
The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Ekin Akyürek 1 Mehul Damani * 1 Adam Zweiger * 1 Linlu Qiu 1 Han Guo 1 Jyothish Pari 1

Yoon Kim 1 Jacob Andreas 1

Abstract

Language models (LMs) have shown impressive
performance on tasks within their training distri-
bution, but often struggle with structurally novel
tasks even when given a small number of in-
context task examples. We investigate the effec-
tiveness of test-time training (TTT)—temporarily
updating model parameters during inference us-
ing a loss derived from in-context examples—
as a mechanism for improving LMs’ reason-
ing and few-shot learning capabilities. On the
Abstraction and Reasoning Corpus (ARC), per-
forming TTT with in-context examples yields up
to 6→ higher accuracy compared to fine-tuned
baselines—reaching 53.0% on the public valida-
tion set with an 8B-parameter LM and 61.9%
when ensembled with program-synthesis meth-
ods, matching average human performance. On
BIG-Bench Hard (BBH), TTT on in-context ex-
amples surpasses standard few-shot prompting
in the 10-shot setting by 7.3 percentage points
(50.5% to 57.8%). Our findings highlight the lim-
itations of in-context learning for novel tasks and
demonstrate the potential of test-time training to
enhance language model adaptability.

1. Introduction
Large-scale neural language models (LMs) have demon-
strated remarkable success on few-shot learning of tasks
related to those seen during pre-training, as well as ele-
mentary variations or compositions of those tasks (Brown
et al., 2020; Todd et al., 2024). When given natural lan-
guage specifications or a small number of examples, LMs
can often infer the desired task and generate appropriate out-
puts. However, an open question is whether these models
can truly acquire new skills for which they have not been

*Equal contribution 1Massachusetts Institute of Technology.
Correspondence to: Ekin Akyürek <akyurek@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Figure 1. Pass@2 accuracy on a subset of 80 randomly selected
ARC validation tasks and overall accuracy on BIG-Bench Hard.
The zero-shot baseline is 0 for ARC and 40.9% for BBH, indicated
by the dashed line. TTT boosts the performance of fine-tuned
models (FT) on ARC by 27.5 percentage points and increases
accuracy on BBH by 7.3 percentage points.

trained—particularly, tasks involving non-trivial reasoning,
planning, and abstraction in domains that differ significantly
from their pre-training distributions. This question is funda-
mental to understanding how, and whether, LMs can exhibit
the sort of flexible, novel-skill acquisition that has been
proposed as a measure of intelligence (Chollet, 2019).

Solving complex and novel tasks remains extremely chal-
lenging for LMs, and simple sampling approaches often
yield poor performance on such problems (Wu et al., 2024;
McCoy et al., 2024). However, recent progress has shown
that LMs can be substantially improved by adding extra test-
time computation. Several methods fall into this category,
such as chain-of-thought prompting (Wei et al., 2022), sam-
pling with majority voting (self-consistency; Wang et al.,
2023), code execution (Brown et al., 2024; Snell et al., 2025;
Damani et al., 2025), and search (Yao et al., 2023).

The idea of updating model parameters using instance-
specific data at test time has roots in the literature on local
learning (Bottou & Vapnik, 1992) and transductive learn-
ing (Joachims, 1999). In these methods, a learner refines its
parameters or hypotheses after observing test inputs, adapt-
ing to individual examples or small clusters of examples.
Such approaches inherently blur the line between training
and inference, and can lead to robust adaptation in low-data

1

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

scenarios or under distribution shift.

Modern versions of these transductive ideas for deep neural
networks have been widely referred to as test-time train-
ing. In TTT, a model is updated at inference time using
only the current test instance or a small batch of test in-
stances, typically through explicit gradient steps. While test-
time adaptation has been explored for vision models (Sun
et al., 2020) and sequence architectures (Gandelsman et al.,
2022; Sun et al., 2024; Behrouz et al., 2025), its interac-
tion with other techniques for few-shot learning—especially
in-context learning—remains less understood.

In this paper, we investigate how to leverage TTT on top
of standard in-context learning (ICL) to boost performance
on challenging tasks that require reasoning or rule-based
generalization. In-context learning is a powerful means
of adaptation without parameter updates, guided by short,
task-specific prompts. We show that combining ICL with
explicit gradient-based updates on test data can significantly
improve performance on particularly difficult tasks. Specifi-
cally, our main contributions1 are:

1. A systematic analysis of the key components for effec-
tive test-time training, including strategies for selecting
training data at inference, training objectives, and how
TTT interacts with an LM’s pre-trained parameters and
in-context learning.

2. An application of TTT to two challenging benchmark
suites—The Abstraction and Reasoning Corpus
(ARC; Chollet, 2019) and BIG-Bench Hard (BBH;
Srivastava et al., 2023; Suzgun et al., 2023).

On ARC, our TTT approach outperforms existing open-
source neural methods, attaining 53.0% accuracy with an
8B model and 61.9% when ensembled with a program-
synthesis approach (comparable to human performance).
On BBH, TTT yields a 7.3% absolute improvement over
few-shot prompting, achieving 57.8% accuracy. Gains are
particularly large on tasks involving structural rules or dis-
tribution shifts (e.g., Dyck languages, Ruin names), where
TTT yields 20–50 percentage points of improvement over
standard in-context prompting.

Overall, our findings highlight that TTT drastically improves
LM’s few-shot learning ability on out-of-distribution tasks.

2. Preliminaries
2.1. In-context Learning

At a certain scale, many LMs exhibit the ability to adapt to
new tasks without updating their parameters by simply con-

1Code and data are available at https://github.com/ekina
kyurek/marc (ARC) and https://github.com/adamzweiger
/Fewshot-TTT (BBH).

ditioning on input examples or instructions provided. Given
a sequence of input-output pairs (x1, y1), . . . , (xk, yk) and
a new input xk+1, an LM can generate the corresponding
output ŷk+1 by sampling from:

ŷk+1 ↑ LM(· | x1, y1, . . . , xk, yk, xk+1)

While the possibility of in-context learning (ICL) as im-
plicit machine learning simulation is discussed in previous
work (Akyürek et al., 2023), empirical evidence shows that
in-context learning with language models does not always
resemble standard machine learning algorithms (Zhao et al.,
2024; Min et al., 2022b). Furthermore, ICL often strug-
gles with novel tasks “out-of-the-box.” For example, large
language models exhibit poor performance on datasets like
ARC (Opie!ka et al., 2024; Bober-Irizar & Banerjee, 2024).

2.2. Test-Time Training

Test-time training (TTT) enables parametric models to adapt
during inference through dynamic parameter updates in re-
sponse to each test input. This approach remains relatively
unexplored in the era of large language models. The gen-
eral TTT process is as follows: starting with initial model
parameters ω0, for each test input (or batch of inputs) d, we
generate a temporary training dataset DTTT. We then
optimize these parameters to minimize a loss function

argmin
ω

∑

dTTT→DTTT

L(LM(dTTT;ω)),

resulting in temporarily updated parameters ωd, which are
subsequently used for prediction.2

In previous work (e.g., Sun et al., 2020), DTTT is typically
constructed by applying an unsupervised objective (e.g.,
masked autoencoding) to the input x alone. In this paper,
we extend TTT to the few-shot learning setting, treating it
as a form of transductive learning by leveraging few-shot
demonstration examples to improve predictions. Although
TTT can also be applied to chain of thought (CoT; Wei et al.,
2022), we focus on direct transduction, where demonstra-
tions consist of input-output pairs (x, y) without intermedi-
ate reasoning steps or explicit function descriptions.

The few-shot learning setting we consider provides
richer context in the form of demonstration pairs
(x1, y1), . . . , (xK , yK). One simple method for TTT is Di-
rect I/O training, where we directly treat each input-output
(xk, yk) pair as training instances. Our key insight is that
the few-shot examples can also be used to construct a more

2Note that this use of “test-time training” is related but dis-
tinct from the one used in recent line of work wherein an RNN’s
hidden state is treated as parameters and the update equation is
interpreted as optimizing a recall-based regression objective (Ravi
& Larochelle, 2017; Sun et al., 2024; Behrouz et al., 2025; Wang
et al., 2025).

2

https://github.com/ekinakyurek/marc
https://github.com/ekinakyurek/marc
https://github.com/adamzweiger/Fewshot-TTT
https://github.com/adamzweiger/Fewshot-TTT

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 2. TTT design decisions. Data generation: A test task
consists of input-output pairs {(xi, yi)}. The Leave-One-Out strat-
egy removes one example at a time to form in-context learning
tasks, while augmentations further expand the dataset. An alter-
native Direct I/O approach trains directly on the examples. Loss:
The model is trained with loss computed on the Test Output (only
the test-time prediction), All Outputs (including demonstration
outputs), or Inputs and Outputs (all tokens). Parametrization:
The Task-Specific approach trains a separate adapter per task while
the Shared approach trains a single adapter across multiple tasks.

robust and expansive DTTT of synthetic in-context learn-
ing tasks, allowing for effective model adaptation during
test time. Additionally, when task-specific knowledge is
available, this structure can be leveraged to further expand
the dataset, as demonstrated in our experiments on ARC
(Section 4). We also explore the general case where no task-
specific information is used, as tested on BBH (Section 5).

Our experiments in this paper characterize each compo-
nent of the TTT pipeline, investigating different design
choices across the following stages: (1) constructing an
input-specific training dataset DTTT at test-time; (2) fine-
tuning the LM by optimizing a loss function L over the
dataset

∑
d→DTTT

L(LM(d;ω)); and (3) sampling from the
updated model with an augmented inference strategy based
on self-consistency to obtain a final prediction.

3. TTT Design
This section discusses the key design choices and challenges
of applying TTT to LLMs, including how to best leverage
their in-context learning capabilities, how to structure data
for effective processing, what optimization objective to use,
and how to efficiently update model parameters. We detail
these considerations in the construction of the TTT dataset
and the optimization setup (Figure 2).

3.1. Data Generation

Given a task with K training input-output pairs
{(xk, yk)}Kk=1, a test-time training dataset DTTT can be
created by either following an in-context learning setup or a
direct input-output (direct I/O) setup (top row in Figure 2):

Leave-one-out tasks We begin with leave-one-out in-
context learning tasks. For each pair (xj , yj), we exclude it
from the set of demonstrations and treat it as a “test” exam-
ple within the newly formed synthetic task:

dICL
j =

(
{(xk, yk)}k ↑=j , xj , yj

)
.

Here, {(xk, yk)}k ↑=j serves as the “in-context demonstra-
tions,” and (xj , yj) is the “synthetic test example.” To in-
crease the number of synthetic tasks, we additionally per-
mute the order of the demonstrations in each dICL

j .

Direct input-output (I/O) tasks Rather than constructing
in-context tasks, we treat each (xk, yk) pair independently
as a single training instance:

dI/O
j = (xj , yj) .

In this setup, the model is fine-tuned on these training pairs
without in-context demonstrations. While this approach
is more computationally efficient, our results (Sections 4
and 5) show that it underperforms methods that utilize in-
context demonstrations.

Data augmentation For certain tasks with structured inputs
(e.g., ARC), we can apply invertible transformations (e.g.,
flips, rotations, color permutations) to further augment the
TTT dataset. Let T be a set of invertible transformations.
For each t↓T , we have t↓1(t(x)) = x, so we can apply t to
each training and test instance in dj to yield a transformed
task t(dj). Since these transformations preserve the core
relationships in the data (e.g., the input-output pattern is
the same, just rotated), they effectively expand the training
signal. If rule-based transformations are used, the final TTT
dataset is: DTTT =

⋃
t→T

⋃
j t(dj).

3.2. Loss Function

We optimize the standard LM loss on DTTT. For the in-
context leave-one-out setup, we experiment with 3 different
ways to take the loss (middle row in Figure 2):

• Test output (no demonstration loss) The standard for-
mulation where the loss is taken over ytest:

Llabel
LM = LLM(ytest | x1, y1, . . . , xK , yK , xtest;ω)

• All outputs3 In addition to the loss on the test output,
3For ARC, we start the indexing at k = 2 because the under-

lying transformation of an ARC task cannot be inferred without
observing at least 1 demonstration.

3

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

the loss is also taken over the outputs of the in-context
demonstrations, which encourages the model to correctly
predict the demonstration outputs after seeing the previous
demonstrations:

Loutputs
LM = Llabel

LM +
K∑

k=1

LLM(yk|x1, y1, ..., xk;ω)

• Loss on inputs and outputs The loss is taken over all
tokens, encouraging the model to learn the structure of x
as well as y:

Lall
LM = Loutputs

LM +
K∑

k=1

LLM(xk|x1, y1, . . . , yk↓1;ω)

This method, which requires learners to generate task
inputs as well as outputs, is analogous to existing unsu-
pervised TTT objectives (Sun et al., 2020).

We find in Sections 4.3 and 5.3 that the first method (taking
the loss over both demonstration and test outputs) works
best.

3.3. Parametrization

Once we have the test-time training dataset DTTT (con-
structed via either the in-context or direct I/O approach), we
perform a small number of gradient steps on task-specific
LoRA adapters (Hu et al., 2022). This approach allows
computationally efficient adaptation while maintaining the
model’s general capabilities. By default, we learn task-
specific LoRA adapters for each ARC or BBH task at test-
time. That is, we obtain K different LoRA adapters, where
K is the number of test tasks. We also experiment with
using a single shared LoRA adapter from the aggregated
dataset of few-shot examples drawn from multiple tasks
(bottom row in Figure 2)—a test-time version of meta-ICL
(Min et al., 2022a). We find that the shared adapter degrades
performance on ARC, whereas it improves performance on
BBH. We discuss this in more detail in Section 5.3.

4. Abstraction and Reasoning Corpus
4.1. Background

The Abstraction and Reasoning Corpus (ARC) aims to eval-
uate the abstract reasoning capabilities of language models
through their ability to solve visual puzzles. Each puzzle
(henceforth referred to as a task) consists of input-output
pairs of 2D grids (up to 30→30 in size) containing shapes or
patterns in up to 10 different colors, as displayed in Figure 3.
The output of each pair is obtained by applying an intuitive
and shared transformation or rule y = f(x). Each task has
2-7 demonstration examples and 1-3 test examples.

Figure 3. Example of ARC and BBH tasks that the model success-
fully solves only after applying TTT.

4.2. Experimental Details

Model architecture & optimization For our abla-
tion experiments, we use the 1B-parameter Llama-3.2
model (Llama Team, 2024). For our final results in Sec-
tion 4.6, we use the 8B Llama 3 model. We use Low-Rank
Adaptation (LoRA; Hu et al., 2022) for parameter-efficient
test-time training. More details are given in Appendix C.2.

Fine-tuning before TTT While TTT offers task-specific
adaptation, the initial capabilities of the base model signif-
icantly influence its final performance (Section 4.4). We
developed several approaches for generating synthetic train-
ing data to enhance the base model’s abstract reasoning
capabilities through fine-tuning, exploring both automated
and semi-automated methods for task generation. This is
complementary to TTT as the base model is fine-tuned on
tasks distinct from those tested on, when TTT is applied. De-
tails on our data generation strategies, as well as the effects
of various data sources and model sizes on performance, are
provided in Appendix B. The fine-tuned base model serves
as the foundation for all subsequent experiments.

Evaluation The success criterion requires producing an
exact match for all test outputs (no partial credit). Following
the standard ARC scoring criteria, we use the pass@2 met-
ric and produce 2 attempts for each test input. The original
training and validation sets consist of 400 tasks each. How-
ever, for efficient evaluation purposes, we randomly pick 80
balanced ARC tasks from the ARC validation set, including
20 easy, 20 medium, 20 hard, 20 expert tasks according to
the classification in (LeGris et al., 2024) (see Appendix A.2
for this task list). Except for our final results, we use this
subset of ARC tasks throughout our experiments. We limit
DTTT to have a maximum of 250 examples per task for ef-
ficiency reasons. Appendix C.2 provides additional details
on the hyperparameters.

Inference One of the most common techniques to scale
inference-time compute is to use temperature sampling to

4

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 4. Augmented inference and hierarchical voting. We
use leave-one-out tasks and invertible geometric transformations
to obtain multiple equivalent versions of the task for augmented
inference. Predictions from these versions are aggregated with a
hierarchical voting strategy: first, voting is performed within each
transformation, and then the top candidates from each transforma-
tion undergo global voting to yield the top two predictions.

obtain multiple responses and select the best according to
a ranker, called self-consistency (Wang et al., 2023). How-
ever, this is not viable in ARC (where the output grid is
directly predicted) as there is no way to directly enforce
diversity across samples while ensuring coherence within
samples. As an alternative self-consistency approach, we
try an augmented inference strategy that combines greedy
decoding with multiple versions of the input. Specifically,
we generate multiple prediction candidates by using geomet-
ric transformations. We then employ a hierarchical voting
strategy to determine the final prediction from the set of
generated candidates. This approach involves two stages of
voting to progressively narrow down the best candidates: (1)
Intra-transformation voting: Group predictions by their
corresponding transformation t. Within each group, select
the top-3 most frequent predictions. (2) Global voting:
Take the selected transformation-specific candidates from
the previous step and select the top-2 most frequent predic-
tions across all transformations. The augmented inference
pipeline is summarized in Figure 4 and full details of the
pipeline are in Appendix E.

4.3. Impact of TTT Design

In this section, we compare the final implementation of our
method with different design choices for TTT. FT serves as
the baseline, using only the fine-tuned model with demon-
strations in-context. No Transformations omits the aug-
mentation step. Direct I/O Data replaces in-context tasks
with the direct input-output task formulation (Section 3.1).
Shared TTT uses a single LoRA adapter across all tasks
instead of learning one per task. No Demonstration Loss
removes the loss on demonstration outputs (Section 3.1).

Results are presented in Figure 5. Our TTT method is effec-
tive, improving fine-tuned model accuracy approximately
6→ (5% ↔ 29%). In-context formatting is especially im-

Figure 5. Accuracy of different data and optimization ablations
in TTT on ARC. Our data ablations reveal that the ICL data for-
mat is crucial for effective TTT, and that applying transformations
to augment the TTT dataset notably enhances performance. For
optimization, learning task-specific adapters significantly outper-
forms using a single adapter and taking a loss on the in-context
demonstrations provides a minor performance boost.

Figure 6. Performance results across model sizes. Fine-tuned
model performance improves with increasing size. However, the
scaling behavior after TTT is less clear. For instance, the final
performance of the 1B and 3B models is identical after TTT.

portant; using the direct input-output data to construct DTTT
causes an 11-task drop (38%). Removing transformations
causes a 16 task drop (55%). Regarding optimization, per-
task LoRA adapters outperform a single shared adapter by 7
tasks (24%). Including losses on the demonstration outputs
yields a modest but consistent gain (26% ↔ 29%).

4.4. Impact of Model Size

We perform full fine-tuning of 1B and 3B Llama 3.2
(instruction-tuned) and 8B Llama 3 (instruction-tuned) us-
ing synthetically generated data, as detailed in Appendix B,
and then use our default TTT implementation. We show
results using different model sizes in Figure 6. Increasing
the model size consistently improves FT performance, with
the 8B model achieving the highest accuracy of 36%. At
all model sizes, TTT leads to significant improvements in
performance. We also observe that for smaller model sizes,
TTT effectively closes the performance gap, with the 1B
and 3B models achieving similar accuracy after TTT.

5

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 7. Accuracy of different transformations and voting
schemes. While individual transformations generally perform
at a modest level and are comparable to one another, aggregat-
ing across them through voting yields substantial improvements.
Notably, a hierarchical voting strategy with two voting stages sur-
passes a flat voting approach. Our hierarchical method approaches
oracle-level performance, demonstrating its effectiveness in accu-
rately selecting the correct answer when present.

4.5. Impact of Augmented Inference

To analyze the impact of augmented inference and voting,
we run several ablations: (1) Vanilla, which generates two
predictions without transformations or advanced voting; (2)
Transformed Inference, applying a single transformation
(Rotate, Transpose, or Flip) to measure its isolated effect;
(3) Hierarchical Voting, our full pipeline combining aug-
mented inference and structured voting; (4) Flattened Vot-
ing, which selects the top-2 predictions from a single voting
round over all generated outputs; and (5) Oracle, an upper
bound that selects the correct answer if present.

As shown, individual transformations are modestly effective
on their own (with Transpose performing worst), but their
aggregation improves results markedly. Hierarchical voting
further outperforms a flattened voting approach and closely
approaches the oracle’s accuracy, suggesting that our two-
stage aggregation effectively identifies the correct solution
when it is present.

4.6. Comparison to Other Systems

Following our experiments on 80 tasks, we present com-
prehensive results on the full ARC public evaluation set,
comparing our system against existing approaches. Our
analysis focuses on three key aspects: the impact of our
TTT methodology, the benefits of combining our approach
with existing methods, and the differences between fully
neural and program synthesis methods.

TTT We apply TTT and augmented inference procedure
to our base fine-tuned model (fine-tuned 8B model). TTT
significantly improves accuracy from 18.3% to 47.1%.

Integration with existing methods A concurrent work
by Li et al. (2025) introduced BARC, achieving 54.4% accu-

PS Fine-tuned LM TTT Method Score
X Ours X 18.3%
X Ours Ours 47.1%
X BARC Ours 53.0%
BARC Ours Ours 58.5%
BARC BARC Ours 62.8%

Avg. Human 60.2%
Best Human 97.8%

BARC (ensemble) 54.4%
BARC (no synthesizer) 39.3%

Claude 3.5 Sonnet 21.0%
GPT-4o 9.0%

OpenAI o1-preview 21.0%
DeepSeek r1 20.5%

OpenAI o3-preview 82.8%

Table 1. Pass@2 Scores of different systems on the ARC vali-
dation set. Our TTT pipeline improves base models consistently.
We achieve 47.1% accuracy when applied to our fine-tuned model
and 53.0% when applied to the BARC model (Li et al., 2025). We
ensemble our method with program synthesis (PS) based models,
where we achieve score of 61.9%, comparable to the average hu-
man performance of 60.2%.

racy by combining neural and program synthesis approaches.
While their fully neural approach shares similarities with
our system, our TTT and inference pipeline has several ad-
ditional components (per-task LoRA, more augmentations,
hierarchical voting) that boost performance. To validate
our improvements, we applied our TTT pipeline to BARC’s
fully neural model, achieving 53.0% accuracy—a 35% im-
provement over their original TTT method.

Building on these results, we explored combinations of
our approach with BARC. Combining our TTT pipeline
and neural model with BARC’s synthesizer raised accuracy
to 58.5%. Combining our TTT pipeline with BARC’s
neural model and synthesizer raised accuracy to 61.9%.
This configuration matches average human performance of
60.2% (LeGris et al., 2024) on the benchmark.

Comparing program generation and end-to-end model-
ing Li et al. (2025) found that program synthesis and fully
neural predictors for ARC are highly complementary. Their
end-to-end neural model can only solve 42.2% of the tasks
solved by the program synthesis model. However, we find
that when equipped with our TTT pipeline, BARC’s fine-
tuned fully neural model solves 73.5% of the tasks that are
solved by the program synthesis model. This suggests that
our TTT pipeline significantly improves the neural model’s
ability to learn systematic reasoning patterns similar to those
captured by program synthesis models.

Semi-private evaluation ARC-AGI challenge provides
a hidden “semi-private dataset” and performs external tests
for submissions. We submitted our ensemble solution to
the official ARC-AGI semi-private evaluation and observed
47.5% accuracy. This decline may be attributed to more

6

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

significant distribution shifts in the semi-private evaluation
dataset. A more detailed analysis of these performance
differences can be conducted in the future once the semi-
private set is publicly released.

5. BIG-Bench Hard
5.1. Background

BIG-Bench Hard (BBH; Srivastava et al., 2023; Suzgun
et al., 2023) is a benchmark comprising 27 challenging tasks
across 23 task types, designed to evaluate large language
models on reasoning, compositionality, and generalization.
Unlike ARC, BBH features a broader natural language struc-
ture and lacks a shared input format, making it unsuitable
for invertible transformations. However, this broader scope
offers a valuable testbed for evaluating TTT’s effectiveness
in a more generalized setting. Despite the absence of invert-
ible transformations—previously used in ARC to expand the
TTT dataset and enhance inference—TTT still significantly
improves performance on BBH.

5.2. Experimental Details

Model architecture & optimization We use Llama
3.1 (8B; Llama Team, 2024). For each task d, we train
a separate set of LoRA parameters at test-time, with a LoRA
rank of 64 over 40 random shuffles of the demonstration
pairs to produce leave-one-out in-context tasks. More hy-
perparameter details are given in Appendix F.1.

On BIG-Bench Hard, our base language model is able to
achieve non-trivial scores out-of-the-box. Consequently, we
do not perform any initial fine-tuning on synthetic tasks
outside of BBH like we do for ARC. Furthermore, since
models achieve nonzero performance in a zero-shot setting,
we provide the zero-shot results and analyze how TTT and
ICL improve upon them.

Evaluation For the 27 tasks in BBH, we consider the 10-
shot setting, where we select 10 random pairs from each
task’s dataset to be demonstration pairs and evaluate on
the remaining data. Each of the 27 tasks is analogous to
a single ARC task, consisting of 10 labeled examples as
demonstration pairs given at test-time. We report average
results over five random seeds, where each seed specifies
which 10 examples form the demonstration subset. For more
control over the evaluation process with test-time training,
we write our own evaluation function, which is available
in our codebase (for more details, see Appendix F.1). The
number of evaluation examples for each task is then 240
for all tasks except three: Causal Judgment, Penguins in a
Table, and Snarks, which have 177, 136, and 168 evaluation
examples respectively. Note that the large number of evalua-
tion samples for each task compared to ARC means we can
do a task-specific analysis to analyze which types of tasks

Figure 8. Overall BIG-Bench Hard Results. TTT outperforms
standard in-context learning by 7.3 absolute percentage points,
from 50.5% to 57.8%. Our performance improvement over direct
input-output data shows that using in-context leave-one-out tasks
is crucial. Not taking demonstration loss or taking loss on inputs
results in a performance decrease. Unlike with ARC, using a
shared adapter across all tasks improves performance.

benefit the most from TTT (Section 5.4). Unlike with ARC,
we do not have a collection of invertible transformations to
run augmented inference. Instead, we use greedy decoding.
Further hyperparameter details and evaluation details are
given in Appendix F.2.

5.3. Impact of TTT Design

In this section, we evaluate our method and its ablations,
primarily comparing the zero-shot baseline, ICL, and TTT.
No Example Permutation updates the model on a single
in-context prompt instead of multiple shuffled versions. Di-
rect I/O treats each input-output pair as separate training
instances. Shared TTT uses a single adapter across tasks
instead of task-specific adapters. No Demonstration Loss
removes the loss applied to demonstration outputs. Loss
on Inputs and Outputs extends the loss calculation to
both inputs and outputs. These ablations are as detailed in
Section 3. As these results are averages over 5 runs, the
standard errors of the mean for each method are given in
Appendix F.1, averaging 0.4%.

The results in Figure 8 show that TTT achieves an overall ac-
curacy of 57.8%, outperforming standard ICL (50.5%) and
Direct I/O learning (51.5%). This demonstrates that TTT’s
capabilities extend beyond ARC to more diverse and com-
plex reasoning tasks, proving its effectiveness in a broader
range of natural language problem-solving scenarios.

We observe that TTT without example permuta-
tions—performing multiple gradient steps on a single
in-context prompt before inference—reduces accuracy to a
still-impressive 55.7%. Computing the loss only on the test
output lowers accuracy to 54.4%, while applying it to both
inputs and outputs achieves 55.9%.

7

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 9. BIG-Bench Hard results for tasks with the largest
TTT-ICL score differences. The four tasks on the left show the
most significant improvements with TTT over ICL, while the task
on the right has the lowest TTT score relative to ICL. Full task-
specific results are given in Appendix F.2.

Shared adapter Unlike on ARC, using a shared adapter
improves performance on BBH, indicating that tasks in BBH
do not confound each other during training. On the ARC
dataset, each puzzle has the same input format, so distin-
guishing among multiple tasks is difficult, and we may have
conflicting gradients with a single adapter. In BBH, however,
distinguishing tasks is trivial (the instructions differ in plain
text), and many tasks are mutually helpful. For instance,
updating on Logical Deduction Five Objects also aids Logi-
cal Deduction Three Objects, without hurting Word Sorting.
Although this is no longer test-time training on distinct tasks
presented individually at test time, it can be interpreted as
TTT on the entire dataset presented collectively at test time.

5.4. Task-Specific Analysis

Our task-specific results show that performance improve-
ments from TTT are highly task-dependent. Among the
27 tasks in BBH, TTT results in a performance decline of
at least 2% compared to ICL in only 2 tasks. In contrast,
12 tasks show an improvement of at least 2%, with 9 of
these showing improvements of at least 5%. The four tasks
with the most significant performance boost from TTT over
ICL or zero-shot and the task with the most significant per-
formance decrease are shown in Figure 9. These tasks in
order of TTT’s improvement over ICL are Dyck Languages
(parentheses matching), Ruin Names (humorous name modi-
fications), Movie Recommendation (choosing similar films),
Hyperbaton (adjective ordering), and Boolean Expression
(evaluating a boolean expression). Detailed results for every
task are given in Appendix F.2.

We hypothesize that improvements from TTT may be driven
by tasks involving distribution shifts and structured patterns.
For example, tasks like Dyck Languages and Hyperbaton fol-
low clear grammatical or programmatic rules, which could

align well with TTT’s ability to adapt to latent structural
regularities during test-time.

Conversely, tasks requiring explicit step-by-step computa-
tion show limited gains with TTT. For instance, Boolean
Expressions declined from 85.7% to 80.4% under TTT. This
task’s algorithmic nature—dependent on sequential reason-
ing rather than pattern-based transduction—and its likely
pre-training exposure suggest TTT’s updates may not re-
solve its specific demands. While these particular obser-
vations align with our hypothesis, the reason certain tasks
benefit more from TTT remains an open question.

6. Related Work
Test-time training The idea of updating model param-
eters at test-time using instance-specific data traces back
to early work on local learning (Bottou & Vapnik, 1992).
More recently, Sun et al. (2020) propose a simple test-time
self-supervision scheme to adapt an image classifier when
facing distribution shifts. In language modeling, Hardt &
Sun (2024) fine-tune on retrieved neighbors at test-time for
notable gains, while Hübotter et al. (2025) optimize retrieval
via active data selection.

ARC challenge Abstraction and Reasoning Corpus (ARC;
Chollet, 2019; Chollet et al., 2025) is a collection of ex-
tremely challenging few-shot visual reasoning problems.
Most approaches to ARC fall into two main categories:
program synthesis and fully neural. Program synthesis ap-
proaches (Butt et al., 2024; Wang et al., 2024; Li et al., 2025;
Greenblatt, 2024) first try to find the transformation function
f , and then apply it to the test example. Fully neural ap-
proaches (Veldkamp et al., 2023; Bober-Irizar & Banerjee,
2024) try to directly predict the output ytest, only implicitly
modeling f . In this work, we use a fully neural approach,
using an LM to predict the test outputs. Recent work has
explored hybrid methods, leveraging inference scaling and
deep learning-guided program synthesis (Greenblatt, 2024;
Li et al., 2025). Similarly, we find that integrating our neural
model with program synthesis improves performance.

7. Conclusion
We conduct an investigation of test-time training and demon-
strate that it can significantly improve LM performance on
abstract reasoning and few-shot learning tasks, namely the
Abstraction and Reasoning Corpus (ARC) and BIG-Bench
Hard (BBH). Our key contributions include a robust TTT
framework with leave-one-out in-context task construction,
the optimization setup, and the inference strategy after TTT.
Our results reveal the potential of TTT to tackle novel rea-
soning tasks, suggesting significant promise for test-time
methods in advancing the next generation of LMs.

8

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Limitations
Optimization bias In development of ARC, we used a set
of 80 tasks for validation/ablation experiments. Standard
hyper-parameters (learning rate, epochs) were optimized
using this set, which might have introduced some bias.

Data leakage While the base Llama-3 performs poorly on
the public validation set of ARC, the public availability of
the dataset introduces the possibility that these models may
have seen these examples during pre-training. Similarly,
while the base model achieves reasonable performance on
BBH, its public availability raises similar concerns.

Acknowledgments
We sincerely thank the BARC team (Li et al., 2025) for
their support and collaboration in ensembling our method
with theirs, resulting in an official joint submission to the
ARC public set. We thank Aniruddha Nrusimha for helpful
discussions on parameter efficient training. This work was
supported by MIT–IBM Watson AI Lab, the MIT Quest for
Intelligence, and by the National Science Foundation under
grants IIS-2212310, IIS-2238240, and CCF-2217064. JA
is additionally supported by a Sloan Research Fellowship.
This work also benefited from many conversations during
the Simons Institute Program on Language Models and
Transformers.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Acquaviva, S., Pu, Y., Kryven, M., Sechopoulos, T., Wong,

C., Ecanow, G. E., Nye, M. I., Tessler, M. H., and Tenen-
baum, J. Communicating natural programs to humans
and machines. In Advances in Neural Information Pro-
cessing Systems 35, 2022. URL http://papers.nips.
cc/paper files/paper/2022/hash/182aed0379591
ebd1d655b2bdc152075-Abstract-Datasets and Ben
chmarks.html.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learning?
Investigations with linear models. In The Eleventh Inter-
national Conference on Learning Representations, 2023.
URL https://openreview.net/pdf?id=0g0X4H8yN4
I.

Behrouz, A., Zhong, P., and Mirrokni, V. Titans: Learning

to memorize at test time, 2025. URL https://arxiv.
org/abs/2501.00663.

Bober-Irizar, M. and Banerjee, S. Neural networks for
abstraction and reasoning. Scientific Reports, 2024. ISSN
2045-2322. doi: 10.1038/s41598-024-73582-7. URL
https://doi.org/10.1038/s41598-024-73582-7.

Bottou, L. and Vapnik, V. Local learning algorithms. Neural
Computation, 1992. ISSN 0899-7667. doi: 10.1162/neco
.1992.4.6.888. URL https://doi.org/10.1162/neco
.1992.4.6.888.

Brown, B., Juravsky, J., Ehrlich, R., Clark, R., Le, Q. V., Ré,
C., and Mirhoseini, A. Large language monkeys: Scaling
inference compute with repeated sampling, 2024. URL
https://arxiv.org/abs/2407.21787.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33, 2020. URL https:
//proceedings.neurips.cc/paper/2020/hash/145
7c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Butt, N., Manczak, B., Wiggers, A., Rainone, C., Zhang,
D. W., Defferrard, M., and Cohen, T. CodeIt: Self-
improving language models with prioritized hindsight
replay. In Proceedings of the 41st International Confer-
ence on Machine Learning. PMLR, 2024. URL https:
//dl.acm.org/doi/10.5555/3692070.3692267.

Chollet, F. On the measure of intelligence, 2019. URL
https://arxiv.org/abs/1911.01547.

Chollet, F., Knoop, M., Kamradt, G., and Landers, B. ARC
Prize 2024: Technical report, 2025. URL https://arxi
v.org/abs/2412.04604.

Damani, M., Shenfeld, I., Peng, A., Bobu, A., and Andreas,
J. Learning how hard to think: Input-adaptive allocation
of LM computation. In The Thirteenth International
Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=6qUUgw9bAZ.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. QLoRA: Efficient finetuning of quantized LLMs. In
Advances in Neural Information Processing Systems 36,
2023. URL http://papers.nips.cc/paper files/p
aper/2023/hash/1feb87871436031bdc0f2beaa62a0
49b-Abstract-Conference.html.

9

http://papers.nips.cc/paper_files/paper/2022/hash/182aed0379591ebd1d655b2bdc152075-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/182aed0379591ebd1d655b2bdc152075-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/182aed0379591ebd1d655b2bdc152075-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/182aed0379591ebd1d655b2bdc152075-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/pdf?id=0g0X4H8yN4I
https://openreview.net/pdf?id=0g0X4H8yN4I
https://arxiv.org/abs/2501.00663
https://arxiv.org/abs/2501.00663
https://doi.org/10.1038/s41598-024-73582-7
https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1162/neco.1992.4.6.888
https://arxiv.org/abs/2407.21787
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://dl.acm.org/doi/10.5555/3692070.3692267
https://dl.acm.org/doi/10.5555/3692070.3692267
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2412.04604
https://arxiv.org/abs/2412.04604
https://openreview.net/forum?id=6qUUgw9bAZ
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Gandelsman, Y., Sun, Y., Chen, X., and Efros, A. A. Test-
time training with masked autoencoders. In Advances in
Neural Information Processing Systems 35, 2022. URL
http://papers.nips.cc/paper files/paper/2022/
hash/bcdec1c2d60f94a93b6e36f937aa0530-Abstr
act-Conference.html.

Greenblatt, R. Getting 50% (SoTA) on ARC-AGI with GPT-
4o, 2024. URL https://redwoodresearch.substa
ck.com/p/getting-50-sota-on-arc-agi-with-gpt.
Accessed 09-11-2024.

Hardt, M. and Sun, Y. Test-time training on nearest neigh-
bors for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=CNL2bku4
ra.

Hodel, M. Addressing the Abstraction and Reasoning
Corpus via procedural example generation, 2024. URL
https://arxiv.org/abs/2404.07353.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In The Tenth International
Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=nZeVKeeFYf9.

Hübotter, J., Bongni, S., Hakimi, I., and Krause, A. Effi-
ciently learning at test-time: Active fine-tuning of LLMs.
In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net
/forum?id=NS1G1Uhny3.

Hurst, A., Lerer, A., Goucher, A. P., Perelman, A., Ramesh,
A., Clark, A., Ostrow, A., Welihinda, A., Hayes, A.,
Radford, A., et al. GPT-4o system card. ArXiv preprint,
2024. URL https://arxiv.org/abs/2410.21276.

Joachims, T. Transductive inference for text classification
using support vector machines. In Proceedings of the 16th
International Conference on Machine Learning. Morgan
Kaufmann Publishers Inc., 1999. ISBN 1558606122.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serv-
ing with PagedAttention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP ’23.
Association for Computing Machinery, 2023. ISBN
9798400702297. doi: 10.1145/3600006.3613165. URL
https://doi.org/10.1145/3600006.3613165.

LeGris, S., Vong, W. K., Lake, B. M., and Gureckis, T. M.
H-ARC: A robust estimate of human performance on the
Abstraction and Reasoning Corpus benchmark. ArXiv
preprint, 2024. URL https://arxiv.org/abs/2409.0
1374.

Li, W.-D., Hu, K., Larsen, C., Wu, Y., Alford, S., Woo, C.,
Dunn, S. M., Tang, H., Zheng, W.-L., Pu, Y., and Ellis,
K. Combining induction and transduction for abstract
reasoning. In The Thirteenth International Conference
on Learning Representations, 2025. URL https://op
enreview.net/forum?id=UmdotAAVDe.

Llama Team. The Llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Loshchilov, I. and Hutter, F. Fixing weight decay regular-
ization in Adam, 2018. URL https://openreview.n
et/forum?id=rk6qdGgCZ.

McCoy, R. T., Yao, S., Friedman, D., Hardy, M. D., and
Griffiths, T. L. Embers of autoregression show how large
language models are shaped by the problem they are
trained to solve. Proceedings of the National Academy
of Sciences, 2024. doi: 10.1073/pnas.2322420121. URL
https://www.pnas.org/doi/abs/10.1073/pnas.23
22420121.

Min, S., Lewis, M., Zettlemoyer, L., and Hajishirzi, H.
MetaICL: Learning to learn in context. In Proceedings of
the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies. Association for Computational
Linguistics, 2022a. doi: 10.18653/v1/2022.naacl-mai
n.201. URL https://aclanthology.org/2022.naac
l-main.201.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing. Association
for Computational Linguistics, 2022b. doi: 10.18653/v
1/2022.emnlp-main.759. URL https://aclanthology
.org/2022.emnlp-main.759.

OpenAI. GPT-4 technical report, 2024. URL https://ar
xiv.org/abs/2303.08774.

Opie!ka, G., Rosenbusch, H., Vijverberg, V., and Steven-
son, C. E. Do large language models solve ARC vi-
sual analogies like people do?, 2024. URL https:
//arxiv.org/abs/2403.09734.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In The Fifth International Conference
on Learning Representations, 2017. URL https://op
enreview.net/forum?id=rJY0-Kcll.

Snell, C. V., Lee, J., Xu, K., and Kumar, A. Scaling test-
time compute optimally can be more effective than scal-
ing LLM parameters. In The Thirteenth International
Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=4FWAwZtd2n.

10

http://papers.nips.cc/paper_files/paper/2022/hash/bcdec1c2d60f94a93b6e36f937aa0530-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/bcdec1c2d60f94a93b6e36f937aa0530-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/bcdec1c2d60f94a93b6e36f937aa0530-Abstract-Conference.html
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://redwoodresearch.substack.com/p/getting-50-sota-on-arc-agi-with-gpt
https://openreview.net/forum?id=CNL2bku4ra
https://openreview.net/forum?id=CNL2bku4ra
https://arxiv.org/abs/2404.07353
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=NS1G1Uhny3
https://openreview.net/forum?id=NS1G1Uhny3
https://arxiv.org/abs/2410.21276
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/2409.01374
https://arxiv.org/abs/2409.01374
https://openreview.net/forum?id=UmdotAAVDe
https://openreview.net/forum?id=UmdotAAVDe
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=rk6qdGgCZ
https://openreview.net/forum?id=rk6qdGgCZ
https://www.pnas.org/doi/abs/10.1073/pnas.2322420121
https://www.pnas.org/doi/abs/10.1073/pnas.2322420121
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.naacl-main.201
https://aclanthology.org/2022.emnlp-main.759
https://aclanthology.org/2022.emnlp-main.759
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2403.09734
https://arxiv.org/abs/2403.09734
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=rJY0-Kcll
https://openreview.net/forum?id=4FWAwZtd2n

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Srivastava, A., Rastogi, A., Rao, A., Shoeb, A. A. M., Abid,
A., Fisch, A., Brown, A. R., Santoro, A., Gupta, A.,
Garriga-Alonso, A., et al. Beyond the imitation game:
Quantifying and extrapolating the capabilities of language
models. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.n
et/forum?id=uyTL5Bvosj.

Sun, Y., Wang, X., Liu, Z., Miller, J., Efros, A. A., and
Hardt, M. Test-time training with self-supervision for
generalization under distribution shifts. In Proceedings of
the 37th International Conference on Machine Learning.
PMLR, 2020. URL http://proceedings.mlr.press/
v119/sun20b.html.

Sun, Y., Li, X., Dalal, K., Xu, J., Vikram, A., Zhang, G.,
Dubois, Y., Chen, X., Wang, X., Koyejo, S., Hashimoto,
T., and Guestrin, C. Learning to (learn at test time):
RNNs with expressive hidden states, 2024. URL https:
//arxiv.org/abs/2407.04620.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay, Y.,
Chung, H. W., Chowdhery, A., Le, Q., Chi, E., Zhou, D.,
and Wei, J. Challenging BIG-Bench tasks and whether
chain-of-thought can solve them. In Findings of the 2023
Conference of the Association for Computational Linguis-
tics. Association for Computational Linguistics, 2023.
doi: 10.18653/v1/2023.findings-acl.824. URL https:
//aclanthology.org/2023.findings-acl.824.

Todd, E., Li, M., Sharma, A. S., Mueller, A., Wallace, B. C.,
and Bau, D. Function vectors in large language models.
In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net
/forum?id=AwyxtyMwaG.

torchtune Maintainers and Contributors. torchtune: Py-
Torch’s finetuning library, 2024. URL https://github
.com/pytorch/torchtune.

Veldkamp, K., Rosenbusch, H., Thoms, L., and Stevenson,
C. Solving ARC visual analogies with neural embeddings
and vector arithmetic: A generalized method. OSF, 2023.
doi: 10.17605/OSF.IO/AKP86. URL https://osf.io
/akp86/.

Wang, K. A., Shi, J., and Fox, E. B. Test-time regression:
a unifying framework for designing sequence models
with associative memory. ArXiv preprint, 2025. URL
https://arxiv.org/abs/2501.12352.

Wang, R., Zelikman, E., Poesia, G., Pu, Y., Haber, N.,
and Goodman, N. Hypothesis Search: Inductive reason-
ing with language models. In The Twelfth International
Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=G7UtIGQmjm.

Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi,
E. H., Narang, S., Chowdhery, A., and Zhou, D. Self-
consistency improves chain of thought reasoning in lan-
guage models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=1PL1NIMMrw.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing
Systems 35, 2022. URL http://papers.nips.cc/pap
er files/paper/2022/hash/9d5609613524ecf4f15
af0f7b31abca4-Abstract-Conference.html.

Wu, Z., Qiu, L., Ross, A., Akyürek, E., Chen, B., Wang, B.,
Kim, N., Andreas, J., and Kim, Y. Reasoning or reciting?
Exploring the capabilities and limitations of language
models through counterfactual tasks. In Proceedings of
the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies. Association for Computational
Linguistics, 2024. URL https://aclanthology.org
/2024.naacl-long.102.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao,
Y., and Narasimhan, K. Tree of Thoughts: Deliberate
problem solving with large language models. In Advances
in Neural Information Processing Systems 36, 2023. URL
http://papers.nips.cc/paper files/paper/2023/
hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstr
act-Conference.html.

Zhao, S., Nguyen, T., and Grover, A. Probing the decision
boundaries of in-context learning in large language mod-
els. In ICML 2024 Workshop on In-Context Learning,
2024. URL https://openreview.net/forum?id=rf
CtCcPuSt.

11

https://openreview.net/forum?id=uyTL5Bvosj
https://openreview.net/forum?id=uyTL5Bvosj
http://proceedings.mlr.press/v119/sun20b.html
http://proceedings.mlr.press/v119/sun20b.html
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://aclanthology.org/2023.findings-acl.824
https://aclanthology.org/2023.findings-acl.824
https://openreview.net/forum?id=AwyxtyMwaG
https://openreview.net/forum?id=AwyxtyMwaG
https://github.com/pytorch/torchtune
https://github.com/pytorch/torchtune
https://osf.io/akp86/
https://osf.io/akp86/
https://arxiv.org/abs/2501.12352
https://openreview.net/forum?id=G7UtIGQmjm
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://aclanthology.org/2024.naacl-long.102
https://aclanthology.org/2024.naacl-long.102
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://openreview.net/forum?id=rfCtCcPuSt
https://openreview.net/forum?id=rfCtCcPuSt

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

A. ARC Dataset
We present the tasks in the development set, the data format and evaluation details for the ARC dataset (available at this
https link.).

A.1. Data Format

We use numpy’s array printing format for all experiments as shown in Figure 10.

A.2. List of 80 Tasks Used For Development

We use the following (Table 2) tasks validation tasks for our development.

Table 2. Selected development tasks and their hardness level based on (LeGris et al., 2024).
ID Level ID Level ID Level ID Level
0a1d4ef5 easy 762cd429 medium e5c44e8f hard e99362f0 expert
692cd3b6 easy e7639916 medium 604001fa hard 1acc24af expert
1da012fc easy e1d2900e medium 4364c1c4 hard f9a67cb5 expert
66e6c45b easy aee291af medium 506d28a5 hard ad7e01d0 expert
3194b014 easy e95e3d8e medium 2037f2c7 hard ea9794b1 expert
963f59bc easy e0fb7511 medium d5c634a2 hard 58e15b12 expert
d37a1ef5 easy ae58858e medium ac605cbb hard 891232d6 expert
358ba94e easy 93c31fbe medium 27f8ce4f hard 5833af48 expert
f3cdc58f easy 27a77e38 medium 66f2d22f hard 4ff4c9da expert
55059096 easy 9bebae7a medium 3ed85e70 hard 5b692c0f expert
c7d4e6ad easy 9ddd00f0 medium 8b28cd80 hard e2092e0c expert
4b6b68e5 easy fe9372f3 medium d19f7514 hard 47996f11 expert
00576224 easy 69889d6e medium dc2aa30b hard 34b99a2b expert
a04b2602 easy 15663ba9 medium f5c89df1 hard 1c56ad9f expert
e9c9d9a1 easy 17b80ad2 medium 50f325b5 hard e6de6e8f expert
ef26cbf6 easy 16b78196 medium 08573cc6 hard fea12743 expert
7ee1c6ea easy 5b6cbef5 medium 3d31c5b3 hard 31d5ba1a expert
e9ac8c9e easy 40f6cd08 medium 94133066 hard 79fb03f4 expert
1a2e2828 easy 505fff84 medium 136b0064 hard 8719f442 expert
770cc55f easy d017b73f medium 90347967 hard a8610ef7 expert

A.3. Evaluation

We follow the competition rules that if any of the two pass@2 predictions of the system is correct, we consider that test
correct. In the reported task-level accuracies, we did not give partial points if all tests are not solved, except the final table
Section 4.6.

Figure 10. Data Format: We convert grids to strings by representing them as numpy arrays of digits from 0 to 10 where each digit
corresponds to a different color.

12

https://github.com/fchollet/ARC-AGI
https://github.com/fchollet/ARC-AGI

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 11. LLM based synthetic tasks generation: Given some seed task descriptions and task generator functions in Python, we
generate more generator functions to produce novel tasks. We use three different approaches: (1) few-shot prompting with only generators,
(2) few-shot prompting with generators and task descriptions, (3) two-stage approach: first generate free form descriptions, then condition
on them to generate more generators (shown in Figure 12).

B. Fine-Tuning Before TTT
While test-time training facilitates task-specific adaptation, the base model’s capabilities impacts the final performance.
We developed several approaches for generating synthetic training data to enhance the base model’s abstract reasoning
capabilities through fine-tuning, exploring both automated and semi-automated methods for task generation. In this section,
we detail our fine-tuning data generation strategies and analyze the impact of different data sources and model sizes on final
performance.

B.1. Preparing Fine-tuning Data

(Hodel, 2024) provides domain-specific language (DSL), REARC, as well as the transformation fi that solves the task-i,
and the data generation function gi that are implemented in this DSL for each training task in the Dtrain

ARC dataset. These
functions enable sampling of new input-output pairs that maintains the same underlying transformation principle:

d = (x, y) ↑ eval(gi) (1)

where d represents a newly generated input-output pair that can be solved using the same transformation function fi as the
original task-i4.

(a) Using Existing Generators The generator functions g in REARC already provide an effective data augmentation tool
by producing different instantiations of same tasks. We generate extra samples from these training tasks by running the code
many times and randomly splitting these new examples (d ↑ eval(gi)) to a set of train and test examples. These augmented
examples are already provided with their DSL release.

(b) Few-shot Prompting an LLM Additionally, we used several approaches to generate novel tasks using an LM (in our
case, an ensemble of GPT4 and GPT4-o).

The simplest approach generates new task generators using few-shot examples:

g↔ ↑ LM(g1, g2, . . . , gm) (2)

where g↔ is a new generator function and g1, . . . , gm are existing generator functions (shown in Figure 11). We sample
different m examples by uniformly from existing training set. We repeat this process multiple times to get a good amount of
tasks.

We augment the generator functions with task descriptions and jointly generate both descriptions and generators:

(s↔, g↔) ↑ LM(s1, g1, s2, g2, . . . sm, gm) (3)

where si represents the description of task i.
4We can verify the generated examples by asserting fi(x) = y.

13

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 12. Two-stage generation using an LLM: First, we prompt the LLM to generate a task description using few-shot prompting.
Then, we generate the new generator based on existing task pairs and the newly created description.

To get the task descriptions, we manually created seed descriptions for 10 training tasks. These seed descriptions were then
used to generate descriptions for the training and validation tasks through few-shot prompting. To increase diversity of
tasks, we use task descriptions with hierarchical fields (category, summary, and description). The process of getting these
descriptions is provided in Appendix D.1.

Instead of jointly generating task descriptions and function generations, we additionally deployed a two-stage approach
(Figure 12) described as following:

s↔ ↑ LM(s1, s2, . . . sm) (4)
g↔ ↑ LM(s1, g1, s2, g2, . . . , sm, gm, s↔) (5)

This approach first generates a task description s↔ and then conditions the generator creation on both existing task pairs
and the new description. In total we collected 6426 generators with these LLM based approaches. We provide qualitative
samples from these LM generated tasks in Figure 16.

(c) Geometric Transformations Finally, our synthetic tasks are enhanced through various geometric transformations,
such as basic transformations (rotations, reflections, random shift and size scaling), pattern operations (random patching,
tiling, and repetition), color permutations, and composite transformations involving sequential application of multiple basic
transformations. These transformations are applied in three ways:

• Input grids only: (x, y) ↔ (t(x), y)

• Output grids only: (x, y) ↔ (x, t(y))

• Both input and output: (x, y) ↔ (t(x), t(y))

We use all the transformations given in Appendix C.1, and some additional transformations given in Table 3. In the
fine-tuning case, different from TTT, we apply augmentations to only inputs, only outputs or both. These transformations
are applied randomly to variants of tasks with 30% of the time.

Table 3. We provide the additional augmentations use in our data generation for fine-tuning with their function signature and description.

Augmentation Name Description
Repeat(direction, n) Rotates a grid in horizontal or vertical direction by n

times.
DropoutOutput Randomly deletes some patches of the output grids.
DropoutInput Randomly deletes some patches of the input grids

14

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 13. Left: Accuracy when fine-tuning with different data sources. While all fine-tuned models perform similarly, their
performance after TTT shows considerable variance. As expected, removing geometric transformations from the fine-tuning data reduces
performance compared to the model trained on the full dataset. Surprisingly, excluding LM-generated data from fine-tuning actually
outperforms the model trained on all data. Right: Performance results across different model sizes. As expected, performance of the
base fine-tuned model improves with increasing model size, aligning with current scaling law trends. However, the scaling behavior after
TTT is less clear. For instance, the final performance of the 1B and 3B models is identical after TTT. Full discussion in Section B.3.

B.2. ARC Initial Fine-tuning Hyperparameters

We perform full fine-tuning on LLama-3 family models by using the torchtune library. We train each model up to
16000 steps. We use 2xNVIDIA A100 GPU for 1B models, 4xNVIDIA A100 GPU for 3B and 8B models. We present
hyperparameters in Table 4.

Table 4. ARC Initial Fine-tuning Hyperparameters

Hyperparameter Search Space
learning rate 2.5e-5
epochs 2
batch size 32
optimizer AdamW (Loshchilov & Hutter, 2018)
scheduler Cosine LR Schedule with 2k warmup

B.3. Results

We perform full fine-tuning 1B, 3B Llama 3.2 instruction-tuned, and 8B Llama 3 instruction-tuned using augmented
data. The format and training objective is same as the ones described for TTT in 3. Hyperparameter details are given in
Appendix C.2. We do the following ablations for augmented data:

1. No FT: The original Llama 3 instruction-tuned model without any fine-tuning.

2. All: We use all methods described in Section B.1, including REARC, rule-based augmentation, and LM generation.

3. No-Geom: We remove geometric transformations from all tasks.

4. No-LM: We only use REARC and rule-based augmentation, excluding tasks generated by the LM.

We show results using different model sizes in Figure 13. Increasing the model size consistently improves FT performance,
with the 8B model achieving the highest accuracy of 36%. We also observe that TTT effectively closes the performance gap
for smaller models, with the 1B and 3B models achieving similar accuracy after TTT.

15

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

C. TTT Transformations for ARC
We present the transformations used in TTT and the training details.

Figure 14. TTT dataset generation for a test task (Section 3.1): We start by creating leave-one-out tasks from the given training
examples of the task. These tasks are then augmented through rule-based transformations to obtain the full TTT dataset. Finally, we train
task-specific LoRA adapters on top of the base FT model.

C.1. Transformations

We provide the augmentations used in TTT in Appendix C.1, please refer to our code base for their implementations. After
applying these augmentations, we additionally shuffle colors and shuffle training examples. Note that these transformations
are applied to all input and output grids. The procedure for generating the dataset for TTT is shown in Figure 14.

C.2. Training Setup & Hyperparameters

We use the torchtune(torchtune Maintainers & Contributors, 2024) library to train LoRA adapters on Llama-3 family of
models. We apply LoRA training to query and value projection weights of the self-attention layer, to the MLP weights and to
the output projection layer (was only available for Llama-3 8B in torchtune). We present hyperparameters of this training
in Table 6. We also found that using quantized LoRA adapters (Dettmers et al., 2023) instead of standard (full-precision)
LoRA leads to only a small drop in performance (29 ↔ 26 tasks solved with the 1B-parameter model), making it a viable
option in memory-constrained settings.

We resort to the vLLM (Kwon et al., 2023) library for prediction as it provides fast kernels and batched inference for our
models and LoRA inference. We just use greed decoding as we did not see improvements with temperature sampling in our
early experiments. We use 90, 180 degree rotations, horizontal, vertical, and diagonal (transpose) flips as our invertible
transformations.

With that, the whole TTT and inference process takes approximately 12 hours for 100 randomly sampled validation tasks
when using an NVIDIA A100 GPU.

16

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Table 5. We provide the augmentations used in our TTT procedure with their function signature and description.

Augmentation Name Description
Rotate(90) Rotates a grid 90 degrees.
Rotate(270) Rotates a grid -90 degrees.
Rotate(180) Rotates a grid 180 degrees.
Flip(0) Flips a grid horizontally
Flip(1) Flips a grid vertically
Reflect(0, reverse=True) Flips a grid horizontally and prepends to the left of the

original grid
Reflect(1, reverse=True) Flips a grid vertically and prepends to above the original

grid
Reflect(0, reverse=False) Flips a grid horizontally and appends to the right of the

original grid
Reflect(1, reverse=False) Flips a grid vertically and appends to below the original

grid
RandomTranslateXY() Shifts a grid randomly in the horizontal and vertical direc-

tions. The maximum shift size is 4
Transpose() Reflects a grid on diagonal
IncreaseResolution(2) Upscales the grid by interleaving elements in both hori-

zontal and vertical directions
IncreaseHeight(2) Upscales the grid by interleaving elements in vertical di-

rection
IncreaseWidth(2) Upscales the grid by interleaving elements in horizontal

direction
Chain([Rotate(90),IncreaseResolution(2)]) Sequential application of Rotate(90) and

IncreaseResolution(2)
Chain([Rotate(270),IncreaseResolution(2)]) Sequential application of Rotate(270) and IncreaseRes-

olution(2)
Chain([Rotate(180),IncreaseResolution(2)]) Sequential application of Rotate(180) and IncreaseRes-

olution(2)
Chain([Flip(0),IncreaseResolution(2)]) Sequential application of Rotate(180) and IncreaseRes-

olution(2)
Chain([Flip(1),IncreaseResolution(2)]) Sequential application of Rotate(180) and IncreaseRes-

olution(2)
Chain([Transpose(),IncreaseResolution(2)]) Sequential application of Rotate(180) and IncreaseRes-

olution(2)

Table 6. ARC TTT Hyperparameters. We find learning rate of 5e-5 the best for 1B and 3B models, and 1e-4 the best for 8B models.

Hyperparameter Search Space
r LoRA rank 128
ω LoRA alpha 16
learning rate [5e-5, 1e-4]
epochs 2
batch size [1, 2]
optimizer AdamW (Loshchilov & Hutter, 2018)

17

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

D. LM Data Generation
We described three approaches in Appendix B to use LM, we generated 6426 task generators by few-shot prompting GPT-4
and GPT-4o models (OpenAI, 2024; Hurst et al., 2024).

D.1. Getting Descriptions for Tasks

This procedure is shown in Figure 15. We initially described 10 training tasks with the hierarchical-style shown in Figure 11.
Then, for other training tasks tasks, we obtained less quality crowd-worker annotations from LARC (Acquaviva et al., 2022)
project. By using our high-quality seed annotations and their LARC version, we 10-shot prompt and LM to produce high
quality annotations for the other training tasks.

You are an intelligent agent that can induce task descriptions from examples. For Category, please *do not* use
generic terms like Transformation, Pattern Recognition.
—————-
Task: {stringified task inputs and outputs}
LARC Description: {description of the task-1 from LARC dataset}
Good Description: {hierarchical description}
—————-
[truncated]
—————-
Task: {stringified task inputs and outputs for task-K}
LARC Description: {description of the task-K from LARC dataset}
Good Description: {hierarchical description}
—————-
Task: {stringified task inputs and outputs for query task}
LARC Description: {description of the query task from LARC dataset}

D.2. Few-shot Prompting Details

We use the following simple prompting template with k-shot prompting for all data generation procedures, where numbers
filled with examples sampled from seed set. In simple few-shot generation, we exclude examples. We use GPT-4 and
GPT-4o to generate the new scripts.

You are a problem generator on 2D grids of colors. Here are some examples of such transformations, please follow
the format:
—————-
Example: {description of the generator function-1}
Script: {generator function-1}
—————-
[truncated]
—————-
Example: {description of the generator function-K}
Script: {generator function-K}

Please generate more and make sure they are different:

18

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 15. Generating quality seed descriptions: We use few-shot prompting to generate descriptions for a given task, using 10 manually
created seed descriptions along with crowd-worker annotations from Acquaviva et al. (2022) as few-shot examples. For a given new task,
we similarly provide the LM with examples and crowd-worker annotations (available only for training tasks).

Figure 16. Example tasks generated by LM data augmentation procedure: We display three reasonable tasks that we can infer a
simple transformation (valid), and three tasks that we could not infer a simple transformation (invalid).

19

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

E. Augmented Inference Pipeline
E.1. Augmented Inference

Recent work has shown that scaling test-time compute can significantly improve the performance of LMs. One of the
most common techniques to do this is by sampling multiple responses, and then selecting the best response using a ranker.
However, while sampling is very effective in domains with multiple possible solutions (programs in code) or multiple
possible paths to the final answer (math), it can be detrimental when generating answers directly, as there is no way to
directly enforce diversity across samples while ensuring coherence within samples. As an alternative inference-time scaling,
we use an augmented inference strategy that generates multiple prediction candidates by using geometric transformations,
combined with a greedy decoding scheme.

For a given task with training examples (xk, yk)
K
k=1 and test input xtest, we use invertible geometric transformations to

produce equivalent transformed versions of the task, as shown in Figure 5. Let T be some set set of invertible geometric
transformations (e.g., rotations and reflections). For each transformation t ↓ T , we apply t to all training demonstrations
and the test input and run our model with these transformed inputs. We then apply the inverse transformation to obtain the
final prediction for that transformation.

ỹ ↑ LM(t(dinput)) := [t(x1), t(y1), . . . , t(xtest)] (6)

yt = t↓1(ỹ) (7)

We further augment our predictions by permuting the order of training examples. For each transformation g, we sample
n = 2 different permutations of the demonstration sequence, resulting in n · |T | total predictions per task. This is to mitigate
any bias in the model’s processing of the demonstration sequence. (Bober-Irizar & Banerjee, 2024) also find transpose and
rotation is helpful to produce extra prediction candidates.

E.2. Ensembling Predictions (Voting Strategy)

We employ a hierarchical voting strategy to determine the final prediction from the set of candidates {y}n·|T |
i=1 . This approach

involves two stages of voting to progressively narrow down the best candidates: first, by selecting the most frequent
predictions within each transformation, and then by conducting an overall vote across transformation-specific candidates to
identify the top-2 most frequent predictions. The details of each stage are as follows:

1. Intra Transformation Voting: We group predictions by their corresponding transformation t and select the top-3 most
frequent predictions within each group. If fewer than 3 unique predictions exist within a group, we supplement the
candidates by computing additional predictions through:

• Row-based majority: For each row in the predicted output grid, we take the most frequent row values across all
predictions in the transformation group.

• Column-based majority: Similarly, for each column in the predicted output grid, we take the most frequent
column values across all predictions in the transformation group.

2. Global Voting: Using the selected transformation-specific candidates obtained from (1), we conduct an overall vote to
select the top-2 most frequent predictions for submission. In case of a tie, predictions with the identity transformation
are given priority.

20

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

F. BIG-Bench Hard Details
F.1. Further Experimental Details

We write our own evaluation function for BIG-Bench Hard available in our codebase. We found that existing evaluation
frameworks did not properly measure zero-shot performance due to insufficient answer-extraction parsing and answer-format
prompting. We also wanted more control in splitting each individual task’s dataset into demonstration examples and
evaluation sets. For all results, we average results over different selections of the 10 few-shot examples with the following 5
random seeds: 42, 43, 44, 45, 46. The full TTT and inference process takes approximately 15 minutes on an NVIDIA A100
GPU.

The standard error of the mean for each method in Figure 8 over the 5 seeds is given in Table 7.

Table 7. Standard Error of the Mean for each method in Figure 8.

Method Standard Error of the Mean
Zero-Shot 0.01
ICL 0.19
TTT 0.20
No Example Permutation 0.32
E2E 0.66
Shared TTT 0.72
No Demo Loss 0.69
Loss on Inputs and Outputs 0.35

We search over the following hyperparameters:

Table 8. BBH TTT Fine-tuning Hyperparameters

Hyperparameter Search Space
learning rate [1e-5, 5e-5, 1e-4, 3e-4]
r LoRA rank [64, 128]
ω LoRA alpha [16, 32, 64, 128]
epochs 1
batch size 5
training steps [20, 40, 60]
optimizer AdamW
scheduler Cosine LR Schedule

We similarly use the torchtune(torchtune Maintainers & Contributors, 2024) library for test-time training and the
vLLM (Kwon et al., 2023) library for inference.

F.2. Task-specific Results

The full results for all tasks over all methods and ablations are shown in Figure 17.

21

The Surprising Effectiveness of Test-Time Training for Few-Shot Learning

Figure 17. Task-specific 10-shot results for each BIG-Bench Hard task, averaged over 5 random seeds.

Range for x = TTT accuracy ↗ ICL Accuracy Tasks (Count)

x ↘ ↗5
1 task total:
Boolean Expressions

↗5 < x ↘ ↗2
1 task total:
Penguins In A Table

↗2 < x < 2

13 tasks total:
Causal Judgement, Disambiguation Qa, Formal Fallacies,
Logical Deduction Five Objects,
Logical Deduction Seven Objects,
Logical Deduction Three Objects, Multistep Arithmetic Two,
Navigate, Reasoning About Colored Objects,
Salient Translation Error Detection, Sports Understanding,
Web Of Lies, Word Sorting

2 ↘ x < 5
3 tasks total:
Object Counting, Tracking Shuffled Objects Five Objects,
Tracking Shuffled Objects Three Objects

x ≃ 5

9 tasks total:
Date Understanding, Dyck Languages, Geometric Shapes,
Hyperbaton, Movie Recommendation, Ruin Names,
Snarks, Temporal Sequences,
Tracking Shuffled Objects Seven Objects

Table 9. Tasks Categorized by the Difference x = TTT Accuracy → ICL Accuracy.

22

