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Abstract

Representation learning in high-dimensional spaces faces significant robustness challenges

with noisy inputs, particularly with heavy-tailed noise. Arguing that topological data analysis

(TDA) offers a solution, we leverage TDA to enhance representation stability in neural networks.

Our theoretical analysis establishes conditions under which incorporating topological summaries

improves robustness to input noise, especially for heavy-tailed distributions. Extending these re-

sults to representation-balancing methods used in causal inference, we propose the Topology-Aware

Treatment Effect Estimation (TATEE) framework, through which we demonstrate how topological

awareness can lead to learning more robust representations. A key advantage of this approach

is that it requires no ground-truth or validation data, making it suitable for observational settings

common in causal inference. The method remains computationally efficient with overhead scaling

linearly with data size while staying constant in input dimension. Through extensive experiments

with α-stable noise distributions, we validate our theoretical results, demonstrating that TATEE

consistently outperforms existing methods across noise regimes. This work extends stability prop-

erties of topological summaries to representation learning via a tractable framework scalable for

high-dimensional inputs, providing insights into how it can enhance robustness, with applications

extending to domains facing challenges with noisy data, such as causal inference.

1. Introduction

Robust representation learning is critical across domains, including those involving high-dimensional

data, yet developing methods that handle noisy inputs remains challenging, especially for heavy-

tailed noise—prevalent in finance and signal processing [2, 23, 29, 50, 52, 57]. Techniques for

improving robustness without requiring ground-truth are particularly valuable for observational set-

tings where validation data is unavailable, typical in causal inference applications. Topological

Data Analysis (TDA) offers a principled solution through the stability properties of topological sum-

maries, enabling a purely structural approach to robustness. We leverage these properties to enhance

the robustness of representation learning, demonstrating their effectiveness through representation-

balancing neural networks for treatment effect estimation [26, 28, 46, 55]. Our approach addresses

the challenge of representations’ robustness to noise, and building on our theoretical results, we

introduce a topology-aware framework for treatment effect estimation that demonstrates these sta-

bility benefits while maintaining computational scalability with high-dimensional inputs.

Machine learning methods have shown promise for causal inference [13, 20, 35, 39, 47, 48, 59],

with representation-balancing approaches gaining popularity for treatment effect estimation [26,
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46]. However, noisy observations present a key challenge [32, 56], and despite progress [27, 49],

techniques for handling noise remain limited, with significant gaps in addressing non-Gaussian

noise. Our work addresses this gap by integrating topological summaries in treatment effect es-

timation, enhancing robustness in a scalable fashion. Topological Data Analysis (TDA) offers a

compelling approach to robust representation learning by characterizing the shape of data through

its global topology, which remains stable under local perturbations [6]. A standard tool for this char-

acterization is persistent homology, which effectively summarizes topological invariants [15, 16],

with well-established stability theorems demonstrating how the resulting topological signatures can

enhance robustness in data analysis pipelines [10–12]. Recent work suggests that incorporating

these topological summaries into deep learning frameworks can improve their resilience to noise

[19, 51], motivating our work and making it the first to bridge TDA and treatment effect estimation.

We leverage the stability properties of topological summaries to enhance the robustness of rep-

resentations against noise through an approach that is both purely structural and computationally

scalable—critical advantages for observational and high-dimensional settings. In Section 3, we de-

rive conditions under which topological summaries enhance representations’ robustness by improv-

ing metric stability, especially with heavy-tailed noise. This underpins our Topology-Aware Treat-

ment Effect Estimation (TATEE) framework proposed in Section 4, which improves the robustness

of counterfactual regression (CFR) [46] by imposing both topological and distributional similarities

between the representations of treatment and control groups. TATEE’s implementation is scalable,

with complexity linear in data size and constant in input dimension, once the dimensionality of the

representations is fixed—making it suitable for high-dimensional applications. Our experiments

confirm that TATEE consistently outperforms existing methods across a range of α-stable noise dis-

tributions, including Gaussian and heavy-tailed cases. In conclusion, we establish how topological

properties enhance representations’ robustness under noise, provide theoretical conditions for this

improvement, and demonstrate the benefits in practice. Our main contributions are:

A) Conceptual. We argue that incorporating topological awareness into representation learning

offers a principled path to robust deep learning. Our approach is computationally scalable, making

it suitable for high-dimensional data, and requires no ground-truth or validation data—a critical

advantage for observational settings. To our knowledge, this is the first work to integrate TDA with

representation-balancing neural networks for causal inference, improving robustness to noise.

B) Theoretical. We establish new stability-type results for representations learned from noisy data,

extending foundational stability theorems from TDA to deep learning. We identify regimes where

persistent homology enhances metric stability in representation learning, particularly under heavy-

tailed noise, providing a rigorous foundation for the robustness gains achieved by our method.

C) Methodological. We introduce Topology-Aware Treatment Effect Estimation (TATEE), a scal-

able framework that integrates persistence diagrams into representation balancing to improve coun-

terfactual regression’s robustness to noise. Extensive experiments across α-stable noise distribu-

tions, including Gaussian and heavy-tailed, validate TATEE’s ability to meet the conditions for

robustness in practical settings, outperforming existing methods.

2. Preliminaries and Related Work

Topological Data Analysis. Topological Data Analysis (TDA) utilizes algebraic topology to ex-

tract shape-based features from data across scales [6]. Persistent homology, a central tool in TDA,

captures topological features, such as connected components and holes [16]. These features are

characterized by their lifespan through varying scales, represented as points in a persistence dia-
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gram, where each point corresponds to a feature’s birth and death in a filtration of the input—a

series of nested simplicial complexes determined by the image of a filtration function [21]. Figure

5 visualizes this concept, with further details in Appendix A. Resulting from the stability theorem

and fundamental to our work, stability of persistence diagrams is a key property ensuring robust-

ness of these topological summaries to perturbations in data [11]. Consider a triangulable compact

metric space (Z, d) for some metric d, and let f, g : Z → R be Lipschitz filtration functions. The

following generalization of the stability theorem holds under conditions in Appendix A.3.

Theorem 1 (Cohen-Steiner et al. [12]) For some constants k ≥ 1 and C, we have for all l,

Wp

(

µl
f , µ

l
g

)

≤ C
1

p ∥f − g∥1−
k
p

∞ , (1)

where µl
f and µl

g are measures on the space of persistence diagrams corresponding to the l-dimensional

homology classes [38], Wp denotes the Wasserstein-p distance, and constants C and k are described

in Appendix A.3. Since this inequality holds for all l, we shall drop the superscript l from here on.

Causal Inference. Causal inference aims to determine the effect of a treatment on an outcome

Y given covariates X . This effect can be quantified by the conditional average treatment effect

(CATE), when conditioned on features. For individuals with covariates x, CATE is given by

τ(x) = E [Y (1)− Y (0)|X = x] , (2)

where Y (·) denotes the potential outcome. The challenge in estimating τ(x) arises from the unob-

servability of counterfactual outcomes, leading to the fundamental problem of causal inference.

Related Work. Causal inference and deep learning have been integrated in various contexts

[13, 36, 44], with representation-balancing frameworks showing effectiveness in treatment effect

estimation [35, 46] and counterfactual reasoning [26, 41]. Prior work on robust causal effect esti-

mation [27, 49] provides important advances but assumes finite variance noise and often requires

large observation counts or validation data. Despite recent progress [33, 43], methods for robust

treatment effect estimation with heavy-tailed noise or limited data remain underdeveloped. TDA,

which captures the intrinsic shape of data [6, 8], has been integrated into machine learning to im-

prove robustness [4, 18, 40]. We extend these applications to representation balancing for causal

inference, introducing a framework that enhances robustness without ground-truth, clean, or large

datasets, and accommodates noise beyond finite-variance distributions.

3. Learning Robust Representations via Persistence Diagrams

How can we improve the robustness of representations learned by neural networks under noise—particularly

heavy-tailed noise? Here, we introduce a new stability result characterizing when incorporating per-

sistent homology into learning improves metric stability. Our theorem establishes a condition on

neural networks’ Lipschitz constants that leads to persistence diagrams of representations being

more robust to noise than the raw representations themselves.

Problem Setup. Let X and E be random variables representing features and noise, respectively,

and define the noise-corrupted features as X̃ := X + E. Denote by X, E, X̃ the corresponding

finite-sample matrices. We are interested in the stability of the representations φ(X) and φ(X̃)
where φ : X → Z , is a neural network mapping to a representation space Z . Observe that φ(X)
and φ(X̃) induce measures on Z , which we denote by µ and µ̃. Furthermore, suppose that there

exist filtration functions f and f̃ , which satisfy f̃(φ(X)) = f(φ(X̃)), yielding persistence diagrams

for both clean and noisy representations and allowing us to invoke the stability theorem. The explicit

construction of such filtration functions is provided in Appendix B. While the filtration is typically

3



fixed once the data is given, the network φ remains trainable. We therefore seek conditions on φ that

improve robustness of the persistence diagrams. Importantly, we exploit the Lipschitz continuity of

standard neural networks [24, 54] to derive the intended condition on φ.

Finite-Sample Stability and Noise Distribution. Let φ be a Kφ-Lipschitz network. Then Lips-

chitz continuity arguments yield a finite-sample upper bound M̂ on the Wassertein distance Wp(µ, µ̃)
between the representations of clean and noisy inputs. Similarly, under standard assumptions, The-

orem 1 provides a bound K̂topo on the Wasserstein distance between their persistence diagrams,

Wp(µf , µf̃ ). These bounds, detailed in Appendix B.1, lead to the following.

Theorem 2 If Kφ < Λ, then K̂topo < M̂ , where Λ depends on the noise distribution: Λ is

increasing in ∥E∥p/k−1
∞

¯∥E∥−p/k
, where ¯∥E∥ and ∥E∥∞ are the average and∞-norm of the error.

In the statement above, p is the degree of the Wasserstein distance and k is the constant in Theorem

1. The proof and details about Λ are provided in Appendix B.1. Intuitively, the condition asserts

that if the Lipschitz constant of φ is smaller than Λ, the upper bound K̂topo is smaller than that on the

representations, M̂. This suggests that with the appropriate neural network, the Wasserstein space

over the persistence diagrams of the representations is more robust than that over the representations

themselves–a metric stability which enhances robustness to input noise. Notably, the condition that

determines if a neural network is an ‘appropriate’ one depends on the distribution of the error,

particularly, its tail. Theorem 1 leads to the promised stability properties for p > k. In this case,

the ratio ∥E∥p/k−1
∞

¯∥E∥−p/k
is larger for heavy-tailed distributions. Since Λ is linear in this ratio, a

slow-decaying tail of the empirical distribution of the noise corresponds to a more easily achievable

neural network that satisfies the condition in Theorem 2.

Implications. Theorem 2 establishes that topological summaries can enhance representations’

robustness, particularly with heavy-tailed noise. This insight directly informs our approach to robust

causal inference through TATEE. Our experiments in Section 5 confirm that neural networks in

TATEE can be trained to satisfy the theoretical conditions and achieve the predicted robustness.

4. Topology-Aware Treatment Effect Estimation

Figure 1: The architecture and loss terms used in

TATEE, adopting the two-headed network, out-

come loss, and balancing loss from CFR [46]. The

topological signature is incorporated as the regu-

larization term Ltopo, based on the output of φ.

Building on the stability results from Section 3,

we introduce Topology-Aware Treatment Effect

Estimation (TATEE), which incorporates topo-

logical awareness into representation-balancing

neural networks for estimating causal effects.

TATEE enhances robustness to input noise by

leveraging the stability properties of persistence

diagrams in a scalable fashion, showcasing the

benefits of topological summaries for robust

representation learning. Here, we discuss the

main aspects of TATEE’s design, analysis, and implications. More details are in Appendix C.

Architecture and Training. TATEE incorporates topological awareness in representation-balancing

neural networks for counterfactual regression (CFR) [46] through a regularization term in the train-

ing objective, using the Wasserstein distance between persistence diagrams of treatment and control

representations. The architecture follows CFR’s two-headed design with a shared encoder φ fol-

lowed by two separate heads h1 and h0 estimating the potential outcomes for the treatment and
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Figure 3: Evaluation of TATEE’s robustness when estimating CATE on noise-corrupted features

from the IHDP, Twins, Jobs, and ACIC datasets (from left to right) for a range of (α, β) parameters

of α-stable distributed noise. The Feller-Takayasu diamond (shaded) marks valid (α, β) values. The

relative gain in robustness from using TATEE, quantified by ρTATEE − ρCFR. The green and orange

squares mark positive/negative gain; the size of each square is proportional to the magnitude.

control groups. In addition to prediction accuracy, the training objective LTATEE = LOutcome +
λLBalance + λtopoLtopo encourages distributional and topological similarities between the inputs of

h1 and h0. Complete implementation details are provided in Appendix C.2. This implementation

ensures computational scalability by computing persistence diagrams on mini-batches and applying

topological regularization to representations rather than raw inputs, resulting in linear overhead with

respect to data volume and constant overhead with input dimensionality, as long as the dimensional-

ity of the representations is fixed. Figure 6 illustrates this via a simulation, where overhead elapsed

time remains nearly constant as input dimensionality increases from 16 to 256 (with a fixed repre-

sentation dimensionality), and scales linearly as data volume varies from 800 to 12800 samples.

Figure 2: The representations learned by φ in

CFR and TATEE throughout 20 epochs of training

for the control (gray) and treatment (turquoise)

groups, starting without input noise (top rows)

and with Gaussian noise (bottom rows).

Robustness of TATEE. Using our stability

results, we show that TATEE can improve the

robustness of counterfactual regression under

the conditions of Theorem 2. In particular, this

theorem implies that TATEE’s training objec-

tive is more stable under input noise than the

original CFR’s. This is shown by Proposition 9

in Appendix C, informally stated below.

Proposition 3 (Informal) If φ satisfies the

constraint from Theorem 2, then the upper

bound of the noise-induced change in TATEE’s

training objective is smaller than CFR’s.

As in Theorem 2, the constraint on the neural network for achieving this robustness becomes more

permissive when the noise distribution has a heavier tail. Figure 2 demonstrates TATEE’s enhanced

robustness where treatment and control groups have distinct topologies (line vs. circle). While

CFR enforces distributional similarity but allows topological divergence, TATEE enforces distribu-

tional and topological similarities. Notably, noise considerably impacts CFR’s ability to enforce

distributional similarity, while TATEE achieves its objective in noisy and clean environments.

5. Experimental Results

We evaluate TATEE’s capability to enhance robustness in neural networks for causal effect esti-

mation, as indicated by our theoretical analysis. Our experiments across standard causal inference

benchmarks confirm that incorporating topological awareness consistently improves robustness to
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input noise compared to CFR and other deep learning methods for treatment effect estimation. Ex-

perimental setup details, results discussion, and additional experiments are in Appendix D.

Experimental Setup. We evaluate TATEE’s robustness to various input noises sampled from the

family of α-stable distributions, characterized with tail and skewness parameters—α and β. We

use standard causal inference benchmarks (IHDP, Twins, Jobs, and ACIC) and measure both perfor-

mance and robustness. The performance is evaluated via CATE estimation error, which is quantified

by the Precision in Estimation of Heterogeneous Effect (PEHE), denoted ϵPEHE, following the con-

ventions in causal inference (e.g., Hill [25], Louizos et al. [35], Shi et al. [47]). We evaluate robust-

ness using ρ = 1− (ϵPEHE with noise/ϵPEHE without noise), quantifying resistance to performance

degradation under noise. Complete details, an elaborate discussion of these results, and additional

results are provided in Appendix D.

Main Results. Our experiments confirm that TATEE achieves superior robustness to input noise

while maintaining comparable performance without noise. Figure 3 shows this for our main compar-

ison against TATEE’s counterpart without topological awareness—the original CFR—with α-stable

noise distributions across 25 valid (α, β) values on four datasets. The gains are most pronounced

with heavier-tailed noise (α closer to 1), reaching near 12, 0.3, 51.0, and 68.6 percents for the IHDP,

Twins, Jobs, and ACIC datasets (respectively). Moreover, pairwise comparisons against seven other

causal inference methods further confirm TATEE’s superior robustness across various noise condi-

tions and datasets. This is demonstrated via the matrix visualized in Figure 4, whose (i, j) entry

shows the proportion of dataset-parameter pairs in which the model corresponding to row i is more

robust than the one for column j, evaluated by having a weakly larger ρ. Complete performance

metrics and detailed comparisons are provided in Appendix D.

6. Discussion

Figure 4: Comparing the robustness of TATEE

with 7 other methods. Each entry shows the

proportion of cases (over 25 (α, β) values for 4

datasets) where the row model is at least as robust

as the column model. TATEE has the largest row

average.

We proposed incorporating topological aware-

ness into representation learning to enhance ro-

bustness against input noise, particularly with

heavy-tailed distributions. By leveraging the

stability properties of persistence diagrams, we

showed that using topological summaries can

improve representation stability in a scalable

fashion without requiring ground-truth or val-

idation data—critical advantages for observa-

tional settings. This concept is rooted in foun-

dational stability theorems from TDA and ex-

tended through our work to neural networks and

the TATEE framework we introduced for treat-

ment effect estimation. Our theoretical analy-

sis establishes conditions for topological aware-

ness to enhance metric stability, especially with heavy-tailed noise, and our experiments validate

that TATEE meets these conditions in practice, consistently outperforming existing methods across

noise regimes. While we demonstrated our arguments through a causal inference framework, the

theoretical results underpinning TATEE have broader implications for robust deep learning. Future

work can explore additional topological features and investigate topology-aware methods across a

wider range of representation learning problems.
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Appendix A. Topological Data Analysis, Persistent Homology, and Stability

Theorems

In this appendix we provide further details on topological data analysis (TDA) and in particular

the key concept of persistent homology, which crucially helps with understanding complex data

structures [16]. Before doing so, we provide a brief review of the basics of TDA. While a more

concise review of the preliminaries on TDA was provided in Section 2, here we repeat that review

with additional elaborations in order to better familiarize interested readers.

A.1. Review of the Preliminaries

Topological Data Analysis (TDA) applies the principles of algebraic topology to extract informative

features from data. It is particularly adept at uncovering invariants such as the shape and connec-

tivity of data across multiple scales [6, 40]. Persistent homology, a central tool in TDA, provides

a multiscale representation of topological features [16]. Applications of persistent homology span

from feature extraction in computer vision to the analysis of complex datasets in machine learning,

which benefit from its intrinsic metric and coordinate-free approach [7].

Persistent homology captures the persistence of topological features such as connected compo-

nents and holes as a scale parameter varies. These features are represented in a persistence diagram,

a collection of points in the plane, each point corresponding to a feature’s birth and death in a

filtration of the input [21]. The construction of a filtration, a series of nested simplicial complexes

determined by the image of a filtration function, is the first step in applying persistent homology to a

dataset. The persistent homology of this filtration is then computed, yielding a persistence diagram,

which, again, it represents the lifespan of topological features as points marking their birth and

death [60]. Figure 5 visualizes this in a simple example. We delve into further details on persistent

homology in the following subsection.

Resulting from the stability theorem, stability of the persistence diagram is a key property that

ensures the robustness of these topological summaries to perturbations in the data [11]. This theorem

states a bound on the bottleneck distance between two persistence diagrams obtained via filtration

functions f and g.1 Perhaps regarded as the most central theorem underlying the applicability

of persistent homology, the stability theorem provides a guarantee that the persistence diagram is

stable under small perturbations, making it particularly conducive to analyzing noisy data [9]. A

generalization of the stability theorem used in our analysis is stated in Section 2, and further details

are discussed in the Appendix section A.3.

A.2. Persistent Homology

Persistent homology, a fundamental tool in TDA, helps in quantifying the topological features of

data. This section aims to define and elucidate key concepts related to filtration functions and

persistence diagrams, providing a background for discussing the stability of these constructs and

the assumptions behind our theoretical results. We begin with filtration, which yields a multi-scale

representation of data, essential for understanding the evolution of topological features.

1. The bottleneck distance between two diagrams is the cost of the optimal matching between their points.
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A.2.1. FILTRATION

A filtration is a nested collection of subspaces {Za}a∈R of a topological spaceZ , such thatZa ⊆ Zb

whenever a ≤ b. This process can be driven by a real-valued function f : Z → R, referred to as

the filtration function, which assigns a real number to each point in Z . Considering a bounded

continuous function f : Z → R, the sublevel sets f−1(−∞, ai] at various thresholds a0 ≤ a1 ≤
. . . ≤ an give rise to a filtration. The filtration captures the evolution of the topological structure of

Z as the threshold varies, revealing critical values where topological features appear or disappear.

Given a filtration function, for every pair of threshold values a ≤ b, the inclusion relationship

between their corresponding subspaces, Za ⊂ Zb, induces homomorphisms of the l dimensional

homology groups Hl(Za) and Hl(Zb). If there exists a dimension l, a threshold value c ∈ R, and

a value δ > 0, such that for all ϵ ∈ (0, δ) the homomorphism induced by Hl(Zc−ϵ) ⊂ Hl(Zc+ϵ) is

not an isomorphism, c is called a homological critical value. These critical values mark the levels

where the homology of the sublevel sets changes [10].

Definition 4 (Cohen-Steiner et al. [10]) A filtration function, f : Z → R, is tame, if it only has a

finite number of homological critical values, and if for all threshold values a ∈ R and dimensions

l, the homology groups Hl

(

f−1(−∞, a]
)

are finite dimensional.

The filtration function could be any mapping to a meaningful real-valued representation of the data.

Studying how topology changes through the filtration gives insight into the structure of data at

different scales. The stability theorem assumes the filtration function is tame.

A.2.2. PERSISTENCE DIAGRAM

Given a filtration, the persistence diagram compactly represents the lifespan of homological features

through their birth and death thresholds. Homology classes are born at critical threshold values

where new features appear in the filtration. Subsequently, some classes die at larger thresholds. The

lifespan of a class that is born at threshold a and dies entering threshold b is characterized by the

persistence value of the corresponding point, x, in the persistence diagram, defined as pers(x) :=
b − a [15]. Classes with larger persistence values are considered to be more prominent features.

The birth and death of homology groups can be represented in a 2-dimensional persistence diagram

as follows [11]: Points (a, b) denoting classes born at threshold value a and dying at threshold

value b, and points of the form (a,∞) representing essential homology classes that never die. This

low-dimensional representation allows us to easily interpret and analyze the topological features of

the data over different scales. Figure 5 visualizes an example of a Vietoris-Rips filtration [6] and

the corresponding persistence diagram of 0- and 1-dimensional homology classes. As the figure

demonstrates, the persistence diagram shows the birth and death of topological features of the data

with the points farther from the diagonal marking more persistent features.

Before discussing key stability properties of persistence diagrams, we state two definitions re-

lated to properties of the filtration function. These definitions relate to Degree-k total persistence

of a persistence diagram corresponding to a filtration function f . Degree-k total persistence, which

sets one of the assumptions for the stability theorem, is defined as the sum of the kth powers of the

persistence values of all points in the persistence diagram of f .
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Figure 5: A visualization of the Vietoris-Rips filtration of an example pointcloud and the corre-

sponding persistence diagram.

Definition 5 (Cohen-Steiner et al. [12]) Given a filtration function f : Z → R, let Dgmf denote

the corresponding persistence diagram. The degree-k total persistence is given by

Persk(f) =
∑

x∈Dgmf

pers(x)k.

Definition 6 (Cohen-Steiner et al. [12]) We say that a space Z implies bounded degree-k total

persistence, if there exists a constant CZ that depends only on Z , such that for every tame Lipschitz

function f : Z → R with Lipschitz constant Kf , we have

Persk (f) ≤ CZK
k
f . (3)

A.3. Stability Theorems

The stability properties of persistence diagrams are crucial, as they imply that the topological signa-

ture captured by these diagrams is robust to small perturbations and noise in the data. As such, they

serve as the main justification for using persistence diagrams in order to improve the robustness of

deep learning frameworks to input noise.

The stability theorem —the main theoretical result regarding the stability of persistence diagrams—

bounds the bottleneck distance between two diagrams as follows.

Theorem 7 (Cohen-Steiner et al. [10]) Let Z be a triangulable space with continuous tame fil-

tration functions f, g : Z → R. Then the corresponding persistence diagrams satisfy

dB (µf , µg) ≤ ∥f − g∥∞,

where dB is the bottleneck distance, and µf and µg are the probability measures induced by Dgmf

and Dgmg.

Stating that the distance between the persistence diagrams is controlled by the L∞ distance between

the corresponding filtration functions, this theorem ultimately suggests that the persistence diagram

is more stable than the geometry of the data it represents.

In a generalization of this statement, the Wasserstein Stability Theorem, extends this result to

the Wasserstein-p distance between the diagrams for p ≥ k ≥ 1, when Z implies bounded degree-k
total persistence.
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Theorem 8 (Cohen-Steiner et al. [12]) Let Z be a triangulable, compact metric space that im-

plies bounded degree-k total persistence, for some k ≥ 1. Let f, g : Z → R be two tame Lips-

chitz filtration functions with Lipschitz constants Kf and Kg. Then for all l-dimensional homology

classes and all p ≥ k we have

Wp

(

µl
f , µ

l
g

)

≤ C
1

p ∥f − g∥1−
k
p

∞ .

The constant C is given by C = CZ max{Kk
f ,K

k
g }, where CZ is the constant in Equation 3.

Note that as p → ∞, this generalized formulation gives the statement in Theorem 7. To conclude,

these stability results show persistence diagrams are robust topological summaries for analyzing

complex data.

Appendix B. Learning Robust Representations via Persistence Diagrams

Here we provide additional details regarding the theoretical results discussed in Section 3. In par-

ticular, while providing the proofs and the background leading to the theorems, we detail the con-

ditions and elaborate on the formulations of the bounds stated in the theorems. Theorem 2 offer

insight into the conditions under which using persistence diagrams corresponds to enhanced robust-

ness of the representations, depending on the properties of the neural network. In particular, this

theorem constrains the Lipschitz constant of the neural network by a term that contains information

on the empirical distribution of the noise, including the sample average and the infinity norm of the

sample noise. Importantly, the combination of sample average and infinity norm establishes a con-

nection with the tail of the noise distribution, enabling our analysis of TATEE’s robustness through

Proposition 9 in Section C.5, which in turn provides theoretical grounds for TATEE’s advantage,

and validated in empirical settings by the experimental results observed in Section 5. Below, we

provide the proof and additional details about the bounds in Theorem 2.

Notation. Following the notation in Section 3, X , E, and X̃ := X+E denote the random vectors

of features, noise, and noise-corrupted features on a sample space Ω; and we use X, X̃, and E to

refer to their corresponding sample matrices. φ : Ω → Z is the neural network mapping X and

X̃ to φ(X) and φ(X̃) in the representation space Z , µ and µ̃ are the measures induced by these

representations, and f, f̃ : Z → R are tame and Lipschitz filtration functions used to compute

the persistence diagrams inducing the measures µf and µf̃ on the space of persistence diagrams.

For ease of notation, we denote the distances Wp(µ, µ̃) and Wp(µf , µf̃ ) by ∆ and ∆topo, and their

corresponding sample equivalents by ∆̂ and ∆̂topo.

Main Assumptions. The main assumptions for Theorem 2 are related to Lipschitz continuity

of the functions involved and the bounds of their co-domains. In particular, following the standard

assumptions for stability theorems, we assume the filtration functions are Lipschitz. We also assume

that Z implies bounded degree-k total persistence, as defined in Appendix A; another assumption

that is made for the stability theorems. Additionally, we assume the neural network φ is Lipschitz,

which, as we discussed in Section 3, is not a restrictive assumption and is satisfied in many standard

scenarios. The restrictive assumption for the proofs of our theorem, which is only technical and for

simplicity, is due to the formulation of f̃ and its Lipschitz continuity. Recall that we consider f
and f̃ which satisfy f̃(φ(X)) = f(φ(X̃)). For simplicity and to avoid auxiliary constructions, we

require f̃ = f ◦ φ ◦ S ◦ φ−1, where S(X) := X + E, so that f̃(φ(X)) = f(φ(X̃)) holds exactly.
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We remind the reader that these assumptions are technical and serve to enable the derivation of

the proofs through simple expressions of the quantities of interest. With that in mind, for clarity,

we discuss the assumption that allows f̃ = f ◦ φ ◦ S ◦ φ−1 to hold exactly. Strictly speaking,

this is restrictive since it requires f̃ to be Lipschitz continuous and φ to have a Lipschitz inverse,

which is typically violated by commonly-used neural networks. However, the specific formulation

of f̃ that requires this assumption is only to simplify the derivation and expression of the bounds on

∥f−f̃∥∞. That is, the assumption allows us to avoid tedious constructions and keep the formulation

of the variables used and the steps of the proof simple, concise, clear, and focused, and otherwise

could be replaced with a less restrictive assumptions, to derive effectively similar results. While this

relaxation is not trivial to the authors’ knowledge and hence beyond the scope of this discussion, one

such relaxation could be done by assuming that ϕ(.) is only locally invertible on the input sample

and adding an approximation error term with the f̃ that is defined for the local Lipschitz pseudo-

inverse. Moreover, our experimental results indicate that while the assumptions facilitate the steps

for our theoretical analysis in a simplified setting, the overall intuition and implications hold more

broadly in practical scenarios. With this in mind, we state the theorem, which provide significant

insights, validated and confirmed by our experiments.

B.1. Finite Sample Stability and Error Distribution

Let us denote the empirical estimators of the Wasserstein distance of Wp(µ, µ̃) by ∆̂, and its upper

bound by M̂, as defined in Section 3. We denote the upper bound on C
1

p

∥

∥

∥
f − f̃

∥

∥

∥

1− k
p

∞
by Ktopo,

which bounds Wp(µf , µf̃ ), as stated in Section 3. Furthermore, let us denote its finite sample

equivalent from Theorem 1 by K̂topo. Under the assumptions discussed above, Theorem 2 states

the following: Given a bounded degree-k total persistence and a Kf -Lipschitz filtration function,

if the Lipschitz constant of the neural network is smaller than Λ for a value Λ, then K̂topo < M̂.

Importantly, the value Λ, described below, is linear in ∥E∥p/k−1
∞

¯∥E∥−p/k
, which speaks to the

impact of the empirical distribution of noise on the gain in robustness through use of persistence

diagrams. The proof of this theorem is presented next.

Proof. The upper bound M̂ can be derived using the Lipschitz continuity of φ. In the finite sample

regime, this bound becomes

∆̂ ≤ M̂ = Kφϵ̂, (4)

where ϵ̂ is the sample average. For Btopo = C
1

p

∥

∥

∥
f ◦ φ− f̃ ◦ φ

∥

∥

∥

1− k
p

∞
, using Lipschitz continuity of

f and φ, we can derive the following finite sample bound,

∆̂topo ≤ B̂topo ≤ K̂topo = C
1

p (KfKφϵ̄)
1− k

p , (5)

where, for ease of notation, we use ϵ̄ = ∥E∥∞ to denote the finite sample infinity norm of the noise

matrix. Additionally, note that C = CZL, where L := max
{

Kk
f ,K

k
f̃

}

, as explained in Appendix

Section A. Comparing the right hand sides of the inequalities 4 and 5, it follows that if

Kφ < C1/kKf

p
k
−1 ϵ̄

p
k
−1

ϵ̂
p
k

,

then, K̂topo < M̂, which completes the proof of Theorem 2. □
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Appendix C. Topology-Aware Treatment Effect Estimation

Building on the stability results established in Section 3, in Section 4 we introduced Topology-

Aware Treatment Effect Estimation (TATEE)—a framework designed to improve the robustness of

deep learning approaches to counterfactual regression. TATEE incorporates topological regulariza-

tion by embedding the persistence diagram of the learned representations into the training objective.

We briefly described the main aspects of TATEE’s design, analysis, and implications in Section 4.

In this aspect, we elaborate and expand on the discussion in Section 4, delving into details of the

structure of the CATE estimation network used in TATEE, along with its training procedure, scala-

bility, and conceptual motivation and implications. We further provide a detailed theoretical analysis

of TATEE’s robustness properties formally stating results mentioned in the informal Proposition 3,

which connects the stability benefits of topological summaries to improved treatment effect estima-

tion. Note that, as in prior works [35, 46, 47], we focus on the binary treatment setting for clarity,

though TATEE is in principle extensible to multi-valued treatments.

C.1. Representation-Balancing Neural Network for CFR

TATEE builds on the two-headed architecture introduced in the CFR framework Shalit et al. [46],

consisting of a shared encoder followed by separate branches for the treatment and control groups.

The shared encoder φ maps inputs to a representation space where the distributions of treated and

control units are approximately aligned—enabling the learning of treatment-agnostic representa-

tions. These shared representations are then passed to two distinct heads, h0 and h1, which learn

the potential outcomes under control and treatment, respectively. This structure corresponds to a

T-Learner [31] —the potential outcome heads for each group— to learn the factual and counterfac-

tual outcomes separately for estimating CATE. Figure 1 visualizes this architecture, showing the

shared neural network, φ, and two separate heads h0 and h1 which learn the potential outcomes

from φ’s output. As we detail in Section C.3, the weights are trained with respect to the outcome,

the distribution of the representations, as well as the topological summaries of the representations

as captured by the persistence diagram of the 1−dimensional homology class.

C.2. Implementation

The architecture of the neural network in TATEE is described in Section 4, where we explain the

role of each component of the model in the CFR-type architecture shown in Figure 1. We also

specified the training objective in Section C.3, which, critically, incorporates topological awareness

into the CFR framework and is the core distinguishing component of TATEE. In this appendix, we

include the details of the implementation of the neural network and state the full algorithm.

The skeleton of the neural network in TATEE follows that of CFR, described in Shalit et al. [46].

As we mention in Appendix G, adopting the hyper-parameters used by Shalit et al. [46], we use

three fully connected layers with ELU (for exponential linear unit) activation functions for all three

components —φ, h0, and h1. Each shared representation layer has 200 neurons, while the layers in

h0 and h1 have 100 neurons each. Since the outcome in the Twins dataset takes binary values, we

use a sigmoid activation function on the final layer, this affecting the loss function used as LOutcome

in Equation 6, which is binary cross entropy for Twins dataset and mean squared error for the others.

The central term in the loss function, Ltopo, uses the Wasserstein-2 distance between the persistence

landscapes of the representations of a mini-batch of size 256 for the IHDP dataset, and size 128 for

the others. We use the Vietoris-Rips complex [6] for computing the persistence diagrams, which
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are obtained using the Ripser package [3, 53]. The distance between the persistence landscapes for

the 1-dimensional homology class are then approximated using the Sinkhorn divergence [45] —an

efficient and differentiable approximation of the Wasserstein distance which is amenable to gradient

descent for training the neural network. The GeomLoss package [17] is used for computing the

Sinkhorn divergence. The full algorithm is stated in Algorithm 1, which clarifies how the topological

signature, as described in Section 4, is incorporated in the CFR framework to obtain TATEE. Note

that we used a fixed number of epochs of training, hence, in our implementation, the convergence

criterion in Algorithm 1 is simply completing the specified number of epochs.

Algorithm 1 TATEE Training

1: Input: Neural network composed of the components φ and h(·, ti) := (1 − ti)h0(·) + tih1(·)
with initial weights θφ and θh, sample data (x1, t1, y1), . . . , (xN , tN , yN ), regularization pa-

rameters λ, λtopo > 0, and loss function L.

2: Compute N1 =
∑N

i=1 ti and N0 = N −N1.

3: Compute sample weights wi =
Nti
2N1

+ N(1−ti)
2N0

for i = 1 . . . n.

4: while not converged do

5: Take mini-batch IM := {i1, i2, . . . , iM} ⊆ {1, 2, . . . , N}
6: Compute representations Φ0 := {φ(xj) : tj = 0, j ∈ IM} and Φ1 :=

{φ(xj) : tj = 1, j ∈ IM}
7: Compute the predicted outcomes {ŷj = h(φ(xj), tj) : j ∈ IM}
8: Compute the persistence diagrams Dgm1(Φ0) and Dgm1(Φ1)
9: Compute the gradient of the empirical LBalancing as δBalancing = ∇θφWp(Φ0,Φ1)

10: Compute the gradient of the empirical Ltopo as δtopo = ∇θφWp(Dgm1(Φ0),Dgm1(Φ1))
11: Compute the gradients of the empirical LOutcome as

δφ,Outcome = ∇θφ
1
M

∑

j∈IM wjL(yj , ŷj)
δh,Outcome = ∇θh

1
M

∑

j∈IM wjL(yj , ŷj)
12: Determine the step size η using Adam

13: Update weights

θφ ← θφ − η
[

δφ,Outcome + λδBalancing + λtopoδtopo

]

θh ← θh − η(δh,Outcome)
14: Check for convergence

15: end while

C.3. Training TATEE

The effectiveness of TATEE in enhancing the robustness of learning treatment-agnostic representa-

tions is primarily owed to incorporating the topology of the shared representations in the training

process. This is achieved by adding a topological regularization term based on the Wasserstein

distance between the persistence diagrams of the treatment and control groups. The CFR network

architecture in Shalit et al. [46] is predicated on the minimization of a loss function that encapsu-

lates both the prediction accuracy and the distributional balance between treated and control groups.

Incorporating the topological regularization, for a sample of size N , TATEE’s training objective is

as follows:

LTATEE = LOutcome + λLBalance + λtopoLtopo, (6)
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The three components of LTATEE are given by:

LOutcome =
1

N

N
∑

i=1

wiℓ
(

ŷi, yi
)

, LBalance = Wp

(

Φ0,Φ1

)

, Ltopo = Wp

(

Dgm1

(

Φ0

)

,Dgm1

(

Φ1

))

,

where Φ0 and Φ1 are the representations of the control and treated groups, respectively; yi the true

outcome of unit i, ŷi := h
(

φ(xi), ti
)

the predicted outcome with the feature vector xi and treatment

ti, ℓ(·) the outcome prediction loss function, Dgm1(·) the 1-homology class persistence diagram,

and Wp(·, ·) the Wasserstein-p distance. The weight wi aims to deal with the imbalance in the size

of the treatment and control groups, and is given by Nti
2N1

+ N(1−ti)
2N0

where N1 and N0 are the sample

sizes of the two groups. The function h(·, ti) := (1− ti)h0(·) + tih1(·) combines the two potential

outcome functions. While our theoretical analysis in Equation (1) holds for any homology class,

we use the first homology group in practice. This choice is motivated by simplicity and the goal

of capturing holes, thereby characterizing topological features beyond connected components. We

include the full algorithm in Appendix C.2, describing the implementation of TATEE in details.

C.4. Scalability of TATEE

TATEE incorporates topological summaries in a computationally scalable fashion, due to two key

factors in our implementation: First, topological regularization operates on representations rather

than raw inputs, making computational cost constant with respect to input dimensionality, once the

dimensionality of the representations are fixed. Second, we compute persistence diagrams on mini-

batches, hence, with a batch size of b and for N total data points, the cost of computing Ltopo for

each of the N/b batches remains fixed, allowing the overhead to scale linearly with data volume. As

a result, despite topological methods typically being expensive for high-dimensional or large inputs,

TATEE’s implementation ensures the topological component does not become a computational bot-

tleneck. Figure 6 illustrates this scalability via a simulation, confirming that overhead elapsed time

remains nearly constant as input dimensionality increases from 16 to 256 (with a fixed representa-

tion dimensionality), and scales linearly as data volume varies from 800 to 12800 samples. These

results further support the fact that the topological component introduces a scalable computational

overhead while providing significant robustness benefits, making TATEE practical for real-world

applications.

C.5. Robustness of TATEE’s Training to Noise

Using the stability results presented before, we now show that under the conditions of Theorem 2,

TATEE can improve the robustness of counterfactual regression to input noise. In particular, we

show that Theorem 2 implies that TATEE’s training objective in Equation 6 is more stable than the

original CFR’s objective. Consider the problem setup and notation in Section 3, and let us label the

variables corresponding to the treatment and control groups by superscripts ·0 and ·1, respectively.

By the triangle inequality, the terms λ
(

M̂
1+M̂

0
)

+λtopo

(

K̂
1
topo+K̂

0
topo

)

and λCFR

(

M̂
1+M̂

0
)

upper-

bound the noise-induced change in λLBalance + λtopoLtopo and λCFRLBalance, for loss coefficients λ,

λtopo, and λCFR. Using Theorem 2, we derive the following result (proof in Appendix E).

Proposition 9 If the Lipschitz constant of φ satisfies the constraint in Theorem 2, for any given

λCFR > 0, with sufficiently small choices of λ and λtopo, we have

λ
(

M̂
1 + M̂

0
)

+ λtopo

(

K̂
1
topo + K̂

0
topo

)

≤ λCFR

(

M̂
1 + M̂

0
)

.
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Figure 6: The average overhead elapsed time for computing Ltopo per epoch of training TATEE. As

the dimensionality of the input (left) and input volume (right) increases, the overhead cost remains

constant and scales linearly, respectively. The elapsed times are averaged over 20 runs.

The inequality in Proposition 9 indicates that the upper bound on the sum of the balancing and

topological terms in TATEE’s loss undergoes a smaller change due to input noise, compared to

that on the balancing term in CFR’s loss. In other words, this proposition implies that, when φ in

TATEE’s architecture (Figure 1) satisfies the conditions of Theorem 2, TATEE is trained using a

loss that can be more stable under additive noise than its counterpart CFR. As in Theorem 2, this

robustness is easier to attain when the noise is heavy-tailed—i.e., the constraint on φ’s Lipschitz

constant becomes more permissive. This highlights TATEE’s particular suitability for robustness

under heavy-tailed perturbations. Our experiments in Section 5 provide empirical evidence that

TATEE can meet the theory-indicated conditions and gain the anticipated robustness in practical

settings, outperforming the original CFR from Shalit et al. [46] and other standard causal inference

baselines.

C.6. TATEE in Action

According to our theoretical results, the topological regularization term in Equation (6) could help

train φ such that the total loss becomes more robust to noise. To complement the theoretical analysis,

we examine the intuition behind this improvement through a simple example of how the network

learns the representations. As we explained earlier, the CFR framework is based on the principle

of balancing the representations of treated and control groups through enforcing a distributional

similarity between the two. TDA on the other hand, characterizes data using topological features

which are invariant to smooth deformations. This allows TDA-based methods to capture qualitative

properties of the shape of the data at a global level, while limiting their sensitivity to local geometric

perturbations, hence leading to the resulting robustness. This understanding provides an explanation

as to why informing a representation balancing framework with the topology of the representations

could enhance robustness.

To see how this works in a simple example, we simulate features such that the 2-dimensional

representations corresponding to the treated and control groups have distinct topologies: one form-

ing a line and the other a circle—a simple difference in their 1-dimensional homology class. Figure

2 compares how φ learns to balance these representations in TATEE versus standard CFR, with and

without noise. Visually confirming our understanding, CFR forces distributional similarity between

groups while topological differences persist, even widening after 10 epochs of training without
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topological awareness. TATEE, however, enforces both distributional and topological similarities

through the distance between the persistence diagrams, resulting in representations that converge to

similar shapes with matching topologies. In other words, while the Wasserstein loss of LBalance may

allow the representations to qualitatively diverge, Figure 2 illustrates that the topological signature

captured by Ltopo effectively prevents that. Notably, noise considerably impacts CFR’s ability to

enforce distributional similarity, while TATEE achieves its objective equally well in both noisy and

clean settings.

Appendix D. Experiments

Section 5 discusses our main experimental results, showing TATEE’s superior robustness. In this

appendix, we provide comprehensive details on our experimental setup, elaborate on our main re-

sults, and present additional results that complement the findings described in the main paper. We

begin by describing the experimental setup, including datasets, evaluation metrics, noise distribu-

tions, and implementation. We then review our main experimental results on robustness of TATEE

in more detail, followed by a report on its performance. We also elaborate on the distinction be-

tween evaluating robustness and performance on noisy inputs and comment on an expected tradeoff

therein. We then discuss our experiments benchmarking TATEE against other treatment effect esti-

mation methods, showing its superior robustness. Additional details on the implementation of these

experiments including hyperparameter values, and a more detailed description of each benchmark

dataset are provided in appendices G and H.

D.1. Experimental Setup

Models and Evaluation Metrics. We implement TATEE with the network architecture and train-

ing algorithm described in Section 4. In this implementation, we use the Wasserstein-2 distance in

the balancing and topological terms in the training objective. We also use persistence landscapes

[5], which maintain a one-to-one correspondence with persistence diagrams while offering differ-

entiability and better statistical tractability. Other implementation details and hyperparameters are

provided in Appendices C.2 and G. Since TATEE incorporates a topological signature in CFR [46],

to evaluate the resulting improvement in robustness, we compare their performances with and with-

out input noise. We complement our experiments by several other causal inference models included

in Figure 4 and listed in Appendix G. Following the conventions in causal inference (e.g., Hill

[25], Louizos et al. [35], Shalit et al. [46], Shi et al. [47]), we use the Precision in Estimation of

Heterogeneous Effect (PEHE) to quantify the CATE estimation error. The empirical PEHE is given

by ϵ̂PEHE = 1
N

∑N
i=1

(

τ(xi) − τ̂(xi)
)2

, where τ(xi) is the true CATE from Equation (2) and τ̂ is

the estimated CATE. While PEHE can be used on noisy input to assess the performance in noisy

regimes, we are primarily interested in judging TATEE’s robustness. To evaluate the robustness of

the models to noise, we use the following metric, denoted by ρ,

ρ = 1− ϵ̃PEHE

ϵ̂PEHE

. (7)

ρ compares PEHE on noisy and noise-free data, which we denote here by ϵ̃PEHE and ϵ̂PEHE. Unless

the noise itself helps the training, ρ should take negative values; more negative when less robust.

In order to quantify the gain in robustness from TATEE, we compare the increase in ρ by com-

puting ρTATEE − ρCFR, which takes positive values if TATEE is more robust than CFR. Given the
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main objective of our work, our evaluation of the experiments is primarily focused on robustness,

while we also inspect the performance of TATEE on both clean and noisy datasets to make sure

the enhanced robustness does not cost a considerable decline in performance. Note the distinction

between the robustness and performance metrics: a larger (worse) ϵ̃PEHE can still yield a higher (bet-

ter) ρ, when the noise-induced deterioration of performance, captured by ϵ̃PEHE

ϵ̂PEHE
, is lower. In other

words, ρTATEE − ρCFR can be positive, reflecting better robustness, even if both ϵ̃PEHE and ϵPEHE are

larger for TATEE, as long as the increase from ϵ̂PEHE to ϵ̃PEHE remains smaller.

Data. We use four standard benchmark datasets in causal inference: IHDP, Twins, Jobs, and ACIC

[1, 25, 35, 46]. The Twins dataset has the rare quality of having real-world values for both potential

outcomes. The other datasets are semi-synthetic, with empirical values for features and simulated

potential outcomes. All datasets are described in details in Appendix H. Note that using semi-

synthetic data in experiments on estimating CATE is standard, and inevitable due to the fundamental

problem of causal inference. This also dictates the use of synthetic noise as the only means to intro-

duce noise to the treatment effect estimates. The Twins dataset stands out in this regard, allowing

us to evaluate TATEE on intrinsic noise in empirical measurements.

Noise Distribution. We use the family of stable distributions [37] to simulate input noise for

the feature matrix. This allows us to evaluate the robustness of TATEE in learning from features

corrupted with various noise distributions of interest in empirical contexts [23, 29, 52, 57]. In par-

ticular, α−stable distributions are characterized by a tail parameter α and an asymmetry/skewness

parameter β. Larger values of α correspond to slower decay of the tail of the distribution, and pos-

itive/negative values of β correspond to positive/negative asymmetry. The valid parameter values

fall within the Feller-Takayasu diamond, where α ∈ (0, 2] and |β| ≤ min {2− α, α} [37], giving

the Gaussian distributions at α = 2 and β = 0. Appendix F contains a more detailed review of

stable distributions.

Noise Configuration. For α < 2, the noise follows a heavy-tailed distribution with infinite mo-

ments of integer order higher than 1, and for α ≤ 1, the mean is infinite. We therefore focus on

noise distributions with finite mean, as well as α = 1, which corresponds to the Cauchy distribution

for β = 0. Varying the two parameters of this family of distributions allows us to empirically test

the theoretical implications of Theorem 2. Here we report the average results over 30 trials. Since

the Central Limit Theorem in its classical formulation does not hold for α < 2, the standard sample

size criteria for statistical confidence does not apply, as discussed in Appendix F.

D.2. Main Results on Enhanced Robustness

Our experiments showcase the utility of TATEE and speak to its superior robustness, validating

the applicability of our theoretical analysis in empirical settings. Reviewing our main empirical

results from Section 5 with more details, we begin by confirming that TATEE has a performance

comparable with CFR in the absence of synthetic noise, and then turn our attention to the main

focus of this paper, showing the superior robustness of TATEE.

Performance without Noise. TATEE is consistently on-par with the original CFR in the noise-

free regime, with 1.977 × 10−2, 4.976 × 10−4, and 2.631 × 10−3 increase in ϵPEHE for IHDP,

Jobs, and ACIC datasets (respectively), and 1.007× 10−2 decrease for Twins. Note that the theory-

informed advantage of TATEE is its robustness. In fact, adding Ltopo in the loss is expected to lead

to a more challenging path for optimizing the remaining terms, and hence, an increase in ϵPEHE is
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not unexpected. Nevertheless, the evaluation mentioned above indicates that TATEE’s superior ro-

bustness does not come at the cost of a noticeable decline in performance. Additional experiments

in Appendix D.3 indicate that TATEE also maintains a comparable or better performance on noisy

data in most cases, with up to 6.9% improvement on IHDP, and 1.37%, 45.1%, and 42.3% on the

Twins, Jobs, and ACIC datasets, as measured by reduction in PEHE. As clarified in our discussion

on the evaluation metrics following Equation (7), a better performance in the noisy regime could

still correspond to a lower robustness, if the noise-driven degradation is larger. While due to the

semi-synthetic nature of all but one dataset we can only experiment with synthetic noise, the Twins

dataset contains empirical treatment effects, which are computed under the assumption that a pair

of twins have the same covariates. This assumption, as well as empirical measurement noise in the

features, are likely to lead to real intrinsic noise in the Twins dataset, even before injecting synthetic

noise. Notably, on this dataset TATEE achieves the lowest (best) ϵ̂PEHE than all other benchmarks

without simulated noise (see Appendix D.4) and outperforms CFR in all cases, including perfor-

mance without synthetic noise, as well as both performance and robustness with simulated noise for

all noise distribution parameters.

Robustness to Noise. Sampling additive feature noise from α−stable distributions for 25 (α, β)
pairs in the right half of the Feller-Takayasu diamond, we compute the relative gain in ρ on the

test set after training on noisy features. The results (Figure 3) strongly confirm that TATEE is more

robust than CFR. Aligned with the theoretical discussion following Theorem 2, the experiments also

show that the largest values of gain in robustness (larger ρTATEE − ρCFR) are observed when α is

closer to 1, corresponding to a heavier tail of the noise distribution, reaching near 12, 0.3, 51.0, and

68.6 percents of gain for the IHDP, Twins, Jobs, and ACIC datasets (respectively), when α > 1. 2

D.3. Performance on Clean and Noisy Data

While TATEE aims to improve the robustness of treatment effect estimation, our experiments con-

firm that TATEE also has a performance comparable with CFR both in the absence of noise and on

noisy inputs. Here we report the experimental results on the performance of TATEE compared to

CFR, complementing the discussion on robustness. The main performance metric measuring CATE

estimation error is PEHE, which we denote by ϵPEHE for noise-free input and by ϵ̃PEHE for input with

synthetic additive noise, as described in Appendix D.1. To compare the performances of TATEE and

CFR on noisy features, we assess the relative gain in reduction of PEHE due to TATEE, given by

1−
ϵ̃PEHE,TATEE

ϵ̃PEHE,CFR

and report the percentage point gains in PEHE. Figure 7 visualizes the performance

of TATEE across all four datasets under various noise distributions. These results underscore the

efficacy of incorporating topological awareness into representation learning, enhancing robustness

against diverse noise distributions while maintaining performance on both clean and noisy data. Al-

together, the performance and robustness improvements observed across all four datasets align with

our theory-informed expectations and demonstrate the practical utility of the TATEE framework in

robust treatment effect estimation.

Empirical Results on Performance. On clean data, TATEE is consistently on par with CFR,

with minimal deviations in ϵ̂PEHE across all four datasets, showing 1.977 × 10−2, 4.976 × 10−4,

2. Recall that the first absolute moment of the noise distribution is infinite for α = 1, hence, we need to be cautious

about interpreting the average of trials at α = 1.
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and 2.631 × 10−3 increase for IHDP, Jobs, and ACIC (respectively), and 1.007 × 10−2 decrease

for Twins. This indicates that the integration of topological summaries does not compromise per-

formance in noise-free scenarios. When subjected to additive noise from α-stable distributions in

the inputs, TATEE demonstrates superior performance by reducing ϵ̂PEHE compared to CFR in most

cases. On the IHDP and Twins datasets, TATEE consistently outperforms CFR across the entire

range of noise parameters. For the Jobs and ACIC datasets, while the improvements are less con-

sistent, TATEE still offers better performance in almost as many cases as CFR, while consistently

exhibiting more robustness, as illustrated in Figure 3 and discussed in Section 5 and Appendix D.2.

Distinguishing Performance and Robustness. Note the distinction between the performance and

robustness metrics: a worse (higher) ϵ̃PEHE on noisy inputs can still yield a better (higher) ρ if

the noise-induced deterioration, ϵ̃PEHE/ϵ̂PEHE, is comparatively smaller. In other words, ρTATEE −
ρCFR can be positive even if both ϵ̃PEHE and ϵ̂PEHE for TATEE exceed those of CFR, as long as

TATEE’s increase in error due to noise remains more modest. This subtlety underscores why TATEE

might show higher ϵ̂PEHE overall, yet still achieve superior robustness as reflected by a larger ρ.

Consequently, we observe scenarios where TATEE exhibits a smaller gap between its clean and

noisy performances, reinforcing the principle that our method’s primary goal is to mitigate noise-

driven degradation.

Expected Performance Trade-offs. The theory-informed advantage of TATEE lies in improving

robustness to noise by including Ltopo in the loss. Since this regularization term can complicate

the path toward minimizing other objectives, such as ϵ̂PEHE on clean inputs, making a slight perfor-

mance decline is not unexpected. Nonetheless, the evaluation above affirms that TATEE’s enhanced

robustness does not come at the cost of a significant decline in performance: our experiments show

only minimal increases in ϵ̂PEHE without noise, and in many settings, TATEE even outperforms

CFR when noise is injected in terms of ϵ̃PEHE. Additionally, the Twins dataset—featuring empirical

treatment effects and inherent real noise—exemplifies TATEE’s robustness, as it achieves the low-

est (best) ϵ̂PEHE among all methods tested, with or without synthetic noise injection. This finding

implies that in contexts where empirical noise exists, TATEE can achieve lower treatment effect

estimation error, aligning with our theoretical claims.

Figure 7: Evaluation of TATEE’s performance when estimating CATE on noise-corrupted features

from the IHDP, Twins, Jobs, and ACIC datasets (from left to right) for a range of (α, β) parameters

of α-stable distributed noise. The Feller-Takayasu diamond (shaded) marks valid (α, β) values. The

relative gain in ϵ̂PEHE from using TATEE is visualized by the circles. The green and orange circles

mark improvement/deterioration; the size of the circles is proportional to the magnitude of relative

change.
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D.4. Benchmark Comparisons

Benchmark Models. To conduct a more thorough evaluation of the performance and robustness

of TATEE, we compare it against several causal inference models. These benchmark models en-

compass a range of methodologies, ensuring a thorough assessment across different approaches. In

the main text of the paper we discussed CFR [46], the most closely related model to TATEE, on

which we base our main empirical evaluations. Here we name the other benchmark models used in

our experiments described below and in Section 5. Dragonnet [47] is a neural network architecture

designed to jointly model treatment assignments and potential outcomes by estimating propensity

scores from the features, and GANITE [59] leverages generative adversarial networks to generate

counterfactual outcomes. SLearner, TLearner, and XLearner [31] utilize meta-learning approaches

that adapt base learners to estimate treatment effects. TARNet [46] is a CFR-type framework, learn-

ing separate representations for treated and control units, without the balancing loss term. Each

of these models introduces unique mechanisms for addressing causal inference challenges. By

benchmarking TATEE against these diverse models, we demonstrate its effectiveness and superior

robustness across a broad spectrum of causal inference methods.

Results. Our experiments confirm TATEE’s enhanced robustness compared to the benchmark

models in pairwise comparisons. As mentioned in Section 5, this superior robustness is shown

in Figure 4, whose (i, j) entry shows the proportion of dataset-parameter pairs in which the model

corresponding to row i is more robust than the one for column j, TATEE consistently demonstrates

better robustness across most datasets and noise parameters. Figure 8 provides additional evidence

by showing the average robustness rank of each model (among the 8 models) for each pair of noise

distribution parameters, as measured by ρ, averaged over the four datasets. A smaller number in row

i and column j means, on average, the model corresponding to column j is more robust than others

for the noise distribution parameters in row i. These results further confirm TATEE’s superior ro-

bustness. Meanwhile, the ϵ̂PEHE values reported in Table 1 show that this gain in robustness does not

come at the cost of a noticeable decline in performance. While the main purpose of TATEE is en-

hancing robustness, and in general, TATEE is not expected to perform better than CFR on noise-free

inputs, the results indicate that TATEE has competitive performance in noise-free regimes as well,

achieving the best or second best ϵ̂PEHE on three out of four datasets. Notably, on the Twins dataset–

the only dataset where we suspect intrinsic noise exists without injecting synthetic noise–TATEE

achieves the best ϵ̂PEHE without simulated noise.

Appendix E. Analysis of TATEE’s Robustness

In Appendix C.5 we present a detailed analysis of the stability of TATEE’s learning objective, re-

lying on Theorem 2 to derive conditions which correspond to TATEE’s enhanced robustness in

counterfactual regression, stated in Proposition 9. This proposition suggests that under the assump-

tions of Theorem 2 and when the constraint stated in this theorem is satisfied, for a suitable choice

of training parameters, TATEE’s loss function (Equation 6) is more robust than the CFR’s loss,

which does not account for the topology of the representations. Here we provide a proof for this

proposition. Unless stated otherwise, the derivation here follows the problem setup and the notation

defined in Section 3 and Appendix B.

Notation. Following a similar notation as in Theorem 2, let µi be the measure over the represen-

tations of the control (i = 0) and treatment (i = 1) groups and µf
i the measure over the persistence
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Figure 8: Comparing robustness of TATEE and the benchmark models: The quantity in column j
and row i shows the average rank of the model corresponding to column j (out of 8), averaged over

the model’s rank across all 4 datasets, for the noise distribution’s (α, β) values in row i.

IHDP Twins Jobs ACIC

TLearner 0.596 ± 0.000 0.454 ± 0.000 4.546 ± 0.000 0.264 ± 0.000

SLearner 0.863 ± 0.000 0.418 ± 0.000 0.004 ± 0.000 0.255 ± 0.000

XLearner 0.596 ± 0.000 0.453 ± 0.000 4.546 ± 0.000 0.264 ± 0.000

DragonNet 1.234 ± 0.435 0.493 ± 0.105 0.457 ± 0.409 0.334 ± 0.259

GANITE 4.184 ± 0.216 0.727 ± 0.271 0.013 ± 0.013 0.457 ± 0.229

TARNet 1.268 ± 0.456 0.504 ± 0.147 0.456 ± 0.462 0.220 ± 0.152

CFR 0.870 ± 0.089 0.414 ± 0.017 0.002 ± 0.003 0.006 ± 0.005

TATEE 0.888 ± 0.088 0.404 ± 0.029 0.003 ± 0.004 0.009 ± 0.010

Table 1: ϵ̂PEHE on input without synthetic noise. Lower means better performance, with best in

bold and second best underlined. TATEE is best or second best (second to CFR) across all but

one dataset. Notably, TATEE performs best on the Twins dataset—the only dataset which contains

empirical values for ground-truth treatment effects, and hence can have real-world noise.

diagrams with a filtration function f . Also, similar to the notation used in Section 2, we use ·̃ to de-

note the variables corresponding to the noisy input. Let W 0,1 := Wp(µ
0, µ1), W̃ 0,1 := Wp(µ̃

0, µ̃1),

W̃ 0 := Wp(µ̃
0, µ0), W̃ 1 := Wp(µ̃

1, µ1), Wtopo
0,1 := Wp(µf

0, µf
1), W̃ 0,1

topo := Wp(µf̃
0, µf̃

1),

W̃ 0
topo := Wp(µf̃

0, µf
0), W̃ 1

topo := Wp(µf̃
1, µf

1) denote the Wasserstein-p distances. Following the

notation used for the upper bounds in Section 3, for i ∈ {0, 1}, we use M
i and K

i
topo to denote the

upper bounds on W̃ i and W̃ i
topo, and M̂

i and K̂
i
topo for their final sample equivalents.
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Proof. Given any positive balancing loss coefficient for the CFR loss, λCFR > 0, a suitable choice

of λ and λtopo loss term coefficients of TATEE can always lead to satisfying the inequality below.

1 ≤ λCFR − λ

λtopo

. (8)

Meanwhile, by Theorem 2, when φ satisfies the constraint stated in the theorem, we have K̂
0
topo <

M̂
0 and K̂

1
topo < M̂

1, hence, using Inequality 8, we can write

1 ≤ λCFR − λ

λtopo

M̂
0 + M̂

1

K̂0
topo + K̂1

topo

.

Rearranging the terms in this inequality gives

λ
(

M̂
1 + M̂

0
)

+ λtopo

(

K̂
1
topo + K̂

0
topo

)

≤ λCFR

(

M̂
1 + M̂

0
)

, (9)

completing the proof for Proposition 9. □

Notice that the result in Inequality 9 shows that the upper bound on the noise-induced change

in the sum of the balancing and topological loss terms of TATEE is smaller than the upper bound

on the change in the balancing term of CFR due to noise. These upper bounds are due to the trian-

gle and quadrilateral inequalities (or applying the reverse triangle inequality and then the triangle

inequality), which yield the following.

∥

∥

∥
W̃ 0,1 −W 0,1

∥

∥

∥
≤ W̃ 0 + W̃ 1 ≤ M

0 +M
1,

∥

∥

∥
W̃ 0,1

topo −Wtopo
0,1

∥

∥

∥
≤ W̃ 0

topo + W̃ 1
topo ≤ K

0
topo + K

1
topo,

∣

∣

∣

(

λW̃ 0,1 + λtopoW̃
0,1
topo

)

−
(

λW 0,1 + λtopoWtopo
0,1

)

∣

∣

∣
≤ λ

∣

∣

∣
λW̃ 0,1 −W 0,1

∣

∣

∣

+ λtopo

∣

∣

∣
λtopoW̃

0,1
topo −Wtopo

0,1
∣

∣

∣
,

≤ λ
(

M
0 +M

1
)

+ λtopo

(

K
0
topo + K

1
topo

)

.

Appendix F. α-Stable Distributions

α-stable distributions are a rich class of probability distributions that allow modeling data with

heavy tails and asymmetry. Their flexible parametric form is particularly suitable for data that ex-

hibit extreme values. Random variables with α-stable distributions do not necessarily have finite

mean or variance. This family of distributions facilitate a generalization of the central limit theorem

(CLT): While the normal distribution arises as the limit distribution when summing independent,

thin-tailed random variables with finite second moment, α-stable distributions with the tail param-

eter α < 2 arise as the limit when the random variables have infinite variance [22, 37].

The characteristic function of a random variable with an α-stable distribution is as follows,

φ(t) =

{

exp
{

itm− |ct|α
(

1− iβsgn(t) tan πα
2

)}

α ̸= 1

exp
{

itm− |ct|α
(

1 + iβ 2
π sgn(t) log |t|

)}

α = 1.
(10)
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The parameters α, β, c ≥ 0, and m ∈ R, which we refer to as the characteristic exponent or the tail

parameter, skewness or asymmetry parameter, scale parameter, and location parameter, determine

the distribution of the random variable.

Note that the main parameters of interest, determining the shape of the distribution, are the tail

and skewness parameters. These parameters take values in a region of the plane where α ∈ (0, 2]
and |β| ≤ min {α, 2− α}, which is referred to as the Feller-Takayasu diamond [37]. The skewness

parameter β ∈ [−1, 1] introduces asymmetry; a symmetric α-stable distribution has β = 0. The

parameter α determines how fast the tail decays, with smaller values meaning heavier tails. The nor-

mal distribution is the special case when α = 2, and α = 1 corresponds to the Cauchy distribution.

Except the Gaussian case, other α−stable distributions have infinite moments of order greater than

or equal to α, i.e., infinite variance for all α < 2, and infinite absolute mean for α ≤ 1. Most statis-

tical models rely on the CLT to justify using Gaussian distributions as the asymptotic distribution of

the sum/mean of an independent and identically distributed (i.i.d.) sequence of random variables.

However, the CLT does not hold for α-stable distributions with α < 2. This fact is consequential

for the sample size criterion and significance level of statistical tests [42].

Appendix G. Implementation Details

Recall that the main purpose of our experiments is to evaluate the change in robustness to input

noise due to our proposed topological regularization in TATEE. To this end, in order to assess the

impact of incorporating the regularization term based on persistence diagrams into the training of

the model, and not the CFR-type model architecture, we adopted the same parameters and overall

configuration utilized by Shalit et al. [46] for CFR, for all implementation and training purposes of

TATEE, as well as the CFR model we compared against TATEE. Each of φ, h0, and h1 have 3 fully

connected layers of size 200 for φ and 100 for h0 and h1. Following Shalit et al. [46], we used

the value
√
10 for the λ regularization coefficient for the balancing term of the training objective in

Equation 6, which Shalit et al. [46] found to yield the lowest ϵPEHE on the IHDP dataset. After a

standard grid search 3 fine-tuning of λtopo, we used λtopo =
√
10
4 for the topological regularization

coefficient in Equation 6, in the case of IHDP dataset. We also performed a grid search fine tuning

over batch size, λ, and λtopo for the Twins and Jobs datasets, with a parameters grid of size 80, from

which we obtained the values 128, 10, and 2
√
10 for the Twins dataset, 128, 0.1, and 1 for the Jobs

dataset, and 256, 10, and 0.1 for the ACIC dataset. The learning rate is 10−2 for mini-batch training

using an Adam optimizer [30] with weight decay parameter value of 10−5. The system specification

for the computations is provided in Table 2.

CPU Intel(R) Xeon(R) CPU @ 2.20GHz

GPU Nvidia A100 SXM4 40GB

OS Ubuntu 22.04.3 LTS

Architecture x86 64

Table 2: System specifications for the computations.

3. In this case the search is in fact over a line, as we fine tuned only a single parameter.
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Appendix H. Datasets

Infant Health and Development Program (IHDP). The IHDP dataset is a semi-synthetic bench-

mark widely used in causal inference studies [25]. It combines real-world covariates from a random-

ized experiment with simulated counterfactual outcomes, providing a ground truth for evaluating

treatment effect estimation methods.

Twins. The Twins dataset uniquely contains both factual and counterfactual outcomes, as it in-

cludes data on twin pairs [35]. By treating one twin as treated and the other as control, the dataset

provides real-world values for both potential outcomes, eliminating the need for synthetic counter-

factuals. This characteristic allows for evaluation of treatment effects estimation against empirical

ground-truth, making it the only dataset for assessing the robustness of methods in the presence of

intrinsic empirical noise, without injecting synthetic noise. Notably, TATEE outperforms all bench-

marks on this dataset (see Appendix D.4) in experiments without simulated noise, achieving the

lowest (best) ϵPEHE .

Jobs. The Jobs dataset, originally collected by LaLonde [34] and later curated for causal inference

benchmarking by Shalit et al. [46], includes both randomized controlled trial (RCT) and observa-

tional data. The dataset combines treated units from the RCT subset with a control sample from

Dehejia and Wahba [14], ensuring that treatment assignment depends on covariates.

Atlantic Causal Inference Conference (ACIC) 2018. The ACIC-18 dataset [1] is based on data

from the National Study of Learning Mindsets [58]. Assuming an RCT design, the dataset allows

for the computation of the true average treatment effect on the treated (ATT). To introduce covariate

shift, a mask variable sampled from a Bernoulli distribution based on a feature is applied to control

units, making treatment assignment dependent on the covariates.
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