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Abstract

Driven by steady progress in deep generative
modeling, simulation-based inference (SBI) has
emerged as the workhorse for inferring the pa-
rameters of stochastic simulators. However, re-
cent work has demonstrated that model misspec-
ification can compromise the reliability of SBI,
preventing its adoption in important applications
where only misspecified simulators are available.
This work introduces robust posterior estima-
tion (RoPE), a framework that overcomes model
misspecification with a small real-world calibra-
tion set of ground-truth parameter measurements.
We formalize the misspecification gap as the so-
lution of an optimal transport (OT) problem be-
tween learned representations of real-world and
simulated observations, allowing RoPE to learn a
model of the misspecification without placing ad-
ditional assumptions on its nature. RoPE demon-
strates how OT and a calibration set provide a con-
trollable balance between calibrated uncertainty
and informative inference, even under severely
misspecified simulators. Results on four synthetic
tasks and two real-world problems with ground-
truth labels demonstrate that RoPE outperforms
baselines and consistently returns informative and
calibrated credible intervals.

1 Introduction

Many fields of science and engineering have shifted in re-
cent years from modeling real-world phenomena through
a few equations to relying instead on highly complex com-
puter simulations. While this shift has increased model
versatility and the ability to explain or replicate complex
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phenomena, it has also necessitated the development of new
statistical inference methods. In particular, state-of-the-art
simulation-based inference (SBI, Cranmer et al., 2020) algo-
rithms leverage neural networks to learn surrogate models
of the likelihood (Papamakarios et al., 2019), likelihood
ratio (Hermans et al., 2020), or posterior distribution (Pa-
pamakarios & Murray, 2016), from which one can extract
confidence or credible intervals over the parameters of in-
terest given an observation. While SBI has proven helpful
when the simulator is a faithful description of the stud-
ied phenomenon, e.g., for scientific applications (Delaunoy
et al., 2020; Brehmer, 2021; Lückmann, 2022; Linhart et al.,
2022; Hashemi et al., 2022; Tolley et al., 2023; Avecilla
et al., 2022), recent work has also highlighted the unreliabil-
ity of SBI methods under model misspecification (Cannon
et al., 2022; Schmitt et al., 2023).

Addressing Misspecification with a Calibration Set. In
this work, we target important applications of SBI in com-
mon settings where (1) the goal is to estimate a hard-to-
measure variable from indirect but readily available mea-
surements of other variables; (2) only misspecified sim-
ulators relating these variables are available; and (3) a
few ground-truth pairings of the hard-to-measure variables
and the related variables are available in a calibration set1.
Such a setting can arise, for example, when inferring the
properties of a patient’s cardiovascular system from non-
invasive and abundant measurements of other physiological
signals (Wehenkel et al., 2023), or when developing soft
sensors to monitor industrial processes in real time, where
directly measuring the quantity of interest is costly and
time consuming, for example, through laboratory analysis,
but where related variables can be measured quickly and
inexpensively (Jiang et al., 2021; Perera et al., 2023).

Our Contributions. We introduce robust posterior estima-
tion (RoPE), an algorithm that addresses model misspecifi-
cation to provide accurate uncertainty quantification for the
parameters of black-box simulators. In such misspecified

1Note that our use of the term calibration set should not be
confused with its usage in the context of model mis-calibration
in well-specified SBI (Hermans et al., 2022), as we clarify in
Appendix A.
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settings, the main challenge lies in the absence of a paired
dataset of simulated and corresponding real outputs. To han-
dle this knowledge gap, RoPE estimates a coupling between
real and simulated observations using optimal transport (OT,
Peyré et al., 2017; Villani et al., 2009). The algorithm ex-
tends neural posterior estimation (Papamakarios & Murray,
2016) and models misspecification using OT. We evaluate
the performance of the algorithm on existing benchmarks
from the SBI literature and introduce four new benchmarks,
two of which are synthetic and two come from real physical
systems. To the best of our knowledge, the latter consti-
tute the first real-world benchmarks that directly provide
a ground truth for the inferred parameters for SBI under
misspecification. We conduct additional experiments to
investigate the impact on RoPE’s performance of varying
calibration set sizes, prior misspecification, and distribution
shifts, as well as various ablation studies.

2 Background & Notation

In this section, we first pose the machine learning problem
we are trying to solve and then formally introduce SBI,
model misspecification, and OT, as our method lies at the
intersection of these fields.

We consider a simulator, S : Rk × [0, 1]→ Rd, that takes
in physical parameters θ ∈ Θ ⊆ Rk and a random seed
ε ∈ [0, 1] to generate simulated measurements xs ∈ Xs ⊆ Rd.
The simulator is a simplified version of a real and unknown
generative process p⋆(xo) :=

∫

p⋆(θ)p⋆(xo | θ)dθ that pro-
duces real-world observations xo ∈ Xo ⊆ Rd. We assume
this process depends on parameters with the same physical
meaning as the ones of the simulator and thus use the same
notation θ. Our task is to estimate a well-calibrated and
informative posterior distribution p(θ | xio) for each observa-
tion xio in a test set D, reducing uncertainty compared to the
prior distribution, assuming that the prior is well-specified.
To achieve our goal, we have access to: 1. the misspeci-
fied simulator S that embeds domain knowledge and gen-
erates samples whose distribution approximates p⋆(xo | θ),
2. a prior p(θ) that approximates the marginal distribution
p⋆(θ) of parameters in the real-world, 3. a small calibration
set of labeled real-world observations C := {(θi,xio)}nc

i=1

composed of i.i.d. samples from p⋆(θ,xo), which enables
data-driven correction of the simulator’s misspecification, 4.

a test set D := {xio}no

i=1 of real-world observations arising
from p⋆(xo) for which we want to estimate the posterior.

2.1 Simulation-based Inference (SBI)

Applying statistical inference to simulators is challenged
by the absence of a tractable likelihood function (Cranmer
et al., 2020). As a solution, SBI algorithms leverage mod-
ern machine learning methods to tackle inference in this
likelihood-free setting (Lueckmann et al., 2021; Delaunoy
et al., 2022; Glöckler et al., 2022). Among SBI algorithms,

neural posterior estimation NPE (Papamakarios & Murray,
2016; Lueckmann et al., 2017; Radev et al., 2020) is a
broadly applicable method that trains a conditional density
estimator of p(θ | xs) from a dataset of parameter-simulation
pairs. In this paper, we focus on making NPE robust to
model misspecification.

NPE usually parametrizes the posterior with a neural condi-
tional density estimator (NCDE), which is composed of (1)
a neural statistic estimator (NSE), denoted by hω : Xs → Rl,
that compresses observations into l-dimensional representa-
tions and, (2) a normalizing flow (NF, Papamakarios et al.,
2021; Tabak & Vanden-Eijnden, 2010) that parameterizes
the posterior density as pϕ(θ | hω(xs)). The parameters
ϕ and ω of the NCDE are trained with stochastic gradient
ascent on the expected log-posterior probability, solving the
following optimization problem

ϕ⋆, ω⋆ ∈ argmax
ϕ,ω

E θ∼p(θ)
ε∼U [0,1]

[

log pϕ(θ | hω(S(θ, ε)))
]

, (1)

where p(θ) denotes a prior over the parameters θ.

Under the assumption that the class of functions represented
by the NCDE contains the true posterior, solving (1) leads
to a surrogate pϕ⋆(θ | hω⋆(xs)) that matches exactly the pos-
terior p(θ | xs) corresponding to the simulator. In that case,
θ ⊥ xs | hω⋆(xs), that is, the NSE hω⋆ is a sufficient statis-
tic of xs for the parameter θ (Chen et al., 2020; Wrede et al.,
2022; Chan et al., 2018). In practice, we can only approach
perfect training by generating a sufficiently large number
of pairs (θ,xs) and doing a search on the NCDE’s architec-
ture and training hyperparameters. To simplify notation, we
denote the NCDE learned with NPE as p̃(θ | xs).

2.2 Model Misspecification

In statistics, where the model parameters do not necessarily
carry real-world meaning, model misspecification generally
denotes the inability of a model to reproduce the observed
data distribution. Formally, a parametric model p(xo | θ)
is said to be misspecified with respect to some true data-
generating process p⋆(xo) if the latter does not fall within
the family of distributions defined by the model, i.e. ∄θ ∈
Θ : p(xo | θ) = p⋆(xo) ∀xo (Cannon et al., 2022). In
contrast, we are not necessarily interested in reproducing
the observed data xo but only in inferring the parameter
value θ from an observation xo. For this goal, naively using
the standard definition is insufficient, as a model may be
well-specified but still produce incorrect credible intervals
for the parameters of interest θ. This undesired behavior may
happen, for example, if the model is over-parameterized, as
illustrated in Appendix A.

Thus, in this work, we define model misspecification dif-
ferently and align it with the setting motivated in Section 1.
Intuitively, we describe model misspecification as the non-
transferability of the posterior obtained from the simulator
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to the prediction of real-world parameters. Formally, we
assume that the pairs of parameters and observations (θ,xo)

are i.i.d. from an unknown distribution p⋆(θ,xo), which im-
plicitly defines p⋆(θ | xo), the Bayes optimal predictor of the
parameter given an observation. Under this premise, we say
a simulator is misspecified if ∃S ⊆ Θ×X : ∀(θ,xo) ∈ S,

p(θ) = p⋆(θ) and p⋆(θ | xo) ̸= p(θ | xs = xo).

Following this definition, we frame the problem of model
misspecification in SBI as a learning task where our goal
is to find a good estimator of p⋆(θ | xo). As we assume the
simulator provides strong domain knowledge, we focus on
the challenging settings where the dataset of labeled real
observations D := {(θi,xio)}ni=1 that we have for learning
p⋆(θ | xo) is small. In such settings, most examples must
be saved for testing and only a small subset, denoted by the
calibration set C, remains available for training.

2.3 Semi-balanced Optimal Transport (OT)

As further motivated in Section 3, RoPE models the misspec-
ification between simulations and real-world observations as
an OT coupling. For readers unfamiliar with OT, a coupling
between two distributions—e.g., p(xs) and p(xo)—is a dis-
tribution π⋆(xs,xo) on the product space whose marginals
coincide with those two distributions while minimizing an
expected cost Eπ⋆ [c(xo,xs)]. The function c : Xo ×Xs → R

assigns a cost to any pair (xo,xs) ∈ Xo ×Xs.

In our setting, we can access a limited number no of
real-world observations {xio}no

i=1, which we assume are
i.i.d. from the unknown distribution p⋆(xo). Writing
C := [c(xio,x

j
s)]ij for the cost matrix between observed and

simulated data, we solve the discrete semi-balanced (Rabin
et al., 2014) and entropy-regularized (Frogner et al., 2015)
OT problem. This formulation preserves a strict marginal
constraint on the observed data, but relaxes the marginal
constraint on the simulated data, thus allowing certain simu-
lations xs to be discarded or down-weighted. Namely, given
a set {xjs}ns

j=1 of simulated observations, we search for the
non-negative transport matrix P ⋆ ∈ Bo that satisfies the left
marginal constraint,

Bo =
{

P ∈ Rno×ns

+ :
∑ns

j=1 Pij =
1
no
∀i = 1, ..., no

}

and solves

P ⋆ = arg min
P∈Bo

⟨P,C ⟩+ ρKL

(

PT1no∥
1ns

ns

)

+ γ⟨P, logP ⟩,

(2)

where 1n is a vector of ones with size n and KL is the
Kullback-Leibler divergence. Therefore, a larger ρ > 0

promotes a coupling that fits the marginal of simulated data
more closely, and γ > 0 is a hyperparameter that encourages
entropic transport matrices. This problem can be solved
with a variant of the Sinkhorn algorithm (Cuturi, 2013) with
efficient GPU implementations. In our experiments, we

rely on OTT (Cuturi et al., 2022) to return such a coupling
P ⋆, given the cost matrix C and the parameters γ and ρ,
parameterized as τ = ρ/(ρ+ γ). Setting τ = 1 amounts to a
perfectly balanced transport.

3 RoPE: Modeling Misspecification with OT

In this section, we formally introduce our robust posterior
estimation algorithm (RoPE) and highlight some benefits
of modeling misspecification with OT. RoPE approaches
the problem of misspecification as a hybrid modeling task
by combining the simulator with a misspecification model
learned from the few observations in the calibration set. The
main modeling assumption of RoPE is

xo ⊥ θ | xs, (3)

that is, given the simulated observations xs, the real ob-
servations xo contain no additional information about the
parameters θ. As a consequence, we can express the pos-
terior for real-world observations as p(θ | xo) =

∫

p(θ |
xs)p(xs | xo)dxs, where p(θ | xs) is easily approximated
with NPE. On the other hand, the conditional p(xs | xo),
which can be attributed to misspecification, is what RoPE
intends to learn by estimating an OT coupling (that is then
conditioned on x0, c.f. 4).

While this assumption introduces an information bottleneck,
it does not prevent the method from achieving calibrated
and informative posterior distributions—even if the assump-
tion is only partially met in practice (e.g., tasks E and F in
Figure 2). In fact, it acts as a regularizer, enabling the learn-
ing of a generalizable misspecification model from only a
small calibration set, and it ensures that predictions remain
grounded in the expert knowledge embedded in the simu-
lator. This bottleneck can be limiting for simulators that
are highly misspecified and fail to model the dependencies
between parameters and observations. However, when the
simulator encodes phenomena the practitioner believes to
be invariant across different application environments, the
assumption forestalls “shortcut learning” (Geirhos et al.,
2020) from the calibration data and improves generaliza-
tion. In Appendix D, we illustrate this property using real
out-of-distribution data.

Intuitively, the discrete OT coupling P ⋆ between the two
point clouds {xis}ns

i=1 and {xis}no

i=1 obtained from solving (2)
can be seen as an approximation of a joint distribution π⋆ in
Xo×Xs when τ = 1 (see Appendix E for further discussion).
Then, the modeled misspecification π⋆, together with our
modeling assumption (3), defines the posterior distribution
for real-world observations as

p(θ | xo) =
∫

p(θ | xs)π⋆(xs | xo)dxs, (4)

where the posterior p(θ | xs) can be approximated very pre-
cisely with NPE (Papamakarios & Murray, 2016) as NFs are
universal density estimators of continuous distributions (We-
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henkel & Louppe, 2019; Draxler et al., 2024).

We approximate π⋆ by computing the OT coupling P ⋆ be-
tween the test set D and a set {xjs}ns

j=1 of ns simulations
generated by running the simulator on parameters from the
given prior θj ∼ p(θ). The cost function is defined in the
next section. Thus, RoPE estimates the posterior for real-
world observations as a mixture of the posteriors p̃ obtained
with NPE, that is,

p̃(θ | xio) :=
ns
∑

j=1

αij p̃(θ | xjs), where αij = noP
⋆
ij . (5)

3.1 Defining the OT Cost Function

In our setting, an ideal coupling would pair a real-world
observation with simulations generated by the same pa-
rameters. Hence, the cost function should be insensitive
to variation in the data (e.g., noise) that is independent of
θ. Formally, we can write c(xo,xs) = c(ho(xo),hs(xs)),
where ho and hs are sufficient statistics for θ with respect
to xo and xs, respectively.

A key concern is to find a meaningful way to learn ho, the
sufficient statistic for the real observations. As discussed
in Appendix G, we can learn an approximate minimal suffi-
cient statistic hω⋆ for the simulated observations with NPE.
Because the simulator carries information about the true
generative process, our approach is to fine-tune hω⋆ using
the calibration set, which is otherwise too small to learn
a representation from real-world data only. Denoting the
fine-tuned neural network as gφ : Xo → Rl, the fine-tuning
objective reads

L(φ; C) :=
nc
∑

i=1

|gφ(xio)− Eε∼U [0,1][hω⋆

(

S(θi, ε)
)

]|2, (6)

where the expectation is approximated via a Monte-Carlo
approximation. The training of g starts from the weights
ω⋆ and optimizes (6) with gradient descent. Optimizing
(6) enforces, at least on the calibration set, that g and h

are close in L2 norm when applied to observations from
the same parameter θ. Thus, we define the OT cost as
c(xo,xs) := |gφ⋆(xo) − hω⋆(xs)|2, where gφ⋆ is the NSE
obtained after fine-tuning (6). Figure 4 in Appendix B
depicts RoPE’s training and inference steps. We discuss the
computational cost of RoPE in Section H.

3.2 On the benefits of using optimal transport to

handle misspecification

While we could have chosen other approaches to model
p(xs | xo)—e.g., conditional deep generative models—
several attractive properties directly follow from modeling
the misspecification as an OT coupling between simulated
and real-world measurements. First, a self-calibration

property: by modeling the posterior as (5), when τ = 1

(i.e., the transport is perfectly balanced), the marginal pos-

terior distribution over the test set, i.e., p̃(θ) :=
∫

p̃(θ |
xo)p

⋆(xo)dxo, converges to the prior distribution as the
number of simulated observations Ns approaches infinity,
as expected from a well-estimated posterior distribution. A
proof and further discussion of this self-calibration property
is given in Section F. Second, a control mechanism for the

posteriors’ confidence: the entropic regularization of OT
not only enables fast computation of the transport coupling
but also provides an effective control mechanism to bal-
ance the calibration of the posterior with its informativeness.
Indeed, for small entropic regularization, the estimated pos-
teriors have low entropy and may be overconfident, as they
are sparse mixtures of a few simulation posteriors p̃(θ | xjs).
In contrast, for large values of γ in (2), the coupling matrix
becomes uniform and the corresponding posteriors tend to
the prior, as p(θ | xo) ≈ 1

ns

∑ns

j p̃(θ | xjs) is a Monte-Carlo
approximation of Ep(xs)[p̃(θ | xs)] ≈ p(θ). Thus, the practi-
tioner can optimize the hyper-parameter γ to find the right
trade-off between calibration of the estimated posteriors,
favored by higher γ, and their informativeness, favored by
lower γ. Finally, robustness to prior misspecification: by
enabling the transport to be unbalanced—that is, to discard
simulated observations when τ < 1—RoPE can flexibly
depart from the assumed marginal distribution of p(θ) and
be robust to prior misspecification. Thus, the parameter τ
can be seen as a control mechanism to account for the user’s
confidence in the prior distribution. In the rest of the text,
we denote the method as RoPE⋆ when τ < 1 and as RoPE
when τ = 1. In Section 5.1, we provide guidance on how to
set γ and τ in practice.

4 Related Work

The problem we address shares fundamental similarities
with sim2real transfer learning, where the goal is to bridge
the gap between simulated and real-world data. In robotics
and computer vision, this challenge has been tackled
through domain randomization (Tobin et al., 2017), which
increases simulation diversity to improve real-world gener-
alization, and domain adaptation techniques (Ganin et al.,
2016; Long et al., 2015; Bousmalis et al., 2018) that learn
domain-invariant representations. However, unlike these
approaches that typically focus on point predictions, RoPE
addresses the more challenging problem of transferring un-
certainty quantification from simulation to reality while
preserving calibration properties.

The setting we consider also naturally connects to semi-
supervised learning (Zhu, 2005), as both involve leveraging
abundant unlabeled data alongside limited labeled exam-
ples. Our setup with the calibration set resembles few-shot
learning scenarios (Wang et al., 2020), where rapid adapta-
tion occurs with minimal labeled examples. While classical
semi-supervised methods focus on exploiting unlabeled data
for classification or regression tasks, our approach differs in
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that it leverages a large set of labeled data obtained through
simulation. Crucially, unlike standard semi-supervised or
few-shot learning, where labeled and unlabeled data come
from the same distribution, we must explicitly account for
the distributional mismatch between simulated and real ob-
servations.

In both likelihood-based and simulation-based inference set-
tings, model misspecification has recently gained substan-
tial interest from the research community. Among devel-
oped strategies, works that take inspiration from generalized
Bayesian inference (Bissiri et al., 2016) are numerous (Del-
laporta et al., 2022; Chérief-Abdellatif & Alquier, 2020;
Matsubara et al., 2022; Pacchiardi & Dutta, 2021; Schmon
et al., 2020; Gao et al., 2023; Frazier et al., 2023). In the spe-
cific context of SBI, recent works (Ward et al., 2022; Huang
et al., 2023; Kelly et al., 2023) have investigated solutions
to improve the robustness of existing neural-network-based
SBI methods to model misspecification, detecting it at in-
ference time (Schmitt et al., 2023). Similarly, Frazier et al.
(2020) studied the impact of misspecification on approxi-
mate Bayesian computation methods (ABC, Rubin, 1984),
introducing diagnostics to detect it and proposing strategies
to make ABC robust. For the interested reader, Nott et al.
(2023) review restricted likelihood methods, Bayesian mod-
ular inference, and parametric projection methods, which
are standard frameworks to handle model misspecification
in likelihood-based Bayesian inference.

In contrast to these approaches, we frame model misspecifi-
cation in SBI as a learning problem, recognizing that if the
ultimate goal is to perform inference over parameters for
downstream decision-making, it is essential to have a test
set to empirically validate the performance of any inference
procedure. RoPE leverages a small subset of this test set as
a calibration set to overcome the modeled misspecification
in a supervised manner.

5 Experiments

Our experiments aim to (1) empirically validate the discus-
sion in Section 3.2, and (2) illustrate settings in which RoPE
enables uncertainty quantification under model misspeci-
fication and small calibration datasets. The experiments
comprise two existing benchmarks from the SBI literature,
two synthetic benchmarks, and two new benchmarks from
real physical systems for which both labeled data and simu-
lators are available. While these benchmarks remain simpli-
fied versions of real-world scenarios, they represent various
types of misspecification with varied parameter and obser-
vation spaces, allowing us to study RoPE’s performance
under diverse configurations. We briefly describe each task
and provide examples of real vs. simulated observations
in Figures 1 and 2. Further details about the experimental
setup can be found in Appendix I.

Task A & B (synthetic): CS & SIR . We reproduce the
cancer and stromal cell development (CS) and the stochastic
epidemic model (SIR) benchmarks from Ward et al. (2022).
We provide a description of the parameters, observations
and synthetic misspecification in Appendix I.1

Task C (synthetic): Pendulum. The damped pendulum
is a common benchmark for hybrid learning algorithms
(Takeishi & Kalousis, 2021; Yin et al., 2021; Wehenkel et al.,
2022) that leverage both domain knowledge and real-world
data. The simulator outputs the horizontal position of a
frictionless pendulum given its fundamental frequency ω0 ∈
R+ and amplitude A ∈ R+, with randomness introduced via
a phase shift and white measurement noise. As misspecified
“real-world” data, we generate observations from a damped
pendulum with friction.

Task D (synthetic): Hemodynamics. Following Wehenkel
et al. (2023), we define the task of inferring the stroke vol-
ume (SV) and the left ventricular ejection time (LVET)
from normalized arterial pressure waveforms. The simula-
tor is a PDE solver (Melis, 2017) that produces an 8-second
time-series xs sampled at 125Hz. As synthetic misspecifica-
tion, the simulator assumes all arteries have constant length,
whereas this parameter varies in the “real-world” data.

Task E (real): Light Tunnel. We employ one of the light
tunnel datasets from Gamella et al. (2025). The tunnel is an
elongated chamber with a controllable light source at one
end, two linear polarizers mounted on rotating frames, and
a camera. Our task consists of predicting the color setting
of the light source ((R,G,B) ∈ [0, 255]3) and the dimming
effect of the polarizers α ∈ [0, 1] from the captured images.
The simulator takes the parameters θ := [R,G,B, α] and
produces an image consisting of a hexagon roughly the size
of the light source, with a color equal to [αR,αG,αB].

Task F (real): Wind Tunnel. We employ one of the wind
tunnel datasets from Gamella et al. (2025). The tunnel is
a chamber with two controllable fans that push air through
it, and barometers that measure air pressure at different
locations. A hatch controls the area of an additional opening
to the outside. The dataset is a collection of pressure curves
that result from applying a short impulse to the intake fan
power and measuring the change in air pressure inside the
tunnel. Our inference task consists of predicting the hatch
position, θ := H ∈ [0, 45] given a pressure curve. As a
simulator model, we adapt the physical model given in
Gamella et al. (2025, Appendix IV).

Metrics. We consider two metrics to assess whether RoPE
provides reliable and useful uncertainty quantification. First,
given a labeled test set {(θi,xio)}ni=1, we compute the log-
posterior probability (LPP) as LPP := 1

n

∑n
i=1 log p̃(θ

i |
xio) ≈ Ep(θ,xo) [log p̃(θ | xo)] . The LPP, also called the neg-
ative log probability of the true test parameter (NLTP), is
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Figure 1: Results for our method (RoPE) and the competing baselines on six benchmark tasks. For each task, we show an example of
the real observations (xo) and the observations produced by the misspecified simulator (xs). We show each method’s LPP and ACAUC
metrics, as computed on a labeled test set of size 2000. Horizontal lines without markers correspond to the methods that do not use the
calibration set, producing a constant score. We report the average metrics and ±1 std. deviation over three random draws of the test set
and additional sources of randomness. In some instances, e.g., J-NPE or NPE-RS in task C, the likelihood can be −∞ and is not plotted.
For readability of the LPP metric, we use a linear scale between the SBI and the Prior and a logarithmic scale for values below that.
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Figure 2: Continuation of Figure 1 above. For task F, the ACAUC of the NPE baseline is -0.5 and not shown.

an empirical estimation of the expectation over possible
observations of the negative cross entropy between the true
and estimated posterior; thus, for an infinite test set, it
is only maximized by the true posterior. LPP character-
izes the entropy reduction on the estimation of θ achieved
by a posterior estimator p̃ when given one observation,
on average, over the test set. Second, the average cov-
erage AUC (ACAUC) indicates the average calibration
of k 1D credible intervals extracted from the estimated
posteriors, i.e., ACAUC := 1

kn

∑k
j=1

∑n
i=1

∫ 1
0 α − 1[θij ∈

Θp̃(θj |xi
o)
(α)]dα,where Θp̃(θj |xi

o)
(α) denotes the credible in-

terval for the jth dimension of the parameter θ at level α. Its
value is positive (resp. negative) if, on average over different
credible levels, parameter dimensionality, and observations,
the corresponding credible intervals are overconfident (resp.
underconfident). The ACAUC of a perfectly specified prior
distribution is zero. The integral can be efficiently approxi-
mated, as described in Appendix J. ACAUC does not capture
joint calibration, as dependencies between parameters are
not explicitly assessed. Alternative dependence-sensitive
metrics may require larger test sets to be stable. For all
experiments, we compute the LPP and ACAUC on labeled
test set containing 2000 pairs (θ,xo).

Baselines. As a sanity check, we compare the performance
of RoPE against four reference baselines: the prior p(θ),
which amounts to the lower bound on the LPP for any cali-
brated posterior estimator when the prior is well-specified;
the SBI posterior, which is an NPE trained and tested on

simulated data and thus provides an upper bound on the LPP
for RoPE under the independence assumption xo ⊥ θ | xs
(see Appendix I for more details); (NPE) a posterior esti-
mator fitted to the simulated data and applied to the real
data; and (J-NPE) a posterior estimator trained jointly on
the pooled simulated and real observations. The latter two
baselines represent some first approaches that a practitioner
may consider. Furthermore, to asses how a fully supervised
approach would fare if trained directly on the calibration set,
we compare the performance of RoPE to MLP, which trains
a neural network to predict the mean and log-variance of a
Gaussian posterior distribution by maximizing the calibra-
tion set log-likelihood. We train both the MLP and J-NPE
baselines in a supervised way, and we thus expect these
baselines to perform strongly as the size of the calibration
set becomes sufficiently large and the test data is i.i.d. We
also run NPE-RS (Huang et al., 2023), which trains a robust
version of NPE with a regularization loss that forces the dis-
tributions of NSE on simulated and test data to match. For a
fair comparison with RoPE, we use the n = 2000 test exam-
ples to compute the regularization, informing NPE-RS as
much as possible. We additionally run Noisy NPE (NNPE,
Ward et al., 2022), the amortized version of RNPE intro-
duced in the same paper, which improves the robustness
of NPE by introducing a Spike and Slab error model on
simulated data statistics. We also run HVAE (Takeishi &
Kalousis, 2021), which constitutes a strong baseline when
the simulator can be made differentiable (tasks C and E) but
is not directly applicable otherwise. More details about the
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experimental setup can be found in Appendix I.

5.1 Results

Figure 1 compares the performance of RoPE and the other
methods and baselines on the six tasks we consider with
a correctly specified prior. To demonstrate that applying
RoPE is straightforward, we deliberately fix γ = 0.5 for
RoPE and τ = 0.9 for RoPE⋆ in all tasks. In Figure 3, we
further study the role of these hyperparameters in optimizing
performance.

RoPE achieves robust posterior estimation for all tasks.

As mentioned above, the SBI and prior baselines provide
upper and lower bounds on the expected performance of
a well-calibrated posterior estimator, under the modeling
assumption made in Section 3. For all tasks, even with
minimal calibration budgets, RoPE is the only method that
consistently returns well-calibrated, or sometimes slightly
under-confident, posterior estimates while significantly re-
ducing uncertainty compared to the prior distribution. As
the size of the calibration set increases, we see that J-NPE
and MLP adapt and their performance improves and aligns
with or outperforms RoPE. This adaptability is an expected
behavior in i.i.d. settings, where real-world data eventu-
ally allows finding the minimizer of empirical risk among
a class of predictors. Nevertheless, these two baselines
tend to be overconfident even for larger calibration sets,
as highlighted by their positive ACAUC numbers, which
are significantly larger than RoPE’s in almost all configura-
tions. Moreover, on task E, where posteriors are complex
conditional distributions—whose entropy increases with
darker images and contain non-trivial dependencies between
parameters—RoPE remains the best approach, even with
a calibration set containing more than 1000 examples. As
an outlier, we observe that NPE trained on simulated data
achieves the best results for the SIR benchmark (Task B),
indicating that the misspecification of this benchmark is not
a challenging test case for existing SBI methods and may
not be a meaningful test for methods that cope with model
misspecification. Finally, because interpreting these metrics
can be difficult, we complement these numerical results with
corner and calibration plots for all tasks in Appendix K.

Ablation study. RoPE combines two steps with distinct
roles, shown in Figure 4, Appendix B: (1) a fine-tuning
step, which improves the domain generalization of the NSE;
and (2) an OT step, aiming to model the misspecification
as a coupling between simulations and observations. To
better understand their respective contribution to the per-
formance of RoPE, we look at two ablated versions of our
algorithm: tuning-only which appends the fine-tuned NSE
to the NF trained on simulated data and directly applies it
to the real observations without an OT step; and OT-only,
which directly performs OT with L2-norm in the original
NSE space c(xo,xs) = |hω⋆(xo)− hω⋆(xs)|2. In Figure 1,

we observe that the results for tuning-only are poor except
for Task B, where misspecification is negligible. In con-
trast, for tasks A, D, and F, OT-only exhibits performance
on par with RoPE. Nevertheless, RoPE can significantly
outperform OT-only, such as in tasks C and E where the
misspecification is significant. We conclude that the OT
step is crucial and fine-tuning is sometimes necessary. In
practice, we recommend to first evaluate the performance
of OT-only on the test set, and optimize γ before using a
subset of the test samples for fine-tuning.

Effect of entropic regularization—setting γ. In Figure 3a,
we study the effect of entropic regularization by varying the
regularization parameter γ. For all values of γ, excluding
γ ≥ 5, we observe that both LPP and ACAUC consistently
improve with the calibration set size. For large values of γ,
the entropic regularization dominates and pushes toward a
uniform mapping, resulting in posteriors that approximate
the prior distribution and are barely affected by the calibra-
tion set size. These empirical results are consistent with the
theoretical discussion in Subsection 3.2. As a recommen-
dation for practitioners, our empirical evaluation suggests
that values between 0.1 and 1 provide well-calibrated and
precise credible intervals. Ideally, the practitioner shall keep
a portion of the calibration set for validation, using it to
optimize γ based on the metrics of interest. If this is not
possible, we recommend employing γ = 0.5, which offers
sharp and calibrated posteriors on all our benchmarks.

RoPE⋆ for prior misspecification—setting τ . We now
study the impact of prior misspecification on RoPE and its
unbalanced version RoPE⋆. In Figure 3, we compare the per-
formance of RoPE (γ = 0.5 and τ = 1) and RoPE⋆ (γ = 0.5

and varying τ ) on extensions of Task E and C, where the
ground-truth parameters of the test dataset come from distri-
butions different to the assumed prior distributions. For task
E, we observe that RoPE’s performance is robust to the prior
misspecification; it provides well-calibrated and informative
posteriors, as is also visible in the corner plots of Figure 5
in Appendix C. While the gap between RoPE and RoPE⋆ is
negligible in the case of a well-specified prior (see Task E in
Figure 1), under prior misspecification RoPE⋆ leverages the
additional flexibility in the OT solution and discards some of
the simulated observations, achieving higher LPP. Similarly,
for Task C in Figure 3c, when there is no prior misspecifica-
tion, RoPE (i.e, τ = 1) achieves the best performance; using
lower values of τ becomes preferable as prior misspecifi-
cation increases. From these experiments, we recommend
leveraging τ as a hyperparameter describing the confidence
in the assumed prior distribution—setting its value to 0.9

offers robust performance for both well-specified and par-
tially misspecified priors. The user shall also explore lower
values when there is suspicion that the prior distribution is
overly spread with respect to the correct prior.
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Simulator prior
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LPP
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Figure 3: (a) Effect of γ on the LPP and ACAUC scores of RoPE on the light-tunnel task for different sizes of the calibration set. The
value of γ is shown by each curve. For reference, we plot the metrics achieved by the SBI posterior and prior distribution on simulated
data. (b-c) Effect of τ ∈ [0.1, 1] under a prior misspecification in Task E (b); and for various levels of prior misspecification in task C (c).

6 Discussion

While Section 5 demonstrates the effectiveness of RoPE,
opportunities for future work remain, which we discuss now.

Curse of dimensionality. While our experiments focused
on low-dimensional parameter spaces, as is common for
many applications of SBI, the dimensionality of θ may
impact two critical parts of RoPE. First, with each addi-
tional parameter θk+1, given xo, the NSE must encode up
to K dependencies between θk+1 and the other dimensions
θ1, . . . , θk. While generating more simulations can address
the curse of dimensionality in the simulation space, fine-
tuning on a small calibration may no longer suffice to cope
with misspecification. Second, the dimensionality of the
manifold on which the NSE projects the simulated and real-
world observations will grow, and finding a meaningful
coupling between the two populations may require larger
sample sizes. A potential solution is to focus on marginal
or 2D posterior distributions and ignore higher-dimensional
dependencies in p(θ | xo). Nevertheless, extending RoPE to
such settings certainly opens new questions, e.g., concern-
ing the development of better fine-tuning strategies that can
leverage calibration sets with incomplete labels.

Non-iid Calibration Sets. An important assumption made
by RoPE is that the calibration set contains i.i.d. samples
drawn from the same distribution p⋆(θ,xo) as the test data.
However, practical constraints may lead to calibration data
being collected from a different, potentially biased, dis-
tribution p̃(θ,xo). We identify two main scenarios. If p̃
and p⋆ share the same support, the fine-tuning step can
still correct for the distributional shift, especially with a
sufficiently large calibration set. For smaller sets, RoPE’s
robustness hinges on the neural statistic estimator’s (NSE)
ability to generalize. Moreover, the optimal transport (OT)
step provides additional resilience: observations where the
fine-tuned NSE performs well will be accurately matched,
leading to reliable posteriors, while poorly generalized ob-

servations may cause the posterior to revert to the prior. In
the more challenging scenario where p̃ and p⋆ have disjoint
support, even arbitrarily large calibration sets may fail to pro-
vide relevant training examples, making fine-tuning highly
dependent on out-of-distribution generalization. Here, the
OT step is expected to highlight this issue, as the lack of
meaningful matches will cause the transport matrix to be-
come uniform, leading the posterior to revert to the prior.
Appendix L further investigate RoPE’s sensitivity to these
practical challenges, on the Light Tunnel task, using a cali-
bration set from a different prior than the test set, approxi-
mating the ’same support’ scenario.

Other extensions. Similar to incomplete labels, in certain
applications we may only have access to noisy labels, mea-
sured with a well-modeled but noisy measurement process.
Further developing the fine-tuning stage to exploit such
noisy labels would be necessary to make an approach simi-
lar to RoPE applicable. Our strategy of modeling misspec-
ification as an OT coupling opens up several avenues to
address more specific problem setups. For example, we can
leverage the inductive bias in the neural network architec-
ture of neural OT to better cope with large test sets. This
appears as a promising direction to amortize the mapping
between simulation and real-world data.

Conclusion. Motivated by important applications where
SBI is not applied due to its sensitivity to model misspecifi-
cation, we have introduced RoPE, a method that jointly ex-
ploits a calibration set and optimal transport to extend neural
posterior estimation for misspecified simulators. Our experi-
ments on diverse benchmarks demonstrate RoPE’s ability to
estimate calibrated and informative posterior distributions
for various simulators and real-world examples. Overall,
we have framed model misspecification as a challenge in
transferring predictive models from simulated to real-world
data. Our work highlights the need for a labeled test set to
validate inference quality, encouraging future research to
treat misspecification as a machine learning problem.
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Impact statement

This paper presents a framework and an algorithm to address
model misspecification in simulation-based inference (SBI).
SBI is predominantly applied in scientific fields where com-
plex simulators of physical phenomena are available, such
as astronomy, medicine, particle physics, or climate mod-
eling. A priori, this circumscribes the application of our
algorithm to highly specialized scientific domains in the
natural sciences, precluding issues such as fairness or pri-
vacy. However, its application to the scientific domain is not
exempt from societal or ethical implications, particularly
when computer simulations may inform research or policy
decisions. In this regard, we find some properties of the al-
gorithm particularly promising, such as uncertainty quantifi-
cation and the limitation of not drawing conclusions beyond
the given expert model. However, more work is needed to
deeply understand the reliability of these properties and how
they are affected by violations of the core assumptions, such
as a well-specified prior. Such work should precede any sort
of over-selling to practitioners about the benefits of the al-
gorithm. Rather, we see our work as a contribution towards
a more broad and successful application of SBI techniques;
success in this endeavor, as for the establishment of any
scientific tool, will require an iterative dialogue between the
scientists who develop the methodology and those who use
it.
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A Model misspecification

A.1 Mis-calibration vs Misspecification

To further elucidate the distinction between posterior calibration and model misspecification, it is essential to highlight their
respective scopes and the specific challenges they address.

Posterior calibration focuses on ensuring that the predicted posterior distributions accurately reflect the true uncertainty
in parameter estimates given the observations, under the assumption that the simulator is well-specified. Methods such as
those proposed by Falkiewicz et al. (2024); Delaunoy et al. (2022) address this by improving the alignment between the
expected and actual coverage probabilities of the posterior. These approaches generally assume that the simulator faithfully
represents the generative process of the observed data, enabling calibration to be evaluated and improved by leveraging
simulations. While important, these methods do not account for discrepancies between the simulator and real-world data,
which are precisely the scenarios we target in this work.

Model misspecification, on the other hand, arises when the simulator fails to capture the true generative process underlying
the observed data. This results in systematic discrepancies that cannot be corrected solely by optimizing posterior calibration
techniques. Misspecification introduces a gap between the simulated and real-world distributions, and this gap is only
observable when real-world data is available. Unlike posterior calibration, addressing misspecification requires methods
that can robustly leverage the simulator despite its inaccuracies, while incorporating real-world observations to mitigate the
impact of the mismatch.

In our work, we explicitly focus on handling model misspecification. This distinction is reflected in the design of our
approach and the evaluation scenarios we consider, such as Task E, where the simulated data diverges significantly from
the real-world measurements. While posterior calibration methods may perform well in a well-specified context, they
are not designed to cope with such gaps. Instead, we prioritize creating predictive models that balance informativeness
and robustness in the presence of misspecification, even if achieving perfect calibration remains an open and challenging
problem.

A.2 Comparison between model misspecification definitions

We provide a toy example to show how a simulator may be well-specified according to the standard definition of misspecifi-
cation but still provide biased estimates of the target parameter when applied to real data.

Consider the following setting: a noisy sensor measures some physical quantity θ, producing measurements x1
o, . . . ,x

n
o

i.i.d.∼
P⋆, where P⋆ := N (θ⋆, 1) is a normal distribution centered around the ‘true’ value θ⋆. Let {Pθ : θ ∈ R} be a simulator of
this process with Pθ := N (µ, 1), where µ := θ + λ and λ > 0 is a fixed scalar constant, which is a misspecification in the
simulator that falsely accounts for a non-existing offset in the sensor that produced the real observations x1

o, . . . ,x
n
o .

According to the standard definition of misspecification, the simulator is well specified, as setting θ ← θ⋆−λ yields Pθ = P⋆.
However, the posterior estimates we obtain with this simulator are biased with respect to the true parameter θ⋆.

To see this, let us compute the posterior under a Gaussian prior N (θ⋆, 1) over the parameter θ, centered on the true value θ⋆.
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Taking advantage of the conjugate prior, the posterior p(θ | x1
o, . . . ,x

n
o ) becomes

p(θ | x1
o, . . . ,x

n
o ) ∝ p(θ)p(x1

o, . . . ,x
n
o | θ)

= p(θ)
n
∏

i=1

p(xio | θ)

=
1√
2π

exp

(

−1

2
(θ − θ⋆)2

) n
∏

i=1

1√
2π

exp

(

−1

2
(xio − µ)2

)

∝ exp

(

−1

2
(θ − θ⋆)2 − 1

2

n
∑

i=1

(xio − µ)2
)

= exp

(

−1

2

[

θ2 + (θ⋆)2 − 2θθ⋆ +

n
∑

i=1

(xio)
2 + nµ2 − 2µ

n
∑

i=1

x
i
o

])

(drop const. terms) ∝ exp

(

−1

2

[

θ2 − 2θθ⋆ + nµ2 − 2µ
n
∑

i=1

x
i
o

])

(µ = θ + λ) = exp

(

−1

2

[

θ2 − 2θθ⋆ + nθ2 + nλ2 + 2nλθ − 2θ
n
∑

i=1

x
i
o − 2λ

n
∑

i=1

x
i
o

])

(drop const. terms) ∝ exp

(

−1

2

[

θ2 − 2θθ⋆ + nθ2 + 2nλθ − 2θ

n
∑

i=1

x
i
o

])

= exp

(

−1

2

[

(n+ 1)θ2 − 2θ(θ⋆ − nλ+
n
∑

i=1

x
i
o)

])

= exp

(

− 1

2(n+ 1)−1

[

θ2 − 2θ

(

1

n+ 1

)

(θ⋆ − nλ+

n
∑

i=1

x
i
o)

])

(complete square) ∝ exp



− 1

2(n+ 1)−1

[

θ −
(

1

n+ 1

)

(θ⋆ − nλ+

n
∑

i=1

x
i
o)

]2


 ,

that is, a normal distribution N (τ, γ2) with mean

τ =

(

1

1 + n

)

(

θ⋆ − nλ+

n
∑

i=1

x
i
o

)

and variance γ2 = (n + 1)−1. Thus, the posterior is biased, e.g., the posterior mean τ is a biased estimator of θ⋆ with

E[θ⋆ − τ ] = θ⋆ − λ
(

n
n+1

)

.
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Figure 4: (left) Problem setup: we consider a real-world process which depends on some physical parameters θ. Given real observations
xo of the process, our goal is to provide uncertainty quantification on the underlying parameters θ. To help us, we have access to a
misspecified simulator that takes parameters θ as input and produces simulated observations xs. (right) A visualization of RoPE. The
training consists of two steps: (1) given the simulated data, we approximate the posterior using NPE, resulting in the NSE hω⋆ ; (2) using
the calibration set, we fine-tune hω⋆ into gφ⋆ using the objective (6). At test time, we solve the optimal transport (OT) problem between
the representations {hω⋆(xj

s)}ns
j=1

and {gφ⋆(xi
o)}no

i=1
, resulting in our estimated posterior (5), the average of simulations’ posteriors

weighted by the OT solution P ⋆. See Algorithm 1 in Appendix B for more details.
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B The RoPE Algorithm

Algorithm 1 Posterior Inference using Robust Neural Posterior Estimation (RoPE)

Input: Simulator S(θ, ε), prior distribution p(θ), calibration set C = {(xio, θi)}Nc

i=1, test set D = {xio}No

i=1

Output: p̃(θ | xo)∀xio ∈ D
Step 1: Neural Posterior Estimation (NPE)

Train neural network hω and conditional normalizing flow p(θ | ·) using NPE:

p̃, ω⋆ =argmax
p,ω

E θ∼π(θ)
ε∼U [0,1]

[log p(θ | hω(S(θ, ϵ)))]

Step 2: Fine-tune sufficient statistics hω⋆ on the Calibration Set

gψ := COPY(hω⋆)

Ctrain, Cval = RandomSplit(C, 15 )
bestval =∞
for Niter do

ψ ← ψ − α∇ψ
[

∑

(θ,xo)∈Ctrain
|gψ(xo)− Eε[hω⋆(S(θ, ε))]|2

]

curval =
∑

(θ,xo)∈Cval
|gψ(xo)− Eε[hω⋆(S(θ, ε))]|2

if curval < bestval then

bestval = curval
ψ⋆ = ψ

end if

end for

Step 3: Generate Simulations for Test Set (Ns = No)

S = {xjs}Ns

j=1,

where x
j
s ∼ S(θj , ε) θj ∼ π(θ) ε ∼ U [0, 1]

Step 4: Entropic-regularized OT

Cij =|fω⋆(xjs)− gψ⋆(xio)| ∀i, j ∈ {1, . . . , No} × {1, . . . , Ns}

P ⋆ =arg min
P∈Bo

⟨P,C ⟩+ ρKL

(

PT1No
∥1Ns

Ns

)

+ γ⟨P, logP ⟩

Step 5: Compute Posterior Distributions

p(θ|xio) :=
Ns
∑

j=1

P ⋆ij p̃
(

θ | hω⋆(xjs)
)

Return p̃(θ|xio) ∀xio ∈ D
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C Prior Misspecification Experiments

Prior misspecification on Task C. With this experiment we aim to better understand the role of τ when RoPE is applied
with different levels of prior misspecification. We thus re-use the same setup as in Figure 1 but add prior misspecification
as a mixture between the assumed prior and a much tighter uniform distribution. As the weight of the tighter uniform
distribution increases, the prior gets more misspecified. The experimental setup follows closely the one in the well-specified
case (see Section I.2), except calibration samples are drawn from the true prior (as this would be the case in a real-world
application) and we compute the OT coupling for values of τ ∈ [0.1, 1].

The results in Figure 3b demonstrate that RoPE can be robust to prior misspecification. In particular, we observe that τ plays
the expected role and that values below 1. enable RoPE to perform better when the true prior is only a subset of the prior
used to generated synthetic data.

Prior misspecification on Task E. In some practical settings, it is unlikely that the prior used to generate synthetic data will
match the distribution of the target parameters in the real data. For this reason, we consider a semi-balanced formulation of
OT, providing the flexibility to discard simulations with no corresponding real-world observations.

To evaluate the effect of a misspecified prior on RoPE and RoPE⋆, we perform an experiment that would resemble its use in
real applications like the ones we outline in the introduction. In such settings—e.g., inferring cardiac parameters or chemical
concentrations—the target parameters are limited to a range of validity, and a likely choice for the practitioner would be to
select a uniform prior over this range.

To replicate this setting, we collect a new real-world dataset from the light tunnel (Task E) and train RoPE on synthetic data
originating from a uniform prior, as we do for the results shown in Figure 1. However, we then apply RoPE to real data
generated from a different (betabinomial) distribution over the target parameters.

Figure 5: Visualization of estimated posteriors. Corner plots of the posteriors estimated by RoPE in the prior-
misspecification experiment from Fig. 1 above. We show, in different colors, the estimates for four observations sampled at
random from the test set, for RoPE (left) and RoPE⋆ (τ = 0.5) (right) formulation of the OT step, and a calibration set of
size 50; the horizontal and vertical lines correspond to the ground-truth value of the parameters.
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D Robustness to Distribution Shifts

Task E Light Tunnel
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Figure 6: Out-of-distribution performance of RoPE and some baselines. We train RoPE and other baselines on the same
light-tunnel data as in task E (training distribution), but apply it to test sets originating from a target distribution where
the real-world images are flipped vertically. We compare the performance on test sets from both distributions, showing
the LPP and ACAUC scores for each method. For comparison, in the right plot we show again the LPP curve (light gray,
dotted) attained by RoPE under the training distribution. The performance of RoPE is barely affected as it cannot exploit
any signal in the real images (xo) beyond what is encoded in the simulator, and the simulator output (xs) is invariant to
the transformation we consider. Because NPE is not trained on real observations, its performance, although poor, also
remains virtually unchanged. On the other hand, the performance of MLP and J-NPE drops in the target distribution, as
these methods are not limited in what information they can exploit from the real observations on which they are trained,
potentially learning shortcuts that are not present in the target distribution. This results demonstrate that if the simulator
embeds the right invariances, our modeling assumption xo ⊥ θ | xs can be favorable to out-of-distribution generalization.

E Optimal Transport Coupling as a joint distribution

With our conditional independence assumption, the problem of modeling p(xo | θ) reduces to modeling p(xo | xs) instead. If
we assume the prior well-specified, this task is equivalent to modeling p(xo,xs) under the constraint that the corresponding
marginal p(xs) =

∫

p(xs,xo)dxo equals
∫

p(θ)p(xs | θ)dθ. By construction, the OT coupling, π⋆, respects the constraint
on the marginals,

∫

π⋆(xs,xo)dxo = p(xs) and
∫

π⋆(xs,xo)dxs = p(xo) , and the exact instantiation π⋆ depends also on
the chosen cost function which can always be defined to yield any given conditional p(xo | xs) that respects the constraint
∫

p(xo | xs)p(xs)dxs = p(xo). π∗ can thus model the "right" posterior, provided the right cost function is used. In the case,
where the prior cannot be trusted, we suggest to use τ < 1 and relax the OT formulation. In this case, we only enforce that
all elements of p(xo) are matched to a subset of the elements of p(xs). This implicitly assumes that the assumed prior p(θ)
is overly conservative and covers p⋆(θ). We believe this is a reasonable assumption as it is often easy to derive physical
bounds for the parameter values and use a uniform distribution.

19



Addressing Misspecification in Simulation-based Inference through Data-driven Calibration

F Self-calibration Property

We say RoPE is self-calibrating because, by design, the posterior distribution marginalized over observations tends to the
prior as the number of simulation increases, that is,

∫

X
p̃(θ | xo)p(xo)dxo = p(θ). (7)

This property is also called marginal calibration, and is a necessary condition for a posterior estimation method to be
calibrated. Considering NPE, p̃(θ | xs), is marginally calibrated and observations xo are generated from the assumed prior,
that is sampled from an unknown distribution p(xo) =

∫

p(xo | θ)p(θ), we can show RoPE is marginally calibrated. Indeed,
considering the Monte-Carlo approximation of the marginalized posterior distribution over the test set Do := {xio}No

i=1, we
have,

∫

X
p̃(θ | xo)p(xo)dxo = Ep(xo)[p̃(θ | xo)] (8)

≈ 1

No

No
∑

i=1

p̃(θ | xio) (9)

=
1

No

No
∑

i=1

Ns
∑

j=1

NoP
⋆
ij p̃(θ | xjs) (10)

=

Ns
∑

j=1

[

No
∑

i=1

P ⋆ij

]

p̃(θ | xjs) (11)

=
1

Ns

Ns
∑

j=1

p̃(θ | xjs) (12)

≈ p(θ), (13)

where we use the definition of the transport matrix to get
∑No

i=1 P
⋆
ij =

1
Ns

. The last approximation tends to be exact as the
number of simulations increases, if the NPE is marginally calibrated.

G Learning Minimal Sufficient Statistics with Neural Posterior Estimation

We now discuss why NPE may learn a minimal sufficient statistic under perfect training. First, under a sufficiently large
validation set, NPE’s objective function is only optimal on the validation set if NPE models the true posterior as defined
implicitly by the prior p(θ) and the likelihood corresponding to the simulator S. This consistency has been proven in
(Papamakarios & Murray, 2016) and is the motivation to use such an objective when estimating density. Second, some
normalizing flows, such as autoregressive UMNN flows (Wehenkel & Louppe, 2019), are universal approximators of
continuous densities. In addition, neural networks are also universal function approximators. As such, we can claim that
it is always possible to parameterize the NCDE pθ(θ | hω(x)) such that the class of functions its parameters represent
contains the true posterior. We directly observe that x is only used by the NCDE through hω(x). Thus, under perfect training
pθ⋆(θ | hω⋆(x)) = p(θ | x) and hω⋆(x) is a sufficient statistic for θ given x under the simulator’s model.

Without additional constraints, we cannot claim anything about the minimality of hω⋆(x). Nevertheless, we can enforce the
neural network hω⋆(x) to have an information bottleneck and thus reduce the information carried. In practice, we choose the
output dimension of hω⋆(x) so that the NCDE achieves optimal performance on the test set. Because in the context of SBI
we can generate as many (simulated) samples as needed, we can obtain estimators that closely approach the simulation’s
posterior and a minimal sufficient statistic.
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H Computational cost of RoPE

Running NPE is broadly recognized as having a low computational cost: once the upfront training is complete, the cost
of inverting the normalizing flow to sample from the posterior during inference becomes negligible as the number of test
observations increases. This makes NPE more efficient than methods like Approximate Bayesian Computation or Markov
Chain Monte Carlo (when the simulator allows likelihood evaluation). RoPE introduces additional computational costs
on top of running NPE: (1) the OT coupling computation, i.e., solving (2), and (2) obtaining samples from the estimated
posterior distributions, to compute the posterior estimate defined in (5). The computational cost of solving the transport
problem with the Sinkhorn algorithm (Cuturi, 2013) is quadratic in the number of real-world observations. The sampling
step has a negligible cost as it directly sub-samples from the set of points generated with NPE.

In our experiments, solving the OT optimization for 2000 test examples takes less than a minute on an M1 MacBook Pro.
Sampling from the mixture of posterior distributions involves caching 10,000 samples for each simulation and generating
5,000 samples by sub-sampling from the mixture using the OT coupling matrix. This caching process takes under three
minutes, and is comparable to the cost of running NPE alone.

Extending RoPE to handle larger test sets or an online setting (processing test examples one at a time) is outside the scope
of this work. Nevertheless, mehtods like Neural OT (e.g., (Makkuva et al., 2020)) and online Sinkhorn (Mensch & Peyré,
2020) should provide good solutions to make RoPE fully amortized.

I Experimental Setup

In this section, we provide more details on our experiments. For completeness, we provide details on the neural architectures
and training hyperparameters. However, we encourage the reader interested in reproducing our experiments to examine our
code directly (a link to the code will be made available in the public version of the paper).

For all methods training on calibration set we keep always keep 20% of the calibration to monitor validation performance
and we select the best model based on this metric.

For the MLP we use the same architecture as the NSE for all our experiments and optimize its parameters on the calibration
set with Adam and a learning rate equal to 0.0003, we select the best model based on the LPP attributed to the validation
subset of the calibration set.

Computing the SBI baseline. We take the ground-truth labels {(θi}Ni=1 from the test set {θi,xio)}Ni=1 on which we compute
all the metrics for Figure 1; for each label θi, we simulate a synthetic observation xis := S(θi), collecting them into a
“synthetic” test set {(θi,xis)}Ni=1; then, we apply to it the NSE+NPE pipeline (simulated posterior in Figure 4, right) to obtain
the posterior estimates which we then evaluate. In this way, the baseline represents the performance we would hope to
achieve if there was no misspecification and the simulator perfectly replicated the real observations (up to the stochasticity
of the simulator itself).

I.1 Task A: CS & Task B: SIR

Task A (synthetic): CS. We reproduce the cancer and stromal cell development benchmark from Ward et al. (2022). The
simulator emulates the development of cancer and stromal cells in a 2D environment as a function of three Poisson rate
parameters (λc, λp, λd). The observations are vectors composed of the number of cancer and stromal cells and the mean and
maximum distance between stromal cells and their nearest cancer cell. Synthetic misspecification is introduced by removing
cancer cells that are too close to their generating parent.

Task B (synthetic): SIR. We also use the stochastic epidemic model from Ward et al. (2022), which describes epidemic
dynamics through the infection rate β and recovery rate γ. Each observation is a vector composed of the mean, median, and
maximum number of infections, the day of occurrence of the maximum number of infections, the day at which half the total
number of infections was reached, and the mean auto-correlation (lag 1) of the infections. Misspecification is a delay in
weekend infection counts, of which 5% are added to the count of the following Monday.

We refer the reader to Ward et al. (2022) for more details about the simulator and prior distribution. We use the exact same
setting as theirs.
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NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

For all methods we use the same backbone MLP as the NSE with ReLU activations and layers composed of
[4K, 16K, 16K, 12K, 3K] neurons, where K is the dimensionality of θ. The NF is a 1-step UMNN-MAF (Wehenkel
& Louppe, 2019) with [100, 100, 100] neurons for both the autoregressive conditioner and normalizer. For NNPE, we train
the UMNN-MAF on simulations poluted by Spike and Slab errors. We train models with Adam and a learning rate equal to
0.0005 and all other parameters set to default. We optimize the SBI model for 106 gradient steps and select the best model
on random validation sets containing 105 simulations.

I.2 Task C: Pendulum

DESCRIPTION

The first task is inspired from the damped pendulum benchmark commonly used to assess hybrid learning algorithms.
Given a 2D physical parameter θ := [ω0, A], where ω0 ∈ R+ denotes the fundamental frequency and A ∈ R+ the amplitude
of a friction-less pendulum, the simulator generates the horizontal position of the pendulum at 200 discrete times during
uniformly sampled in a 10 seconds interval as

xs := [θ(t = 0), . . . , θ(t = 10s)] ∈ R200

where θ(t) = A cos(ω0t+ φ) φ ∼ U(−π, π). (14)

The relationship between the parameters and the simulation is thus stochastic as φ accounts for an unknown phase shift
when the measurements start. We generate real-world observations synthetically by replacing θ(t) from (14) by

θ̃(t) = eαtA cos(ω0t+ φ) φ ∼ U[−π, π] α ∼ U[0, 1],

where α represents the effect of friction. We also add Gaussian noise on both simulated and real-world data to represent
the inaccuracy of a sensor measuring the pendulum’s position. The prior distribution is a product of uniform distribution,
p(θ := [ω0, A]) = U [0, 3]× U [0.5, 10].

NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

Neural Posterior Estimator. The NSE is a 1D convolutional neural network, with the architecture described in Algorithm 2.
The NCDE is a one-step discrete normalizing flow with an autoregressive conditioner and a UMNN (Wehenkel & Louppe,

Algorithm 2 Convolutional Neural Network for Tasks A and D.

1: Conv1d(1, 16, 3, 1, dilation = 2, padding = 1)

2: ReLU()

3: Conv1d(16, 64, 3, 2, dilation = 2, padding = 1)

4: ReLU()

5: AvgPool1d(3, 1)
6: Conv1d(64, 128, 3, 1, dilation = 2, padding = 1)

7: ReLU()

8: Conv1d(128, 128, 3, 2, dilation = 2, padding = 1)

9: ReLU()

10: AvgPool1d(3, 1)
11: Conv1d(128, 128, 3, 1, dilation = 2, padding = 1)

12: ReLU()

13: Conv1d(128, 128, 3, 2, dilation = 2, padding = 1)

14: ReLU()

15: AvgPool1d(3, 1)
16: Conv1d(128, 128, 3, 1, dilation = 2, padding = 1)

17: ReLU()

18: Flatten()
19: Linear(2048, 512)
20: ReLU()

21: Linear(512, 128)
22: ReLU()

23: Linear(128, 32)
24: ReLU()

25: Linear(32, 10)

2019) as the normalizer. The autoregressive conditioner is a MADE with ReLU activation and 3 layers of 100 neurons
that output a 10 dimensional vector to the UMNN. The UMNN has an integrand net with 3 layers of 100 neurons with
ReLU activations. For training the NPE, we use a batch size of 100 and a learning factor equal to 1e-4. NPE is trained until
convergence. Other parameters are set to default values and should marginally impact the NPE obtained.
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Algorithm 3 UNet1D Architecture

1: Unet1D :

2: Encoder1D :

3: Block(in_channels = 1, out_channels = 64)

4: Block(in_channels = 64, out_channels = 128)

5: Block(in_channels = 128, out_channels = 256)

6: Block(in_channels = 256, out_channels = 512)

7: Block(in_channels = 512, out_channels = 1024)

8: MaxPool1d(2)
9: Decoder1D :

10: ConvTranspose1d(1024 + 5, 512, 2, stride = 2)

11: Block(in_channels = 1024, out_channels = 512)

12: ConvTranspose1d(512, 256, 2, stride = 2)

13: Block(in_channels = 512, out_channels = 256)

14: ConvTranspose1d(256, 128, 2, stride = 2)

15: Block(in_channels = 256, out_channels = 128)

16: ConvTranspose1d(128, 64, 2, stride = 2)

17: Block(in_channels = 128, out_channels = 64)

18: ConvTranspose1d(64, 1, 2, stride = 2)

19: Block(in_channels = 64, out_channels = 1)

20: Conv1d(64, 1, 1)

Algorithm 4 Block1D(in_channels, out_channels)

1: Conv1d(in_channels, out_channels, kernel_size=3,
padding=1)

2: ReLU()
3: Conv1d(out_channels, out_channels,

kernel_size=3, padding=1)
4: ReLU()

Algorithm 5 2D Convolutional Neural Network

1: Conv2d(3, 64, 3, 2, dilation=1), ReLU()
2: Conv2d(64, 128, 3, 2, dilation=1), ReLU()
3: MaxPool2d(3)
4: Conv2d(128, 128, 3, 2, dilation=1), ReLU()
5: Conv2d(128, 64, 1, 1, dilation=1), ReLU()
6: Conv2d(64, 3, 1, 1, dilation=1), ReLU()
7: Flatten()
8: Linear(27, 100), ReLU()
9: Linear(100, 20)

RoPE NSE. We have selected the best NPE based on the validation set with 10000 examples generated with the simulator.
The NPE is fixed to one best-of-all model. We fine-tune the NCDE with a learning rate equal to 1e-5 for 5000 gradient steps
on 80% the full calibration set. We use a 1-sample Monte Carlo estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (θ,xs) and of 50% (θ,xo)

from the calibration set. We use the same architecture and hyper-parameters as the SBI NPE. The best model is selected
based on the best training set performance. We do 50 epochs with 50000 simulated examples for each epoch. The batch size
is 100.

HVAE. For the HVAE, we re-use the NPE model as the physics encoder and replace the decoder with a deterministic
version of the simulator, thus removing the Gaussian noise on a random phase shift. In addition, we follow the approach of
Takeishi & Kalousis (2021) and have 1) a real-world encoder that maps xo to za, 2) a reality-to-physics encoder, and 3) a
physics-to-reality decoder. The real-world encoder has the same architecture as the NSE of the NPE and outputs the mean
and log-variance of a 5D latent vector za. The reality-to-physics and physics-to-reality also have the same architectures and
are two conditional 1D U-Net with neural network architecture described in Algorithm 3.

To train the HVAE, we freeze the parameters of the NPE and optimizes the ELBO as well as a calibration loss that evaluates
the likelihood assigned to the true physical parameters. All distributions are parameterized by Gaussian with mean and
log-variance predicted by the neural networks. We do not use any additional losses as we expect constraining NPE and
using the calibration set should already provide the necessary support to use the physics in a meaningful way. The HVAE is
trained on the 2000 test examples as it is the only real-world data, calibration set aside, that we have access to. We use a
batch size equal to 100 and a learning rate equal to 1e-3. We believe obtaining a better HVAE is possible. However, we
emphasize the complexity of setting up a good HVAE for the only purpose of statistical inference over parameters.

DATASETS

For this task, we can generate samples (θ,xs) on the fly to train the NPE. The calibration and test sets are also generated
randomly by sampling from the prior distribution and using the damped pendulum simulator.

23



Addressing Misspecification in Simulation-based Inference through Data-driven Calibration

I.3 Task D: Hemodynamics

DESCRIPTION

Inspired by Wehenkel et al. (2023), we define the task of inferring important cardiovascular parameters from normalized
arterial pressure waveforms measured at the radial artery. The simulator uses many physiological parameters that modulates
the heart function, physical properties of the 116 main arterial segments, and behavior of the vascular beds. Our inference
concerns two parameters of the heart function, θ := [SV,LVET], the stroke volume (SV) is the amount pumped out from the
left ventricle over the heart beat modeled, and the left ventricular ejection time (LVET) is the time interval between opening
and closure of the aortic valve. Other parameters, such as the heart rate or arteries’ stiffness, are considered as nuisance
effects and are randomly sampled from a realistic population distribution. An additional source of randomness is added by
modeling measurement errors with a white Gaussian noise and randomizing the starting recording time with respect to the
cardiac cycle. The simulator produces 8-second timeseries xt ∈ R1000 sampled at 125Hz. As synthetic misspecification, the
simulator assumes all arteries have the same length over the population considered, whereas "real-world" data are artificially
generated by also varying the length of arteries and account for the effect of human’s height. The simulator is based on the
openBF PDE solver (Melis, 2017) specialized for hemodynamics, which is not differentiable and takes approximately one
minute to simulate one sample on a standard CPU. This synthetic tasks represent a common scenario in which a simulator,
although faithful to the effect of certain parameters, misses additional degrees of freedom that exists for the real-world data.

NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

Algorithm 6 CNN Architecture for Task C.

1: Conv1d(1, 16, 3, 1, dilation=2, padding=1), ReLU()
2: Conv1d(16, 64, 3, 2, dilation=2, padding=1), ReLU()
3: AvgPool1d(4, 2)
4: Conv1d(64, 128, 3, 1, dilation=2, padding=1), ReLU()
5: Conv1d(128, 128, 3, 2, dilation=2, padding=1), ReLU()
6: AvgPool1d(4, 2)
7: Conv1d(128, 128, 3, 1, dilation=2, padding=1), ReLU()
8: Conv1d(128, 128, 3, 2, dilation=2, padding=1), ReLU()
9: AvgPool1d(4, 1)

10: Conv1d(128, 128, 3, 1, dilation=2, padding=1), ReLU()
11: Flatten()
12: Linear(1024, 512), ReLU()
13: Linear(512, 128), ReLU()
14: Linear(128, 32), ReLU()
15: Linear(32, 5)

Neural Posterior Estimator. The NSE is the 1D convolutional neural network described in Algorithm 6. The NCDE is a
5-step discrete normalizing flow with an autoregressive conditioner and affine normalizers. Each of the 5 autoregressive
conditioners is a MADE with ReLU activations and 4 layers of 300 neurons that output 4 dimensional vectors used to
parameterize the affine transformations. For training the NPE, we use a batch size of 100 and a learning factor equal to 5e-4.
NPE is trained until convergence. Other parameters are set to default values and should marginally impact the NPE obtained.

RoPE NSE. We have selected the best NPE based on the validation set with 2000 examples generated with the simulator.
The NPE is fixed to one best-of-all model. We fine-tune the NCDE with a learning rate equal to 1e-5 for 2000 gradient steps
on 80% of calibration set. We use a 1-sample Monte Carlo estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (θ,xs) and of 50% (θ,xo)

from the calibration set. We use the same architecture and hyper-parameters as the SBI NPE. The best model is selected
based on the best training set performance. We do 50 epochs with 6000 simulated examples for each epoch. The batch size
is 100.

HVAE. There is no HVAE for this experiment as the simulator is non-differentiable.
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DATASETS

For this task, we cannot generate samples (θ,xs) on the fly to train the NPE. For the purpose of this experiment, we
have generated 10000 simulations and real-world observations. Our fine-tuning strategy approximates (6) by finding the
simulations with the closest parameter value.

I.4 Task E: Light Tunnel

DESCRIPTION

We use one of the light-tunnel datasets from the causal chamber project (Gamella et al., 2025, causalchamber.org).
In particular, we use the data from the ap_1.8_iso_500.0_ss_0.005 experiment in the lt_camera_v1 dataset.
The light tunnel is an elongated chamber with a controllable light source at one end, two linear polarizers mounted on
rotating frames, and a camera that takes images of the light source through the polarizers. We refer the reader to Gamella
et al. (2025, Figure 2) for a complete schematic. Our task consists of predicting the color setting of the light source
((R,G,B) ∈ [0, 255]3) and the dimming effect of the linear polarizers α ∈ [0, 1] from the captured images. As a misspecified
simulator of the image-generating process, we adopt the simple model described in Gamella et al. (2025, Model F1,
Appendix D). A Python implementation is available through the causalchamber package (models.model_f1); visit
causalchamber.org for more details. As input, the simulator takes the parameters θ := [R,G,B, α] and produces
an image consisting of a hexagon roughly the size of the light source, with an RGB color vector equal to [αR,αG,αB].
The factor α := cos2(θ1 − θ2), where θ1, θ2 denote the angles of the two polarizers, corresponds to Malus’ law (e.g. ,
Collett, 2005), which models the dimming effect of the polarizers as a function of their relative angle. Besides the obvious
misspecification with respect to image realism (see Figure 1), the model ignores other important physical aspects, such as
the spectral response of the camera sensor or the non-uniform effect of the polarizers on the different colors—more details
can be found in Gamella et al. (2025, Appendix D.IV.2.2). The prior is uniform over colors and polarizer angles, which
leads to a non-uniform prior over the dimming effect α.

NEURAL ARCHITECTURE & TRAINING HYPERPARAMETERS

Neural Posterior Estimator. The NSE is the 2D convolutional neural network described by Algorithm 5.

The NCDE is also a one-step discrete normalizing flow with an autoregressive conditioner and a UMNN (Wehenkel &
Louppe, 2019) as the normalizer. The autoregressive conditioner is a MADE with ReLU activation and 3 layers of 500
neurons that outputs a 10 dimensional vector to the UMNN. The UMNN has an integrand net with 4 layers of 150 neurons
with ReLU activations. For training the NPE, we use a batch size of 100 and a learning factor equal to 5e-4. NPE is trained
until convergence. Other parameters are set to default values and should marginally impact the NPE obtained.

RoPE NSE. We have selected the best NPE based on the validation set with 10000 examples generated with the simulator.
The NPE is fixed to one best-of-all model. We fine-tune the NCDE with a learning rate equal to 1e-4 for 2000 gradient steps
on on 80% of the calibration set. We use a 1-sample Monte Carlo estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (θ,xs) and of 50% (θ,xo)

from the calibration set. We use the same architecture and hyper-parameters as the SBI NPE. The best model is selected
based on the best training set performance. We do 50 epochs with 1000 simulated examples for each epoch. Simulations are
generated randomly for each batch by sampling the prior and simulating for the corresponding parameters. The batch size is
100.

HVAE. For the HVAE, we re-use the NPE model as the physics encoder and use the simulator as is as it is differentiable
without additional effort. In addition, we follow the approach of Takeishi & Kalousis (2021) and have 1) a real-world encoder
that maps xo to za, 2) a reality-to-physics encoder, and 3) a physics-to-reality decoder. The real-world encoder has the same
architecture as the NSE of the NPE and outputs the mean and log-variance of a 5D latent vector za. The reality-to-physics
and physics-to-reality also have the same architectures and are two conditional 2D U-Net with the architecture described by
Algorithm 7.

To train the HVAE, we freeze the parameters of the NPE and optimizes the ELBO as well as a calibration loss that evaluates
the likelihood assigned to the true physical parameters. All distributions are parameterized by Gaussian with mean and
log-variance predicted by the neural networks. We do not use any additional losses as we expect constraining NPE and
using the calibration set should already provide the necessary support to use the physics in a meaningful way. The HVAE is
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Algorithm 7 2D UNet

1: Encoder2D:
2: Block2D(in_channels=3, out_channels=64)
3: Block2D(in_channels=64, out_channels=128)
4: Block2D(in_channels=128, out_channels=256)
5: Block2D(in_channels=256, out_channels=512)
6: Block2D(in_channels=512, out_channels=1024)
7: MaxPool2d(2)
8: Decoder2D:
9: ConvTranspose2d(1024 + 5, 512, 2, stride=2)

10: Block2D(in_channels=1024, out_channels=512)
11: ConvTranspose2d(512, 256, 2, stride=2)
12: Block2D(in_channels=512, out_channels=256)
13: ConvTranspose2d(256, 128, 2, stride=2)
14: Block2D(in_channels=256, out_channels=128)
15: ConvTranspose2d(128, 64, 2, stride=2)
16: Block2D(in_channels=128, out_channels=64)
17: ConvTranspose2d(64, 1, 2, stride=2)
18: Block2D(in_channels=64, out_channels=1)
19: Conv2d(64, 1, 1)

Algorithm 8 Block2D(in_channels, out_channels)

1: Conv2d(in_channels, out_channels, kernel_size=3,
padding=1, bias=False)

2: BatchNorm2d(num_features=out_channels)
3: ReLU(inplace=True)
4: Conv2d(out_channels, out_channels,

kernel_size=3, padding=1, bias=False)
5: BatchNorm2d(num_features=out_channels)
6: ReLU(inplace=True)

trained on the 2000 test examples as it is the only real-world data, calibration set aside, that we have access to. We use a
batch size equal to 100 and a learning rate equal to 1e-3. We believe obtaining a better HVAE is possible. However, we
emphasize the complexity of setting up a good HVAE for the only purpose of statistical inference over parameters.

DATASETS

For this task, we can generate samples (θ,xs) on the fly to train the NPE. However, the calibration and test sets are real-world
data. We ensure there is not overlap between calibration and test set. The is no randomization and the test set is constant for
all experiments, the calibration set are also fixed for a given calibration set size.

I.5 Task F: Wind Tunnel

DESCRIPTION

We use one of the wind-tunnel datasets from the causal chamber project (Gamella et al., 2025, causalchamber.org). In
particular, we use the data from the load_out_0.5_osr_downwind_4 experiment in the wt_intake_impulse_
v1 dataset. The tunnel is a chamber with two controllable fans that push air through it and barometers that measure air
pressure at different locations. A hatch precisely controls the area of an additional opening to the outside (see Gamella
et al., 2025, Figure 2). The data is a collection of pressure curves that result from applying a short impulse to the intake fan
load and measuring the change in air pressure using one of the barometers inside the tunnel. Our inference task consists of
predicting the hatch position, θ := [H] ∈ [0, 45] given a pressure curve (see Figure 1). As a simulator model, we combine
the models A2 and C3 described in Gamella et al. (2025, Appendix D); we numerically solve the ODE in model A2, and
add stochastic components to simulate the sensor noise and the unknown time point at which the impulse is applied. This
results in the simulator being neither differentiable nor deterministic. A Python implementation of the complete simulator
is available in the causalchamber package (models.simulator_a2_c3); visit causalchamber.org for more
details. Misspecification arises from the many simplifying assumptions needed to model the complex dynamics of the
airflow inside the tunnel—more details can be found in Gamella et al. (2025, Appendix D.IV.1.2).

Neural Posterior Estimator. The NSE and NCDE have the same 1D convolutional neural network as for Task A. For
training the NPE, we use a batch size of 100 and a learning factor equal to 5e-4. NPE is trained until convergence. Other
parameters are set to default values and should marginally impact the NPE obtained.
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RoPE NSE. We have selected the best NPE based on the validation set with 10000 examples generated with the simulator.
The NPE is fixed to one best-of-all model. We fine-tune the NCDE with a learning rate equal to 1e-4 for 20000 gradient
steps on on 80% of the calibration set. We use a 1-sample Monte Carlo estimate of the expectation in (6).

J-NPE. To train J-NPE, we simply randomly use a batch composed of 50% of simulated pairs (θ,xs) and of 50% (θ,xo)

from the calibration set. We use the same architecture and hyper-parameters as the SBI NPE. The best model is selected
based on the best training set performance. We do 50 epochs with 10000 simulated examples for each epoch. The batch size
is 100.

HVAE. There is no HVAE for this experiment as the simulator is non-differentiable.

DATASETS

For this task, although slightly slower than Task A and B, we can generate samples (θ,xs) on the fly to train the NPE.
However, the calibration and test sets are real-world data. We ensure no overlap between the two sets for all calibration set
sizes. All sets are fixed for all experiments.
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Task E Light Tunnel

Posterior estimates
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Figure 7: Credible intervals of the posterior estimates at levels 65% and 90%, for a single test sample from the light-tunnel task. The
black stars denote the true value of the parameter. (center) Posterior estimates for a single test sample from the wind-tunnel task, where
the true parameter is denoted by a vertical black line.

J Computing ACAUC

Algorithm 9 Statistical Calibration of Posterior Distribution

Input: Dataset of pairs D = {(θi,xi)}, Posterior estimator p̃(θ | x), Number of samples N .
Output: ACAUC

1: AVG_CALIBRATION = 0

2: for k ∈ {1, . . . ,K}) do

3: Initialize an empty list CredLevels
4: for (θi,xi) ∈ D do

5: Initialize an empty list Samples
6: for j = 1 to M do

7: Sample θj from p̃(θ | xi)
8: Append θj to Samples
9: end for

10: Sort Samples
11: Compute the rank (position in ascending order) r of θ in Samples
12: Set CredLevels = r

N

13: Append CredLevel to CredLevels
14: end for

15: Sort CredLevels
16: CALIBRATION =

∑N
i=1 CredLevels[i]− i

N

17: AVG_CALIBRATION = AVG_CALIBRATION + CALIBRATION
K

18: end for

Return: AVG_CALIBRATION

K Additional Results

K.1 Corner plots

K.2 Calibration plots

L Non-iid Calibration Sets

We provide additional results reflecting the behavior of RoPE when the calibration set is not sampled from the "true" prior
distribution, on the light tunnel task, when the calibration set comes from a subset of the true distribution. We use the beta
distribution of Figure 3b as the calibration set distribution. Figure 15 reports the main metrics (ACAUC and LPP). We
observe that, even in this extreme case, RoPE achieves performance that outperforms the prior distribution on the LPP while
still being calibrated for calibration set size that are greater than 10. Figure 16 studies how good/bad estimated posteriors are
as a function of whether similar samples belongs to the calibration set. As expected, RoPE performs strongly for samples
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Figure 8: Three corner plots for task A with a calibration set with 50 samples.
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Figure 9: Three corner plots for task B with a calibration set with 50 samples.
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Figure 10: Three corner plots for task C with a calibration set with 50 samples.

that belong to the calibration set while it struggles to generalize to sample that are OOD. Finally, we also show corner plots
of the learned posterior in Figure 17 for both samples that are (a) unlikely under the calibration set distribution, and (b)
likely under that distribution.
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Figure 11: Three corner plots for task D with a calibration set with 50 samples.
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Figure 12: Three corner plots for task E with a calibration set with 50 samples.
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Figure 13: Three corner plots for task E with distribution shift with a calibration set with 50 samples.

30



Addressing Misspecification in Simulation-based Inference through Data-driven Calibration

(a) (b) (c)

(d) (e) (f)

Figure 14: Calibration plots of the different methods on the 6 benchmarks, the coverage at each level is the average of the
coverage of the marginal distributions. Each color indicates a different algorithm and the opacity is proportional to the size
of the calibration set which ranges from 10 to 1000. We observe that RoPE and OT-only are consistently well calibrated for.
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Figure 15: Comparison of ACAUC and LPP for calibration set that is different from the test distribution.
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Figure 16: Accuracy of the predicted RGB values (normalized by alpha) as a function of the distance between the analyzed
sample from the center of the calibration set distribution.

10
0

0

10
0

20
0

30
0

G

0

10
0

20
0

30
0

B

0
10
0

20
0

30
0

R

0.0

0.4

0.8

1.2

al
ph

a

10
0 0

10
0

20
0

30
0

G

0
10
0

20
0

30
0

B

0.0 0.4 0.8 1.2

alpha

(a)

0

80

16
0

24
0

G

0

80

16
0

24
0

B

0 80 16
0

24
0

R

0.0

0.3

0.6

0.9

1.2

al
ph

a

0 80 16
0

24
0

G

0 80 16
0

24
0

B

0.0 0.3 0.6 0.9 1.2

alpha

(b)

Figure 17: corner plots for three distinct observations that are very (a) that are very unlikely under the "bad" calibration set.
(b) likely under the "bad" calibration set.
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