Adaptive Language-Guided Abstraction
from Contrastive Explanations

Andi Peng Belinda Z. Li Ilia Sucholutsky Nishanth Kumar
MIT MIT Princeton MIT
Julie A. Shah Jacob Andreas Andreea Bobu
MIT MIT The Al Institute

Abstract: Many approaches to robot learning begin by inferring a reward func-
tion from a set of human demonstrations. To learn a good reward, it is necessary to
determine which features of the environment are relevant before determining how
these features should be used to compute reward. End-to-end methods for joint
feature and reward learning (e.g., using deep networks or program synthesis tech-
niques) often yield brittle reward functions that are sensitive to spurious state fea-
tures. By contrast, humans can often generalizably learn from a small number of
demonstrations by incorporating strong priors about what features of a demonstra-
tion are likely meaningful for a task of interest. How do we build robots that lever-
age this kind of background knowledge when learning from new demonstrations?
This paper describes a method named ALGAE (Adaptive Language-Guided Ab-
straction from [Contrastive] Explanations) which alternates between using lan-
guage models to iteratively identify human-meaningful features needed to explain
demonstrated behavior, then standard inverse reinforcement learning techniques to
assign weights to these features. Experiments across a variety of both simulated
and real-world robot environments show that ALGAE learns generalizable reward
functions defined on interpretable features using only small numbers of demon-
strations. Importantly, ALGAE can recognize when features are missing, then
extract and define those features without any human input — making it possible to
quickly and efficiently acquire rich representations of user behavior.

Keywords: reward learning, language-guided abstraction, reward features

1 Introduction

When training robots to perform complex tasks — like watering plants in cluttered household envi-
ronments (Fig. 1) — it is often useful to begin by specifying a reward function from which optimal
robot behavior can be derived. Assigning rewards to trajectories typically requires extracting impor-
tant state or trajectory-level features (e.g. distance to goal or end effector orientation), then using
these features to compute scalar rewards. While it is sometimes possible for humans to directly
specify reward functions in code, this process is challenging and prone to error, even for experts
[1]. A slightly more general class of approaches uses manual specification of feature functions (ei-
ther in code or with targeted supervision [2, 3]) followed by reward learning (e.g. with inverse
reinforcement learning, or IRL [4]). But it can be challenging for users to identify and describe
all features relevant to a task of interest (e.g. the distance between the watering can and an opti-
mal pouring height relative to the pot), so reward learning with human-designed feature sets runs
the risk of feature under-specification — situations in which important task-relevant information is
unavailable to the reward function. An alternative family of end-to-end approaches, such as deep
IRL [5, 6, 7] attempt to implicitly extract these features from user demonstrations, but can require

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

Reward validation:
validate the updated reward
inst user d ations

3

venonsraion -

;BestTrajectoryunderqﬁ,E) i distance_to_plant,
i height_above_pot

| Contrastive explanation:
height_above_pot

v Feature specification:

Feature code: identify missing features

def watering_height(traj, pot_position):

and_pos_x = {raj hand_pos [O]
hand _pos_y = 1raj hand_pos][1

Possible Features

Figure 1: Adaptive Language-Guided Abstraction from Contrastive Explanations (ALGAE)
alternates between two main stages: in feature specification, ALGAE expands the current feature
set by identifying under-specified features of the current reward; then in reward validation, ALGAE
learns an updated reward function defined on top of the new feature set and validates it can explain
the user demonstrations. ALGAE results in more generalizable learned reward functions vs. base-
lines without manual feature specification, and can iteratively improve its own reward estimate given
multiple under-specified features.

very large numbers of demonstrations to ensure that learned features are robust, generalizable, and
insensitive to spurious features in the user demonstrations (e.g., distance to apple, etc. in Fig. 1).

Reliable, sample-efficient reward learning thus requires both identifying a discrete set of features
that are salient to the task and learning how they parameterize a continuous reward function [8].
Fortunately, good features that explain human decision-making do not come from a blank slate.
When learning (and planning), humans draw upon a wealth of prior experience to identify which
features are meaningful and generalizable for acting in the world [9, 10]. Can we instill these priors
into reward learning procedures without requiring human supervision at an impractical scale?

In this work, we propose to leverage the expressive human priors embedded in natural language text
corpora. We describe an iterative framework for autonomously alternating between feature speci-
fication and reward learning. Our approach, called Adaptive Language-Guided Abstraction from
contrastive Explanations, (ALGAE), leverages language models (LMs) in combination with user
demonstrations to learn human-aligned reward functions informed by semantically-relevant features.
ALGAE distills the reward learning problem into two components: 1) the feature specification prob-
lem of identifying missing reward features that are salient to the user’s reward, and 2) the reward
validation problem of finding and verifying a reward function that best explains demonstrated user
behavior. By alternating between these two components, ALGAE iteratively builds increasingly
rich representations of human decision-making while ensuring that learned rewards are explained
by intuitive, semantically-meaningful features.

We empirically validate ALGAE’s benefits across simulated and real-world robot tasks. ALGAE
recovers missing reward features and produces trajectories that better align with users’ ground truth
reward compared to several baselines. Importantly, ALGAE can iteratively refine its own represen-
tation by sequentially identifying missing features and validating them against the demonstrations,
thereby mitigating the over-parameterization problem exhibited by end-to-end approaches.

2 Related Work

Our work builds on several fundamental ideas in reinforcement learning and reward learning.

Inverse reinforcement learning. Inverse reinforcement learning (IRL) methods propose to learn the
unknown objective function from observed actions in the environment, e.g., human demonstrations
[4,5, 11, 12]. Such methods suffer from identifiability issues [12, 13]. That is, given a constrained

number of demonstrations, multiple objective functions can explain the same observed behavior.
This is due to expressive function approximators overfitting to a few demonstrations, a problem that
is exacerbated in high-dimensional and messy state spaces such as in robot learning.

Learning features from users. A large body of work has studied how to elicit features (e.g. for
use in RL) from human users. In this paradigm, learning good objectives is dependent on a set
of carefully, hand-specified features that capture aspects of the environment or task that the user
may care about [2, 14, 4, 1]. If selected well, this feature set introduces a well-formed inductive
bias for facilitating more generalizable learning from few demonstrations. Such a feature set helps
reduce the dimensionality of what is typically higher-dimensional states and trajectories, affording
a better-shaped space for IRL to operate. But defining a good feature set is both challenging and
laborious for experts and novices alike, and the chosen feature(s) may not be expressive enough to
fully capture complex behavior in more ineffable robotic tasks [15]. Some studies explore having
humans offer corrections to the agent using spatial labels [16], teleoperation with joysticks [17, 18],
physical interaction [15], and natural language [19], but these approaches are difficult to scale as
they involve expensive online human interventions.

Learning features from language. At a high level, most of the previous work can be described
as designing methods for users to specify their priors about the environment and task to the robot.
Recent work on language-guided abstraction ([20, 21]) instead aims to learn task-relevant features
from language by leveraging the semantic priors embedded in language models [22] to best inform
which environment elements are important to include in the state and which elements are not. These
approaches are limited by the imitation learning framework—that is, there is no true way to learn an
objective that explains the demonstrated behavior. As a result, these approaches reduce the number
of human demonstrations required to learn preference-tailored generalizable policies, but may still
require expensive, online interventions to correct for feature under-specification.

In this work, we extend the feature learning and language-guided frameworks to identify under-
specified features using language-guided contrastive explanations between the demonstration and
suboptimal trajectory, then iteratively learn reward functions using these features.

3 Problem Definition

We consider the problem of learning reward functions that capture the (unknown) preferences held
by a human given a small number of user demonstrations and language.

Preliminaries. We model our problem as a Markov Decision Process (MDP) [23] (S, A, T, R),
where S € RY is the state space, A the action space, 7 : S x A x & — [0,1] the transition
probability distribution, and R : S x A — R the reward function. A solution to the MDP is a policy
m: S — Athat specifies what actions the robot should take in different states. Following prior work
[3], we assume that the robot operates under a parameterized linear reward function defined on the
state, Rg(s) = 07 ¢(s), where ¢ : S — RP is a feature vector and § € RP represents the reward
weights on the features. The robot executes a task by following a state trajectory 7 = {s°, ..., sT}
given by the policy. To pick the best trajectory for the task, the robot optimizes the cumulative
reward Rg(7) = Y .o, 07 0(s') = 07 ¢(7), where ¢(1) = Y., ¢(s') is the total feature count
along the trajectory, and solves:

TR, = arg max Ry(7) = arg max ' ¢(7) . (D)

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL). In practice, the reward
function Ry is typically unknown to the robot or very challenging to manually specify. Thus, in
IRL, the robot’s goal is to learn Ry given human feedback like user demonstrations. Concretely,
given human demonstrated trajectories D = {7;}*=!¥ the robot interprets them as evidence for
the human’s preferred behavior and attempts to recover the reward parameters 6 that explain the hu-
man’s desired objective. We adopt the maximum-entropy framework for modeling human decision-
making [12, 5], and model the human as a noisily-optimal agent that tends to choose demonstrations

in proportion to the exponentiated reward:
67?'9 (T) T
p(7|0) = T eRdr o exp(Ry(7)) = exp(6 ¢(7)) . 2)

Under this framework, the human is likely to act optimally and will generate suboptimal trajectories
with a probability that decreases exponentially as the trajectories become lower in reward [12]. The
unknown reward parameters 6 can then be optimized via gradient descent on the objective:
0* = arg max L(f) = arg max Z logp(7]0) . 3)
0
TED

To optimize this objective, we approximate the intractable integral in Eq. (2) using importance sam-
pling, as in prior work [5, 3]. The robot then acts according to Eq. (1).

The features ¢ we choose to represent the reward Ry dramatically impact the reward functions that
can be learned [2]. In the limited-data regime, this is true even when Ry belongs to an expressive
function class (e.g., a neural network). Motivated by recovering a reward function Ry that incorpo-
rates human-like priors, we are interested in explicitly constructing human-meaningful features ¢.
In this sense, we consider a feature set to be under-specified if it does not explicitly represent all the
salient features relevant to the task, and consider a reward function to be under-specified if it uses an
under-specified feature set as its basis.

4 Adaptive Language-Guided Abstraction from Contrastive Explanations

At a high level, ALGAE aims to identify the most likely set of preference weights 6* and preference
featurizations ¢* given the human demonstrations under p(¢,0 | 71,...,7n). The idealized joint
optimization given demonstration 7 thus takes the following form:

0%, ¢* = arg maxp(¢,0 | 7). 4)
6,9

We maximize this objective tractably by iteratively optimizing € and ¢. Given an initialization of
the feature vector ¢°, ALGAE decomposes the learning problem into two subtasks: 1) performing
feature specification by expanding each feature set ¢* into ¢*+! by querying for missing features in
language, then 2) performing reward validation by finding an optimal reward weight 6% for each ¢*
and comparing its predictions to ground-truth trajectories.

4.1 Identifying missing features

In feature specification, we use an LM to identify missing features salient to the user’s reward given a
demonstration 7 and the robot’s current best estimate of the (under-specified) reward function Ryx.
Once the missing feature has been identified, we query the LM for code to compute that missing
feature and append the resulting feature function ¢; to the set of known features ¢* to obtain ¢**1.

Operationally, by fixing § = 6%, Eq. (4) becomes:
¢! = arg max p(¢, 0" | 7) = arg max p(¢ | 8, 7) p(6* | 7) = arg maxp(¢ [0%,7) , (5)
@ ¢ ¢

where p(¢ | 0%, 7) may be estimated using an LM as described below.

Querying for a missing feature. The key insight of our approach is that language models have
strong common-sense priors over salient task features (e.g., ideal watering height above plant)
which we can leverage to approximate the probability p(¢ | 6%,7) in Eq. (5). Concretely, we
approximate the optimization Eq. (5) by first computing best estimated trajectory for the current re-
ward g, using Eq. (1) and pair it with the user demonstrated trajectory 7. We then prompt the LM
with the contrastive pair of trajectories (full state information concatenated over all timesteps) along
with a high level description of the task (e.g. the user wishes to water the plant) and environment
context (a description of the state of the environment) and query the LM for the likeliest feature ¢;
that explains this difference'. Intuitively, TR, acts as evidence for 6% that is easier for the LM to

'If there are multiple missing features, the algorithm will identify them in future iterations.

Algorithm 1: ALGAE

Input: Demonstrations D = {; }*=1
Init: Features ¢° = [distance to goal], confidence threshold ¢
while true do
0F = arg max, p(D | 0, ¢*) // Optimize reward as in Eq. (3).
TR, = arg max, Rgk (1) // Optimize trajectory according to this reward as in Eq. (1).
7 ~ D // Sample one human demonstration to contrast it against.
if [|¢* (TR,) — ¢"(T)|| < €//If optimized trajectory explains the demo then
| break
¢; = LM(TRGk ,7H) // Query LM for missing feature that explains the contrast.

PP U o

N

interpret than reward weights, resulting in a sample from the LM’s prior on p(¢; | TR » 7). Thus,
our approximate solution ¢**1! concatenates the LM sampled ¢; with the previous vector ¢*.

Querying for feature code. Now that we have identified a missing feature ¢;, we query the LM to
directly generate the feature definition code that can be used to compute a feature value from raw
state data over the given demonstrations. The LM is given raw trajectories 7 and a natural language
feature description of ¢;, generated from the previous stage, and is asked to generate its code ¢;. We
append ¢; and its respective function code to the existing list of features ¢*+1 «— ¢F U ¢;.

4.2 Learning good reward functions

In the second stage, reward validation, we train and validate a reward function using the updated set
of features ¢**! as the basis function for the new reward, learning new parameters #*+1. Because
there may be additional missing features we have yet to identify, we now leverage existing user
demonstrations to validate whether reward learning is complete. This iterative update is motivated
by the desire to not over-parameterize the reward by specifying non-salient features.

Learning a new reward. Given our updated feature set ¢* 11, we fix ¢ = ¢**! in Eq. (4) to obtain:

p(r|* 1, 0)p(0]* T)p(phT1)
p(7)

arg max p(¢**1, 0 | 7) = arg max = arg max p(r | ¢**1,0) (6)
] 9]

assuming uniform p(6 | ¢**1). This equation directly corresponds to the MaxEnt IRL optimization

procedure in Section 3 using ¢* T as the feature vector. We now learn updated reward weights §%+1

from the user demonstrations via Eq. (3), then optimize for an updated trajectory 7 , ., via Eq. (1).

Validating the new reward. To determine whether we have recovered all salient features, we
leverage existing user demonstrations for validation. In a real-world deployment scenario, there
are many reasonable ways to implement a comparison between trajectories, with the ideal being a
human user giving feedback as to whether the robot is executing the desired behavior. However, in
our simulated experiments, we approximate this judgement by measuring L2 distance between these
trajectories in the ground truth feature space ¢*. If this is within a threshold e, the learned reward
function is sufficient for explaining the desired behavior and the algorithm terminates; otherwise,
we iterate through the feature specification stage again. Pseudocode for the full pipeline can be seen
in Algorithm 1.

5 Simulated Experiments

We evaluate ALGAE in both simulated and real-world robot environments. To highlight the flexibil-
ity of ALGAE across diverse feature types and high-dimensional control, our domains include 2D
maze navigation tasks and a 7DoF JACO tabletop manipulation task, along with real-world mobile
manipulation tasks with a Spot in Section 6. We use GPT-40 [24] to identify salient missing features
in all experiments.

2D Navigation JACO GetWateringCan ThrowAwayRag WaterPlant

——

Figure 2: We evaluate on both simulated and real-world domains with a variety of missing features.
A: 2D maze navigation, where the robot must navigate to a goal while interacting with other objects.
B: 7DoF JACO manipulation, where the JACO arm must manipulate a held coffee mug while re-
specting features like end effector orientation. C: Spot mobile manipulation tasks, where the robot
must complete tasks like WaterPlant while respecting the height of pot.

5.1 Experiment Setup

Domain 1: 2D Navigation. Inspired by the Al Safety Gridworlds [25], where under-specified fea-
tures can implicitly lead to reward hacking behavior [26], we evaluate ALGAE on the following 2D
maze navigation environments: GridRobot, Lavaland, and Island (Fig. 2). Trajectories are sequences
of 9 states beginning with the start and ending at the goal. The 18-dimensional input consists of the
xy coordinate positions of the robot in the grid at each timestep. The action space is the four coor-
dinate directions. Each scenario is a 5-by-5 2D grid consisting of an agent, a goal the agent must
navigate to, and possible objects the agent must interact with. In GridRobot, the agent must avoid
the (1) Stove; in Lavaland, the agent must avoid (2) Lava; in Island, the agent needs to drink (move
to) (3) Water. To ensure there is the possibility of over-specifying features, we also randomly place
non-relevant objects that do not impact the true reward in the environment (e.g., Ball).

Domain 2: 7DoF Tabletop Manipulation. To assess a higher-dimensional state and action space,
we also evaluate a 7DoF JACO robot arm tasked with manipulating a coffee cup on a tabletop in a
PyBullet simulator (see Fig. 2.) Each scenario is initialized with a starting and goal pose location, a
laptop placed on the tabletop, and a human by the table. The robot must manipulate the coffee cup
it is carrying to a specific goal location while respecting user preferences for motion. Trajectories
are length 21, and each state has 97 dimensions: the xyz positions of all robot joints and angles, and
Yz object positions along with rotation matrices. We introduce four scenarios based on the relevant
human preference: (1) Laptop: xy-plane distance of the EE to the laptop, to ensure the cup does not
pass over the laptop, (2) Table: z-distance of the EE to the table, to keep the mug of height close to
the table, (3) Orientation: EE orientation relative to upright, to ensure the cup does not spill, and (4)
Human: xy-distance of the EE to the human, to ensure the cup does not collide with the human.

Test Scenarios. To study whether our learned reward functions generalize across different scenar-
ios related to spurious environment features, we construct two possible distribution shifts for each
demonstrated scenario: (1) different trajectory goals (Goal) (e.g., the robot must move to a different
goal location) and (2) different feature object locations (Object) (e.g., the laptop changes location
in the scene). These are intended to test whether the learned reward captures true salient environ-
ment features rather than spurious feature correlations. We report the normalized reward of the
optimized trajectory (against the reward of the ground truth best and worst trajectories) on a set of
five randomly sampled test scenarios across three seeds.

Comparisons. A straightforward way to learn rewards from demonstrations is to learn directly from
the state space. We refer to this baseline as (1) Full-State. We would expect such a baseline to fail to
generalize to novel environments since the learned reward may be prone to overfitting spurious state
correlations in the demonstrations, rather than true salient features in the environment. However,
if access to a language prior was given without contrastive demonstrations (such that there is no
demonstrated trajectory of the under-specified feature), we could query for all hypothesized features
at once as (2) LM-Feature. This baseline is intended to isolate the impact of the language model
proposing features given only the task description and environment context, and can be seen as

GridRobot Lavaland Island | JACO

Stove Lava Water Laptop Table Orientation ~ Human

Goal ALGAE 1.00 (0.00) 1.00 (0.00) 0.99 (0.01) 0.90 (0.06) 0.68 (0.12) 0.73 (0.08) 0.66 (0.12)
Full-State 0.49 (0.06) 0.60 (0.06) 0.52 (0.06) 0.40 (0.05) 0.37 (0.07) 0.35(0.03) 0.39 (0.01)
LM-Feat 0.85(0.02) 0.86 (0.05) 0.86 (0.08) 0.53 (0.05) 0.51 (0.16) 0.58 (0.10) 0.54 (0.04)
LM-Rew 0.81(0.04) 0.83 (0.10) 0.72 (0.09) 0.63 (0.08) 0.48 (0.17) 0.58 (0.07) 0.67 (0.01)
Random 0.58 (0.07) 0.62 (0.04) 0.57 (0.03) 0.37 (0.03) 0.39 (0.08) 0.36 (0.03) 0.38 (0.08)

Obj. ALGAE 1.00 (0.00) 1.00(0.00) 1.00 (0.00) 0.93 (0.06) 0.65 (0.12) 0.67 (0.03) 0.53 (0.03)
Full-State 0.62 (0.01) 0.55 (0.06) 0.44 (0.05) 0.38 (0.07) 0.31 (0.03) 0.31(0.06) 0.44 (0.07)
LM-Feat 0.77 (0.04) 0.81 (0.05) 0.90 (0.05) 0.54 (0.08) 0.45(0.14) 0.59 (0.07) 0.50 (0.01)
LM-Rew 0.76 (0.08) 0.81 (0.10) 0.79 (0.07) 0.61 (0.06) 0.56 (0.15) 0.58 (0.09) 0.53 (0.02)
Random 0.54 (0.02) 0.61 (0.06) 0.53 (0.02) 0.38 (0.02) 0.34 (0.09) 0.36 (0.02) 0.38 (0.08)

Table 1: Normalized ground truth reward of the optimized trajectories produced by different methods
across simulated test environments and feature scenarios. Goal represents test scenarios where the
goal locations have changed from training and Object represents test scenarios where the relevant
feature has changed location from training. We report standard error across three seeds.

a prompting-only baseline. For an additional prompting-only baseline, we also evaluate (3) LM-
Reward, a baseline where the LM also proposes the reward weights in addition to the features.
Inspired by work that proposes to construct rewards directly from language [27, 28, 29], this baseline
is intended to test the zero-shot reward specification capability of LMs. Finally, to benchmark these
values, we report a (4) Random reward, which randomly samples a trajectory for each test scenario.

5.2 Results and Analysis

Single feature recovery. We first assess the ability of ALGAE to recover a single missing fea-
ture. Table 1 shows results across test environments and their feature scenarios. As shown, ALGAE
outperforms comparisons across all features. In simpler 2D environments such as GridRobot and
Lavaland, ALGAE achieves close to perfect feature recovery and generalization on unseen test sce-
narios. While the two prompting-only baselines (LM-Feature and LM-Reward) perform well above
Random, upon inspection of the LM rewards, they tend to produce many irrelevant features which
result in over-parameterized reward functions. In the more complex JACO scenarios, ALGAE con-
sistently outperforms baselines. Its performance is close to the prompting-only baselines on the
Orientation task, which is unsurprising as there is no explicit penalty for over-parameterizing the
reward (i.e., the robot can keep the cup upright while optimizing for additional features).

Iterative feature recovery. We next study the case where more than one feature is under-specified in
a scenario, and ALGAE must recover them iteratively. In these experiments, the training scenario is
instantiated with two missing features (Water and Dinosaur for Island) and (Laptop and Orientation
for JACO). As seen in Fig. 3, ALGAE iteratively improves reward given multiple missing features.

6 Real-World Experiments

To assess the feasibility of our approach on robotic hardware operating in cluttered human environ-
ments, we now evaluate ALGAE’s performance on mobile manipulation tasks with a Spot robot.

Domain 3: Spot Mobile Manipulation. Spot is a legged robot equipped with a manipulator (arm
with gripper) and six RGB-D cameras (one in gripper, two in front, one on each side, one in back).
Each scenario is initialized with a starting and goal robot pose location, along with the following
objects: watering can, plant pot, apple, towel, and textbook. Trajectories are length 5 and each
state consists of 10 dimensions: the zyz positions of the robot and its hand, as well as rotation of
the gripper. We introduce the following three scenarios and their relevant reward preferences: (1)
GetWateringCan (zy-distance of the robot to the watering can), to ensure the robot is positioned to
execute a successful grip, (2) WaterPlant (z-distance of the robot hand to the demonstrated watering

—8— ALGAE (Ours)
LM Feature

o Island 10 JACO Spot —e— LM Reward
0.9 0.9 10 —e— Random
0.8 0.8
s 0.7 08

ke o=

206 506 E

= s 506

qg) 0.5 / E 05| — &3)

~ 0.4 ~ 04

—e— ALGAE (Ours) 0.3
0.2
0.1

0.0 0.0 0

1 2 3 1 2 3 GetWateringCan WaterPlant ThrowAwayRag
Iteration Iteration Scenario

Figure 3: A: Normalized reward across multiple iterations in simulated domains. ALGAE (pink)
improves across each iteration, continuously finding under-specified features and updating its reward
estimate. In contrast, prompting-only baselines such as LM-Feature (gray) and LM-Reward (black)
do not iteratively improve themselves after instantiation. B: Normalized reward on Spot domains.
Real-world clutter introduced in the scene leads to over-parameterized LM-only rewards, increasing

the gap between ALGAE and baselines. Error bars depict standard error across three seeds.

height above pot), to ensure the hand is adjusting to the pot size, and (3) ThrowAwayRag (xy-distance
of the hand to the textbook), to ensure the robot does not drip water from the carried rag.

Data collection. For each scenario, a human teleoperates the robot from the starting to goal pose
while satisfying the hidden preference (e.g. raise the robot hand to a particular height above the pot
before performing a watering motion), and generates three demonstrations per scenario. We also
collect all detected object identities and positions via image segmentation from the robot cameras
[30, 31] and captioning [32] as environment context for the demonstrations.

Test scenarios and comparisons. We evaluate on the following test scenarios: for GetWateringCan,
we vary the location of the watering can before executing a grip, for WaterPlant, we vary the height
of the plant pot before executing a pour, and for ThrowAwayRag, we vary the location of the textbook
on the table the robot hand must avoid while carrying the wet rag. To ensure the robot does not
execute a drastically wrong action given an incorrectly learned reward, we constrain the sample
space of the robot pose at test time around safe zones. We report the normalized reward of the
optimized trajectory on a set of three test scenarios across three seeds. We report comparisons with
the previous best performing method (LM-Reward) along with a Random benchmark.

Results and Analysis. ALGAE outperforms baselines on real-world scenarios (Fig. 3). This gap
actually increases relative to simulated environments due to the real-world clutter introduced in the
scene. Upon visual inspection of the LM-Reward features, we indeed see unnecessary features (e.g.
relative position of the robot to all objects in the scene, not just the salient ones) included. This
underscores the usefulness of ALGAE’s interactive, iterative approach to feature construction.

7 Discussion and Limitations

ALGAE is an iterative reward learning framework that alternates between specifying missing fea-
tures with a LM and weighting them into a reward via IRL. One limitation is that we used the
ground truth feature vector to judge task completion on the contrasting pair of trajectories; future
work might evaluate a true human-in-the-loop scenario, and study whether LM-informed priors have
additional benefits beyond the performance improvements evaluated here. Moreover, we focus on
reward functions that are linear in the feature set; in the future, we can imagine extending our method
for nonlinear rewards. Finally, ALGAE is only effective for cases where the LM prior agrees with
the desired behavior — which may not always be true in practice.

Acknowledgements

We thank the MIT Learning and Intelligent Systems Group for providing robotic hardware resources
used in this project. We thank members of the Language and Intelligence and Interactive Robotics
Groups for helpful feedback and discussions. Andi Peng is supported by the NSF Graduate Re-
search Fellowship and Open Philanthropy. Belinda Li is supported by National Defense Science
and Engineering Graduate Fellowships. Ilia Sucholutsky is supported by a NSERC Fellowship
(567554-2022). This work was partially supported by the National Science Foundation under grant
11S-2212310.

References

[1] D. Hadfield-Menell, S. Milli, P. Abbeel, S. J. Russell, and A. Dragan. Inverse reward design.
Advances in neural information processing systems, 30, 2017.

[2] A. Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan. Feature expansive reward learning:
Rethinking human input. In Proceedings of the 2021 ACM/IEEE International Conference on
Human-Robot Interaction, pages 216-224, 2021.

[3] A.Bobu, M. Wiggert, C. Tomlin, and A. D. Dragan. Inducing structure in reward learning by
learning features. The International Journal of Robotics Research, 41(5):497-518, 2022.

[4] A.Y.Ngand S. Russell. Algorithms for inverse reinforcement learning. In Proceedings of the
International Conference on Machine Learning, 2000.

[5] C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via
policy optimization. In International conference on machine learning, pages 49-58. PMLR,
2016.

[6] C. Finn, P. Christiano, P. Abbeel, and S. Levine. A connection between generative adver-

sarial networks, inverse reinforcement learning, and energy-based models. arXiv preprint
arXiv:1611.03852, 2016.

[7] J. Ho and S. Ermon. Generative adversarial imitation learning. Advances in neural information
processing systems, 29, 2016.

[8] S. Levine, Z. Popovic, and V. Koltun. Feature construction for inverse reinforcement learning.
Advances in neural information processing systems, 23, 2010.

[9] J. E. Fan, R. D. Hawkins, M. Wu, and N. D. Goodman. Pragmatic inference and visual ab-
straction enable contextual flexibility during visual communication. Computational Brain &
Behavior, 3:86-101, 2020.

[10] M. K. Ho, D. Abel, T. L. Griffiths, and M. L. Littman. The value of abstraction. Current
Opinion in Behavioral Sciences, 2019.

[11] P. Abbeel and A. Y. Ng. Apprenticeship Learning via Inverse Reinforcement Learning. In
Proceedings of the International Conference on Machine learning, 2004.

[12] B.D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, et al. Maximum entropy inverse reinforce-
ment learning. In Aaai, volume 8, pages 1433-1438. Chicago, IL, USA, 2008.

[13] T. Sumers, R. Hawkins, M. K. Ho, T. Griffiths, and D. Hadfield-Menell. How to talk so ai will
learn: Instructions, descriptions, and autonomy. Advances in Neural Information Processing
Systems, 35:34762-34775, 2022.

[14] A. Bobu, A. Peng, P. Agrawal, J. Shah, and A. D. Dragan. Aligning robot and human repre-
sentations. arXiv preprint arXiv:2302.01928, 2023.

[15] A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan. Learning from physical human
corrections, one feature at a time. In Proceedings of the 2018 ACM/IEEE International Con-
ference on Human-Robot Interaction, pages 141-149, 2018.

[16] S. A. Bowyer, B. L. Davies, and F. R. y Baena. Active constraints/virtual fixtures: A survey.
IEEE Transactions on Robotics, 30(1):138-157, 2013.

[17] D. Rakita, B. Mutlu, and M. Gleicher. An autonomous dynamic camera method for effective
remote teleoperation. In Proceedings of the 2018 ACM/IEEE International Conference on
Human-Robot Interaction, pages 325-333, 2018.

[18] J. Spencer, S. Choudhury, M. Barnes, M. Schmittle, M. Chiang, P. Ramadge, and S. Srinivasa.
Learning from interventions: Human-robot interaction as both explicit and implicit feedback.
In 16th Robotics: Science and Systems, RSS 2020. MIT Press Journals, 2020.

[19] P. Sharma, B. Sundaralingam, V. Blukis, C. Paxton, T. Hermans, A. Torralba, J. An-
dreas, and D. Fox. Correcting robot plans with natural language feedback. arXiv preprint
arXiv:2204.05186, 2022.

[20] A. Peng, I. Sucholutsky, B. Li, T. Sumers, T. Griffiths, J. Andreas, and J. Shah. Learning with
language-guided state abstractions. In International Conference on Learning Representations,
2024.

[21] A. Peng, A. Bobu, B. Z. Li, T. R. Sumers, 1. Sucholutsky, N. Kumar, T. L. Griffiths, and
J. A. Shah. Preference-conditioned language-guided abstraction. In Proceedings of the 2024
ACM/IEEE International Conference on Human-Robot Interaction, pages 572-581, 2024.

[22] B.Z.Li, W. Chen, P. Sharma, and J. Andreas. Lampp: language models as probabilistic priors
for perception and action. arXiv preprint arXiv:2302.02801, 2023.

[23] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[24] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, 1. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. GPT-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[25] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt, A. Lefrancq, L. Orseau, and S. Legg.
Ai safety gridworlds. arXiv preprint arXiv:1711.09883,2017.

[26] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete prob-
lems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[27] J. Rocamonde, V. Montesinos, E. Nava, E. Perez, and D. Lindner. Vision-language models are
zero-shot reward models for reinforcement learning. arXiv preprint arXiv:2310.12921, 2023.

[28] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-level reward design via coding large language models. arXiv
preprint arXiv:2310.12931, 2023.

[29] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward design with language models. arXiv
preprint arXiv:2303.00001, 2023.

[30] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W.-Y. Lo, et al. Segment anything. arXiv preprint arXiv:2304.02643, 2023.

[31] N. Kumar, T. Silver, W. McClinton, L. Zhao, S. Proulx, T. Lozano-Pérez, L. P. Kaelbling, and
J. Barry. Practice makes perfect: Planning to learn skill parameter policies. arXiv preprint
arXiv:2402.15025, 2024.

10

[32] X.Zhou, R. Girdhar, A. Joulin, P. Krahenbiihl, and I. Misra. Detecting twenty-thousand classes
using image-level supervision. In European Conference on Computer Vision, pages 350-368,
2022.

11

A Full Prompts

We provide the prompts used for both the feature query in all domains.
2D Navigation.

An agent is in a 2D gridworld environment of size 5x5. (0,0) is the top left
corner and (4,4) is the bottom right corner (note this is not a typical coordinate
grid).

The environment config has the following attributes: X (int): width of the
environment Y (int): height of the environment starts (List[Tuple[int]]):
starting coordinate of the agent goals_pos (List[Tuple[int]]): coordinate position
of the goal goals_color (str): «color of the goal goals_type (str): object
type of the goal objects{1-3}_pos (List[Tuple[int]]): position(s) of other
objects in the environment. This will be empty if there is no object in
that slot. objects{1-3}_color (str): color of the corresponding object at the
position objects{1-3}. This will be empty if there is no object in that slot.
objects{1-3}_type (str): object type of the corresponding object at the position
objects{1-3}. This will be empty if there is no object in that slot.

This is an environment config (disregard the extra attributes that are not
specified above): {env}

The following is a demonstration the agent took in this first environment (each
trajectory contains x,y coordinates for the agent, 8 timesteps total). Keep track
of where the agent’s positions relative to the other objects in the environment.
For example, [0,0 0,1 0,2 0,3] means the agent started at [0,0] and moved to
[0,3]. If there is an object at [0,3], the agent moved towards that object.

demonstration = {demo}

The following is an (incorrect) demonstration that the agent took in this
environment. The trajectory is the same format as the first demonstration.
incorrect trajectory = {best_traj}

Describe the demonstration and trajectory in the context of the environment they
are in, then use this to give the specific feature in that environment that
explains what the demonstration did better. Reason step by step and think about
why the agent might be moving in the way that it is. If there are multiple of
the same object, please give the average distance to all objects of that type.
Please specify a feature (only one feature e.g. if there are multiple possible
explanations choose the most likely object) that we can write code to compute
from the position of the agent to other objects in the scene.

This is the current list of features that we already know: {self.feature_names}.
Please give a different feature in your answer (e.g. if distance to goal feature
is already in the list, do not give distance to goal again). Please give your
confidence for your answer between @ and 1. Ground your answer in visible objects
in the scene, and give an answer (only 1 specific answer (e.g. distance to book
objects)) that we can compute relative to the position of the agent.

JACO.

A 7-DoF Jaco robot arm is carrying a coffee cup on a tabletop environment. The
arm is carrying a fragile ceramic coffee cup that is at risk of slipping. The arm
is controlled via a Pybullet simulator.

The environment config has the following attributes: object_centers:
{’HUMAN_CENTER’: [x,y,z], ’LAPTOP_CENTER’: [x,y,z]} # coordinates of the human

12

and laptop objects in the environment tabletop: z=0 # the z-coordinate plane of
the tabletop

This is an environment config (disregard the extra attributes that are not
specified above): {env}

The following is a correct demonstration trajectory the robot took in this first
environment. Each trajectory is a 21x97 matrix representing the 21 timesteps the
robot took over the course of the demonstration. Each state in the timestep is
a 97-dimensional vector representing the x,y,z positions of all robot joints and
objects, and their rotation matrices. This is the code that generates each state.
Note the last six values represent fixed xyz positions of the human and laptop:

Get relevant objects in the environment

posH, _ = p.getBasePositionAndOrientation(objectID["human"])
posL, _ = p.getBasePositionAndOrientation(objectID["laptop”])
object_coords = np.array([posH, posL])

Get xyz coords and orientations. 'waypt' is a single waypoint in the trajectory
move_robot(objectID["robot"”], joint_poses=waypt)
coords = robot_coords(objectID["robot"])
orientations = robot_orientations(objectID["robot"])
return np.reshape(np.concatenate((waypt[:7], orientations.flatten(),
coords.flatten(), object_coords.flatten())), (-1,))

Reason step by step, and keep track of where the robot’s movements relative to
important features in the scene. correct trajectory = {demo}

The following is an incorrect trajectory that the robot took in this environment.
The trajectory is the same format as the first demonstration. incorrect trajectory
= {best_traj}

Describe this trajectory in the context of the environment it is in, then use this
to give the specific feature in that environment that explains why this trajectory
was incorrect relative to the demonstration, which was correct. Reason step by
step and think about how the robot’s movements are related to the objects in
the environment, as well as how aspects of the robot’s position and orientations
may be impacting the desired task (bringing coffee). Please specify a feature
(only one feature e.g. if there are multiple possible explanations choose the
most likely object) that we can write code to compute from the position of the
robot to other objects in the scene. This is the current list of features that
we already know: {self.feature_names}. Please give a different feature in your
answer (e.g. if distance to goal feature is already in the list, do not give
distance to goal again). Please give your confidence for your answer between 0
and 1. Ground your answer in visible objects in the scene, and give an answer
(only 1 specific answer (e.g. distance to book)) that we can compute from the
position of the robot.

Spot.

This is an environment configuration of objects and their xyz positions in the
room.

Environment: {environment}
Goal: {goal}

The following is a successful trajectory (over 5 timesteps) the robot took in
this environment (each trajectory contains xyz positions of the robot, along with

13

the xyz positions and rotation quarternion of the robot’s hand).
Keep track of where the robot’s positions and hand are relative to the other
objects in the environment.

Successful trajectory: {demo}

The following is an unsuccessful trajectory (over 5 timesteps) the robot took in
this environment.

Failed trajectory: {failed traj}

Describe the key feature that distinguishes the successful trajectory from the
failed trajectory. Make sure the feature is semantically sensible for the
goal. Reason step by step. Please specify a feature (only one feature e.g.
if there are multiple possible explanations choose the most likely one). Make
sure the feature is computable from the state features in the scene (and no
other information): plant_XYZ, robot_XYZ, robot_arm_XYZ, robot_arm_rotation. The
feature can be relative positions to objects, relative positions to positions
around objects (e.g. a force field around the object), relative positions to
absolute points in space, relative rotations, etc. The feature can even be
non-linear. However, make sure the feature is continuous and not discrete. Please
describe the feature in detail.

14

	Introduction
	Related Work
	Problem Definition
	Adaptive Language-Guided Abstraction from Contrastive Explanations
	Identifying missing features
	Learning good reward functions

	Simulated Experiments
	Experiment Setup
	Results and Analysis

	Real-World Experiments
	Discussion and Limitations
	Full Prompts

