting function via LeaP. We also evaluate and
compare with eight other representative attention mecha-
nisms on the Long-Range Arena (LRA) benchmark (Tay
et al., 2021), a competitive benchmark for efficient atten-
tion mechanisms on long sequences. In addition, we val-
idate LeaPformers on autoregressive language modeling
on Wikitext-103b (Merity et al., 2016) and on multiple
language pairs for simultaneous speech-to-text translation
(SimulST) (Ma et al., 2020c). When compared to popular,
previously proposed efficient attention mechanisms on the
LRA benchmark, the proposed LeaPformer achieves the
best accuracy-throughput trade-off, balanced performance
across tasks, small memory footprint, and notably beats
cosFormer’s inference quality (see Figure 1). During au-
toregressive language modeling, LeaPformer achieves the
lowest perplexity out of a limited set of efficient attention

mechanisms, beating out the next closest mechanism by
0.13 perplexity on the test set. Finally, when applied to
simultaneous translation, LeaPformer demonstrates compet-
itive results with a reasonable accuracy-throughput trade-off
compared to classical softmax attention for critical ablations,
with variations achieving quality loss of only 0.26 BLEU-4
(Post, 2018) for English to German and 0.23 BLEU-4 for
French to English while being completely linear in complex-
ity. To our knowledge, this is the first time that an explicit
position-based re-weighting function for linear transformers
is successfully applied to simultaneous tasks.

2. Background and Motivation

Here we provide an overview of the background knowledge
required to understand our work and motivate LeaPformers.

2.1. Softmax Attention Mechanisms

Multi-headed self-attention in transformers (Vaswani et al.,
2017) can generally be described as follows:

T
Qh%)‘/h)]

cag(2)Wour (2)

where query is Qn = 2Wy 1, key Kj, = Wy, 1, and value
Vi, = aW, p,, with € R"*modet being the input sequence
for each attention head that divides the model embedding
space dy,ode; iNto some dpeqq (denoted as d hereafter for
simplicity) and W, ;, € RmoderXd Win € RémoactXd gnd
Wun € Rémodet Xd Tp cases where the concatenation of the
attention head outputs differs in dimensionality from d,,ogei,
an optional output projection layer is commonly applied via
Wous € RdoutXdmodet - For long sequences, the quadratic
complexity of the mechanism in Equation 1 can prove to be
a throughput bottleneck during training and inference.

ap(x) = softmax(

A(zx) = concat(ay(x), az(x), ...

2.2. Efficient and Linear Transformers

Efficient and linear transformers have emerged over the
past few years as an active area of research for particularly
resource or latency-constrained environments, exhibiting
notable inference speedups and smaller memory footprints.
These transformer variants focus on alternative attention
mechanisms that reduce the quadratic complexity of typi-
cal softmax attention. A plethora of efficient transformer
options exist that can be classified into a few groups: sliding-
window or localized attention mechanisms (Parmar et al.,
2018; Dai et al., 2019; Wu et al., 2020; Beltagy et al., 2020),
pattern or sparsity-based attention mechanisms (Child et al.,
2019; Zaheer et al., 2020), kernel-based and truly linear
attention mechanisms with no priors (Katharopoulos et al.,
2020; Choromanski et al., 2020; Peng et al., 2021; Chen
et al., 2021; Qin et al., 2022b), and some unique outliers
(Wang et al., 2020b; Kitaev et al., 2020).

LeaPformer: Enabling Linear Transformers via Learned Proportions

While many approaches linearize the computations, truly-
linear transformers, such as the kernel-based substitutions
for the softmax mechanism, do not make any prior assump-
tions of the environments (e.g., no assumed sparsity or local
dependencies). This can be described via row-wise outputs
(represented by ay, ;(x)) for each attention head in Equa-
tions 3, 4, and 5, with S corresponding to any similarity
function that transforms the product of the query and key
matrices. If S becomes exp, Equation 3 is an accurate rep-
resentation of softmax attention. If we decompose S into
S, and Sy, as shown in Equation 4, computation can be
reordered such that the attention complexity reduces from
O(N1Nad) in Equation 3 to O(N1d?+ Nad?) in Equation 5.
N corresponds to the sequence length of the query matrix
and N corresponds to those of the key and value matrices (a
generalization for encoder-decoder cross-attention). When
N or Ns are significantly larger than d, this rearrangement
of the attention calculation leads to linear complexity with
respect to the sequence length.

Z i)
.7
ahz Z Sth)V,j (3)

decompose(S(Qh, K) = 54(Qn,)Sk(K} J) @

Sq(Qn.i) (Sk(KJ ;) Vi ;)
Sq(Qni) 32; Sk(K} ;)

&)

api(x) = Z

2.3. Position-Based Re-weighting Functions

While reducing the computational complexity, linearizing
multi-headed self-attention leads to varying degrees of de-
graded model performance. To address this shortcoming,
re-weighting functions have been recently proposed. They
introduce an additional function to augment S(Q}, ;, K ,7; i)
with the goal of concentrating/adjusting the probability dis-
tribution of the normalized Q, K} (Qin et al., 2022b). Re-
weighting functions o (3, j) are commonly based on token
positions, and we multiply as shown in Equation 6:
S(Qni K7l ;) = Sq(Qni)Sk(KJL o (i) (6)
Note that even though o (4, 5) is placed at the end of the
equation and multiplied, that particular placement and op-
eration can be arbitrary. For example, placing o (4, j) in
between or before the transformed query and key matrices
would also be valid as a re-weighting function application.
o(i,j) can also map to any number of possible concentra-
tion methods, such as a matrix modifying S(Qn.i, K. ;) by
multiplication or element-wise operations (e.g. addition).

Elaborate position-based encoding schemes (Raffel et al.,
2020; Wang et al., 2019; Wang & Chen, 2020; Liutkus et al.,

2021; Press et al., 2022), using absolute or relative token
positions, have advanced the scheme utilized by the ini-
tial work (Vaswani et al., 2017) and many provide what
can be intuited as position-based re-weighting functions.
However, those schemes are specifically designed for a
S(Qn,i, K }? ;) formulation and do not work for the decom-

posed Sy (Qn.i)Sk(K g ;) linearized formulation.

Rotary Positional Embeddings (RoPE) (Su et al., 2022),
with some minor modifications, is closest to being a true
position-based re-weighting function for linear transform-
ers by using relative token positions®. However, RoPE is
unaware of the total sequence length when it is applied,
and this can cause potential problems. For example, RoPE
would treat two tokens that are 100 tokens apart in a 1k
length sequence and a 200 length sequence the same, where
the actual relationship of the two tokens could vary dras-
tically between the two sequences. This lack of sequence
length awareness renders RoPE’s re-weighting ability in-
herently limited, especially for sequences that exhibit more
than the aforementioned locality characteristic. We elabo-
rate on RoPE’s construction (and its linear attention variant
tested in this paper) in Appendix A.6.

Recently introduced, cosFormer (Qin et al., 2022b) is the
state-of-the-art in position-based linear transformers that
utilizes sequence length in addition to absolute token posi-
tions. cosFormer’s proposed mechanism, with common-
sense modifications (Agostinelli & Chen, 2023), is de-
scribed by Equation 7. Here, S; and S}, are set to ReLU
and their cosine-based re-weighting function is distributable
via Ptolemy’s method for expanding trigonometric expres-
sions. Intuitively, when the positions ¢ and j of two tokens
are closer, the cosine’s response is increased, emphasizing
locality. Conversely, when the two positions are far apart,
the response approaches zero, representing maximum atten-
uation via re-weighting.
T, 1

S Q@na)Sk(KL eos(5 (3 = 7))

)

Unlike RoPE, cosFormer can recognize differences in to-
ken distances relative to the sequence length, re-weighting
more dynamically in practice. Using our previous example,
cosFormer would treat two tokens that are 100 positions
apart differently in a 1k length sequence versus a 200 length
sequence, an intuitive improvement.

S(Qh,i7 K}?y)

2.4. Motivation of Our Study

Unfortunately, the reliance on sequence length makes it
difficult to apply certain re-weighting functions towards au-

3Some re-weighting functions, like Alibi (Press et al., 2022),
are not covered in detail because we consider them superseded by
other options or they are not obviously usable for linear attention
because they are not decomposable like RoPE.

LeaPformer: Enabling Linear Transformers via Learned Proportions

toregressive and simultaneous tasks. For instance, it can
be challenging to apply position-based re-weighting func-
tions to autoregressive tasks (e.g. text-to-speech translation)
where target sequence lengths are usually not known be-
forehand. Although some effort has been made to address
these issues (Liu et al., 2022; Agostinelli & Chen, 2023),
mostly via target sequence length prediction based on the
full input sequence, proposed solutions are prone to some
level of approximation error. Furthermore, none of the prior
approaches has discussed the impossibility of applying them
to simultaneous tasks, where even the full input sequence is
not available at decoding time-steps.

Moreover, the static nature of the state-of-the-art re-
weighting functions can cause issues from an inference
quality standpoint. cosFormer’s re-weighting function fo-
cuses on encouraging locality, but this can be problematic
when locality bias is not important to a given application.
ROPE and similar schemes suffer from the same problem.
In such instances, dynamic flexibility in the re-weighting
function to encourage strong, long-range connections would
be preferred. An example of when this flexibility may be
desirable can be found in a typical translation task, where
languages like German that tend to exhibit subject-object-
verb (SOV) structures as opposed to subject-verb-object
(SVO) structures in languages like English may require di-
verse attention patterns and long-range dependencies. A
verb near the end of a German sentence may attend strongly
to the subject near the beginning of the sentence, but static
re-weighting functions like the one employed by cosFormer
would likely have trouble enabling this relationship.

3. LeaPformer

We propose a novel re-weighting function and method for
constructing such functions for linear transformers that re-
solves the issues in applying them to many autoregressive
tasks and enables their application to simultaneous tasks. To
this end, we first generalize the reliance on absolute token
position and sequence length into a more direct, intuitive
reliance on the relative placement of a token in the sequence
which we refer to as a proportion. This generalization al-
lows for easier analysis of re-weighting function behavior
and removes theoretical dependence on sequence length.
Second, we propose, construct, and deploy a compact mod-
ule to learn proportional representations derived from each
token, a technique that we call Learned Proportions (LeaP)
and call the models it is applied to LeaPformers. LeaP-
formers can be applied to tasks where sequence lengths are
unknown and, more importantly, capture dynamic attention
patterns over position-based re-weighting functions.

3.1. Proportion-Based Re-weighting Functions

We introduce proportion-based re-weighting in Equation 8,
where P, and P, represent proportions of sequences from
which queries and keys are derived from and o (P, ;, Py ;)
represents the re-weighting function with a reliance on the
provided proportions. Technically, P, and P} can be set
in any manner, but for the most straightforward proportion-
based re-weighting implementations, they would correspond
to the proportion of a sequence that a token is placed (e.g.,
at 20% of the sequence).

Pq:[Pq,lv Pq727 P‘LNI]’ 0< Pq,igl
Py =[Pi1, Pea, ... Prn,], 0<P; <1 (8)

S(Qnir Kit ;) = Sq(Qn.i) Sk (KL ;)0 (Pyi, Prj)

Under this definition, cosFormer’s formulation in Equa-
tion 7 can be considered as a special case, where we re-
place o (P, ;, Py ;) in Equation 8 with the cosine-based re-
weighting function of cosFormer and define P, and P
as being explicit token positions divided by the sequence
length, as shown in Equation 9:

1 N 1 Ny
Pq—[ﬁl, ...,E], Pk—[N2, ...,NQ]
s
S(Qni, Kit ;) = SQ(Q}L,i)Sk(K}TLZj)COS(§(Pq,i — P j))
9)

3.2. Learned Proportions

In contrast to determining the proportions statically as in the
case of cosFormer in Equation 9, models can learn to derive
these representative proportions via a module containing a
compact network embedded within attention blocks. We
call this method Learned Proportions (LeaP) and models
utilizing this technique LeaPformers. The possible infer-
ence quality benefits of LeaP can be understood intuitively.
Suppose that Py is set in a static manner in accordance
with explicit positional representations, but P, is derived
via a small module based on the query matrix. The mod-
ule’s learned behavior could produce derived elements of P,
equal to classical positional representations, thus replicating
the behavior and performance of attention mechanisms like
cosFormer, but could alternatively defer the inter-token re-
lationships that cosFormer might otherwise emphasize (i.e.
an emphasis on locality). Along these lines, we redefine the
aforementioned proportions in accordance with Equation 10,
where LeaPg and Lea Py represent the proposed modules
that derive proportions based on the query and key matrices,
and P, and P, are redefined as P,(Q},) and Py (K}).

LeaPformer: Enabling Linear Transformers via Learned Proportions

\j:ﬂl‘ | LeaP Module Architecture
Output

Normalization

?

—— MatMul <—|

’—> MatMul <—
) " Token
Position
‘—‘ . Re-weighting

— LeaP

Learned
Proportion

Sigmoid

Linear Layer
(step-down)

ReLU

e
Linear Layer
(step-down)

Token
Position
Re-weighting

—> LeaP

[Similarity W ‘ Similarity A \
\

Function Function |
4 L] Input Token
‘ Query ‘ ‘ Key ‘ ‘ Value ‘

Figure 2. Tllustration of the proposed Learned Proportions (LeaP)
augmentation to linear transformer attention mechanisms. The
LeaP module takes each token of the query and key matrices and
reduces their dimensions to a single proportion.

Py(Qni) = Pgi = LeaPo(Qn,i)
Pk(KhJ) = Pk,j = LeaPK(Kh,j)

Pq(Qh) = [LeaPQ(Qh,1)7 7L€aPQ(Qh’N1)] (10)
Pk(Kh) = [LeaPK(Kh,l), ,LeaPK(Kh7N2)]

To elaborate on potential inference quality benefits further,
we can refer back to our example of translation to or from
German and the SOV structure that cosFormer would likely
struggle to model well. If P, is derived from a small LeaP
module in self-attention, models could effectively defer
the locality bias inherent to cosFormer to elsewhere in the
sequence. If correctly learned, this might allow models to
defer their attention concentration from the verb at the end
of the German sequence to the beginning of the sequence,
where we might expect a typically strong attention score.
Allowing derivations of both P, and P}, would, naturally,
afford maximum flexibility in attention patterns produced
by the employed re-weighting function.

Beyond the inference quality benefits of LeaP, our method
removes any dependence that proportion-based re-weighting
functions have on knowing the sequence length beforehand,
widely enabling them for autoregressive tasks without target
sequence length prediction and, for the first time, demon-
strating the feasibility to apply them to simultaneous tasks.

3.3. Optimizing LeaP Module for Throughput and
Analyzing Expressivity

It is critical that the addition of LeaP does not significantly
affect the throughput of a given model or its memory foot-
print, as it is intended for resource-constrained and latency-
sensitive environments. Given that, we recommend a mod-
ule composed of a simple, two-layer feed-forward network

0 0 10

0 200 400 600 800 1000 o 200 400 600 800 1000

Figure 3. An example of re-weighting matrices across all query
(y-axis) and key (x-axis) token positions for baseline cosFormer
(left) and LeaPformer (right) on list-operations in the Long-Range
Arena benchmark. In this example, LeaPformer has clearly learned
to attenuate more dynamically as opposed to the locality-focused,
diagonalized re-weighting matrix of cosFormer.

that steps down the attention head embedding dimension
with a ReLU activation between the layers and a sigmoid
activation at the end of the network, along the lines of the
augmentation highlighted in Figure 2. The choice of a ReLU
activation is based on empirical tests on the Long-Range
Arena benchmark (Tay et al., 2021) which determined that,
as opposed to several other competitive options, ReL.U gen-
eralized well to multiple tasks.

While a separate LeaP module for each attention head would
be straightforward, we found in our experiments that this
made a very minor difference in terms of quality. For En-
glish to German SimulST, we observed that when replacing
the decoder self-attention block with LeaPformer where a
separate LeaP module was provided for each attention head
the models were of similar quality (measured by validation
perplexity, difference of ~0.03). Given that and acknowl-
edging that deploying multiple LeaP modules would dras-
tically increase the parameter footprint of the module, we
elect to share one LeaP module for all attention heads.

Additionally, given the activation functions chosen for the
LeaP module’s architecture, it is important to examine the
expressivity of the module. It is generally desirable that the
LeaP module outputs a complex range of values as opposed
to saturating to values of O or 1, as otherwise it is simply
sparsifying the Q;, K; matrix (were it to be directly calcu-
lated). In Figure 3, we compare the re-weighting matrices of
baseline cosFormer and LeaPformer for the list-operations
task in the LRA benchmark, a fairly difficult one. As can
be observed in the example, and as we generally found in
practice, the baseline cosFormer can only provide static
re-weighting emphasizing locality (with the largest weights
along diagonal for the same position). In contrast, cos-
Former augmented with the LeaP modules is capable of
generating complex re-weighting matrices that lightly atten-
uate between most positions while selectively attenuating
harshly or not at all. The fact that there is wide-spread, light
attenuation across several examples indicates that our LeaP

LeaPformer: Enabling Linear Transformers via Learned Proportions

module can also avoid saturation.

4. Empirical Evaluation

We validate the potential of LeaP by applying it to cos-
Former on three major sets of tasks. All references to LeaP-
formers in the following sections refer to this augmentation
of cosFormers. We first test LeaPformers on the popular
Long-Range Arena (LRA) benchmark (Tay et al., 2021),
built specifically for validating the capabilities of efficient
attention mechanisms. We also engage with basic autore-
gressive language modeling, employing Baevski & Auli
2019’s adaptive input/output architecture on Wikitext-103b
(Merity et al., 2016). Moreover, we evaluate LeaPformers
on speech-to-text simultaneous translation (SimulST) via a
wait-k read-write schedule (Ma et al., 2019; 2020b;c) across
two language pairs. For our SimulST and autoregressive
language modeling experiments, we employ Fairseq (Ott
et al., 2019) for training and validation alongside SimulEval
(Ma et al., 2020a) for SimulST evaluation. LRA results are
compared via accuracy, autoregressive language modeling
results are evaluated via validation and test set perplexity,
and SimulST results are compared via detokenized BLEU-4
(called BLEU later) using sacreBLEU (Post, 2018). Addi-
tional details related to employed hardware and hyperpa-
rameters can be found in the Appendix.

4.1. Long-Range Arena Benchmark

Instead of the Long-Range Arena (LRA) benchmark pro-
vided by Tay et al. 2021, our implementation follows Sky-
former’s (Chen et al., 2021) PyTorch framework and reuses
their architectures and hyperparameters, which we hold
static. We provide baseline results for various architectures,
including the classical transformer (Vaswani et al., 2017)
and several seminal efficient transformers. Some auxil-
iary results and details related to the LRA benchmark are
provided in Appendices A.4 and A.5 regarding controlling
for increased parameter counts and alternatives to efficient
transformers.

In addition to these results, we propose a composite heuristic
evaluation metric that we call Relative Composite Perfor-
mance (RCP) to more concretely evaluate efficient attention
mechanisms and their throughput-accuracy trade-offs. We
treat softmax attention as an inference quality ceiling and
throughput floor for the LRA benchmark as follows:

efthrpt/sftthrpt
(1+ w)

stdpench

RCP(ef,sft, stdpench) =

(1)

with ef as a given efficient attention mechanism and s ft
as softmax attention and their corresponding accuracy and
throughput values. The RCP numerator rewards significant
speedups in a proportional manner via a simple ratio. Con-
trastingly, the RCP denominator is governed by the delta in

accuracy between two attention mechanisms normalized by
the standard deviation of the entire benchmark’s accuracy,
focusing on penalizing for inaccuracy. Adding by one in
the denominator smooths out the resulting values. While
RPC as depicted in Equation 11 favors equally prioritizing
accuracy and throughput, one could prioritize one or the
other by changing the exponential values of the expressions
in the numerator and denominator (they are currently set to
1 as a default for equal prioritization).

Equation 12 is a memory footprint-aware version of the met-
ric, called RCP,,, ., that splits its reward between through-
put increases and memory footprint reductions, where the
weights for those rewards are similarly tunable:

%(@fth'rpt) 1 (sftmem)

s ft X 2 -Jmem
RCPyem(ef, sft, stdyenen) = “—2rre 2l
(1+ stdpencn)
(12)

We set these tunable weights to 0.5 as a default.

Regarding the LeaPformers tested on the LRA benchmark,
a minimal setup was initially employed with around a maxi-
mum of a 0.2% increase on the number of parameters for
the LeaP module. We additionally test a larger module em-
ployed with a maximum increase of 1.5% to the number of
parameters to investigate the effects of increased size. Some
very limited fine-tuning was employed across a few possible
module sizes on a per-task basis for the larger LeaPformer,
depending on the perceived difficulty of the task.

We show a holistic view of performance in Figure 1 (we re-
fer the readers to §1), with kernel-based linear transformers
tending to provide an excellent quality-throughput trade-
off. It is clear from the figure that LeaPformer provides the
best performance trade-off, exhibiting significant quality in-
creases over Linear Transformer and overall supremacy com-
pared to Performer, Linformer, Reformer, and Skyformer,
with a reduced memory footprint. Details on inference qual-
ity are showcased in Table 1, where both LeaPformer-0.2%
and LeaPformer-1.5% exhibit a balanced performance pro-
file. While classical softmax attention achieves the highest
average score by a notable margin, it is beaten on a number
of tasks by other methods.

Compared to cosFormer, LeaPformer provides, at a minor
throughput and memory footprint penalty, significant in-
creases to scores across cosFormer’s most problematic tasks,
including improvements for text and image classification.
Additionally, when compared to the score profiles of other
efficient attention mechanisms, LeaPformer does not seem
to specialize nearly as much as other architectures (aside
from some difficulty on the pathfinding task), indicating its
balanced performance. BigBird is the closest to providing a
similarly balanced inference quality profile, but this comes
with significant throughput reductions as shown in Table 2
and noticeable increases to memory footprint. Regarding

LeaPformer: Enabling Linear Transformers via Learned Proportions

Table 1. Results on the Long-Range Arena benchmark. We measure the accuracy (higher is better) and are weighted evenly for the purpose
of the average score. Best results are bolded; runner-up results are underlined. LeaPformers showcase competitive performance across a
range of tasks. LeaPformer-1.5% achieves the second best average score, beating all other non-quadratic transformers.

Attention Mechanism ‘ ListOps TextCls. TextRtr. Path-32 Img. Cls. | Avg.
Softmax Attn. (Vaswani et al., 2017) 37.94 60.51 80.52 75.54 41.74 59.25
Linear Attn. (Katharopoulos et al., 2020) | 39.21 61.53 78.78 68.23 39.14 57.38
Linformer (Wang et al., 2020b) 37.04 57.65 77.61 57.91 37.85 53.61
Performer (Choromanski et al., 2020) 38.17 64.24 80.11 68.54 37.42 57.70
BigBird (Zaheer et al., 2020) 38.36 60.72 80.97 72.80 40.37 58.64
Reformer (Kitaev et al., 2020) 36.44 63.14 78.63 69.29 42.85 58.07
Skyformer (Chen et al., 2021) 38.66 65.38 81.77 68.74 36.07 58.12
RoPE w/ Linear Attn. (Su et al., 2022) 38.31 64.79 77.54 67.61 39.17 57.48
cosFormer (Qin et al., 2022b) 38.96 61.66 79.29 68.96 38.26 57.43
LeaPformer-0.2% 38.26 64.70 79.88 70.76 38.26 58.37
LeaPformer-1.5% 38.96 64.90 80.62 68.99 40.00 58.69

Table 2. Throughput comparison on the Long-Range Arena bench-
mark. Training throughput values (higher is better, inference speed
is identical) are provided for sequence lengths in {1k, 2k, 4k}. The
results are ordered from fastest to slowest according to their 4k
sequence length throughput. LeaPformers are bolded.

Attention Mechanism | Training Thrpt. (itr/sec)
1k 2k 4k
Linear Attn. 68.00 2843 15.18
cosFormer 5891 25.64 13.13
LeaPformer-0.2% 56.30 24.72 12.81
ROPE w/ Linear Attn. | 48.90 23.81 12.27
LeaPformer-1.5% 53.58 2339 11.76
Linformer 4896 2049 11.36
Performer 38.83 17.72 9.02
Reformer 32.07 15.08 7.71
Skyformer 26.02 12.36 6.06
BigBird 15.97 6.76 3.52
Softmax Attn. 14.08 6.03 1.64

the application of RCP to the results in Table 1 and Table 2,
LeaPformer beats out all other options in Table 3 by a wide
margin (minimum increase of 0.81 RCP), demonstrating its
very effective relative performance on the LRA benchmark
compared to softmax attention and its efficient attention
peers. Across the board, LeaPformer matches the general
inference quality of task-balanced models with a massively
reduced memory footprint while still exhibiting a minimum
1.52x throughput increase over those mechanisms.

4.2. Autoregressive Language Modeling

While autoregressive language modeling has advanced
tremendously with the advent of LLMs, more accessible
methods can still serve to validate architectural differences
between attention mechanisms. Given that, we’ve employed

Table 3. Results for LRA using the proposed metric Relative Com-
posite Performance (RCP) treating softmax attention as a through-
put floor and accuracy ceiling. Throughput values for RCP calcu-
lation are derived from 4k sequence tasks and the accuracy and
standard deviation of accuracy are derived from the average ac-
curacy across all five tasks in the LRA benchmark. RCP scores
are sorted from highest to lowest with RCP,,¢,, provided as an
auxiliary option that rewards reduced memory footprints. LeaP-
formers are bolded. Softmax attention is naturally excluded, as
the following RCP values are relative to it.

Attention Mechanism ‘ RCP RCP,,em
LeaPformer-1.5% 5.20 5.04
LeaPformer-0.2 % 4.90 4.83
Linear Attn. 4.09 4.33
cosFormer 3.59 3.54
RoPE w/ Linear Attn. | 3.41 3.68
Performer 2.69 2.57
Reformer 2.62 2.31
Skyformer 2.10 2.02
BigBird 1.52 1.53
Linformer 1.44 1.31

the adaptive setup of Baevski & Auli 2019 and reuse nearly
their exact model hyperparameters for autoregressive lan-
guage modeling on Wikitext-103b (Merity et al., 2016).
Hyperparameter differences are only related to batch sizes
and the number of updates due to computational constraints,
and are detailed in our Appendix. All sequences during
training and evaluation were composed of 512 tokens (i.e.
511 tokens of context where possible for evaluation).

We contrast a few attention mechanisms in Table 4, includ-
ing a ReLU-based mechanism functioning similar to Linear
Transformers (Katharopoulos et al., 2020) as well as an
ablation of cosFormer’s re-weighting function (Qin et al.,
2022b). As observed in Table 4, classical softmax attention

LeaPformer: Enabling Linear Transformers via Learned Proportions

Table 4. Results from autoregressive language modeling on
Wikitext-103b. Softmax attention is a baseline. Perplexity (ppl;
lower is better) is measured on the recommended dev and test sets.

Attention Mechanism ‘ ppl(dev) ‘ ppl(test)

Softmax Attention | 22.53 | 21.67
ReLU Attention 24.55 24.16
cosFormer 24.50 24.17
LeaPformer 24.46 24.04

Table 5. Comparison of cosFormer and LeaPformer trained on
MuST-C en-de for SimulST. Perplexity (ppl; lower is better) is
measured on the training and validation sets. BLEU scores are not
provided for baseline cosFormer as it is impossible to apply to the
tasks (i.e. the scores become zero) without augmentations.

Attention Mechanism ‘ ppl(tr) ‘ ppl(dev)

8.44 9.86

LeaPformer Dec. Self-Attn.

cosFormer Dec. Self-Attn.
7.86 9.40

outperforms all linear attention mechanisms by a wide mar-
gin, but amongst the linear attention mechanisms themselves
there are distinctions in terms of quality. Notably, LeaP-
former demonstrates significant improvement over its linear
attention peers, beating out cosFormer by 0.13 perplexity
on the test set while only requiring a parameter increase of
approximately 3.13%, though it still falls significantly short
of classical softmax attention by 2.37 perplexity.

4.3. Simultaneous Speech Translation (SimulST)

For the purposes of our SimulST related experiments, we
employed a model inspired by the ESPnet-ST toolkit (In-
aguma et al., 2020) that focused on end-to-end speech-to-
text (S2T) translation with a modified cross-attention block
for a wait-k and fixed pre-decision paradigm (Ma et al.,
2019; 2020b;c). All model encoders were pre-trained on
automatic speech-recognition (ASR) and were trained on
a wait-k of 5 and a fixed predecision ratio of 9 and were
evaluated on a wait-k of 3 (a slightly larger k for training
is suggested by prior work (Ma et al., 2019)) with greedy
decoding. Models are evaluated via validation set perplexity
and by detokenized BLEU-4 (Post, 2018) via SimulEval
(Ma et al., 2020a). Two language pairs and two datasets
were employed to test the application of LeaPformer to si-
multaneous tasks. We utilized MuST-C’s (Cattoni et al.,
2021) English to German (en-de) split and CoVoST 2’s
(Wang et al., 2020a) French to English (fr-en) split. More
comprehensive evaluation is provided for the en-de pair,
comparing the results of LeaPformer to an ablation without
a re-weighting function. The application of LeaP modules
resulted in an approximate parameter increase of 0.03% for
ablations that included all attention blocks being linearized.

Table 6. Results from SimulST for MuST-C en-de for various LeaP-
former and simple ReL.U ablations with softmax as a baseline.
BLEU scores (higher is better) are generated on on tst-:COMMON.

Attention Mechanism | BLEU | ppl(dev)

Softmax Attention ‘ 15.07 ‘ 9.36
LeaPformer Enc. Self-Attn. | 12.00 11.50
LeaPformer Dec. Self-Attn. | 14.81 9.40
LeaPformer Cross-Attn. 13.95 11.02
LeaPformer All Attn. 11.19 14.67
ReLU Enc. Self-Attn. 11.55 11.98
ReLU Dec. Self-Attn. 14.67 9.55
ReLU Dec. Cross-Attn. 13.84 11.24
ReLU All Attn. 10.38 15.48

Table 7. Results from SimulST for CoVoST fr-en for various LeaP-
former ablations with softmax as a baseline. BLEU scores are
generated on the recommended, but shortened, test split.

Attention Mechanism ‘ BLEU ‘ ppl(dev)

Softmax Attention | 1451 | 9.99

LeaPformer Enc. Self-Attn. | 11.18 12.50
LeaPformer Dec. Self-Attn. | 14.28 10.11
LeaPformer Cross-Attn. 13.25 11.64
LeaPformer All Attn. 9.69 16.28

We first seek to show LeaPformer outperforms cosFormer
in terms of model quality, justifying its inclusion not only
from the perspective of necessity but also as an overall im-
provement. Table 5 demonstrates the results of a brief com-
parison on en-de SimulST (note that cosFormer can still be
employed for training, where sequence lengths are known),
where significant quality improvement is observed. Having
established the capability of the proposed method, we seek
to validate it further on en-de SimulST while also providing
several ablations for LeaPformer, representing a wide-range
of quality-throughput trade-offs. Additionally, we seek to
show that applying the LeaP-augmented re-weighting func-
tion of LeaPformer is consistently useful by testing models
trained without any re-weighting functionality, operating
as a variation on Linear Transformer (Katharopoulos et al.,
2020). Table 6 showcases the results of this study, where
LeaPformer ablations consistently beat their simple ReLU-
based alternative. The most competitive ablation in terms
of translation quality emerges as a model with the decoder
self-attention block replaced by LeaPformer, achieving only
a 0.26 BLEU reduction compared to softmax attention.

Similar results are provided for the fr-en language pair in
Table 7, with trends from en-de persisting. The most com-
petitive translation quality ablations continue to be replace-
ments of the decoder self-attention blocks with LeaPformer,

LeaPformer: Enabling Linear Transformers via Learned Proportions

where only a 0.23 BLEU reduction was observed. While
our analysis related to SimulST is focused on analyzing
the possible translation quality benefits of employing LeaP-
formers, we also provide some latency analysis, with some
qualifications, employing common SimulST latency metrics
in Appendix A.7.

5. Conclusion

In this paper, we made two concrete contributions. We
re-framed reliance on explicit positional representations
and sequence lengths to reliance on sequence proportions,
removing theoretical dependence on sequence lengths. Ad-
ditionally, we proposed LeaPformers and applied them to
the state-of-the-art in proportion-based linear transformers,
cosFormer, achieving the best performance trade-off on the
Long-Range Arena benchmark and competitive results in
autoregressive language modeling on Wikitext-103b. More-
over, we applied proportion-based transformers for the first
time to simultaneous translation, achieving minimal quality
loss compared to softmax attention for two language pairs.

Impact Statement

We advance the efficiency of transformers in state-of-the-art
deep learning. Any societal consequences or impacts that
typically relate to work focused on increased efficiency also
apply here, as such work necessarily improves the practical-
ity of deep learning models for an array of applications.

Acknowledgement

We thank the anonymous reviewers for valuable feedback.
This research was supported, in part, by the National Science
Foundation grants 2223483 and 2223484. Sanghyun is also
partially supported by the Google Faculty Research Award.

References

Agostinelli, V. and Chen, L. Improving autoregressive nlp
tasks via modular linearized attention. In Koutra, D.,
Plant, C., Gomez Rodriguez, M., Baralis, E., and Bonchi,
F. (eds.), Machine Learning and Knowledge Discovery
in Databases: Research Track, pp. 90-106, Cham, 2023.
Springer Nature Switzerland. ISBN 978-3-031-43421-1.

Ainslie, J., Ontanon, S., Alberti, C., Cvicek, V., Fisher, Z.,
Pham, P., Ravula, A., Sanghai, S., Wang, Q., and Yang,
L. Etc: Encoding long and structured inputs in transform-

ers, 2020. URL https://arxiv.org/abs/2004.

08483.

Baevski, A. and Auli, M. Adaptive input representations for
neural language modeling. In International Conference

on Learning Representations, 2019. URL https://
openreview.net/forum?id=ByxZX20gFQ.

Beltagy, 1., Peters, M. E., and Cohan, A. Longformer:
The long-document transformer, 2020. URL https:
//arxiv.org/abs/2004.05150.

Cattoni, R., Di Gangi, M. A., Bentivogli, L., Negri,
M., and Turchi, M. Must-c: A multilingual cor-
pus for end-to-end speech translation. Computer
Speech & Language, 66:101155, 2021. ISSN 0885-
2308. doi: https://doi.org/10.1016/j.cs1.2020.101155.
URL https://www.sciencedirect.com/
science/article/pii/S0885230820300887.

Chen, Y., Zeng, Q., Ji, H., and Yang, Y. Skyformer: Re-
model self-attention with gaussian kernel and nystrom
method. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, 2021.

Child, R., Gray, S., Radford, A., and Sutskever, I. Generat-
ing long sequences with sparse transformers, 2019. URL
https://arxiv.org/abs/1904.105009.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., Belanger, D., Colwell, L., and Weller,
A. Rethinking attention with performers, 2020. URL
https://arxiv.org/abs/2009.14794.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V,
and Salakhutdinov, R. Transformer-xI: Attentive lan-
guage models beyond a fixed-length context, 2019. URL
https://arxiv.org/abs/1901.02860.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale, 2021.

Gu, A. and Dao, T. Mamba: Linear-time sequence modeling
with selective state spaces, 2023.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long se-
quences with structured state spaces. In The International
Conference on Learning Representations (ICLR), 2022.

Inaguma, H., Kiyono, S., Duh, K., Karita, S., Soplin, N.
E. Y., Hayashi, T., and Watanabe, S. Espnet-st: All-
in-one speech translation toolkit, 2020. URL https:
//arxiv.org/abs/2004.10234.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention, 2020. URL https://arxiv.
org/abs/2006.16236.

https://arxiv.org/abs/2004.08483
https://arxiv.org/abs/2004.08483
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2004.05150
https://www.sciencedirect.com/science/article/pii/S0885230820300887
https://www.sciencedirect.com/science/article/pii/S0885230820300887
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2004.10234
https://arxiv.org/abs/2004.10234
https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236

LeaPformer: Enabling Linear Transformers via Learned Proportions

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The

efficient transformer, 2020. URL https://arxiv.

org/abs/2001.04451.

Liu, Z., Li, D., Lu, K., Qin, Z., Sun, W., Xu, J., and Zhong,
Y. Neural architecture search on efficient transformers
and beyond, 2022.

Liutkus, A., Cifka, O., Wu, S.-L., Simgekli, U., Yang, Y.-H.,
and Richard, G. Relative positional encoding for Trans-
formers with linear complexity. In Meila, M. and Zhang,
T. (eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 7067-7079. PMLR,

18-24 Jul 2021. URL http://proceedings.mlr.

press/v139/1liutkus2la.html.

Ma, M., Huang, L., Xiong, H., Zheng, R., Liu, K., Zheng, B.,
Zhang, C., He, Z., Liu, H., Li, X., Wu, H., and Wang, H.
Stacl: Simultaneous translation with implicit anticipation
and controllable latency using prefix-to-prefix framework.
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 3025-3036,
Florence, Italy, 2019. Association for Computational Lin-
guistics (ACL).

Ma, X., Dousti, M. J., Wang, C., Gu, J., and Pino, J.
Simuleval: An evaluation toolkit for simultaneous trans-
lation, 2020a. URL https://arxiv.org/abs/
2007.16193.

Ma, X., Pino, J., Cross, J., Puzon, L., and Gu, J. Mono-
tonic multihead attention. In International Conference
on Learning Representations, 2020b.

Ma, X., Pino, J., Cross, J., Puzon, L., and Gu, J. Simulmt
to simulst: Adapting simultaneous text translation to end-
to-end simultaneous speech translation. In Proceedings
of 2020 Asia-Pacific Chapter of the Association for Com-
putational Linguistics and the International Joint Confer-
ence on Natural Language Processing, 2020c.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. ArXiv, abs/1609.07843,
2016.
org/CorpusID:16299141.

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng,
N., Grangier, D., and Auli, M. fairseq: A fast, extensible
toolkit for sequence modeling, 2019. URL https://
arxiv.org/abs/1904.01038.

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer,
N., Ku, A., and Tran, D. Image transformer, 2018. URL
https://arxiv.org/abs/1802.05751.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention, 2021.
URL https://arxiv.org/abs/2103.02143.

URL https://api.semanticscholar.

10

Post, M. A call for clarity in reporting BLEU scores.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pp. 186—191, Belgium,
Brussels, October 2018. Association for Computational
Linguistics. URL https://www.aclweb.org/
anthology/W18-6319.

Press, O., Smith, N., and Lewis, M. Train short, test long:
Attention with linear biases enables input length extrapo-
lation. In International Conference on Learning Represen-
tations, 2022. URL https://openreview.net/
forum?id=R8sQPpGCvO.

Qin, Z., Han, X., Sun, W., Li, D., Kong, L., Barnes, N.,
and Zhong, Y. The devil in linear transformer. In Pro-
ceedings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pp. 7025-7041, Abu
Dhabi, United Arab Emirates, December 2022a. Associ-
ation for Computational Linguistics. URL https://
aclanthology.org/2022.emnlp-main.473.

Qin, Z., Sun, W.,, Deng, H., Li, D., Wei, Y., Lv, B,,
Yan, J., Kong, L., and Zhong, Y. cosformer: Rethink-
ing softmax in attention. In International Conference
on Learning Representations, 2022b. URL https:
//openreview.net/forum?id=B18CQrx2Up4.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21(1), jan 2020. ISSN
1532-4435.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu,
Y. Roformer: Enhanced transformer with rotary position
embedding, 2022.

Tay, Y., Bahri, D., Yang, L., Metzler, D., and Juan, D.-
C. Sparse sinkhorn attention, 2020. URL https://
arxiv.org/abs/2002.11296.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P, Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena : A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=gqVyeW-grC2k.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. ACM Comput. Surv., 55(6), dec
2022. ISSN 0360-0300. doi: 10.1145/3530811. URL
https://doi.org/10.1145/3530811.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, 1., Luxburg, U. V,,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,

https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/2001.04451
http://proceedings.mlr.press/v139/liutkus21a.html
http://proceedings.mlr.press/v139/liutkus21a.html
https://arxiv.org/abs/2007.16193
https://arxiv.org/abs/2007.16193
https://api.semanticscholar.org/CorpusID:16299141
https://api.semanticscholar.org/CorpusID:16299141
https://arxiv.org/abs/1904.01038
https://arxiv.org/abs/1904.01038
https://arxiv.org/abs/1802.05751
https://arxiv.org/abs/2103.02143
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://aclanthology.org/2022.emnlp-main.473
https://aclanthology.org/2022.emnlp-main.473
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://arxiv.org/abs/2002.11296
https://arxiv.org/abs/2002.11296
https://openreview.net/forum?id=qVyeW-grC2k
https://openreview.net/forum?id=qVyeW-grC2k
https://doi.org/10.1145/3530811

LeaPformer: Enabling Linear Transformers via Learned Proportions

and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053clc4a845aa—Paper.
pdf.

Wang, B., Zhao, D., Lioma, C., Li, Q., Zhang,
P, and Simonsen, J. G. Encoding word order
in complex embeddings. ArXiv, abs/1912.12333,
2019. URL https://api.semanticscholar.
org/CorpusID:209516262.

Wang, C., Pino, J., Wu, A., and Gu, J. CoVoST: A di-
verse multilingual speech-to-text translation corpus. In
Proceedings of The 12th Language Resources and Evalu-
ation Conference, pp. 4197-4203, Marseille, France, May
2020a. European Language Resources Association. ISBN
979-10-95546-34-4. URL https://www.aclweb.
org/anthology/2020.1lrec—-1.517.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity, 2020b.
URL https://arxiv.org/abs/2006.04768.

Wang, Y.-A. and Chen, Y.-N. What do position embed-
dings learn? an empirical study of pre-trained language
model positional encoding. In Webber, B., Cohn, T., He,
Y., and Liu, Y. (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pp. 6840—6849, Online, November
2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.555. URL https://
aclanthology.org/2020.emnlp-main.555.

Wu, Q., Lan, Z., Qian, K., Gu, J., Geramifard, A., and
Yu, Z. Memformer: A memory-augmented transformer
for sequence modeling, 2020. URL https://arxiv.
org/abs/2010.06891.

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G.,
Li, Y., and Singh, V. Nystromformer: A nystrom-based
algorithm for approximating self-attention. 2021.

Zaheer, M., Guruganesh, G., Dubey, A., Ainslie, J., Alberti,
C., Ontanon, S., Pham, P, Ravula, A., Wang, Q., Yang,
L., and Ahmed, A. Big bird: Transformers for longer
sequences. 2020. doi: 10.48550/ARXIV.2007.14062.
URL https://arxiv.org/abs/2007.14062.

Zhong, G., Lin, X., Chen, K., Li, Q., and Huang, K. Long
short-term attention. In Ren, J., Hussain, A., Zhao, H.,
Huang, K., Zheng, J., Cai, J., Chen, R., and Xiao, Y.
(eds.), Advances in Brain Inspired Cognitive Systems, pp.
45-54, Cham, 2020. Springer International Publishing.
ISBN 978-3-030-39431-8.

11

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://api.semanticscholar.org/CorpusID:209516262
https://api.semanticscholar.org/CorpusID:209516262
https://www.aclweb.org/anthology/2020.lrec-1.517
https://www.aclweb.org/anthology/2020.lrec-1.517
https://arxiv.org/abs/2006.04768
https://aclanthology.org/2020.emnlp-main.555
https://aclanthology.org/2020.emnlp-main.555
https://arxiv.org/abs/2010.06891
https://arxiv.org/abs/2010.06891
https://arxiv.org/abs/2007.14062

LeaPformer: Enabling Linear Transformers via Learned Proportions

A. Appendix
A.1. Licensing Information

Fairseq (Ott et al., 2019) is MIT-licensed and widely available for non-commercial use. The Long-Range Arena benchmark
(Tay et al., 2021) is licensed via Apache 2.0. SimulEval (Ma et al., 2020a), Wikitext-103b (Merity et al., 2016), and
MuST-C (Cattoni et al., 2021) are licensed via Creative Commons (CC BY-SA 4.0, CC BY-SA 3.0, and CC BY-NC-ND 4.0
respectively).

A.2. Hardware Details for Training and Evaluation

All models were trained and evaluated on two NVIDIA Tesla V100 32 GB GPUs for LRA and SimulST, except for during
evaluation via SimulEval where they operated on a Intel Xeon Platinum 8168 CPU. Autoregressive language models were
trained and evaluated on four NVIDIA Tesla V100 32 GB GPUs.

A.3. Computational Costs of Experimentation

We estimate that results related to the LRA benchmark required approximately 30 GPU hours to gather with perhaps another
60 GPU hours related to experimentation. Concerning SimulST, we estimate that approximately 18 GPU days were required
to generate the results with another 4 GPU days related to experimentation. Autoregressive language modeling required
approximately 8 GPU days for experimentation and approximately 60 GPU days to generate the results in this paper. The
aforementioned values are normalized for single GPU-usage.

A 4. Controlling for Representational Capacity in LRA

While the Long-Range Arena benchmark (Tay et al., 2022) requires models to be close in parameter count to one another, so
as to hold similar representational capacity, it allows for around a 10% parameter increase or so if required for the model’s
functionality. Reformer (Kitaev et al., 2020) and Linformer (Wang et al., 2020b), for example, both requre potentially
significant parameter increases to properly function. Typically, no additional measures are taken to control for any possible
representational capacity increase, but in the interest of ensuring that the LeaP module makes a significant improvement
on model performance aside from a simple parameter count increase, we provide some additional results on the LRA
benchmark for cosFormer with an average of a 1.05x parameter increase in Table 8.

Table 8. Results on the Long-Range Arena benchmark for a cosFormer implementation with an average increased parameter count of
1.05x.

Attention Mechanism ‘ ListOps Text Cls. TextRtr. Path-32 Img. Cls. ‘ Avg.
cosformer (1.05x Parameters) | 38.69 63.53 79.36 67.06 37.62 | 57.65

As observed in Table 8, cosFormer exhibits a minor performance increase for most tasks with the exception of text
classification, where improvement is very noticeable. However, scores for ListOps and image classification actually decrease.
The latter is not altogether surprising, as the image classification task is structured in a very challenging way in the LRA
benchmark (i.e. no ViT-type augmentations (Dosovitskiy et al., 2021) are allowed). The above scores result in an RCP,;,¢.,
of 3.78, far below the score of LeaPformers at 5.04 (reusing statistical information from Table 12 for ease of comaprison).
Overall, it can be concluded that LeaP modules improve performance beyond just an increase in representational capacity.

A.5. Vast Efficient Transformer Design Space

While we cover a comparison of rather seminal works in this paper that we believe are representative of the efficient
transformer space, there are a massive amount of efficient transformer designs (Tay et al., 2022) such that it would be
impractical to compare our proposed approach to them all. Just for sparsity-focused transformers alone, there are numerous
options with varying degrees of complexity. Sparse Transformer (Child et al., 2019), for example, represents an initial
attempt at reducing complexity in this manner alongside its many descendants (Parmar et al., 2018; Zhong et al., 2020;
Beltagy et al., 2020; Ainslie et al., 2020; Tay et al., 2020) eventually culminating in the proposal of BigBird (Zaheer et al.,
2020), although new sparsity-focused methods are still likely being developed.

Along the lines of sparse transformer development, other classes of efficient transformers exhibit similar progressions.

12

LeaPformer: Enabling Linear Transformers via Learned Proportions

Regarding softmax approximations with random/sampling-based methods, Random Fourier Attention (Peng et al., 2021) is
an alternative to Performer (Choromanski et al., 2020). Skyformer (Chen et al., 2021) was preceded by Nystromformer
(Xiong et al., 2021). TransNormer (Qin et al., 2022a) is a more recent approach that combines blocked local attention with
kernalized linear attention, across two disparate sets of transformer layers (e.g. layers 1-4 might contain one type, layers
5-12 might contain another), although that makes it slightly architecture reliant.

A.5.1. ALTERNATIVE EFFICIENT ARCHITECTURES: STATE SPACE MACHINES

A more recently popularized option, the modern State Space Machine (SSM) family of models has emerged as a potential
sequence modeling competitor to transformers. In short, SSMs function by substituting explicit recurrent behavior with
variants of convolutional kernels, allowing for full parallelizability during training while potentially returning to efficient
recurrent behavior during inference (not as applicable for bi-directional sequence modeling). Modern SSMs include the
popular S4 family of models (Gu et al., 2022) and the novel Mamba architecture (Gu & Dao, 2023). While this work
primarily focuses on exploring and evaluating architectural options for efficient attention mechanisms, we provide some
results for S4D, a SSM with a diagonal kernel in the S4 family of architectures, in Table 9.

Table 9. Results on the Long-Range Arena benchmark for S4D, a model in the S4 family of SSMs.
Model ‘ ListOps Text Cls. TextRtr. Path-32 Img. Cls. ‘ Avg.

S4D ‘ 17.79 64.67 69.81 52.34 40.86 ‘49.09

The results observed in Table 9 are abnormally poor compared linear transformers examined in this work, especially for
ListOps and Pathfinder-32. More alarmingly, they contrast harshly with the reported results in S4 publications (Gu et al.,
2022), where S4 SSMs tend to perform excellently compared to transformers. There are a few intuitive possible reasons for
this observed performance gap. The first is that the Skyformer LRA environment, which we mostly port over, is focused on
validating smaller models. It’s very possible that the S4 family of SSMs simply doesn’t function well with so few parameters.
The second is that training was perhaps unstable, as certain S4 parameters are extremely sensitive to learning rate. Our
attempts to control for that possibility did not yield meaningful improvements, however. Regardless of the poor prediction
quality results, S4D did perform efficiently, yielding up to a 1.7x throughput increase compared to the next fastest linear
attention mechanism. This ultimately results in S4D having an RCP,,,.,, of around 1.66 (reusing statistical information
from Table 3 to render comparison easy).

A.6. RoPE with Linear Attention Elaboration

While not fully elaborated upon in the paper, we provide data for a single possible RoPE (Su et al., 2022) linear transformer
by augmenting the seminal Linear Transformer (Katharopoulos et al., 2020) with rotary positional embedding. The provided
results for this model are based on one with no additional adaptations towards linear transformer functionality beyond what
is mentioned in the original publication detailing RoPE. In our tests, additional assurances (e.g. summation to unity in rows
of attention matrix, were it to be calculated) did not significantly affect results.

We touch on the formulation of this linear attention fusion of RoPE and Linear Attention in Equation 13. R represents
RoOPE’s re-weighting function acting as a rotational transform and 6 represents the set of rotation constants defined by head
dimensionality d. Further details can be found in RoPE’s original publication.

o(i,j) = Rg,jfi = (R(Hi7i)TR(91,j
S(Qni» K ;) = Sq(Qn,i)o (i, 5)Sk(Kj, ;) (13)
S(Qh,i»Ki::j) = (Sq(Qh,i)(Rg,i)T)(Rg,jSk(K;{,j))

A.7. LeaPformers SimulST Latency on MuST-C with Elaboration

While not included in the main body of this paper, as our focus was to demonstrate the performance of LeaPformers in terms
of translation quality, we provide some results related to SimulST latency in this section. As a qualifier, MuST-C (Cattoni
et al., 2021) and SimulST datasets in general tend to be formed of relatively short, single sentence samples. Given the latency
profile of LeaPformers and similar linear attention mechanisms, it would be expected that only minor throughput benefits

13

LeaPformer: Enabling Linear Transformers via Learned Proportions

are observed, if throughput benefits are observed at all. Moreover, text as a modality usually favors smaller sequence sizes
when engaging in single-to-few sentence translation samples (especially if a model vocabulary is formed of large subwords).
Finally, the particular architecture that we employ in this work as a baseline for SimulST downsamples the acoustic features
by a factor of 4, reducing the sequence length for the primary, transformer-based body of the model. Regardless of these
cavests, SimulST latency results can be observed in Table 10 with CA-AL referring to computationally aware average
lagging (Ma et al., 2019; 2020c), the seminal latency/lagging metric of most SimulST works.

Table 10. Latency results for SimulST experiments on a subset of long-sequence samples in the validation set (approximately 27% of wall
clock run-time). Generation is slightly constrained (minimum token generation steps based on read decisions and maximum set as 10
tokens beyond that minimum).

Attention Mechanism ‘ CA-AL (ms) Comp. Only (ms) Comp. % Reduc. w/o Conv. Pre-net
Softmax 6841 2721 N/A N/A
LeaPformer Dec. Self-Attn. 6864 2682 2% 2%
LeaPformer Dec. Cross-Attn. 7026 2837 -4% -5%
LeaPformer Enc. Self-Attn. 6457 2276 16% 21%

Not entirely unexpectedly, decoder cross-attention actually performs worse than softmax in our tests. This is due to having
to update the cached K7V intermediate state any time the encoder’s acoustic representation is updated, which is unique
to simultaneous tasks (we note that this can be avoided somewhat with unidirectional encoders, which we do not employ
in our baseline architecture). At long enough sequence lengths, these updates would still result in faster translation, but
samples sizes in MuST-C are too small for this behavior to manifest. Contrastingly, decoder self-attention improves slightly
and encoder self-attention improves noticeably, resulting in up to a 21% reduction in the purely computational latency of
transformer model components.

A.8. Why Not [Insert Alternative Strategy] Instead of LeaP?

For the sake of brevity, we could not describe every attempted strategy at adapting some re-weighting functions, specifically
the one employed by cosFormer (Qin et al., 2022b), and exhaustively describe why they didn’t work in the main body of
this paper as there are many obvious options. We will take this opportunity to iterate over a few simple approaches that we
attempted to employ or that were touched upon by Agostinelli & Chen 2023, whose findings are relevant.

A.8.1. WHY NOT STEP THE SEQUENCE LENGTH?

The most obvious adaptation option for autoregressive, and even simultaneous, tasks would be to just increment the sequence
length that re-weighting functions like the one employed by cosFormer are dependent upon for every decoding time-step
(and encoding time-step, for simultaneous applications). This was explored early on and resulted in extreme inference
quality degradation for en-de SimulST results (BLEU of around 1.1), and thinking about the resulting re-weighting function
across time-steps makes it easy to intuit why that might be.

In the case of cosFormer’s re-weighting function, doing this results in static query proportions at every time-step (slightly
different behavior for chunked simultaneous encoders). While this can be fine for decoder self-attention (although it did not
work well in our tests), it is essentially impossible to apply to decoder cross-attention in a way that meaningfully attenuates
the query and key matrices because, according to the stepping re-weighting function, every query is ”placed” identically in
the sequence.

A.8.2. WHY NOT SET A MAX SEQUENCE LENGTH?

An understandable approach would be to simply set a large, maximum sequence length. In our tests, this worked somewhat
adequately, but suffered from unused expressivity that resulted in noticeable inference quality degradation. To ensure
positivity for all samples, a very large maximum sequence length needs to be chosen for autoregressive tasks, which means
that for samples that are extremely small, queries and keys are effectively barely attenuated.

14

LeaPformer: Enabling Linear Transformers via Learned Proportions

800

1000 1000 o 1000
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 4. Re-weighting heatmaps of decoder cross-attention during various alternative strategies to LeaP: stepping sequence length (left),
max sequence length (middle), stepping the max sequence length intermittently (right).

A.8.3. WHY NOT A STEPPING MAX LENGTH?

As a subset of the above stepping and maximum length strategies, one could attempt to set a maximum sequence length that
steps only occasionally. For example, an autoregressive sample whose reference is of length N (unknown during inference,
average training set reference is %) might have a hypothetical stepping maximum sequence length of around % that would
step by % upon the generated sequence growing. This should, intuitively, resolve problems with naive stepping and lost
expressivity for maximum sequence lengths so long as the stepping maximum is reasonably small. While more effective
than either of the above strategies, generative behavior around borders for incrementation (i.e. nearing limit of current
sequence length) tended to result in unusual model behavior that lead to reduced inference quality.

A.8.4. WHY NOT PREDICT SEQUENCE LENGTH WITH NEURAL NETWORKS OR STATISTICS?

While Agostinelli & Chen 2023 propose this exact strategy, and find that it works reasonably well in practice for general,
non-fixed length autoregressive tasks, such methods are almost always impossible to apply for simultaneous tasks with
low-lagging schedules between the source context and target sequence. This is because, usually, complete or almost complete
source context is required to make accurate predictions. For example, asking a compact neural network to predict the target
sequence length after taking in 400 ms of audio of a 5000 ms audio clip is clearly an exceedingly difficult task unless
there are clear indicators of sequence length (e.g. audio prefaced with total audio length, doesn’t work for most practical
simultaneous tasks).

A.9. Elaboration on Throughput Observations for Efficient Attention Mechanisms

It is worth lightly elaborating upon the throughput observations provided in Table 2, as some of them may be surprising
to readers. For example, it is initially unclear as to why truly linear attention mechanisms (e.g. Linear Attention from
Katharopoulos et al. 2020) are exceedingly fast in comparison to some alternatives, like BigBird (Zaheer et al., 2020), that
rely on sparsity-focused approaches. While sparsity-focused approaches can be theoretically fast, inefficiencies in memory
accesses can result in difficult to avoid slowdowns, especially on general purpose hardware. Indeed, the original publication
of BigBird acknowledges this and recommends a block-based approach to its various components to avoid memory access
bottlenecks, which has been implemented for the version of BigBird that we test in this paper and is implemented for every
version of BigBird that we are aware of (i.e. present in the original LRA publication).

Despite employing a block-based accessing approach for BigBird, findings across efficient attention mechanism literature
continue to find that, generally, this particular efficient attention scheme scales poorly with respect to throughput for
extremely long sequences (Tay et al., 2021; Chen et al., 2021; Qin et al., 2022b), although this depends in part on
hyperparameters that are employed to determine how such sparsity-focused methods behaved (i.e. how often they actually
compute information). Other efficient attention mechanisms, like Reformer (Kitaev et al., 2020) and Linformer (Wang et al.,
2020b), can also be considered somewhat tuning-heavy to find a desirable performance-to-throughput trade-off versus truly
linear attention mechanisms. Given that we do not explore tweaking hyperparameters in this paper to boost the performance
of any architecture, we consider it out of the scope of this work to search for anything beyond the hyperparameters employed
by Skyformer (Chen et al., 2021), whose PyTorch implementation of the LRA is what our implementation is based upon.

15

LeaPformer: Enabling Linear Transformers via Learned Proportions

A.9.1. BRIEF BIGBIRD SCALING EXAMPLE

For BigBird in particular, we can consider a 4k sequence example and employ the relevant hyperparameters provided in
the next section, those being a block size of 64 on each side and 3 random blocks, 3 local blocks, and 2 global blocks.
Considering just random attention alone, this results in approximately 2 x 192/N;d FLOPs per attention head, where V; is
the query length and is 4k in this case and d is head dimensionality set to 32 in this case, if BigBird attention is computed
optimally, ignoring softmax normalization and projections. Compared to Linear Attention, approximately Naod? + N;d?
FLOPs are required, where NN, is the key and value length and is 4k in this case. This ends up resulting in an approximate
6x increase in FLOPs from Linear Attention to BigBird, underscoring clearly BigBird’s scaling issues. While one could
reduce the parameters chosen for BigBird in this paper to increase throughput, that would likely correspond to a reduction in
inference quality.

16

LeaPformer: Enabling Linear Transformers via Learned Proportions

A.10. Model Architectures and Hyperparameters

Below, we list all architectural details and relevant training hyperparameters to reproduce our experiments. Aside from
models explicitly including RoPE in our tests, all other models employed absolute positional encoding (APE).

Regarding specific attention mechanism hyperparameters: Linformer (Wang et al., 2020b) employs a k low-rank factor of 2,
Reformer (Kitaev et al., 2020) employs two hashes for its LSH method, Performer (Choromanski et al., 2020) models an
exponential kernel with 128 rows for the orthogonal random matrices, BigBird (Zaheer et al., 2020) employs blocks of size
64 on each side and chooses 3 blocks for random attention (e.g. 192 tokens per query in the 4k sequence case), 3 blocks for
localized attention (e.g. 192 tokens per query), and 2 blocks for global attention (e.g. 4k tokens for the first 128 queries,
then 128 tokens per query), and Skyformer (Chen et al., 2021) employs a sampling factor of 4. All of these hyperparameters
are identical to those employed in the original Skyformer publication.

A.10.1. LRA: L1STOPS

Below are the architectural details for our ListOps models on the LRA benchmark:

e Encoder Layers: 2
e Transformer Dim. d,,,oq40;: 64

¢ Attention Heads: 2

FFN Hidden Dim. d ¢y,: 128

* LeaP Downsample Factor: 1

The models for LRA ListOps, were optimized with Adam with classical parameters. The models were trained with batches
of size 32, warmed up for 1000 updates and linearly climbing to a learning rate of le-4. A linear learning rate decay was
employed with 20000 updates in total. A CLS token was used for classification. Dropouts of 0.1 were employed when
applicable.

A.10.2. LRA: PATHFINDER-32

Below are the architectural details for our Pathfinder-32 models on the LRA benchmark:

e Encoder Layers: 2
¢ Transformer Dim. d,,,oqe;: 64

¢ Attention Heads: 2

FFN Hidden Dim. d¢¢,: 128

* LeaP Downsample Factor: 1
The models for LRA Pathfinder-32, were optimized with Adam with classical parameters. The models were trained with
batches of size 128, warmed up for 300 updates and linearly climbing to a learning rate of 2e-4. A linear learning rate decay

was employed with 50000 updates in total. A CLS token was used for classification. Dropouts of 0.1 were employed when
applicable.

17

LeaPformer: Enabling Linear Transformers via Learned Proportions

A.10.3. LRA: TEXT RETRIEVAL

Below are the architectural details for our Text Retrieval models on the LRA benchmark:
* Encoder Layers: 2
¢ Transformer Dim. d,,,oqe;: 64

¢ Attention Heads: 2

FFN Hidden Dim. d¢¢,: 128

¢ LeaP Downsample Factor: 2

The models for LRA Text Retrieval, were optimized with Adam with classical parameters. The models were trained with
batches of size 16, warmed up for 800 updates and linearly climbing to a learning rate of 2e-4. A linear learning rate decay
was employed with 50000 updates in total. A CLS token was used for classification. Dropouts of 0.1 were employed when
applicable.

A.10.4. LRA: TEXT CLASSIFICATION

Below are the architectural details for our Text Classification models on the LRA benchmark:
¢ Encoder Layers: 2
¢ Transformer Dim. d,,,oqe;: 64

¢ Attention Heads: 2

FFN Hidden Dim. d ¢y,: 128

* LeaP Downsample Factor: 2

The models for LRA Text Classification, were optimized with Adam with classical parameters. The models were trained
with batches of size 32, warmed up for 100 updates and linearly climbing to a learning rate of 2e-4. A linear learning rate
decay was employed with 20000 updates in total. A CLS token was used for classification. Dropouts of 0.1 were employed
when applicable.

A.10.5. LRA: IMAGE CLASSIFICATION

Below are the architectural details for our Image Classification models on the LRA benchmark:
e Encoder Layers: 2
e Transformer Dim. d,,,oq¢;: 64

¢ Attention Heads: 2

FFN Hidden Dim. dy¢y,: 128

* LeaP Downsample Factor: 1

The models for LRA Image Retrieval, were optimized with Adam with classical parameters. The models were trained with
batches of size 256, warmed up for 200 updates and linearly climbing to a learning rate of le-4. A linear learning rate decay
was employed with 30000 updates in total. A CLS token was used for classification. Dropouts of 0.1 were employed when
applicable.

18

LeaPformer: Enabling Linear Transformers via Learned Proportions

A.10.6. AUTOREGRESSIVE LANGUAGE MODELING MODELS
Below are the architectural details for our autoregressive language modeling models, identical to Baevski & Auli 2019’s
implementation

* Decoder Layers: 16

e Transformer Dim. d,,,oqe;: 512

¢ Attention Heads: 8

FFN Hidden Dim. dys,: 2048

» Adaptive Input/Softmax Cutoffs: 20k, 60k

* LeaP Downsample Factor: 4
The models for autoregressive language modeling were optimized via Nesterov’s accelerated gradient method with a
momentum of 0.99 with a gradient renormalization threshold of 0.1. The models were trained with an initial learning rate of
le-7 scaling to 1.0 over 8000 updates. From there, we define a cosine-based decaying schedule with periods of 140k updates

and train for 150k updates with a minimum learning rate of 1e-9. Dropouts of 0.3 were used for linear layers with dropouts
of 0.1 used elsewhere when applicable.

A.10.7. SIMULST MODELS

Below are the architectural details for our SimulST models:

e Encoder Layers: 12
e Decoder Layers: 6
e Transformer Dim. d,,,odei: 256

¢ Attention Heads: 8

FFN Hidden Dim. dy,,: 1024
* Conv. Pre-net Layers: 2

* Conv. Pre-net Kernel Size: 3
e Conv. Pre-net Stride: 2

* LeaP Downsample Factor: 4
The models for SimulST tasks were optimized via Adam with classical parameters and a learning rate set to 6e-4 with an
identical learning rate scheduler. The models were trained with dynamic batching, warmed up for 6000 updates, starting

with a learning rate of le-4, and trained for around 18000 updates in total with gradients clipped to 10.0. Dropouts of 0.1
were used for all linear layers and attention. SimulST models were trained with a wait-k of 5 and pre-decision ratio of 9.

19

