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Abstract

Posterior sampling in high-dimensional spaces using gen-

erative models holds significant promise for various appli-

cations, including but not limited to inverse problems and

guided generation tasks. Generating diverse posterior sam-

ples remains expensive, as existing methods require restart-

ing the entire generative process for each new sample. In this

work, we propose a posterior sampling approach that simu-

lates Langevin dynamics in the noise space of a pre-trained

generative model. By exploiting the mapping between the

noise and data spaces which can be provided by distilled

flows or consistency models, our method enables seamless

exploration of the posterior without the need to re-run the

full sampling chain, drastically reducing computational over-

head. Theoretically, we prove a guarantee for the proposed

noise-space Langevin dynamics to approximate the posterior,

assuming that the generative model sufficiently approximates

the prior distribution. Our framework is experimentally vali-

dated on image restoration tasks involving noisy linear and

nonlinear forward operators applied to LSUN-Bedroom (256

× 256) and ImageNet (64× 64) datasets. The results demon-

strate that our approach generates high-fidelity samples with

enhanced semantic diversity even under a limited number

of function evaluations, offering superior efficiency and per-

formance compared to existing diffusion-based posterior

sampling techniques.

1. Introduction

Generative models that approximate complex data priors

have been widely used for guided generation [12, 14]. While

early approaches relied on GANs [4, 18, 27, 28, 39, 43], dif-

fusion models have since outperformed them, becoming the
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Figure 1. (Top): Posterior samples generated by our method and

DPS-DM [12]. Our approach exhibits higher perceptual diversity,

capturing variations in high-level features such as lighting, window

style, and wall patterns. Red boxes highlight uncertain semantic

features, while green boxes show persistent properties. (Bottom)

: A schematic representation of posterior sampling via Langevin

dynamics in our proposed framework. The sampling process begins

with an initial sample x
(0)
1 from the noise space and maps to data

space as x
(0)
0 using a deterministic mapper Φ and progressively

updates the noise space input to obtain diverse posterior samples.

state-of-the-art for conditional generation [9, 14, 22, 23, 47].

Posterior sampling methods have gained traction for in-

verse problems, where the goal is to sample from p(x | y) ∝
p(y |x)p(x)[12, 30, 31]. Although these posteriors are often

intractable, generative models enable efficient approxima-

tions. Earlier diffusion-based solutions required task-specific

training[34, 38, 44–46], while recent works use pre-trained

diffusion priors in a training-free manner [10, 11, 30, 31, 53],

with extensions to nonlinear tasks [12, 21, 48, 49].

Inverse problem solvers are typically grouped into point

estimate or multiple estimate approaches. Most recent meth-

ods focus on the former [12, 21, 48, 49] and face chal-
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lenges in generating diverse samples efficiently. For example,

DPS [12] requires full denoising for each sample, increasing

computational cost. While EBMs offer progressive sam-

pling via MCMC [56, 57] and recent works explore HMC

in generative noise spaces [25, 40, 55], such techniques are

largely unexplored for inverse problems. We bridge this gap

by introducing a measurement-guided posterior sampler in

noise space.

We propose a posterior sampling method that performs

exploration directly in the noise space of a pre-trained gener-

ative model. By leveraging measurements from the inverse

problem to initialize the noise space, our approach enables

targeted and efficient exploration. We employ Langevin

dynamics in noise space, taking advantage of the determin-

istic, one-to-one mapping between noise and data provided

by models like consistency models [51]. This eliminates

the need to approximate the measurement likelihood and

allows us to derive a theoretical bound on the approximation

error of our posterior samples. Sampling in noise space en-

ables progressive accumulation of diverse reconstructions

without repeated full denoising runs. As demonstrated in

Figure 1, our method yields high-quality, diverse solutions.

Furthermore, as shown in Figure A.1, unlike DPS, whose

runtime scales poorly with the number of posterior samples,

our method incurs only a negligible increase in reconstruc-

tion time, highlighting its computational efficiency. The key

contributions of this work are summarized as follows:

• We present a posterior sampling method defined by

Langevin dynamics in the noise space of a pre-trained

generative model, enabling the accumulation of posterior

samples.

• We provide a theoretical guarantee on the posterior sam-

pling approximation error, which is bounded by the ap-

proximation error of the prior by the pre-trained generative

model.

Notation. We use ∝ to stand for the expression of a proba-

bility density up to a normalizing constant to enforce integral

one, e.g. p(x) ∝ F (x) means that p(x) = F (x)/Z where

Z =
∫

F (x)dx. For a mapping T : Rd → R
d and a distribu-

tion P , T#P stands for the push-forwarded distribution, that

is T#P (A) = P (T−1A) for any measurable set A. When

both P and T#P has density, dP = pdx, we also use T#p
to denote the density of T#P .

2. Background

Diffusion models. Sampling from diffusion models (DMs)

is performed by simulating the reverse process of a forward-

time noising stochastic differential equation (SDE) dxt =
µ(xt, t)dt + β(t)dWt [50], where Wt denotes Brownian

motion, and t ∈ [0, 1]. This forward SDE transforms data

from pdata into a Gaussian distribution γ. The marginal

densities pt are shared with the probability flow ODE (PF-

ODE):

dxt =

[

µ(xt, t)−
1

2
β(t)2∇ log pt(xt)

]

dt. (1)

Score-based generative models use neural networks to ap-

proximate∇ log pt(xt), enabling reverse-time integration of

(1) using numerical techniques [29, 47].

Deterministic diffusion solvers. Unlike stochastic sam-

plers [23, 50], deterministic solvers simulate the PF-ODE (1).

DDIM [47] introduces an implicit, deterministic mapping

from noise to data, while higher-order solvers [29] further

reduce function evaluations needed for quality samples.

Flow models. Continuous normalizing flows (CNFs) use

neural networks to define continuous ODE dynamics map-

ping noise to data [6]. Recent advancements have improved

trajectory efficiency [37] and training methods [35]. Similar

to PF-ODE-based diffusion solvers, these methods require

ODE simulation.

Consistency models. To improve DM sampling efficiency,

score model distillation techniques, like Consistency Models

(CMs), enable few-step sampling [51]. CMs learn a mapping

fθ from a PF-ODE trajectory point xt back to the initial state:

x0 = fθ(xt, t), t ∈ [0, 1], (2)

where x0 is drawn from pdata. This allows for single-step

sampling by drawing x1 ∼ γ and applying fθ, or multi-step

sampling with a balance between efficiency and fidelity.

3. Methodology

Assume that a pre-trained generative model is given, which

provides a one-to-one mapping Φ from the noise space to

the data space. The data x0 and noise x1 both belong to R
d,

and x0 = Φ(x1). The observation is y, and the goal is to

sample the data x0 from the posterior distribution p(x0|y).
We derive the posterior sampling of the data vector x0 via

that of the noise vector x1, making use of the mapping Φ.
Likelihood and posterior. We consider a general observa-

tion model where the conditional law p(y|x0) is known and

differentiable. Define the negative log conditional likelihood

as Ly(x0) := − log p(y|x0), which is differentiable with re-

spect to x0 for fixed y. A typical case is the inverse problem

setting: the forward model is

y = A(x0) + n, (3)

where A : Rd → R
d is the (possibly nonlinear) measure-

ment operator, and n is the additive noise. For fixed y, we

aim to sample x0 from p(x0|y) = p(y|x0)p(x0)/p(y) ∝
p(y|x0)p(x0), where p(x0) is the true prior distribution of

all data x0, which we now denote as pdata. We also call

p(x0|y) the true posterior of x0, donated as

p0,y(x0) := p(x0|y) ∝ p(y|x0)pdata(x0). (4)
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Posterior approximated via generative model. The true

data prior pdata is nonlinear and complicated. Let pmodel

denote the prior distribution approximated by a pre-trained

generative model x0 = Φ(x1), where x1 ∼ γ. A distribu-

tion from which samples are easily generated, such as the

standard multi-variate Gaussian, is typically chosen for γ;

we choose γ = N (0, I). In other words,

pdata ≈ pmodel = Φ#γ. (5)

Replacing pdata with pmodel in (4) gives the model posterior

of x0, denoted p̃0,y , which approximates the true posterior:

p0,y(x0) ≈ p̃0,y(x0) ∝ p(y|x0)Φ#γ(x0). (6)

Because x0 = Φ(x1), we have that p̃0,y = Φ#p̃1,y, where,

by a change of variable from (6),

p̃1,y(x1) ∝ p(y|Φ(x1))γ(x1). (7)

The distribution p̃1,y(x1) approximates the posterior distri-

bution p(x1|y) in the noise space. When pdata = Φ#γ, we

have p0,y = p̃0,y and p(·|y) = p̃1,y. When the generative

model prior is inexact, the error in approximating the poste-

rior can be bounded by that in approximating the data prior;

see more in Section 4.

Posterior sampling by Langevin dynamics. It is direct to

sample the approximated posterior (7) in the noise space us-

ing Langevin dynamics. Specifically, since we have γ(x1) ∝
exp(−∥x1∥2/2) and log p(y|Φ(x1)) = −Ly(Φ(x1)), the

following SDE of x1 will have p̃1,y as its equilibrium distri-

bution (proved in Lemma A.1):

dx1 = −(x1 +∇x1
Ly(Φ(x1)))dt+

√
2dWt. (8)

The sampling in the noise space gives the sampling in the

data space by the one-to-one mapping of the generative

model, namely x0 = Φ(x1).

Example 3.1 (Inverse problem with Gaussian noise). For (3)

with white noise, i.e., n ∼ N (0, σ2I), we have that, with a

constant c depending on (σ, d),

Ly(x0) = − log p(y|x0) =
1

2σ2
∥y −A(x0)∥22 + c.

The noise-space SDE (8) can be written as

dx1 = −
(

x1 +∇x1

∥y −A(x0)∥22
2σ2

)

dt+
√
2dWt.

Given Ly(x0), standard techniques can be used to sample

(overdamped) Langevin dynamics (8). Evaluation of the

gradient∇x1
Ly(x0) is the major computational cost, requir-

ing differentiation through the model Φ. One technique to

improve sampling efficiency is to employ a warm-start of the

SDE integration by letting the minimization-only dynamics

(using ∇x1
Ly(x0)) to converge to a minimum first, espe-

cially when the posterior concentrates around a particular

point. We postpone the algorithmic details to Section 5.

4. Theory

In this section, we derive the theoretical guarantee of the

model posterior p̃0,y in (6) to the true posterior p0,y in (4),

and also extend to the computed posterior p̃S0,y by discrete-

time SDE integration. The analysis reveals a conditional

number which indicates the intrinsic difficulty of the poste-

rior sampling problem. All proofs are in Appendix A.

4.1. Total Variation (TV) guarantee and condition
number

Consider the approximation (5), that is, the pre-trained

model generates a data prior distribution Φ#γ that approxi-

mates the true data prior pdata. We quantify the approxima-

tion in TV distance, namely

TV(pdata,Φ#γ) ≤ ε. (9)

Generation guarantee in terms of TV bound has been derived

in several flow-based generative model works, such as [7,

26, 33] on the PF-ODE of a trained score-based diffusion

model [50], and [8] on the JKO-type flow model [58]. The

following theorem proved in Appendix A shows that the

TV distance between the model and true posteriors can be

bounded proportional to that between the priors.

Theorem 4.1 (TV guarantee). Assuming (9), then

TV(p0,y, p̃0,y) ≤ 2κyε, where

κy :=
supx0

p(y|x0)
∫

p(y|x)pdata(x)dx
. (10)

Remark 4.1 (κy as a condition number). The constant factor

κy is determined by the true data prior pdata and the condi-

tional likelihood p(y|x0) of the observation, and is indepen-

dent of the flow model and the posterior sampling method.

Thus κy quantifies an intrinsic “difficulty” of the posterior

sampling, which can be viewed as a condition number of the

problem.

Example 4.1 (Well-conditioned problem). Suppose

p(y|x0) ≤ c1 for any x0, and on a domain Ωy of the data

space,

Pdata(Ωy) ≥ α > 0, and p(y|x0) ≥ c0 > 0, ∀x0 ∈ Ωy,

then we have
∫

p(y|x)pdata(x)dx ≥
∫

Ωy
p(y|x)pdata(x)dx ≥ αc0, and then

κy ≤
1

α

c1
c0

.

This shows that if the observation y can be induced from

some cohort of x0 and this cohort is well-sampled by the

data prior pdata (the concentration of pdata on this cohort is
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lower bounded by α), plus that the most likely x0 is not too

peaked compared to the likelihood of any other x0 within

this cohort (the ratio is upper bounded by c1/c0), then the

posterior sampling is well-conditioned.

Example 4.2 (Ill-conditioned problem). Suppose p(y|x0) is

peaked at one data value x′

0 and almost zero at other places,

and this x′

0 lies on the tail of the data prior density pdata.

This means that the integral
∫

p(y|x0)pdata(x0)dx0 has all

the contribution on a nearby neighborhood of x′

0 on which

pdata is small, resulting in a small value on the denominator

of (10). Meanwhile, the value of p(y|x′

0) is large. In this

case, κy will take a large value, indicating an intrinsic diffi-

culty of the problem. Intuitively, the desired data value x′

0

for this observation y is barely represented within the (uncon-

ditional) data distribution pdata, while the generative model

can only learn from pdata. Since the pre-trained uncondi-

tional generative model does not have enough knowledge

of such x′

0, it is hard for the conditional generative model

(based on the unconditional model) to find such a data value.

4.2. TV guarantee of the sampled posterior

Theorem 4.1 captures the approximation error of p̃0,y to

the true posterior, where p̃0,y is the distribution of data x0

when the noise x1 in noise space achieves the equilibrium

p̃1,y of the SDE (8). In practice, we use a numerical solver

to sample the SDE in discrete time. The convergence of

discrete-time SDE samplers to its equilibrium distribution

has been established under various settings in the literature.

Here, we assume that the discrete-time algorithm to sample

the Langevin dynamics of x1 outputs x1 ∼ p̃S1,y , which may

differ from but is close to the equilibrium p̃1,y . Specifically,

suppose TV(p̃1,y, p̃
S
1,y) is bounded by some εS .

Lemma 4.2 (Sampling error). If TV(p̃1,y, p̃
S
1,y) ≤ εS , then

TV(p̃0,y, p̃
S
0,y) ≤ εS .

The lemma is by Data Processing Inequality, and together

with Theorem 4.1 it directly leads to the following corollary

on the TV guarantee of the sampled posterior.

Corollary 4.3 (TV of sampled posterior). Assuming (9) and

TV(p̃1,y, p̃
S
1,y) ≤ εS , then

TV(p0,y, p̃
S
0,y) ≤ 2κyε+ εS .

5. Algorithm

Numerical integration of the Langevin dynamics. To

numerically integrate the noise-space SDE (8), one can use

standard SDE solvers. We adopt the Euler-Maruyama (EM)

scheme. Let τ > 0 be the time step, and denote the discrete

sequence of x1 as zi, i = 0, 1, · · · . The EM scheme gives,

with ξi ∼ N (0, I) and gi := ∇x1
Ly(x0)|x1=zi ,

zi+1 = (1− τ)zi − τgi +
√
2τξi. (11)

See Algorithm 1 for an outline of our approach using EM.

However, any general numerical scheme for solving SDEs

can be applied; see Table A.4 in Appendix C for a com-

parison between our method using EM discretization and

exponential integrator (EI) [24]. An initial value of z0 in the

noise space is required. We adopt a warm-start procedure to

initialize sampling; additional details are provided below.

Algorithm 1 Posterior Sampling in Noise Space

Require: Forward model A, measurement y, loss function

Ly , pre-trained noise-to-data map Φ, number of steps N ,

step size τ , and initial x0
1

for i = 0, . . . , N do

xi
0 ← Φ(xi

1)
gi ← ∇xi

1

Ly(x
i
0)

ξi ∼ N (0, I)
xi+1
1 ← xi

1 − τ(xi
1 + gi) +

√
2τξi

end for

return x1
0, x

2
0, . . . , x

N
0

Computation of∇x1Ly(x0). The computation of the loss

gradient depends on the type of generative model represent-

ing the mapping Φ. For instance, if Φ is computed by solving

an ODE driven by a normalizing flow, then its gradient can

be computed using the adjoint sensitivity method [6]. If Φ is

a DM or CM sampler, one can backpropagate through the

nested function calls to the generative model. Since we use

one- or few-step CM sampling to represent Φ in the experi-

ments, we take the latter approach to compute∇x1Ly(x0).

Choice of initial value and warm-start. A natural ini-

tialization for the noise variable z0 is a random sample z0

∼ γ, which aligns with the data prior but may lie far from

the posterior. To address this, we warm-start the sampler

by optimizing Ly(x0) w.r.t. x1 using standard optimizers

(e.g., Adam). We use K Adam steps and set z0 to the result-

ing output before starting EM sampling. Further details are

provided in Appendix B.1.

Computational requirements. The main computational

burden arises from computing the loss gradient ∇x1
Ly(x0),

which requires differentiating through the mapping Φ. This

burden can be reduced by selecting a Φ with a small number

of function evaluations (NFEs). Additional overhead comes

from the burn-in or warm start needed to initialize EM simu-

lation with z0. Consequently, the total NFEs for simulating

N steps of EM to generate N samples is η · (K+N), where

η represents the NFEs required to evaluate Φ. However, this

cost diminishes over time, as EM simulation progressively

reduces the NFEs per sample, asymptotically approaching η.

We use CM sampling to represent Φ, achievable with η = 1
or 2. Although multi-step (η > 1) CM sampling is typically
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stochastic [51], we fix the noise to create a deterministic

mapping. Further details are in Appendix B.1.

Role of EM step size τ . The step size of EM, τ , controls

the time scales over which the Langevin dynamics are sim-

ulated with respect to the number of EM steps. Larger τ
results in more rapid exploration of the posterior, potentially

leading to more diverse samples over shorter timescales.

However, τ must also be kept small enough to ensure the

stability of EM sampling. Thus, this hyper-parameter pro-

vides control over sample diversity. Choosing large τ while

maintaining stability can yield diverse samples, potentially

revealing uncertain semantic features within the posterior.

6. Experiments

Baselines. We group baselines into two categories. (1)

DM-based methods: DPS [12], LGD [49], and MPGD [21]

use stronger priors than our method, making them strong but

backbone-incompatible baselines. To ensure fairer compari-

son, we introduce (2) CM-based variants: where each DM

method is adapted to a consistency model (CM) backbone.

We also include CMEdit, a CM-based sampler from [51], for

linear tasks. All DM baselines use the EDM model from [51],

and CM baselines use the corresponding LPIPS-distilled CM.

Full details and hyperparameters are in Appendix B.2.

Datasets. We conduct experiments on LSUN-Bedroom

(256×256)[60] and ImageNet (64×64)[13], using 100 vali-

dation images each. All experiments use pre-trained Con-

sistency Models (CMs) from [51], distilled with the LPIPS

objective from EDM models [29]. Further method and hy-

perparameter details are in Appendix B.1. For linear inverse

problems, we consider: (i) random mask inpainting; (ii)

super-resolution via adaptive average pooling; and (iii) Gaus-

sian deblurring with a 61×61 kernel standard deviation of 3.0.

Nonlinear tasks include: (i) neural network-based deblur-

ring [52]; (ii) phase retrieval via Fourier magnitude; and (iii)

HDR reconstruction via clipping scaled intensities. Gaussian

noise with σ = 0.1 is added to all tasks except phase retrieval

where σ = 0.05. See Appendix B.3 for operator details, and

Appendices C, D for more results.

Metrics. To evaluate reconstruction fidelity, we report

PSNR, SSIM, LPIPS, and Fréchet Inception Distance (FID).

For diversity, we use: (i) Diversity Score (DS), computed as

the ratio of inter- to intra-cluster distances across six-nearest-

neighbor clusters of ResNet-50 features; and (ii) Average

CLIP Cosine Similarity (CS), measuring the mean cosine

similarity between CLIP embeddings of all sample pairs for

a given image.

6.1. Image Restoration Results

Linear inverse problems. We compare our method

against baselines for point estimation under linear forward

models, using 10 samples per method across 100 valida-

tion images. Results for LSUN-Bedroom (256×256) and

ImageNet (64×64) are shown in Table 1 (top and bottom, re-

spectively), with visual comparisons in Figures 2 and 3. Our

approach outperforms CM baselines with higher fidelity and

fewer artifacts and remains competitive with DM baselines

in both visual quality and quantitative metrics.

Nonlinear inverse problems. Quantitative results for non-

linear tasks on 100 LSUN-Bedroom images are reported

in Table 2, using 10 samples per image. Our method per-

forms competitively with CM-based baselines and matches

the quality of DM-based methods. Visual results are shown

in the bottom three rows of Figure 2. While CM variants and

MPGD-DM struggle with artifact removal and noise, our ap-

proach produces clean, detailed reconstructions comparable

to DM outputs. Notably, in challenging settings like phase

retrieval, our method achieves PSNR and SSIM on par with

DM baselines, reflecting strong alignment with the ground

truth.

6.2. Diversity of posterior samples

To assess sample diversity, we compare our method with

strong baselines based on DM, DPS, and LGD. We generate

25 samples per image on 100 LSUN-Bedroom (256×256)

for all six linear and nonlinear tasks. As shown in Table 3,

our method matches or surpasses DM baselines in diversity

metrics. Figure 4 illustrates the visual diversity, especially

in inpainting (top three rows) and nonlinear deblurring (bot-

tom three rows). Our approach captures varying high-level

features like lighting and shading and reveals semantic vari-

ability, e.g., windows and lamps differ significantly across

samples.

7. Ablation Study

Number of warm-start iterations (K). We investigate

how the number of warm-start optimization steps K affects

reconstruction quality and diversity. As shown in the top row

of Figure 5, increasing K leads to consistent improvements

across fidelity metrics, including PSNR and SSIM (left), and

perceptual metrics such as LPIPS and FID (right). Notably,

FID drops significantly from 95 to below 82.5 as K increases

from 200 to 1200. Simultaneously, diversity improves, with

Diversity Score (DS) increasing and CLIP Cosine Similar-

ity (CS) decreasing (middle), indicating that warm-starting

helps explore the posterior more effectively.

Number of EM iterations (N). We analyze the impact

of EM sampling iterations N for both 8× super-resolution

and nonlinear deblurring. As seen in the bottom row of

Figure 5, performance is relatively stable over 50 EM steps,

with minimal variation across PSNR, LPIPS, and FID. This

suggests that a small number of EM steps (e.g., N ≤ 10)

suffices for accurate posterior sampling, enabling efficient

generation without sacrificing quality.
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Table 1. Quantitative comparison of linear restoration tasks on LSUN-Bedroom (256 x 256) (top) and ImageNet (64 x 64) (bottom).

Method
8x Super-resolution Gaussian Deblur 10% Inpainting

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓
DPS-DM 20.4∗ 0.538∗ 0.470∗ 67.7∗ 22.1 0.589 0.407 65.3 22.4 0.634 0.417 67.7

MPGD-DM 19.2 0.338 0.689 288 23.6∗ 0.579 0.438 85.0 15.4 0.176 0.667 221

LGD-DM 20.1 0.529 0.483 69.3 22.2 0.590∗ 0.371∗ 60.1∗ 24.7∗ 0.742∗ 0.289∗ 47.3∗

DPS-CM 10.7 0.077 0.758 307 11.2 0.092 0.735 279 19.9 0.454 0.517 128

LGD-CM 10.5 0.072 0.764 316 11.1 0.092 0.737 283 19.9 0.475 0.514 134

CMEdit N/A N/A 18.0 0.523 0.548 167

Ours(1-step) 20.4 0.535 0.418 71.1 22.4 0.598 0.368 70.6 23.8 0.682 0.358 72.9

Ours(2-step) 20.5 0.534 0.433 72.2 21.3 0.554 0.421 69.2 22.2 0.611 0.419 75.6

Method
4x Super-resolution Gaussian Deblur 20% Inpainting

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓
DPS-DM 21.0∗ 0.531 0.310∗ 110∗ 19.2 0.429 0.348∗ 117∗ 22.3∗ 0.664∗ 0.220∗ 89.2∗

LGD-DM 21.0∗ 0.536∗ 0.311 114 19.6∗ 0.432∗ 0.352 117∗ 22.1 0.652 0.228 96.2

DPS-CM 12.8 0.168 0.602 267 9.89 0.093 0.650 334 18.9 0.470 0.371 167

LGD-CM 12.8 0.164 0.607 269 10.1 0.097 0.668 363 18.7 0.451 0.380 173

Ours(1-step) 16.9 0.418 0.388 129 18.2 0.413 0.381 134 20.3 0.600 0.304 124

Ours(2-step) 18.1 0.412 0.410 151 17.2 0.347 0.435 150 18.6 0.458 0.439 161

Bold denotes the best CM method, underline denotes the second best CM method, and ∗ denotes the best DM method.

Figure 2. Image reconstructions for the linear and nonlinear tasks on LSUN-Bedroom (256 x 256).

8. Related works

Posterior sampling with generative models. Diffusion-

based inverse problem solvers include task-specific meth-

ods [34, 38, 45], optimized approaches [36, 44, 46], and

training-free techniques leveraging pre-trained diffusion pri-

ors [10–12, 15, 21, 30, 31, 48, 49, 53]. Early training-free

methods used measurement-space projections [9, 47] or spec-

tral consistency [30, 31, 53], while others enforced manifold

constraints [11, 21]. Recent works approximate the mea-

surement likelihood to address noisy and nonlinear prob-

lems [12, 48, 49]. Diffusion posterior sampling with prov-

able guarantees is emerging [5, 59]: [59] introduce alter-
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Figure 3. Image reconstructions for the linear tasks on ImageNet (64 x 64).

Table 2. Quantitative comparison of nonlinear image restoration tasks on LSUN-Bedroom (256 x 256).

Method
Nonlinear Deblur Phase Retrieval HDR Reconstruction

PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓ PSNR ↑ SSIM ↑ LPIPS↓ FID ↓
DPS-DM 21.6 0.586 0.413 75.7∗ 10.7 0.302 0.697∗ 90.1 21.7∗ 0.659∗ 0.396∗ 69.6∗

MPGD-DM 17.0 0.194 0.683 259 9.96 0.271 0.728 118 20.5 0.586 0.408 73.2

LGD-DM 22.3∗ 0.632∗ 0.408∗ 106 10.8∗ 0.351∗ 0.709 82.0∗ 12.4 0.459 0.560 172

DPS-CM 17.7 0.303 0.574 137 10.1 0.197 0.726 195 13.5 0.405 0.597 173

MPGD-CM 13.1 0.100 0.762 306 9.39 0.111 0.786 312 11.7 0.296 0.638 223

LGD-CM 21.3 0.519 0.482 163 9.36 0.113 0.767 186 11.2 0.397 0.621 245

Ours(1-step) 20.3 0.566 0.440 76.7 10.3 0.315 0.709 82.9 19.6 0.599 0.436 88.0

Ours(2-step) 18.7 0.501 0.492 73.3 10.2 0.309 0.708 81.4 16.6 0.481 0.532 101

Bold denotes the best CM method, underline denotes the second best CM method, and ∗ denotes the best DM method.

Figure 4. Posterior samples for the inpainitng (10%) (top three rows) and nonlinear deblur (bottom three rows) tasks on LSUN-Bedroom

(256 x 256). Green boxes highlight low-uncertainty features and red boxes highlight highly uncertain features.
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Table 3. Quantitative comparison of diversity metrics on linear and non-linear image restoration tasks on LSUN-Bedroom (256 x 256).

Method
SR(8x) Gaussian Deblur 10% Inpainting Nonlinear Deblur Phase Retrieval HDR Reconstruction

DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓ DS ↑ CS ↓
DPS-DM 2.14 0.843 2.10 0.938 2.33 0.876 2.22 0.924 2.42 0.809 2.25 0.873

LGD-DM 2.35 0.881 2.19 0.925 2.28 0.872 2.11 0.923 2.36 0.815 3.14 0.914

Ours(1-step) 3.01 0.879 3.26 0.997 3.15 0.869 2.80 0.912 3.08 0.914 3.09 0.927

Ours(2-step) 2.67 0.919 2.62 0.866 2.48 0.864 2.69 0.885 2.89 0.862 3.23 0.904

Bold denotes the best method, underline denotes the second best method.

Figure 5. Ablation study on warm-start and EM iterations. Top row: Effect of warm-start iterations K on various metrics. Increasing

K improves fidelity (PSNR, SSIM), perceptual quality (LPIPS, FID), and diversity (higher DS, lower CS). Bottom row: Effect of EM

sampling iterations N on PSNR, LPIPS, and FID for 8× super-resolution and nonlinear deblurring. Metrics remain stable across iterations,

indicating fast convergence and efficiency.

nating projection with convergence guarantees, and [5] use

tilted transport for linear cases. Flow models have also been

adapted, e.g., [42] extend ΠGDM [48] to CNFs. However,

most require full sampling, limiting scalability. In contrast,

our approach samples progressively in the noise space of one-

or few-step mappings, enabling efficient posterior sampling.

Guided generation via noise space iteration. Generative

models with deterministic mappings from latent noise to

data—such as GANs [18], flows [6], and consistency models

(CMs)[51]—enable noise optimization to guide generation

via conditional signals[1–3, 16, 41, 54]. In GANs, this is

used for text-to-image synthesis [16, 41] or task-specific

guidance [3]. Flow-based models have adopted similar strate-

gies for inverse problems [1, 54], for example, D-Flow [2]

optimizes noise inputs to CNFs. Our method also operates in

noise space but simulates Langevin dynamics for posterior

sampling rather than point estimation.

9. Discussion

We have outlined an approach for posterior sampling via

Langevin dynamics in the noise space of a generative model.

Using a CM mapping from noise to data, our posterior sam-

pling provides solutions to general noisy image inverse prob-

lems, demonstrating superior reconstruction fidelity to other

CM methods and competitiveness with diffusion baselines.

A primary limitation of our approach is the low visual qual-

ity in some posterior samples. Fidelity drawbacks can be

attributed to a relatively poor approximation of the prior by

CMs. Future work will focus on improving the fidelity of di-

verse samples, perhaps by using more accurate prior models

and adaptive simulation of the SDE. Regardless, our method

produces highly diverse samples, representing meaningful

semantic uncertainty of data features within the posterior.
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