
Neural Differential Recurrent Neural Network with

Adaptive Time Steps

Yixuan Tan1, Liyan Xie2, and Xiuyuan Cheng∗1

1Department of Mathematics, Duke University
2School of Data Science, The Chinese University of Hong Kong, Shenzhen

Abstract

The neural Ordinary Differential Equation (ODE) model has shown success in learning
complex continuous-time processes from observations on discrete time stamps. In this work,
we consider the modeling and forecasting of time series data that are non-stationary and may
have sharp changes like spikes. We propose an RNN-based model, called RNN-ODE-Adap, that
uses a neural ODE to represent the time development of the hidden states, and we adaptively
select time steps based on the steepness of changes of the data over time so as to train the model
more efficiently for the “spike-like” time series. Theoretically, RNN-ODE-Adap yields provably a
consistent estimation of the intensity function for the Hawkes-type time series data. We also
provide an approximation analysis of the RNN-ODE model showing the benefit of adaptive
steps. The proposed model is demonstrated to achieve higher prediction accuracy with reduced
computational cost on simulated dynamic system data and point process data and on a real
electrocardiography dataset.

1 Introduction

We consider the modeling and forecasting of time series characterized by irregular time steps and
non-stationary patterns, which are commonly observed in various applications, such as finance [10]
and healthcare [3]. We treat the data as a sequence of ordered observations from an unknown
underlying continuous-time process, sampled at discrete time points. Recurrent Neural Network
(RNN) [29] is frequently employed to model such sequential data. This work proposes to use an
RNN-based model with a neural Ordinary Differential Equation (ODE) to fit time series data.

The classical neural ODE type approaches typically assume regular time grids in the data
sequences, or the same irregular time grids across different sequences [27]. When dealing with
highly non-stationary data, such as a time series with sudden spikes, it becomes imperative to select
sufficiently small time steps to ensure accurate modeling of regions with steep changes. These regions
require more refined time steps, especially the ones with abrupt spikes. However, it is common for
most of the time horizon to observe a slow-varying and less steep time series, which is more “flat”
over time; thus, the refined time steps would result in unnecessarily high computational costs. Some
examples of time series with abrupt spikes are shown in Figure 1, illustrating a spectrum ranging
from continuous time series to discontinuous time series such as counting processes.

To train the neural ODE for data with non-stationary patterns more effectively, we propose an
approach that employs adaptive time steps in the neural ODE model, which we refer to as RNN-ODE-
Adap. The model adaptively selects the time steps based on the local variation of the time series,

∗Email: xiuyuan.cheng@duke.edu.

1

a
rX

iv
:2

3
0
6
.0

1
6
7
4
v
1

[s

ta
t.

M
L

]
 2

 J
u
n
 2

0
2
3

Figure 1: Illustration of spike-like time series. The crosses denote the discretely sampled time steps,
which can be irregular. In the left panel, the subsequences enclosed with the orange, yellow, and
green brackets represent the (training or testing) windows generated from this sequence.

enabling it to capture underlying trends with potentially fewer steps. Our numerical experiments
showed that, compared to other baseline models that use regular time steps, RNN-ODE-Adap could
achieve higher prediction accuracy with similar or lower time complexity. The contribution of the
work is as follows.

• Based on a neural ODE model characterizing the dynamics of hidden states, we propose an
algorithm to construct adaptive time steps, which assigns refined time steps to data around
“spikes” while using rough time steps for data in “flat” segments. This can significantly reduce
the computational cost in the training process with little impact on the modeling performance.

• We provide theoretical insights into the consistency of the model using the example of Hawkes
process type data, and the approximation guarantee of the RNN-ODE model that illuminates
the benefits of adaptive time steps.

• We conduct numerical experiments on both synthetic data and a real-world time-series data set
to demonstrate the advantage of the proposed algorithm in terms of both modeling accuracy
and computational efficiency.

1.1 Related Works

Neural ODE. Our work is closely related to the neural ODE [2] model, which parameterizes the
derivative of the hidden state using a neural network. In [2], a generative time-series model was
proposed, which takes the neural ODE as the decoder. Furthermore, [27] proposed a non-generative
model with continuous-time hidden dynamics to handle irregularly sampled data based on [2].
Compared with existing works related to neural ODE [27, 35, 37, 5, 22, 18, 23, 12, 11], we model the
ODE that determines the progression of hidden states by including the data itself in the derivative
of the hidden state. In contrast to existing works on non-stationary environments such as the
piecewise-constant ODE [11], our work proposes to use adaptive time steps to automatically adapt
to sparse spikes in the time series, without pre-defining the time period for each piece of ODE.

Neural CDE. We note that the Neural Controlled Differential Equation (CDE) [19] also incorpo-
rates the observations into the model continuously. Specifically, the hidden states in [19] follow the
CDE h(t) = h(t0) +

∫ t
t0
fθ(h(s))dXs, where the integral is a Riemann-Stieltjes integral. We would

2

like to emphasize some key differences between model (2) and Neural CDE. The Xs in Neural CDE
is the natural cubic spline of {(x(ti), ti)}i, and fθ : Rdh → R

dh×(D+1), where dh is the number of
hidden units and D is the data dimension. Thus, for the same number of hidden units, Neural
CDE requires a more complex parameterized fθ to model h(t). Moreover, since Xs is obtained by
cubic spline, it is less naturally adapted to the prediction task that requires extrapolation to the
time stamps not seen when computing the spline. Therefore, it is hard to evaluate the prediction
performance of Neural CDE and thus we defer the evaluation under the Neural CDE setting for
future work.

Continuous-Time RNNs. Our model belongs to the extensive family of continuous-time RNNs,
originating from [26]. Several existing studies explore various RNN architectures, such as [1, 17, 6,
30, 16] These RNN models leverage their structures to address the exploding and vanishing gradient
problem. Our model also adopts a continuous-time ODE framework for time series data, and the
proposed adaptive time stamp selection method can be viewed as effectively reducing the length
of the discrete sequence when a significant part of the process is changing slowly. Meanwhile, our
approach can also be used concurrently with the methodologies such as in [6]. As the focus of our
work is to model the “spike-like” time series data, the combination of our model and the existing
continuous-time RNN models can further improve the efficiency when applied to such data.

Time Adaptivity. Previous studies have investigated the incorporation of time adaptivity in
continuous-time RNNs, such as GACTRNN [13], TARNN [16], and LEM [31]. In these works, time
adaptivity was incorporated by multiplying the ODE with an adaptively learned time modulator,
usually parametrized by another sub-network. In contrast, our method adaptively selects time steps
during the preprocessing phase, where the selection process only utilizes the steepness of change of
the time series data. Therefore, the proposed model does not involve the training of a sub-network
for the time modulator as in the previous models, which may incur an increase in model size and
additional computational costs.

2 Problem Setup

2.1 Training Data and Prediction Task

Consider a random continuous time series x(t) ∈ R
D over the time horizon [0, T] for some T ∈ R

+.
We observe multiple independent and identically distributed samples of the continuous process x(t),
where each sample is sampled at discrete time stamps, which can vary across different samples.
We split the observed sequences into training and testing sequences. From the training sequences,
we generate a total of K(Tr) training windows, denoted as {x(Tr,k)}K(Tr)

k=1 , each of window length N
as our training data (see the left panel of Figure 2 for an illustrative example). Here x

(Tr,k) :=

{x(Tr,k)(t
(Tr,k)
1), . . . , x(Tr,k)(t

(Tr,k)
N)} and 0 < t

(Tr,k)
1 < · · · < t

(Tr,k)
N ≤ T are the corresponding time

stamps for the k-th training window. Similarly, we create K(Te) testing windows of length N from the
testing sequences, denoted as {x(Te,k)}K(Te)

k=1 . To simplify the notation, we may drop the superscripts
and write {x(t1), x(t2), . . . , x(tN)} for a given training window if it does not cause confusion.

Our goal is to make predictions based on historical data. Given a historical series x(t1), . . . , x(tn),
we aim to perform either one-step or multi-step predictions. The one-step prediction involves
predicting x(tn+1) at a single future time tn+1 based on {x(t1) . . . , x(tn)}, while the m-step prediction
includes forecasting {x(tn+1), . . . , x(tn+m)} at future times tn+1 < · · · < tn+m. The detailed formulas
for measuring the prediction accuracy are provided in Appendix B.1.

3

2.2 Training Objective

Given the time horizon [0, T], recall that we have a collection of training windows with the k-th

one denoted as x
(Tr,k) = {x(Tr,k)(t

(Tr,k)
1), . . . , x(Tr,k)(t

(Tr,k)
N)}. Here, the time steps are allowed to be

heterogeneous for different training windows. We train the model parametrized by neural networks
(see Section 3.1 for the neural ODE model adopted in this paper) with trainable parameters Θ using
the mean-squared regression loss function

L(Θ; {x(Tr,k)}K(Tr)

k=1) =

K(Tr)∑

k=1

N∑

i=1

∥x̂(Tr,k)(t
(Tr,k)
i)− x(Tr,k)(t

(Tr,k)
i)∥2|t(Tr,k)

i − t
(Tr,k)
i−1 |, (1)

where Θ are the network parameters, x̂(k)(t) is the output of the neural ODE model under parameter

Θ conditioned on all past observation, and t
(Tr,k)
0 is the added initial time stamp for each window.

The time difference term |t(Tr,k)
i − t

(Tr,k)
i−1 | ensures that the empirical mean-squared error loss

(1) matches the ℓ2 loss for function estimation. This term will be important to balance the fitting
errors among time intervals with different time steps. This term would be necessary for the proposed
scheme with adaptive (non-uniform) time steps. In our numerical examples, we also performed an
ablation study regarding this term to demonstrate its necessity; see Figure A9 in Appendix B.5 for
an example.

3 Method

We state the neural ODE model used for the hidden dynamic in Section 3.1. The algorithm for
adaptive steps is introduced in Section 3.2, and the computational complexity is explained in Section
3.3. More implementation details, such as evaluation metrics and choice of thresholds, are given in
Appendix B.1.

3.1 Neural ODE for RNN model

To be able to model the observation x(t) as a function of a hidden value h(t), we follow the previous
continuous-time RNN neural-ODE approach [1, 6] to model the hidden dynamics of h(t) as

h′(t) = f(h(t), x(t); θh), (2)

where f is a neural network parameterized by θh. If one directly adopts the neural ODE model [2] to
the hidden state h(t), the ODE model would be h′(t) = f(h(t), t; θ) without the observed time series
data x(t). In contrast, the model (2) incorporates the observed incoming time series data x(t) as
an input to f , which is important for modeling the time series data especially when the underlying
dynamics is non-stationary. The time evolution of the observed series x(t) is modeled by an output
neural network g that maps the hidden value h(t) to x(t) as

x̂(t) = g(h(t); θd), (3)

where g is called the output function parameterized by θd.
Given the neural network functions f and g (which generally can adopt any architecture) and the

observed time series data x(t), from any initial input h(0), we can numerically solve the RNN neural
ODE model (2) to obtain the h values at any time t ∈ (0, T) as h(t) = h(0) +

∫ t
0 f(h(s), x(s); θh)ds,

and then predict the value of x(t) by x̂(t) = g(h(t); θd). The neural ODE integration can be solved

4

Figure 2: Illustration of adaptive time steps resulted from Algorithm 1. In this example, N = 8 and
L = 2; three samples are removed in phase l = 1, and one sample is removed in phase l = 2.

by existing first-order or higher-order schemes, and the back-propagation can be computed by the
adjoint method [24, 2]. If one uses the forward Euler scheme, the discrete-time dynamic of h(t)
(after incorporating the time step into the network function f) becomes hi+1 = hi + f(hi, θi), which
recovers the structure of Residual networks [28, 14]. In this work, we adopt the forward Euler
scheme in experiments due to its better stability than higher-order schemes when the dynamic has
steep changes. Our methodology of adaptive time grids can potentially be extended to higher-order
differential schemes.

3.2 Adaptive Time Steps

We propose to learn a neural-ODE RNN model using adaptive time stamps, and thus the method
is called RNN-ODE-Adap. The construction of adaptive time steps is summarized in Algorithm 1.
The intuition behind the proposed algorithm is to assign longer (rough) time intervals during time
regions where the time series is slowly time-varying (such as “flat” curves), while assigning shorter
(fine) time intervals during those regions with “spikes” (highly non-stationary and fast time-varying
regimes). For constructing the adaptive time stamps, we assume the initial time grid is sufficiently
fine and adopt a dyadic-partition type algorithm to be detailed as follows.

Given a raw (discrete-time) training window x(t0), x(t1), . . . , x(tN) sampled at the finest level
of the time stamps 0 ≤ t0 < · · · < tN ≤ T . For simplicity, below we write it as x0, x1, x2, . . . , xN .
Without loss of generality, we assume N is a power of two. We first define a monitor function M(·)
that measures the variation of the sub-sequence {xi, . . . , xj}, i < j. In this paper, we mainly adopt
the maximum variation defined as

M({xi, . . . , xj}) := max
i+1≤k≤j

∥xk − xk−1∥2
|tk − tk−1|

, (4)

which captures the maximum variation among any two adjacent time stamps. Here we may also
choose ℓp norms for any p ≥ 1.

We then screen from the finest level of time grids and adaptively merge neighboring time grids if
their maximum variation is below a pre-specified threshold ϵ > 0. In detail, for the first level l = 1,
we group the original N time intervals into N/2 sub-intervals (as demonstrated in Figure 2) and each

5

Algorithm 1 A dyadic algorithm for selecting adaptive time steps.

1: Input: Data series {x0, x1, x2, . . . , xN}; threshold ϵ > 0; L ∈ Z+.
2: Initialize: D = ∅. A flag vector Flag = {0, 0, . . . , 0} of length N .
3: for l = 1 to L do

4: Define a new flag: Flagnew = {0, 0, . . . , 0} of length ⌊N/2l⌋.
5: for i = 1 to ⌊N/2l⌋ do

6: if Flag[2(i− 1) + 1] = Flag[2i] = 0 then

7: Compute the monitoring function M({x2l(i−1), x2l(i−1)+2l−1 , x2li}).
8: if M < ϵ then

9: D = D ∪ (2l(i− 1) + 2l−1).
10: else

11: Mark Flagnew[i] = 1.
12: end if

13: else

14: Mark Flagnew[i] = 1.
15: end if

16: end for

17: Update Flag = Flagnew.
18: end for

19: Output: Indexes of removed time steps D.

sub-interval contains three consecutive time stamps: {x0, x1, x2}, {x2, x3, x4}, . . . , {xN−2, xN−1, xN}.
Then we calculate the maximum variation M(x0, x1, x2), . . . ,M(xN−2, xN−1, xN) for each sub-
interval. We then merge the two consecutive time intervals into one, i.e., remove the middle time
stamp x2n+1, for n = 0, 1, . . . , N/2− 1, if

M(x2n, x2n+1, x2n+2) < ϵ.

In other words, we only keep the time stamps on which the maximum variation exceeds ϵ.
The above selection procedure is repeated similarly for l = 2, 3, . . . until a pre-specified maximum

integer L. The value L corresponds to the roughest time interval. The algorithm is detailed in
Algorithm 1, in which we maintain a set D that characterizes which time stamps to be removed.
Meanwhile, we also keep a Flag vector in each round as an indicator of whether the midpoint
time stamp was removed in the last round and Flagnew indicating whether the middle time stamp
will be removed in the current round. The elements in the Flag vector equals 0 for intervals with
slight variation (M(·) ≤ ϵ) and 1 otherwise. The primary usage of such Flag vector is that for
two consecutive intervals in round l′, we only merge the intervals if both of them are slow-varying
intervals (i.e., merged from a previous round l < l′).

The output of Algorithm 1 is the set D of time stamps to be removed. The model is trained on
the remaining time steps only. We provide an illustration in Figure 2 of the algorithm for selecting
adaptive time steps. From the final results in Figure 2, it can be seen that the output of the adaptive
time steps uses longer time steps to model stationary periods (from i = 0 to 4 and from i = 6 to 8),
and uses shorter time steps to model spikes (from i = 4 to 6) in the sequence.

3.3 Computational Complexity

The computational complexity of applying Algorithm 1 in the preprocessing stage to K(Tr) training
windows is O(K(Tr)ND), where D is the data dimension. For the neural ODE model described as in

6

(2)-(3), when f possesses the same network structure as a vanilla RNN with dh hidden units and g is a
one-layer fully connected network, the complexity in the training process is O(neK

(Tr)N̄adh(dh+D)),
where ne and N̄a represent the number of training epochs and the average length of the adaptive
windows, respectively.

Since the computational cost in the training process usually dominates that in the preprocessing
step (which happens as long as nedh ≥ 2L), the overall complexity of the RNN-ODE-Adap model is
O(neK

(Tr)N̄adh(dh +D)). This is of the same order as the complexity of training a vanilla RNN
(we refer to Appendix B.2 for the specific structure) with dh hidden units in ne epochs, using K(Tr)

training windows with the same length N̄a. Therefore, compared with the complexity when training
with the original finest N time grids, the complexity associated with the adaptive method will be
reduced by a factor of N̄a/N . The smallest achievable complexity will be reduced by a factor of
1/2L when choosing a sufficiently large threshold ϵ.

4 Theory

In this section, we provide the recovery consistency of the training objective (Section 4.1) and
approximation error guarantee of the RNN-ODE model revealing the benefit of adaptive step size
(Section 4.2). All proofs can be found in Appendix A.

4.1 Function Estimation for Event-type Data

We present the theoretical analysis for function estimation based on the proposed model under
counting-type time series. It is worthwhile noting that counting-type time series represent a special
class of continuous-time models since they exemplify the extreme case of “spike-like” data, where we
have discontinuities from zero to one, as shown at the right end of Figure 1.

For event-type sequences, the raw data contains a list of event times 0 < t1 < t2 < . . . < tn < T
on the time horizon [0, T]. Each timestamp is the time when an event happens. In practice, the
estimation is performed on discrete-time grids. Define the counting process N(t) :=

∑n
i=1 1(ti ≤ t)

as the total number of events happened before time t. We convert such continuous-time data
into discrete observations by discretizing the time interval [0, T] into M intervals of equal length
∆t = T/M , and then let xm = N(m∆t)−N((m− 1)∆t), m = 0, 1, . . . ,M (by convention x0 = 0).
When ∆t is chosen sufficiently small, it becomes the Bernoulli process where xi ∈ {0, 1}.

We consider the temporal Hawkes processes [25], in which the values xi are mostly zero under mild
assumptions, corresponding to sparse “spikes”. Such temporal Hawkes processes can be characterized
by its conditional intensity function defined as

λ∗(t) = lim
∆→0

∆−1
E[N(t+∆)−N(t)|Ft],

where the filtration Ft stands for the information available up to time t. In the case of Hawkes
processes, λ(t) = µ + α

∫ t
0 ϕ(t − s)dN(s) is simply a linear function of past jumps of the process,

where ϕ(·) is the influence kernel. For example, under the special case of exponential kernels, the
intensity function becomes λ∗(t) = µ+ αβ

∫ t
0 e

−β(t−τ)dN(τ).
The intensity function recovery consistency by minimizing least-square population loss is proved

in Theorem 4.2 under a memory constraint. We parameterize the function by a neural network (NN)
based structure characterized as in (2)-(3). We define the prototypical network architecture below.

Definition 4.1. Define the function class NN-ODE(dout, Lh, ph, Ld, pd) as

NN-ODE(dout, Lh, ph, Ld, pd) := {F : R 7→ R
dout |F (t) = g(h(t)), h′(t) = f(h(t), x(t)),

g is NN with Ld layers and max-width pd, h is NN with Lh layers and max width ph.}
(5)

7

Theorem 4.2. Assume there exist d buffer time steps with samples x−d, . . . , x−1 prior to the
Hawkes count data {x0, . . . , xM} and each time step has duration ∆t = T/M . We further assume
NN-ODE(dout, Lh, ph, Ld, pd) is rich enough to model the true intensity function. Then the minimizer
F ∗ to the population loss function

Ψ(F) :=
M∑

m=1

E
[
(xm − F (m∆t)∆t)2

∣∣xm−d . . . xm−1

]
,

optimized within the neural network class F ∈ NN-ODE(D,Lh, ph, Ld, pd), satisfies F ∗(m∆t) =

λ̃(m) := 1
∆t

∫m∆t
(m−1)∆t λ

∗(t)dt, which is the discretized intensity.

Remark 4.3. We have the recovered intensity function F ∗(m∆t) = λ̃(m) and is extendable to the
entire time horizon as F ∗(t) = F ∗(m∆t)1{(m− 1)∆t < t ≤ m∆t} for any t ∈ [0, T]. In Appendix
A.1 we extend the analysis to show that under the asymptotic scenario when M → ∞, we have that∫ T
0 |F ∗(t)− λ∗(t)|dt → 0.

The above argument is made under the population loss, showing that using the least-square
loss function can recover the actual intensity function for the Hawkes process. It is mainly due to
the generality of the ODE model (2) and (3), which is consistent with Hawkes process and most
time series models. The argument may be extended to empirical processes by utilizing the empirical
concentration of the process.

4.2 Approximation Analysis of RNN-ODE-Adap

For theoretical generality, in this subsection, we consider the continuous-time process y(t) ∈ R
D′

satisfying
h′(t) = f(h(t), x(t)), y(t) = g(h(t)), h(0) = h0, t ∈ [0, T], (6)

where x(t) ∈ R
D is the observable input data and h(t) ∈ R

dh is the underlying hidden process from
some initial value h0. Taking y(t) to be x(t) reduces the model to the case (2)(3) considered in the
other parts of the work. We provide two theorems: Theorem 4.6 proves the uniform approximation
to y(t) by continuous-time RNN-ODE model without time discretization; Theorem 4.9 further takes
into account the discrete-time scheme and obtains the approximation on a time grid.

Approximation of the continuous-time model. We will use neural network functions fθ and
gϕ to approximate the functions f and g, respectively, see Lemma 4.5. Given x(t) on [0, T], let
hNN(t) be the solution to the hidden-process ODE h′NN(t) = fθ(hNN(t), x(t)) from hNN(0) = h0.
This leads to the output process yNN(t) defined by

h′NN(t) = fθ(hNN(t), x(t)), yNN(t) = gϕ(hNN(t)), hNN(0) = h0, t ∈ [0, T]. (7)

The approximation of yNN(t) to y(t) will be based on the approximation of fθ and gϕ, which calls
for the regularity condition of the system (6). We take the following technical conditions.

Assumption 4.4. (A1) The observed process x : [0, T] → [−1, 1]D and is Lipschitz continuous over
t; The hidden process h : [0, T] → [−1, 1]dh .

(A2) f : [−1.1, 1.1]dh × [−1, 1]D → R
dh , (η, x) 7→ f(η, x), and is Lipschitz continuous with respect to

both η and x.

(A3) g : [−1.1, 1.1]dh → [−1, 1]D
′

, η 7→ g(η) is Lipschitz continuous.

8

We let Lg denote the global Lipschitz constant of g on [−1.1, 1.1]dh . For f , both global and local
Lipschitz constants on the domain [−1.1, 1.1]dh × [−1, 1]D are used. More detailed definitions of
these constants will be introduced in Lemma 4.5 (for the global constant) and Theorem 4.6 (for the
local constant).

The next lemma directly follows by applying [36] to the case where f and g have 1st-order
regularity (Lipschitz continuity). The proof is given in appendix A.2.

Lemma 4.5. For any ϵf , ϵg > 0, there exist neural networks fθ, gϕ such that

max
η∈[−1.1,1.1]dh ,x∈[−1,1]D

∥f(η, x)− fθ(η, x)∥2 < ϵf , max
η∈[−1.1,1.1]dh

∥g(η)− gϕ(η)∥2 < ϵg, (8)

and

• fθ has O(ln
Cf

ϵf
+ ln dh +1) layers and O((Cf/ϵf)

dh+D(ln
Cf

ϵf
+ ln dh +1)) trainable parameters.

• gϕ has O(ln
Cg

ϵg
+ lnD′ + 1) layers and O((Cg/ϵg)

dh(ln
Cg

ϵg
+ lnD′ + 1)) trainable parameters.

The constants in big-O may depend on D,D′, and dh. Here Cf := max{Lf,h, Lf,x,Mf}, where
Mf = sup(η,x)∈[−1.1,1.1]dh×[−1,1]D ∥f(η, x)∥ and Lf,h, Lf,x are denote the Lipschitz constant of f on

[−1.1, 1.1]dh × [−1, 1]D (see formal definitions in (A1) in the proof of Lemma 4.5 in Appendix A.2).
Cg := max{Lg,Mg}, and Mg = supη∈[−1.1,1.1]dh ∥g(η)∥.

For the spike-like data, the majority of the regions are slow-varying, with the spikes occupying
only a minor part of the whole interval [0, T]. Thus, the whole interval [0, T] may be partitioned
into two disjoint sets D1 and D2, each of which consisting of unions of disjoint intervals in [0, T]. To
characterize this partition more precisely, we define the constants related to an interval in [0, T] as
follows:

• For an interval [s, t] ⊂ [0, T], we define the domains Bh, Bx as

Bh := (h([s, t]) +Bdh
r) ⊂ [−1.1, 1.1]dh , Bx := (x([s, t]) +BD

r) ∩ [−1, 1]D, (9)

with r = 0.1, and Bdh
r , BD

r represent balls with radius r in R
dh ,RD respectively (see Figure 3

for illustration). Here, h([s, t]) +Bdh
r means the Minkowski addition, namely {h1 + h2, h1 ∈

h([s, t]), h2 ∈ Bdh
r }, and x([s, t]) +BD

r is defined in the same way. Then, we denote

Lf,h
[s,t]

:= sup
x∈Bx

sup
η1,η2∈Bh

∥f(η1, x)− f(η2, x)∥
∥η1 − η2∥

,

Lf,x
[s,t]

:= sup
h∈Bh

sup
x1,x2∈Bx

∥f(η, x1)− f(η, x2)∥
∥x1 − x2∥

, (10)

as the local Lipschitz constants of f within the domain Bh ×Bx, and

Mf
[s,t]

:= sup
(η,x)∈Bh×Bx

∥f(η, x)∥2. (11)

With the local Lipschitz constant defined as above, we suppose that any time grid [s1, t1] in D1

corresponds to a local Lipschitz constant Lf,h
[s1,t1]

≤ Llow. On contrast, if [s2, t2] belongs to D2, the

local Lipschitz constant Llow < Lf,h
[s2,t2]

≤ Lhigh(≤ Lf,h). Here, D1 is comprised of regions with slow

9

Figure 3: Demonstration of the domains Bx and Bh defined as in (9) for the time interval [s, t] (here
dh = 2, D = 1). The domains D1 and D2 that correspond to slowly and fast varying regions are
colored in orange and blue respectively.

variations, while D2 encompasses regions with sharp changes, as demonstrated in Figure 3. It may
often be the case that |D1| is greater than |D2|. Then, we define

L(avg) :=
1

T
(Llow|D1|+ Lhigh|D2|). (12)

Following Lemma 4.5 and the partition described above, Theorem 4.6 below provides the approxima-
tion results for the continuous-time process y(t) using (7).

Theorem 4.6. Under Assumption 4.4 and for L(avg) defined as in (12), suppose ϵf , ϵg > 0 and ϵf
satisfies

TeL
(avg)T ϵf < 0.1, (13)

and let fθ, gϕ be the neural networks satisfying (8) (the model complexity is bounded as in Lemma
4.5), then

max
t∈[0,T]

∥y(t)− yNN(t)∥ < ϵg + LgTe
L(avg)T ϵf . (14)

Remark 4.7 (Interpretation of L(avg) and local Lipschitz constants). (14) can provide an improved
bound because when the data have sharp changes, Lhigh (as the ∞-norm of the Lipschitz constant
over time) can be large while L(avg) = (Llow|D1|+Lhigh|D2|)/T (as certain L1-norm of the Lipsthictz
constant over time) may stay at a smaller value. The partition D1 ∪ D2 reflects how adaptively
choosing grids may help improve the theoretical results, and this will be further explored in the
next subsection. Therein x(t) will only be observed at a discrete time grid, which can be adaptively
chosen according to the local Lipschitz constants (see Theorem 4.9 for more details).

Remark 4.8 (Arbitrary desired accuracy in (14)). For any ε > 0, we can choose

ϵf <
1

T exp(L(avg)T)
min{0.1, ε

2Lg
}, ϵg <

ε

2
,

then the right-hand side of (14) is bounded by ε.

Approximation under time discretization. We assume that x(t) is only observed at discrete
time grids {ti}Ni=1 instead of on the whole interval [0, T]. Below, the time grids can be chosen
adaptively, which will be detailed in Remark 4.10. Given the time grids {ti}Ni=1, we define the
following constants that will be used in the theorems later:

10

• By (A2), for each i, let Lf,h
i , Lf,x

i and Mf
i be defined as in (10) and (11) respectively, where

we take the interval [s, t] as [ti−1, ti].

• By (A1), for each i, let Lx
i be the Lipschitz constant of x(t) on t ∈ [ti−1, ti]. i = 1, . . . , N + 1

(we follow the convention that t0 = 0, tN+1 = T).

For ∆ti := ti − ti−1 and ĥNN(0) = h0, the forward Euler scheme is applied on (7) as follows:

ĥNN(ti) = ĥNN(ti−1) + ∆tifθ(ĥNN(ti−1), x(ti−1)), ŷNN(ti) = gϕ(ĥNN(ti)), i = 1, . . . , N. (15)

Compared to Theorem 4.6, Theorem 4.9 below additionally accounts for the discretization error
from the numerical integration, providing an upper bound of the approximation error using x(t)
observed at discrete time grids. Theorem 4.9 focuses on the forward Euler method, and we refer to
Remark 4.11 for its extension to higher-order schemes.

Theorem 4.9. Under Assumption 4.4 and given a time grid {ti}Ni=1 on [0, T] at which x(t) is
observed. Suppose ϵf , ϵg > 0 and ϵf ,∆tj satisfy

T exp(

N∑

i=1

Lf,h
i ∆ti)

(
ϵf +max

j
{µj∆tj}

)
< 0.1, (16)

where
µj := Lf,h

j Mf
j + Lf,x

j Lx
j ,

and let fθ, gϕ be the neural networks satisfying (8) (the model complexity is bounded as in Lemma
4.5), then

max
i

∥y(ti)− ŷNN(ti)∥ ≤ ϵg + LgT exp(

N∑

i=1

Lf,h
i ∆ti)

(
ϵf +max

j
{µj∆tj}

)
. (17)

The condition (16) in Theorem 4.9 is imposed to guarantee that the numerically integrated
hidden states {ĥNN(ti)} belong to [−1.1, 1.1]dh , so that the approximation results in Lemma 4.5 are
applicable.

Remark 4.10 (Arbitrary desired accuracy in (17)). For any ε > 0, suppose the time grids satisfy that

max
j

{µj∆tj}} <
1

T exp(
∑N

i=1 L
f,h
i ∆ti)

min{0.05, ε

3Lg
}, (18)

then we can choose

ϵf <
1

T exp(
∑N

i=1 L
f,h
i ∆ti)

min{0.05, ε

3Lg
}, ϵg <

ε

3
,

to make the right-hand side of (17) bounded by ε.

Remark 4.11 (Extension to higher-order integration schemes). The numerical integration scheme (15)
can be extended to the multi-step explicit methods of higher orders (e.g. Runge-Kutta methods),
given that the time grid selection appropriately fulfills the requirements of the integration scheme.
For example, we may choose ti+1 − ti = ti − ti−1 for adjacent sub-intervals [ti−1, ti], [ti, ti+1] to apply
the commonly used RK4 method .

Theorem 4.9 provides insights into the utility of the adaptive steps for improving the model fitting
performance, which is reflected in the last term, involving maxj{µj∆tj}, in Eq. (17). Specifically,
time grids may be selected such that ∆ti is small if Lx

i is great, indicating a steep change in x(t) for
t ∈ [ti−1, ti]. On the contrary, when the variation in x(t) is smaller, we employ larger ∆ti to reduce
the total number of required time grids.

11

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n
of

 M
SE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

Spiral data: Testing Precition MSE vs. Complexity

Figure 4: Comparison of the MSE prediction errors on the simulated spiral data generated from Eq.
(19) for RNN, LSTM, RNN-ODE, RNN-ODE-Adap. The x-axis represents the average length of the
training windows, which reflects the complexity of the models (see Section 3.3).

5 Numerical Experiments

We validate the performance of the proposed method using three types of datasets: the simulated
spiral series, the simulated event data, and a real ECG dataset. We present the complexity vs.
accuracy tradeoff curves for different methods, and demonstrate the advantage of the RNN-ODE-Adap
method. The code can be found at https://github.com/Yixuan-Tan/RNN_ODE_Adap.

5.1 Trained Models

In this section, we examine and report the performance of two models, RNN-ODE and RNN-ODE-
Adap. Both models are trained to minimize the loss function as in (1), and the difference lies in
the choice of the time grid. Specifically, RNN-ODE is trained using regular (non-adaptive) time
steps, and RNN-ODE-Adap is trained with adaptively selected time steps by Algorithm 1. The
architecture of both models is the same as vanilla RNN; see more details in Appendix B.2.

As explained in Section 3.3, the computational cost of training the models is proportional to the
average length of the training windows. Hence, in this section, when we compare the performance
under varying complexities, the “complexities” are discussed in terms of averaged “numbers of grids”
of the training data. More details of the experiment settings are in Appendix B, with the boxplots
of the error plots and additional results provided in Appendix B.5.

5.2 Simulated Spiral Data

We first investigate the capability of our method to fit and capture the underlying dynamics of the
simulated spiral data. For a given matrix A ∈ R

2×2, one spiral is generated by integrating the ODE

x′(t) = f(x(t)) = ∥x(t)∥−2Ax(t), (19)

over the time span [0, T], with the initial value x(0) = x0 ∈ R
2. The initial training and testing

windows are of length N = 64, corresponding to the largest complexity shown in Figure 4.
We first compare the on-sample prediction performance with RNN and LSTM [15] under different

computational complexities. For each testing window, we use the first half as available historical

12

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

LSTM

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE-adap
Example: Rec nstructi n f the Spiral fr m Regular Time Series, Using 31% Data

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

LSTM

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

RNN-ODE-adap
Example: Reco structio of the Spiral from Irregular Time Series, Usi g 31% Data

Figure 5: Comparison of RNN, LSTM, RNN-ODE, RNN-ODE-Adap on the reconstruction of
simulated spiral data generated from Eq. (19), using regular (upper) v.s. irregular (lower) time
series.

data and perform predictions for the second half. Figure 4 shows the averaged Mean Squared Errors
(MSEs) computed as in Eq. (A6) for the models, with varying complexities. From the trade-off
curves in Figure 4, we observe that when the training cost is relatively low, namely the training
windows are short, all the models underfit and do not learn the dynamics well, resulting in poor
prediction performance. When the training cost increases and the training windows consist of more
time steps, the models overfit, and prediction accuracy worsens.

Moreover, we observe from Figure 4 that for the same complexity, RNN-ODE significantly
improves the forecasting performance compared to the vanilla RNN, especially when the number of
grids is not too small so that the models begin to learn the dynamics well. Additionally, RNN-ODE-
Adap further achieves smaller prediction errors than RNN-ODE since it selects data points more
informatively with the same number of grids. Finally, we note that while LSTM performs best in
most cases, it possesses a more complex network structure. We refer to Appendix B.5 for additional
results about the LSTM and Lipschitz-RNN [6] variants of the adaptive model.

Figure 5 shows examples of spiral reconstructions using about 30% of the data. The time steps
might be obtained by interpolation and regular (the upper half of Figure 5), or be chosen adaptively
by Algorithm 1 and thus irregular (the lower half of Figure 5). We can see that there are mismatches
between shapes reconstructed by RNN and LSTM and the ground truth spiral shape. In contrast,
we note that RNN-ODE and RNN-ODE-Adap are consistent with the underlying spirals.

5.3 Simulated Point-Process Data

We further apply our method to a simulated example of event times data generated from temporal
Hawkes processes [25] as described in Section 4. We train the model (2)-(3) and estimate the true

intensity function λ(t) using the output x(t). The mean squared loss L =
∫ T
0 (dN(t)/dt− λ(t))2dt is

used when fitting the neural ODE model.
The fitting errors of the four models versus the complexity are shown below in Figure 6 (left).

It can be observed that for all the models, the fitting errors decrease as the training complexity

13

increases. Furthermore, RNN-ODE-Adap achieves the best fitting performance. The right panel
shows the log-log plot of RNN-ODE and RNN-ODE-Adap, from which we can see more clearly that
for fixed model complexity (network structure), the proposed model approaches the true intensity
function.

Figure 6 (right) shows two examples of fitting performance. In this example, all models use 33
grids on average. Thus, the complexity is 50% of the largest one. It can be observed that RNN fails
to capture the smooth decay of the kernel. Furthermore, we can see that with the adaptive choice of
time steps which is more refined, RNN-ODE-Adap can learn the dynamics of the intensity function
much better – it can estimate the “jump” in the intensity accurately.

5.4 Real Data: ECG Time Series

We validate the proposed RNN-ODE-Adap on one public electrocardiography (ECG) dataset PTB-
XL [34, 9]. We focus on learning the underlying dynamics of ECG signals using the RNN-ODE
model and use adaptive time steps for “spikes” in data series. We remark that windows of the highest
sampling rate are chosen to have N = 96 time grids, in which usually two cycles are contained. In
this way, the prediction of the second half given the first half would be more meaningful.

Figure 7 (left) shows the on-sample prediction MSEs of the four methods for two different
prediction lengths, 24 and 48, which are 1/4 and 1/2 of the whole window. Here, the prediction
is performed with the original finest grids by integrating the ODE function. It can be seen that
RNN-ODE has smaller prediction errors than RNN on average, and adding addictive steps helps
achieve slightly better performance. Furthermore, LSTM still achieves the smallest error most of the
time. The reason for this is explained in Section 5.2 and may be due to its more complex network
structure.

17 33 49 65
number of grids

0.00

0.05

0.10

0.15

L2
 e

rro
r

L2 error vs. complexity
RNN-ODE
RNN-ODE-Adap
RNN
LSTM

4.0 4.5 5.0 5.5 6.0
log2 (number of grids)

−5

−4

−3

lo
g 2

 (L
2

er
ro

r)

log -log plot of L2 error vs. complexity

RNN-ODE, slope = -0.73
RNN-ODE-Adap, slope = -0.86

L2 Testing Error vs. Complexity & log -log Plot

0 1 2 3 40.0

0.5

1.0

1.5 Testing Window (Example 1)
true traj
true event
RNN

0 1 2 3 40.0

0.5

1.0

1.5 Testing Window (Example 2)
LSTM
RNN-ODE
RNN-ODE-Adap

Example: Hawkes data & fit

Figure 6: Left: Comparison of the fitting errors of the underlying intensity function of the simulated
event-type data generated from the Hawkes process for RNN, LSTM, RNN-ODE, RNN-ODE-Adap.
x-axis represents computational complexity, y-axis is the fitting error computed as in Eq. (A7).
Right: Examples of fitted intensity function of the simulated event times data generated from the
Hawkes process using RNN, LSTM, RNN-ODE, RNN-ODE-Adap.

Figure 7 (right) and Figure A11 in Appendix B.5 present examples of prediction on the testing
windows for prediction lengths 48 and 24, respectively. These examples demonstrate that RNN-
ODE-Adap models capture the cycles and trends of the ECG more effectively than RNN. The good
performance implies that the proposed algorithm could be used to fit and predict the ECG-type
signal well. This also implies potential future applications of RNN-ODE-Adap in real healthcare
problems.

14

25 49 73 97
number of grids

0.00

0.05

0.10

0.15

0.20

M
SE

prediction length = 24

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

25 49 73 97
number of grids

0.00

0.05

0.10

0.15

0.20

M
SE

prediction length = 48

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

ECG data: Testing Precition MSE vs. Complexity

0.0

0.5

1.0
Testing Window (Example 1)

true traj
RNN
RNN-ODE-Adap

0.0

0.5

1.0 Testing Window (Example 2)
true traj
RNN
RNN-ODE-Adap

Example: ECG data, fit & prediction (for 48 time steps)

Figure 7: Left: Comparison of the prediction errors on the real ECG data under two different
prediction lengths (24 and 48) for RNN, LSTM, RNN-ODE, RNN-ODE-Adap. x-axis has been
explained in the caption of Figure 4. Right: Examples of 48 steps ahead prediction for the testing
ECG data using RNN (marked in blue) and RNN-ODE-Adap (marked in red). The predicted region
is marked between dashed lines.

6 Discussion

In this paper we propose a general framework for constructing adaptive time steps when using the
neural ODE combining the observed data to model times series. We demonstrate that it tends to be
more efficient for modeling “spike-like” time series. The proposed algorithm of adaptive time steps is
widely applicable to other types of models, not limited to neural ODE and RNN models. Moreover,
the selection of adaptive time steps can be generalized to a broad class of non-stationary time series
with different kinds of non-stationarities.

This highlights the potential for further research in this filed, which may be approached from
several angles. Firstly, there is a need for more theoretical analysis of the proposed RNN-ODE-
Adap framework under a broad spectrum of non-stationary time series, ranging from continuous to
discontinuous data sequences. Additionally, there is a need to investigate the more flexible adaptive
scheme, which could freely add middle steps adaptively and merge time grids without being restricted
to dyadic partitioning.

Acknowledgement

Y.T. and X.C. are partially supported by Simons Foundation (ID 814643) and NSF (DMS-2007040).

References

[1] Bo Chang, Minmin Chen, Eldad Haber, and Ed H Chi. AntisymmetricRNN: A dynamical
system view on recurrent neural networks. arXiv preprint arXiv:1902.09689, 2019.

[2] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[3] Changqing Cheng, Akkarapol Sa-Ngasoongsong, Omer Beyca, Trung Le, Hui Yang, Zhenyu
Kong, and Satish TS Bukkapatnam. Time series forecasting for nonlinear and non-stationary
processes: a review and comparative study. Iie Transactions, 47(10):1053–1071, 2015.

15

[4] Tommy WS Chow and Xiao-Dong Li. Modeling of continuous time dynamical systems with
input by recurrent neural networks. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications, 47(4):575–578, 2000.

[5] Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo Shang. Towards adaptive residual network
training: A Neural-ODE perspective. In International conference on machine learning, pages
2616–2626. PMLR, 2020.

[6] N Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W
Mahoney. Lipschitz recurrent neural networks. arXiv preprint arXiv:2006.12070, 2020.

[7] Richard FitzHugh. Mathematical models of threshold phenomena in the nerve membrane. The
bulletin of mathematical biophysics, 17:257–278, 1955.

[8] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous
time recurrent neural networks. Neural networks, 6(6):801–806, 1993.

[9] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215–e220, 2000.

[10] Gloria Gonzalez-Rivera and Javier Arroyo. Time series modeling of histogram-valued data: The
daily histogram time series of S&P500 intradaily returns. International Journal of Forecasting,
28(1):20–33, 2012.

[11] Sam Greydanus, Stefan Lee, and Alan Fern. Piecewise-constant Neural ODEs. arXiv preprint
arXiv:2106.06621, 2021.

[12] Mansura Habiba and Barak A Pearlmutter. Neural ordinary differential equation based recurrent
neural network model. In 2020 31st Irish Signals and Systems Conference (ISSC), pages 1–6.
IEEE, 2020.

[13] Stefan Heinrich, Tayfun Alpay, and Yukie Nagai. Learning timescales in gated and adaptive
continuous time recurrent neural networks. In 2020 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 2662–2667. IEEE, 2020.

[14] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks
for time series forecasting: Current status and future directions. International Journal of
Forecasting, 37(1):388–427, 2021.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[16] Anil Kag and Venkatesh Saligrama. Time adaptive recurrent neural network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15149–15158,
2021.

[17] Anil Kag, Ziming Zhang, and Venkatesh Saligrama. RNNs incrementally evolving on an
equilibrium manifold: A panacea for vanishing and exploding gradients? In International
Conference on Learning Representations, 2020.

16

[18] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

[19] Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential
equations for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

[20] Xiao-Dong Li, John KL Ho, and Tommy WS Chow. Approximation of dynamical time-variant
systems by continuous-time recurrent neural networks. IEEE Transactions on Circuits and
Systems II: Express Briefs, 52(10):656–660, 2005.

[21] Zhong Li, Jiequn Han, E Weinan, and Qianxiao Li. Approximation and optimization theory for
linear continuous-time recurrent neural networks. J. Mach. Learn. Res., 23:42–1, 2022.

[22] Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In International Conference
on Machine Learning, pages 3276–3285. PMLR, 2018.

[23] James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential
equations for long time series. In International Conference on Machine Learning, pages 7829–
7838. PMLR, 2021.

[24] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC press, 1987.

[25] Jakob Gulddahl Rasmussen. Temporal point processes: The conditional intensity function.
Lecture Notes, Jan, 2011.

[26] Frank Rosenblatt. Principles of neurodynamics. Spartan Books, 1962.

[27] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

[28] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

[29] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

[30] T Konstantin Rusch and Siddhartha Mishra. Coupled oscillatory recurrent neural network
(coRNN): An accurate and (gradient) stable architecture for learning long time dependencies.
arXiv preprint arXiv:2010.00951, 2020.

[31] T Konstantin Rusch, Siddhartha Mishra, N Benjamin Erichson, and Michael W Mahoney. Long
expressive memory for sequence modeling. arXiv preprint arXiv:2110.04744, 2021.

[32] T Konstantin Rusch, Siddhartha Mishra, N Benjamin Erichson, and Michael W Mahoney. Long
expressive memory for sequence modeling. arXiv preprint arXiv:2110.04744, 2021.

[33] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

17

[34] Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima I Lunze,
Wojciech Samek, and Tobias Schaeffter. PTB-XL, a large publicly available electrocardiography
dataset. Scientific data, 7(1):1–15, 2020.

[35] E Weinan. A proposal on machine learning via dynamical systems. Communications in
Mathematics and Statistics, 1(5):1–11, 2017.

[36] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks,
94:103–114, 2017.

[37] Tianjun Zhang, Zhewei Yao, Amir Gholami, Joseph E Gonzalez, Kurt Keutzer, Michael W
Mahoney, and George Biros. ANODEV2: A coupled Neural ODE framework. Advances in
Neural Information Processing Systems, 32, 2019.

A Proofs

A.1 Proofs in Section 4.1

Proof of Proposition 4.2. We consider the case with discretized and finite time grids. We assume
there exists d buffer time steps with samples x−d, . . . , x−1. The samples used for estimation are
x0, . . . , xM , and each time step is with duration ∆t. Thus the whole time duration is T = M∆t.
The random process we observe on discrete time horizon {m : 1 ≤ m ≤ M} is as follows. At time m
we observe integer variable xm ∈ {0, 1, 2, . . .}. Here xm means the number of event happening within
((m−1)∆t,m∆t] and xm = 0 means no event happening. Note that for the Hawkes process, which is
essentially an inhomogeneous Poisson process, the variable xm is just a Poisson random variable with
the intensity parameter depending on the historical observations. We denote the average intensity
function within the time interval ((m− 1)∆t, n∆t] as:

λ̃(m) =
1

∆t

∫ m∆t

(m−1)∆t
λ∗(t)dt,

where λ∗(t) = µ+ α
∫ t
0 ϕ(t− s)dN(s) is the true (continuous-time) intensity function.

By the properties of the Poisson distribution, we have E[xm|Fm−1] = λ̃(m)∆t and Var[xm|Fm−1] =
λ̃(m)∆t. Our goal is to recover the intensity function λ(·) using the given observations. We consider
the population loss function:

Ψ(θh, θd) =
M∑

m=1

E[(xm − F (m; θh, θd)∆t)2|xm−d, . . . , ωm−1]

=
M∑

m=1

{
E[x2m|xm−1

m−d]− 2E[xm · F (m; θh, θd)∆t|xm−1
m−d] + E[F 2(m; θh, θd)(∆t)2|xm−1

m−d]

}

∝
M∑

m=1

(λ̃(m)− F (m; θh, θd))
2

.

Thus the optimizer will equal to λ̃(n) as long as the function class RNN-ODE(dout, Lh, ph, Ld, pd) is
rich enough to model the structure of the true intensity function.

Proof of the claim in Remark 4.3. Note that when there is no event happening within the time
interval ((m− 1)∆t,m∆t] or when there is one event happening at m∆t, we have |λ̃(m)− λ∗(t)| ≤

18

Cα∆t where C is a constant related to the Lipschitz constant of the influence kernel ϕ(·). And when
there is one event happening in ((m− 1)∆t,m∆t), we have |λ̃(n)−λ∗(t)| ≤ α. By the concentration
of Poisson distribution, there exists positive constant M ′ such that there are at most M ′ events
happening within [0, T] with high probability, and there is at most one event in each sub-interval

[(m− 1)∆t,m∆t] for M sufficiently large, we have that
∫ T
0 |λ̃(t)− λ∗(t)|dt ≤ CαT∆t+M ′α∆t → 0

as M → ∞.

A.2 Proofs in Section 4.2

Remark A.1 (Expressiveness of the model). The hidden state h(t) ∈ R
dh in (6) encodes the historical

data, enabling x(t) to be time-inhomogeneous. This raises the question regarding the expressiveness of
Eq. (6) in representing a general dynamical system described by x′(t) = F (x(t), t). There exist works
that explored the expressiveness of the system h′(t) = fθ(h(t), x(t)), y(t) = gϕ(h(t)), where fθ, gϕ
are neural networks and fθ possesses a RNN structure [8, 4, 20, 21]. Among these works, [8, 4, 20]
assumed that x(t) was generated from the underlying dynamics (6), and thus the approximation
problem was reduced to estimating f and g using neural networks fθ and gϕ. On the other hand,
[21] took into account a broader range of input-output relationships. Specifically, it studied the
expressiveness of the linear RNN structure in representing functionals Ht that determined the output
at time t according to Ht({x(τ), τ ∈ T }), where T is an ordered index set (e.g., T = [0, T]). [21]
mainly focused on the case when {Ht({x(τ), τ ∈ T })} is linear and time-homogeneous.

Our approximation analysis bears more resemblance to the first category of studies and examines
the approximation error for the discretely observed data.

Remark A.2 (Time-homogeneous dynamical systems). For a time-homogeneous dynamical system
x′(t) = F (x(t)), it can be represented as Eq. (6) by setting dh = D, f(h, x) = F (h), and g(h) = h.
Theorems 4.6 and 4.9 indicate that neural networks fθ, gϕ can be configured such that the observed
data is approximated to any pre-specified accuracy. Prior studies [8, 4, 20, 21] proved that the
system x′(t) = F (x(t)) could also be approximated using a continuous-time RNN, although without
upper bounding the network size.

Proof of Lemma 4.5 Following the notations in [36], we consider Sobolev space Wn,∞([−1, 1]d),
with n = 1, 2, . . ., defined as the space of functions on [−1, 1]d lying in L∞ with their weak
derivatives up to order n. From the proof of [36, Theorem 1], for any f : [−1, 1]d → R such that
f ∈ Wn,∞([−1, 1]d) and ϵ > 0, there exists a neural network f̃ such that maxx∈[−1,1]d |f(x)− f̃(x)| <
ϵ, and f̃ has O(ln(d + 1)(ln(

αf

ϵ) + 1)) layers and O(2d(d+1)dd+2 ln(d + 1)2(
2βf

ϵ)
d
n (ln(

αf

ϵ) + 1))
trainable parameters, where αf = ∥f∥Wn,∞([−1,1]d) := max

n:|n|≤n ess supx∈[−1,1]d |Dnf(x)|, βf :=
max

n:|n|=1 ess supx∈[−1,1]d |Dnf(x)|.
In our case, we take n = 1. For f : [−1.1, 1.1]dh × [−1, 1]D → R

dh that is Lipschitz in both η and
x, we define Lf,h, Lf,x as follows:

Lf,h := sup
x∈[−1,1]D

sup
η1,η2∈[−1.1,1.1]dh

∥f(η1, x)− f(η2, x)∥
∥η1 − η2∥

,

Lf,x := sup
h∈[−1.1,1.1]dh

sup
x1,x2∈[−1,1]D

∥f(η, x1)− f(η, x2)∥
∥x1 − x2∥

.

(A1)

For f̃ = (f̃1, . . . , f̃dh) : [−1, 1]dh × [−1, 1]D → R
dh defined as f̃(η̃, x) := f(1.1η̃, x), we have

that αf̃i
≤ 1.1Cf , βf̃i ≤ 1.1Cf , i = 1, . . . , dh. Therefore, there exist dh subnetworks, denoted as

19

f̂1, . . . , f̂dh , such that

max
η̃∈[−1,1]dh ,x∈[−1,1]D

|f̃i(η̃, x)− f̂i(η̃, x)| <
ϵf√
dh

,

and each subnetwork has O(ln(
1.1Cf

ϵf
) + ln dh + 1) layers and O((

2.2Cf

ϵf
)dh+D(ln(

1.1Cf

ϵf
) + ln dh + 1))

weights, where the constants of big-O notations depend on dh and D.
Thus, we can construct f̃θ as a network consisting of dh parallel sub-networks that implement

each of f̂i. Then, for fθ(η, x) := f̃θ(
1
1.1η, x),

max
η∈[−1.1,1.1]dh ,x∈[−1,1]D

∥f(η, x)− fθ(η, x)∥2 = max
η̃∈[−1,1]dh ,x∈[−1,1]D

∥f̃(η̃, x)− f̃θ(η̃, x)∥2

≤
√
dh max

η̃∈[−1,1]dh ,x∈[−1,1]D
∥f̃(η̃, x)− f̃θ(η̃, x)∥∞ < ϵf .

fθ has O(ln(
1.1Cf

ϵf
) + ln dh + 1) layers and O((

2.2Cf

ϵ)dh+D(ln(
1.1Cf

ϵf
) + ln dh + 1)) weights, where the

constants of big-O notations depend on dh and D. Specifically,

#(layers of fθ) ≤ C ln(dh +D + 1)(ln(
1.1Cf

ϵf
) + ln dh + 1),

#(weights of fθ) ≤ C2(dh+D)(dh+D+1)(dh +D)dh+D+2d
dh+D+2

2
h ln(dh +D + 1)2

· (2.2Cf

ϵ
)dh+D(ln(

1.1Cf

ϵf
) + ln dh + 1),

for some absolute constant C > 0. gϕ can be constructed similarly. We define g̃ = (g̃1, . . . , g̃D′) :
[−1, 1]dh → R

D′

as g̃(η̃) := g(1.1η̃). Then, there exist D′ subnetworks, denotes as ĝ1, . . . , ĝD′ , such
that

max
η̃∈[−1,1]dh

∥g̃i(η̃)− ĝi(η̃)∥2 <
ϵg√
D′

, i = 1, . . . , D′,

and each subnetwork has O(ln(
1.1Cg

ϵg
) + lnD′ + 1) layers and O((

2.2Cg

ϵg
)dh(ln(

1.1Cg

ϵg
) + lnD′ + 1))

weights, where the constants of big-O notations depend on dh and D′. We construct g̃ϕ as a network
consisting of D′ parallel subnetworks that implements {ĝi}. Then, for gϕ(η) := g̃ϕ(

1
1.1η),

max
η∈[−1.1,1.1]dh

∥g(η)− gϕ(η)∥2 < ϵg,

and

#(layers of gϕ) ≤ C ln(dh + 1)(ln(
1.1Cg

ϵg
) + lnD′ + 1),

#(weights of gϕ) ≤ C2dh(dh+1)ddh+2
h D′

dh+2

2 ln(dh + 1)2(
2.2Cg

ϵg
)dh · (ln(1.1Cg

ϵg
) + lnD′ + 1).

This proves the claim.

Proof of Theorem 4.6.

Proof of Theorem 4.6. We denote u(t) := ∥h(t) − hNN(t)∥, and t0 = inft∈[0,T]{u(t) ≥ 0.1}. Since
u(0) = 0 and u(t) is continuous, we know that t0 > 0. In the following, we show that t0 = T by
contradiction. Otherwise, suppose that t0 < T . Then for t ∈ [0, t0], u(t) = ∥h(t)− hNN(t)∥ ≤ 0.1,
which implies that hNN(t) ∈ [−1.1, 1.1]dh .

20

Then, by (8), for t ∈ [0, t0],

u(t) =

∥∥∥∥
∫ t

0
(f(h(s), x(s))− fθ(hNN(s), x(s))) ds

∥∥∥∥

≤
∫ t

0
∥f(h(s), x(s))− fθ(hNN(s), x(s))∥ ds

≤
∫ t

0
(ϵf + L(s)∥h(s)− hNN(s)∥) ds,

where
L(s) = Lf,h

i , if s ∈ [ti−1, ti], i = 1, . . . , n+ 1,

and {ti}ni=1 the time grid corresponding to the partition D1 ∪ D2 such that 1
T

∑n+1
i=1 Lf,h

i (ti −
ti−1) ≤ 1

T (Llow|D1| + Lhigh|D2|) = L(avg), and Lf,h
i is defined as in (10) with taking the interval

[s, t] = [ti−1, ti]. Therefore,

u(t) ≤ ϵf t+

∫ t

0
L(s)u(s)ds, t ∈ [0, t0].

By the Grönwall’s inequality,

u(t) ≤ ϵf t exp(

∫ t

0
L(s)ds) ≤ ϵfT exp(

n+1∑

i=1

Lf,h
i (ti − ti−1)) ≤ ϵfT exp(L(avg)T) < 0.1, t ∈ [0, t0].

Specifically,
u(t0) ≤ ϵfT exp(L(avg)T) < 0.1.

Since u(t) is continuous, there exists a sufficiently small δ > 0, such that u(t) < 0.1 for t ∈ [t0, t0+ δ].
This is a contradiction to the definition of t0. Thus, we conclude that t0 = T , and therefore
hNN(t) ∈ [−1.1, 1.1]dh , ∀t ∈ [0, T]. By the similar analysis above, we have that

u(t) ≤ ϵfT exp(L(avg)T), t ∈ [0, T].

Thus, for t ∈ [0, T],

∥y(t)− yNN(t)∥ ≤ ∥g(h(t))− g(hNN(t))∥+ ∥g(hNN(t))− gϕ(hNN(t))∥
≤ LgT exp(L(avg)T)ϵf + ϵg,

which proves the claim.

Proof of Theorem 4.9.

Proof of Theorem 4.9. Denote εi = h(ti) − ĥNN(ti), then ε0 = 0. In the following, we apply the
induction argument, iteratively showing that

∥εi∥ ≤ eh < 0.1, ĥNN(ti) ∈ [−1.1, 1.1]dh , i = 0, . . . , N, (A2)

where

eh := T exp(
N∑

i=1

Lf,h
i ∆ti)

(
ϵf +max

j
{µj∆tj}

)
.

21

For i = 0, (A2) naturally holds since h(0) = ĥNN(0). If (A2) holds For i ≤ k, then for i = k + 1,
by ∥εk∥ < 0.1, ĥNN(tk) ∈ [−1.1, 1.1]dh . From the definition of εk+1,

εk+1 =

∥∥∥∥
(
h(tk) +

∫ tk+1

tk

f(h(s), x(s))ds

)
−
(
ĥNN(tk) + ∆tk+1fθ(ĥNN(tk), x(tk))

)∥∥∥∥

≤ εk +

∫ tk+1

tk

∥∥∥f(h(s), x(s))− fθ(ĥNN(tk), x(tk))
∥∥∥ ds.

Next, we upper bound the second term. By the triangle inequality, ĥNN(tk) ∈ [−1.1, 1.1]dh and (8),
for s ∈ [tk, tk+1],

∥∥∥f(h(s), x(s))− fθ(ĥNN(tk), x(tk))
∥∥∥

≤
∥∥∥f(h(s), x(s))− f(ĥNN(tk), x(tk)

∥∥∥+
∥∥∥f(ĥNN(tk), x(tk)− fθ(ĥNN(tk), x(tk))

∥∥∥

≤ ∥f(h(s), x(s))− f(h(tk), x(s))∥+ ∥f(h(tk), x(s))− f(h(tk), x(tk))∥
+
∥∥∥f(h(tk), x(tk))− f(ĥNN(tk), x(tk))

∥∥∥+ ϵf

≤ (Lf,h
k+1M

f
k+1 + Lf,x

k+1L
x
k+1)∆tk+1 + Lf,h

k+1∆tk+1εk + ϵf ,

where the first component is due to ∥h(s)− h(tk)∥ = ∥
∫ s
tk
f(h(u), x(u))du∥ ≤ Mf

k+1∆tk+1 and the
second term results from |x(s)− x(tk)| ≤ Lx

k+1∆tk+1.
This implies that

εk+1 ≤ (1 + Lf,h
k+1∆tk+1)εk + γk+1, (A3)

where
γk+1 := ϵf∆tk+1 + (Lf,h

k+1M
f
k+1 + Lf,x

k+1L
x
k+1)∆t2k+1 = ϵf∆tk+1 + µk+1∆t2k+1.

From (A3), we obtain that

εk+1 ≤
i+1∑

j=1


γj ·

k+1∏

l=j+1

(1 + Lf,h
l ∆tl)


 .

Since 1 + x ≤ exp(x),

k+1∏

l=j+1

(1 + Lf,h
l ∆tl) ≤ exp(

k+1∑

l=j+1

Lf,h
l ∆tl) ≤ exp(

N∑

l=1

Lf,h
l ∆tl).

Hence, we have

εk+1 ≤ exp(

N∑

i=1

Lf,h
i ∆ti)

N∑

j=1

γj = exp(Lf,hT)




N∑

j=1

ϵf∆tj + µj∆t2j




≤ T exp(
N∑

i=1

Lf,h
i ∆ti)

(
ϵf +max

j
{µj∆tj}

)
= eh.

Therefore, (A2) holds for i = k + 1. By the induction argument, (A2) is true for i = 1, . . . , N .

22

Finally, for i = 1, . . . , N , by triangle inequality and the fact that ĥNN(ti) ∈ [−1.1, 1.1]dh , applying
(8) results in

∥y(ti)− ŷNN(ti)∥ = ∥g(h(ti))− gϕ(ĥNN(ti))∥
≤ ∥g(h(ti))− g(ĥNN(ti))∥+ ∥g(ĥNN(ti))− gϕ(ĥNN(ti))∥ (A4)

≤ ϵg + Lgεk+1 < ϵg + Lgeh.

This proves the claims in Theorem 4.9.

B Experimental Details

B.1 Implementation Details

Given the training windows {x(Tr,k)}K(Tr)

k=1 , the algorithm 1 is used as a preprocessing step to prepare
each training window to the irregular sub-window with adaptive time steps. The resulting adaptive
training windows are then used to train the neural ODE model (2)-(3) using the mean-squared loss
function (1). During the inference phase, the learned ODE model (2) will be used for fitting and
prediction tasks. It can be used for arbitrary and irregular (future) time steps.

Choice of Monitor Functions. The monitor function in Algorithm 1 can be chosen flexibly,
not restricted to the maximum variation defined in (4). Since this work mainly uses non-stationary
time series with “spike”-like patterns as an example, the monitor function (4) is a natural choice for
identifying abrupt “spikes”. In general, the monitor function may be designed case-by-case depending
on the problem context. For example, when modeling the event-type counting process (such as the
Hawkes process simulated in Section 5.3), where xi ∈ N is the number of events in the current time
interval, we may choose to use the maximum counts M(xi, . . . , xj) := max{xi, . . . , xj}. By setting
the threshold ϵ ∈ (0, 1), such a monitor function will assign the finest time steps to intervals with
events (xi > 0) and use rough time steps for regions without events (xi = 0).

Choice of Threshold in Algorithm 1. The choice of the selection threshold ϵ used in Algorithm 1
can be selected from training data via simulation. In detail, note that a larger threshold ϵ would lead
to a sparser set of selected time steps (the output of Algorithm 1). Therefore, we primarily determine
the threshold ϵ by calibrating the number of remaining time stamps after applying Algorithm 1,
allowing us to control the desired efficiency. Specifically, we employ a validation data set to calibrate
the selection of threshold values, ensuring that the chosen ϵ yields the desired average lengths for the
adaptively selected time steps. As illustrated in Figure A1, an example of ECG data demonstrates
the influence of the threshold parameter ϵ on the chosen grids. It can be observed that an increasing
ϵ leads to a reduction in the number of selected grids. Furthermore, for each value of ϵ, the chosen
grids correspond to sub-intervals with greater variation.

Evaluation Metric. To compare the multi-step prediction performance of different time series
models, we use the mean-squared multi-step ahead prediction error as follows. After obtaining the
fitted model, we can use the trained networks (2)-(3) to make predictions on the testing windows

{x(Te,k)}K(Te)

k=1 , where x
(Te,k) = {x(Te,k)(t

(Te,k)
1), . . . , x(Te,k)(t

(Te,k)
n)}. Given a historical trajectory

23

0 10 20 30

0.2

0.4

0.6

0.8

1.0
Original data

0 10 20 30

0.2

0.4

0.6

0.8

1.0
ε= 0.01

0 10 20 30

0.2

0.4

0.6

0.8

1.0
ε= 0.05

0 10 20 30

0.2

0.4

0.6

0.8

1.0
ε= 0.80

Figure A1: Illustration of adaptively selected time steps with different thresholds (ECG data). The
gray dots depict the original data points and the red points illustrate the time steps selected by
Algorithm 1 using threshold ϵ = 0.01, 0.05, and 0.8, and L = 3.

{x(t1), . . . , x(tn)}, we can apply the fitted model to perform multi-step ahead prediction

ĥ(ti+1) = ĥ(ti) +

{∫ ti+1

ti
f(ĥ(s), x(s); θh)ds, when i ≤ n,∫ ti+1

ti
f(ĥ(s), x̂(s); θh)ds, when n < i ≤ n+m,

(A5)

x̂(ti+1) = g(ĥ(ti+1); θd),

which will be iteratively solved for i = 1, . . . , n+m. The first ODE can be solved by, for instance, the
Euler method. When comparing the m-step ahead prediction performance of different methods, we use
the averaged ℓ2 norm of the prediction error of length m; specifically, we take n = ⌊N/2⌋,m = N −n
in the experiments in Section 5 and perform the prediction in Eq. (A5) for each testing window
x
(Te,k) with the predicted value denoted as x̂(Te,k)(·), then the resulting prediction performance on

test data is measured as follows

MSEpred =
1

K(Te)

K(Te)∑

k=1

(
1

m

n+m∑

i=n+1

∥∥∥x(Te,k)(t
(Te,k)
i)− x̂(Te,k)(t

(Te,k)
i)

∥∥∥
2
)1/2

. (A6)

We could also use other reasonable metrics that measure the discrepancy between times series data,
such as the averaged ℓ1 norm or the dynamic time warping distance [33].

To compare the one-step prediction performance of different methods on the intensity function of
the event data generated from Hawkes processes which is described in Section 5.3, we employ the
error as defined in (A7), which has the similar form to the training loss (1):

MSEfit =
1

K(Te)

K(Te)∑

k=1

N∑

i=1

∥∥∥λ̂(Te,k)(t
(Te,k)
i)− λ(Te,k)(t

(Te,k)
i)

∥∥∥
2
|t(Te,k)
i − t

(Te,k)
i−1 |, (A7)

here the superscript (Te) denotes that the error is evaluated on the testing data. λ and λ̂ denote
the true and fitted intensity functions of the event data, respectively. In this case, λ̂ is obtained by
iteratively solving (A5) with n = N − 1 and m = 0.

Buffer Steps. To facilitate training and improve the performance of the models, we leverage
additional “buffer steps” at the beginning of each window to mitigate the effect of the zero initialization
of the hidden states. Buffer steps refer to the additionally padded time stamps before each

24

Figure A2: Illustration of buffer steps constructed on a discrete-time event data generated from a
Hawkes process.

window. Specifically, for the k-th training window {x(Tr,k)(t
(Tr,k)
i)}Ni=1, adding m buffer steps

means that the original time series is augmented to {x(Tr,k)(t
(Tr,k)
i)}Ni=−m, where for i = −m, . . . ,−1,

t
(Tr,k)
i+1 − t

(Tr,k)
i = ∆t := mini=0,...,N−1{t(Tr,k)

i+1 − t
(Tr,k)
i }. An illustration of the buffer steps for the

discrete point process data is shown in Figure A2. Detailed information on buffer steps, pertaining to
the experiments in Section 5, along with additional experiments examining the impact of incorporating
buffer steps and selecting the appropriate number of buffer steps using validation data, can be found
in Appendix B.4.

B.2 Network Structure

In the experiments, we use the same network structure for RNN, RNN-ODE, and RNN-ODE-Adap,
namely the ODE function f follows the vanilla RNN structure

f(h, x; Θf) = tanh(Wf [h, x] + bf),

where h ∈ R
dh ,Wf ∈ R

dh×(dh+D), bf ∈ R
dh , and Θf = {Wf , bf}. RNN updates the hidden states

discretely by htn = f(htn−1 , xtn ; Θf).
Furthermore, in this paper, the output function g for RNN, RNN-ODE, and RNN-ODE-Adap is

taken as a fully connected (FC) layer

g(h; Θg) = Wgh+ bg, (A8)

where h ∈ R
dh ,Wg ∈ R

D×dh , bg ∈ R
D, and Θg = {Wg, bg}. In all the experiments, we take dh = 128.

For the LSTM model, we use the same output function as in (A8) to decode hidden states and
the vanilla LSTM block to update hidden states. The latter is detailed as

fLSTM(h, c, x; ΘfLSTM
) = o(h, x; Θo)⊙ tanh (c(h, c, x; Θc)) ,

25

where

o(h, x; Θo) = σ(Wo[h, x] + bo),

c(h, c, x; Θc) = p(h, x; Θp)⊙ c+ i(h, x; Θi)⊙ q(h, x; Θq),

i(h, x; Θi) = σ(Wi[h, x] + bi),

p(h, x; Θp) = σ(Wp[h, x] + bp),

q(h, x; Θq) = σ(Wq[h, x] + bq),

here h, c ∈ R
dh ,Wo,Wi,Wp,Wq ∈ R

dh×(dh+D), bo, bi, bp, bq ∈ R
dh , and the parameters in the LSTM

model is denoted as ΘfLSTM
= {Wo,Wi,Wp,Wq, bo, bi, bp, bq}. LSTM updates the cell states and

hidden states iteratively by ctn = c(htn−1 , ctn−1 , xtn ; Θc), htn = fLSTM(htn−1 , ctn−1 , xtn ; Θf) =
o(htn−1 , xtn ; Θo)⊙ tanh(ctn).

B.3 Training, Validation, and Testing Data Sets

B.3.1 Windows of the Finest Grids

In all the experiments, the results are obtained from multiple replicas. In each replica, training,
validation, and testing windows of the finest grids are independently generated, and then used for
training the neural networks, validating, and evaluating performance.

For the data in the spiral example, 50 of the total 500 training windows of length 65 are randomly
chosen as validation data, and there are 500 testing windows of the same length. Each spiral follows
the ODE system described in Section 5.2, with A perturbed. 5 windows are randomly chosen for
each spiral sampled at 200 regular time steps.

For event-time data generated from Hawkes process, 200 of the total 2000 training Hawkes
sequences are randomly chosen as validation data, and there are 1000 testing sequences. Each
sequence is generated with α = 0.5, µ(t) ≡ 0.5 and an exponential kernel φ(t) = 2e−2t. The data
lies in physical time [1, 5]. Note that the original data set only consists of the time stamps when
the events happen. We need to further preprocess the original data to time series that indicate the
number of events happening in small intervals. Specifically, we discretize the time space into uniform
bins, transforming the continuous-time event times into discrete counts.

For ECG data, we select ten patients from the PTB-XL ECG dataset. For each patient, we
have the 12-lead ECGs of 10-second length, with 50Hz frequency. We use 3-lead in our training and
testing. Thus, there are in total 30 trajectories of length 500. The first 70% and last 30% of each
trajectory are used to extract training and testing windows respectively to avoid overlapping. 300 of
the total 3000 training windows are randomly chosen as validation data, and there are 900 testing
windows. In this case, for each of the 30 trajectories, 100 training windows of length 97 are taken
from the first 350 time steps, and 30 testing windows of the same length are from the last 150 time
steps.

B.3.2 Windows of the Predetermined Lengths

To get windows of a certain length, for RNN, LSTM, and RNN-ODE that use regular time steps,
the original windows are interpolated to get regular time steps with the desired number of grids;
RNN-ODE-Adap selects the time steps by adjusting hyper-parameters ϵ and L in Algorithm 1, such
that the averaged length of the adaptively selected validation windows is close to the desired length.

The situation is different for the event-type data since the time when the event happens is
available. In this case, RNN, LSTM, and RNN-ODE utilize the windows that count the number of

26

events happening in time intervals formed by regular time steps of the required length. RNN-ODE-
Adap first generates longer windows (and smaller ∆t) and then takes L = 1, ϵ = 0.5 in Algorithm 1
to generate windows with similar lengths to the required one. In this way, RNN-ODE-Adap utilizes
windows with irregular time steps.

B.4 More Details on Buffer Steps

For RNN, LSTM, and RNN-ODE that use regular training time series {xti}ni=0 with ti+1 − ti =
∆t (i = 0, . . . , n − 1), adding m buffer steps means that the original time series is augmented to
{xti}ni=−m, with ti+1 − ti = ∆t (i = −m, . . . , n− 1). For spiral and ECG data, we take m = 2 and

x−2 = x−1 = x0. For the event-type data from the Hawkes process, we take m = ⌊n4 ⌋ and {xti}−1
i=−m

as the true event data, in this way t0 − t−m = m∆t = ⌊n4 ⌋ 4
n ≈ 1. Here ∆t =

4
n due to that the

event-time data are generated in an interval with physical time 4.
For RNN-ODE-Adap that is trained with irregular training time series {xti}ni=0, we first find

the minimal increment in time ∆t := mini{ti+1 − ti}, then the series with m buffer steps added is
{xti}ni=−m, with ti+1 − ti = ∆t (i = −m, . . . ,−1). For spiral and ECG data, we still take m = 2 and
x−2 = x−1 = x0. For the event-time data, we use the same number of buffer steps as the other three
methods for a fair comparison.

Figure A3 below presents two examples of the event-type data from the Hawkes process, illus-
trating the performance improvement achieved by incorporating buffer steps, which mitigate the
effects of zero-initialized hidden states. The light and dark green lines represent the fitted intensity
of RNN-ODE without and with buffer steps, respectively. It can be observed that, in the absence
of buffer steps, the initial few steps are not accurately estimated due to zero initialization. The
inclusion of buffer steps effectively eliminates this issue.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0

1

2

in
te
ns
ity

Example 1
RNN-ODE (16 buffer steps)
RNN-ODE (no buffer steps)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0

1

2

in
te
ns
ity

Example 2

Figure A3: Comparison of RNN-ODE models with or without buffer steps on the two examples of
the discrete event-time data generated from the Hawkes process (the number of grids is 65).

We investigate more on the number of buffer steps for the event-type data. Specifically, Figure
A4 below shows the fitting errors of RNN-ODE for different buffer steps when the number of grids
is 65. We remark that ∆t keeps the same for all the number of buffer steps, thus the number of
buffer steps also reflects the physical buffer time used. It can be observed that as the number of
buffer steps increases from 2 to 16, the fitting error decreases. This implies that for the data with
long history dependence like the Hawkes process, enough buffer steps should be kept to circumvent

27

non-stationary results.

2 4 6 8 10 12 14 16
Number of buffer steps

0.070

0.075

0.080

0.085

0.090

m
ea

n
of

 L
2

er
ro

r

L2 error v.s. number of buffer steps
RNN-ODE

Figure A4: Comparison of the fitting errors versus the number of buffer steps for the discrete
event-type data generated from the Hawkes process for RNN-ODE (the number of grids is 65).

B.5 Other Implementation Details and Additional Results

We implement all the methods using PyTorch (Paszke et al., 2019), and all the experiments are run
on a PC with 2.6 GHz 6-Core. We use Adam (Kingma & Ba, 2014) for optimization. Moreover,
additional numerical results (Boxplots for Section 5) are given in Figures A5, A6, A7, A8, A9, A10,
and A11.

Boxplot of Figure 4. Figure A5 shows the boxplot of the prediction errors of the models for the
spiral data (the mean of MSE over replicas is plotted in Figure 4).

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

RNNODE
RNN-ODE-Adap
RNN
LSTM

Spiral data: Testing Precition MSE vs. Complexity (boxplot)

Figure A5: The boxplot of the prediction errors on the simulated spiral data from Eq. 19 for RNN,
LSTM, RNN-ODE, and RNN-ODE-Adap. x and y axes have been explained in the caption of Figure
4.

28

LSTM and Lipschitz-RNN variants. Figure A6 shows the mean and the boxplot of the
prediction errors of the models for the spiral data, including the LSTM variant of the adaptive
model (which we refer to as LSTM-ODE-Adap and is plotted in the orange dashed lines). Similarly,
Figure A7 shows the mean and the boxplot of the prediction errors of the models for the spiral data,
including the Lipschitz-RNN [6] and its adaptive variant (which we refer to as Lipschitz-RNN-Adap
and are plotted in the light and dark purple solid lines respectively).

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n
of

 M
SE

mean of MSE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM
LSTM-ODE-Adap

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

boxplot of MSE

RNNODE
RNN-ODE-Adap
RNN
LSTM
LSTM-ODE-Adap

Spiral data: Testing Precition MSE vs. Complexity

Figure A6: Comparison of prediction errors on the simulated spiral data from Eq. 19, including the
LSTM variant (plotted in the orange dashed lines). The left and right panels show the mean and
boxplot of MSE, respectively. x and y axes have been explained in the caption of Figure 4.

The results in Figures A6 and A7 indicate that LSTM and Lipschitz-RNN with adaptive time
steps achieve higher accuracy than the other models, thus validating the utility of incorporating
adaptive time steps. Furthermore, this demonstrates that our proposed scheme of adaptive time
steps can be easily and flexibly integrated into various time series models, leading to enhanced
performance.

Sensitivity of LSTM to the number of parameters. Figure A8 shows the mean and the
boxplot of the prediction errors of the models for the spiral data, including the LSTM with a similar
number of parameters to that of RNN models. It can be observed that the performance of LSTMs
with varying numbers of parameters is comparable and thus, the performance of LSTM is not
sensitive to the number of parameters.

Ablation study of the time difference term in the training objective (1). Figure A9 shows

the boxplot of MSE of the models for the ablation study without the term |t(Tr,k)
i − t

(Tr,k)
i−1 | on the

event-type data, and RNN-ODE-Adap is plotted in a red dashed line. The results indicate that if
the neural networks are trained without considering the time intervals, the models fail to fit the
underlying intensity function, despite having the same network structure as before.

Boxplot of Figure 7. Figure A10 shows the boxplots of the prediction errors for ECG data, and
the corresponding mean of MSE is shown in Figure 7.

29

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea
n
of
 M
SE

mean of MSE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM
Lipschitz-RNN
Lipschitz-RNN-Adap

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

boxplot of MSE

RNNODE
RNN-ODE-Adap
RNN
LSTM
Lipschitz-RNN
Lipschitz-RNN-Adap

Spiral data: Testing Precition MSE vs. Complexity

Figure A7: Comparison of prediction errors on the simulated spiral data from Eq. 19, including the
Lipschitz-RNN and its adaptive variant (plotted in the dark and light purple solid lines). The left
and right panels show the mean and boxplot of MSE, respectively. x and y axes have been explained
in the caption of Figure 4.

Examples of 24-step predictions for the ECG data. Figure A11 presents a comparison
of 24-step ahead predictions for the testing ECG data using RNN and RNN-ODE-Adap. The
corresponding 48-step ahead predictions can be found in Figure 7 (b).

Comparison with LEM. We compare our model with LEM [32], which incorporates the time-
adaptivity through the time modulator multiplied by the ODE function. The performance is
evaluated on the simulated data generated from the FitzHugh-Nagumo system [7],

v′ = v − v3

3
− w + Iext, w′ = τ(v + a− bw),

which is a two-scale dynamical system and included as an example in [32]. As in [32], we take
τ = 0.02, Iext = 0.5, a = 0.7, b = 0.8, the time t ∈ [0, 200], and the initial values (v0, w0) = (c0, 0),
where c0 ∼ U([−1, 1]). We rescale the system such that the time horizon is [0, 1] and |v′| is O(1).
Specifically, if we formulate the original system as y(t)′ = f(y(t)), where y = (v, w), then we
consider the rescaled system ỹ(τ) = f̃(ỹ(τ)), with t = βτ, ỹ(τ) = αy(βτ), f̃(ξ) = αf(1αξ). We take
α = 10, β = 200, and in this way τ ∈ [0, 1].

We compare the performance of the following models,

LEM :

{
h′(t) = σ̂(W2h(t) + V2x(t) + b2) ◦ (σ(Whg(t) + Vhx(t) + bh)− h(t)),

g′(t) = σ̂(W1h(t) + V1x(t) + b1) ◦ (σ(Wgh(t) + Vgx(t) + bg)− g(t)),

LEM-0 :

{
h′(t) = σ(Whg(t) + Vhx(t) + bh)− h(t),

g′(t) = σ(Wgh(t) + Vgx(t) + bg)− g(t),

RNN-ODE :

{
h′(t) = σ(Whhg(t) +Whgg(t) + Vhx(t) + bh),

g′(t) = σ(Wghh(t) +Wggg(t) + Vgx(t) + bg),

30

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n
of

 M
SE

mean of MSE

RNN-ODE
RNN-ODE-Adap
RNN
LSTM
LSTM (smaller model)

7 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

boxplot of MSE

RNNODE
RNN-ODE-Adap
RNN
LSTM
LSTM (smaller model)

Spiral data: Testing Precition MSE vs. Complexity

Figure A8: Comparison of prediction errors on the simulated spiral data from Eq. 19, including the
LSTM with a similar number of parameters to that of RNN models (plotted in the orange dashed
lines). The left and right panels show the mean and boxplot of MSE, respectively.

with the output
x̂(t) = Wx,hh(t) +Wx,gg(t) + bx.

Here σ̂(x) = 0.5(1 + tanh(x/2)), h, g ∈ R
dh . Note that LEM-0 is LEM without the time modulators,

and RNN-ODE possesses the vanilla RNN structure if we view the concatenated (h(t), g(t)) ∈ R
2dh

as the hidden state. As in the other experiments, we still take dh = 128.
The length of both training and testing windows is set to N = 64, with the windows sampled

at regular time intervals defined by ti =
i

N−1 , i = 0, . . . , N . When integrating the ODE models,

the time step difference is kept consistent with the physical time difference, specified as ∆t = 1
N−1 .

Consequently, the only difference between the models is the structure of the neural ODE. To compare
the time adaptivity incorporated in the time modulator of LEM and the adaptive algorithm proposed
in this study, we additionally present the results obtained by training LEM-0 and RNN-ODE with
the adaptively chosen time steps.

Table 1 presents the MSE for one-step predictions made by the models, trained either using the
original training windows or those selected adaptively (Both LEM and LEM-0 are implemented
utilizing the code in [32]). As observed from Table 1, the RNN-ODE models exhibit a lower error

Model Training data Testing MSE

LEM-0 Original windows, N = 64 3.54e− 02± 2.69e− 03
LEM-0 Adaptive windows, N̄a = 43 3.61e− 02± 1.85e− 03

RNN-ODE Original windows, N = 64 2.55e− 02± 4.12e− 03
RNN-ODE Adaptive windows, N̄a = 43 2.44e− 02± 5.56e− 03
LEM [32] Original windows, N = 64 3.03e− 02± 2.29e− 03

Table 1: MSE for one-step prediction of the models on data simulated from the FitzHugh-Nagumo
system [7]. The presented results are from 25 replicas, and the MSE for the one-step prediction is
calculated as in (A7).

31

17 21 25 29 33 37 41 45 49 53 57 61 65
number of grids

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L2
 e
rro

r

L2 error vs. complexity
RNN-ODE
RNN-ODE-Adap
RNN-ODE-Adap (con(tant Δt)
RNN
LSTM

Figure A9: Comparison of prediction errors for the event-type data generated from Hawkes processes,
including RNN-ODE-Adap trained with constant ∆t (plotted in the red dashed line).

on average compared to the LEM models. The adaptive training windows slightly enhance the
performance of the RNN-ODE model, while they do not improve the performance of LEM-0. LEM
outperforms LEM-0 by incorporating time modulators, yet the RNN-ODE-Adap model behaves
better than LEM by up to one standard deviation.

32

25 31 37 43 49 55 61 67 73 79 85 91 97
number of grids

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

prediction length = 24

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

25 31 37 43 49 55 61 67 73 79 85 91 97
number of grids

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
SE

prediction length = 48

RNN-ODE
RNN-ODE-Adap
RNN
LSTM

ECG data: Testing Precition MSE vs. Complexity (boxplot)

Figure A10: Boxplot of the prediction errors on the real ECG data.

380 400 420 440 460

0.0

0.2

0.4

0.6

0.8

Testing Window (Example 1)
true traj
RNN
RNN-ODE-Adap

380 400 420 440 460
0.0

0.2

0.4

0.6

0.8

Testing Window (Example 2)
true traj
RNN
RNN-ODE-Adap

Example: ECG data, fit & prediction (for 24 time steps)

Figure A11: Examples of 24 steps ahead prediction for the testing ECG data using RNN (marked in
blue) and RNN-ODE-Adap (marked in red). The predicted region is marked between dashed lines.

33

	Introduction
	Related Works

	Problem Setup
	Training Data and Prediction Task
	Training Objective

	Method
	Neural ODE for RNN model
	Adaptive Time Steps
	Computational Complexity

	Theory
	Function Estimation for Event-type Data
	Approximation Analysis of RNN-ODE-Adap

	Numerical Experiments
	Trained Models
	Simulated Spiral Data
	Simulated Point-Process Data
	Real Data: ECG Time Series

	Discussion
	Proofs
	Proofs in Section 4.1
	Proofs in Section 4.2

	Experimental Details
	Implementation Details
	Network Structure
	Training, Validation, and Testing Data Sets
	Windows of the Finest Grids
	Windows of the Predetermined Lengths

	More Details on Buffer Steps
	Other Implementation Details and Additional Results

