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Abstract—In this paper, causal graph identification with natu-
ral observations as well as observations due to soft interventions
is investigated. It is assumed that the graph is governed by linear
structural equations; it is further assumed that both the causal
topology and the distribution of interventions are unknown. The
proposed causal graph learning approach is informed by prior
work which proposed the decomposition of the problem into
learning sub-graphs (all of the parents of a node) to learn the
whole graph. A greedy algorithm that focuses on the reduction
of the false negative rate (erroneously missing the presence of a
causal relationship) is proposed. A sufficient condition is derived,
under which the estimated graph is guaranteed to be free of
false negatives, almost surely as the number of observations
grows large. Numerical results indicate that the proposed scheme
outperforms standard graph identification schemes by exploiting
the sub-graph structure and by exploring a broader set of soft
interventions. Compared to existing approaches, the proposed
scheme achieves a 32% gain in false negative rate and a 62%
gain in normalized Hamming distance.

I. INTRODUCTION

Causal inference enables understanding of the underlying
mechanisms in complex systems, with applications spanning
social sciences [1], economics [2], biology [3], and machine
learning [4]. Uncovering causal relationships facilitates the
prediction of the effect of interventions and the design of
effective policies, thus enhancing the understanding of system
behavior. Causal structures are often represented by Bayesian
networks in the form of directed acyclic graphs (DAGs).

Recent algorithms for causal discovery with purely obser-
vational data consider the exploitation of constraints or scores.
Constraint-based methods, such as the inductive causation
algorithm [5] and the PC algorithm [6], search for conditional
independence among possible subsets of nodes. Alternatively,
score-based methods (see e.g. [7]–[9]) evaluates different
graph structures via their data-fitting quality. To improve
scalability, some recent score-based approaches (see e.g. [10]–
[12]) formulate graph identification as a continuous optimiza-
tion problem by relaxing the DAG constraint. For example,
DAGMA [12] employs an objective function consisting of the
likelihood score and a log-determinant function to measure
acyclicity.

A significant difficulty of pure observation-based causal
discovery is the inherent ambiguity in distinguishing between
competing causal structures [13]: multiple causal structures
can exhibit similar statistical properties. Interventions (exper-
iments) where certain variables are deliberately manipulated

have shown promise in resolving these ambiguities [14]–
[19]. Although interventions have gained recognition as a
powerful tool in causal discovery, most existing approaches
are based on hard (perfect) interventions that sever the causal
links between the intervened node and its parents. While the
hard intervention assumption simplifies causal modeling, in
many applications, interventions do not completely eliminate
causal effects (see e.g. [20]–[22]). Soft interventions, instead,
are more aligned with real-world scenarios, where variables
remain causally connected even under intervention.

Soft interventions present unique challenges and opportuni-
ties for causal discovery. Although they provide additional in-
formation for resolving ambiguities in causal structures, direct
causal effects cannot be completely isolated. Causal discovery
under standard soft intervention has been investigated recently
[23]–[26]. In [24], we proposed a sub-graph learning scheme
for the soft intervention setting that achieves high performance
gain, for learning the entire graph, empirically. Moreover, it
is observed that the false negative rate for link detection has
a stronger impact on reward accumulation in causal bandits.
Controlling for false negative or false positive rates results in
new performance bounds and algorithms for causal discovery
[27]. In contrast, the structure learning algorithm (GA-LCB-
SL) with a graph error guarantee [26], identifies descendants
of an intervened node by pairwise comparisons. This work is
one of the few that consider soft interventions, similar to our
framework, although it focuses on reward optimization rather
than graph identification. We shall numerically compare our
new method to GA-LCB-SL in the sequel.

While more complex graph identification methods offer
strong performance, they are often challenging to analyze. In
[8], a neighborhood selection scheme based on the minimum
mean squared error (MMSE) and L1 regularization is shown to
be consistent for sparse graphs. A penalized maximum likeli-
hood based estimator [28] has a convergence rate analysis. We
underscore that these prior works did not consider the impact
of false negatives or soft-interventions as we do herein.

Herein, we consider a more general type of soft intervention,
which may alter both the topology and weights of a causal
graph. Motivated by [24], we propose the Causal Sub-graph
Learning with Soft Intervention (CSL-SI) scheme. By learning
sub-graphs, the proposed scheme preserves low sample and
computational complexities, while enabling asymptotic perfor-
mance guarantees. The main contributions of this paper are:

1) We propose a sub-graph learning scheme with low



sample and computational complexities, tailored for the
soft intervention setting.

2) The proposed algorithm is analyzed in the asymptotic
regime and a sufficient condition is derived, under which
the estimated graph is guaranteed to be free of false
negatives, almost surely.

3) Based on the derived condition, the relationship between
the design of soft interventions and structure identifia-
bility is investigated and explained.

4) Numerical results indicate that the proposed scheme
outperforms standard graph identification schemes by
exploiting the sub-graph structure and by exploring a
broader set of soft interventions.

II. CAUSAL GRAPHICAL MODEL WITH SOFT
INTERVENTIONS

To represent causal effects, consider a DAG with structure
(V,B), where V = [N ]

.
= {1, . . . , N} is the set of N nodes

and B is the set of directed edges. The observational (without
intervention) edge-weight matrix B ∈ RN×N captures the
strength of causal effects, where the (i, j)-th entry represents
the weight of the edge i → j.

To model causal effects under intervention, consider node-
wise intervention, defined as

a = (a1, . . . , aN )
⊤ ∈ {0, 1}N , (1)

where ai represents whether node i is intervened (1) or not
(0). Specifically, instead of hard interventions, we consider
soft interventions, which do not necessarily cut off causal
relationships between the intervened node and its parents, but
change the incoming edges to the node. We denote the set of
parents of node i by Pi(ai), the estimated set of parents by
P̂i(ai). The set difference of the estimated and true parent sets
is denoted by P̂i\Pi(ai).

Further, we denote the interventional edge-weight matrix by
B′ ∈ RN×N , such that the post-intervention weight matrix
Ba can be constructed as

[Ba]i = I(ai = 1)B′
i + I(ai = 0)Bi, (2)

where I(·) is the indicator function and [·]i represents the i-th
column of a matrix. The i-th column of the post-intervention
weight matrix determines the set of parents of node i and how
these parents causally influence node i.

As a result of the intervention, the vector of stochastic
values associated with the nodes is represented by x ∈ RN .
The causal relationship among nodes is described by a linear
structural equation model (LinSEM),

x = (Ba)
⊤
x+ e, (3)

where e is a vector of exogenous/noise variables. We assume
that e contains independent elements, with known means and
unknown variances represented by ν and ϵ. The causal rela-
tionship described in (3) can be further manipulated, resulting
in

x = (I −Ba)
−⊤

e
.
= (Ca)

⊤
e. (4)

We define Ca as the post-intervention flow-weight matrix,
whose (i, j)-th entry represents the weight of the net flow
from node i to j. In this way, each random variable xi can be
considered as a linear combination of exogenous variables in
e, weighted by the corresponding flow strength. Thus, under
a specific intervention a, x follows a multivariate distribution
with mean and covariance defined as

µ(a)
.
= E[x|a] = (Ca)

⊤
ν, (5)

Σ(a)
.
= E

[
(x− µ(a))(x− µ(a))

⊤
∣∣∣a] (6)

= (Ca)
⊤
diag(ϵ) Ca. (7)

Further, given an intervention selection strategy π, the flow
weight matrix and the second moment matrix are defined as

Cπ .
= Eπ[Ca] =

∑
a

π(a)Ca, (8)

Mπ .
= Eπ[xx

⊤] =
∑
a

π(a)
(
Σ(a) + µ(a)µ(a)

⊤)
. (9)

III. THE CSL-SI ALGORITHM

To estimate the causal structure, we employ the squared
error as the score function, which is commonly used in the
literature (see e.g. [10]–[12]). We shall see that our approach
is tractable for analysis, while providing strong performance.
With data collected under different soft interventions, the
optimization problem can be formulated as

min
B̂,B̂′

∑
a

∥∥X(a)
(
I − B̂a

)
− 1ν⊤∥∥2

F
(10)

s.t. B̂, B̂′ represent DAGs, (11)

where ∥·∥F denotes the Frobenius norm and X(a) represents
the collection of samples under intervention a. Further, we
can rewrite the objective function as∑

a

∑
i∈[N ]

∥∥X(a)
[
I − B̂a

]
i
− 1νi

∥∥2
2

=
∑
i∈[N ]

∑
ai∈{0,1}

∥∥X(a)
[
I − B̂a

]
i
− 1νi

∥∥2
2

(12)

=
∑
i∈[N ]

(∥∥X(ai = 0)
[
I − B̂

]
i
− 1νi

∥∥2
2

+
∥∥X(ai = 1)

[
I − B̂′

]
i
− 1νi

∥∥2
2

)
. (13)

The reformulation is enabled by the principle of independent
mechanisms [13], which states that intervention on one mech-
anism does not affect the others. As in [24], the problem is
decomposed into sub-problems of learning the local structures.
Sub-graph learning is essentially the identification of the
parents of a node. Moreover, the reformulation separates the
estimation of the observational and interventional matrices into
two independent tasks. In the sequel, we focus on learning the
observational edge-weights and omit the intervention index
ai for brevity. The same strategy can be used to learn the
interventional weight matrix, using corresponding samples.

Although the objective function can be decomposed, enforc-
ing the DAG nature is a global constraint. Since the number



of possible DAGs is super-exponential in the number of nodes
[13], searching over this space is computationally infeasible.
To avoid an exhaustive search, we propose a greedy approach.
The graph is initialized with all possible edges, which mini-
mizes the objective, but violates the DAG constraint. Rejection
of an edge with the minimum increase to the objective is
performed in every subsequent step, until the estimated graph
becomes a DAG.

Specifically, to calculate the increase in the objective after
rejection of an edge i → j with i ∈ P̂j , we compare the
squared residual norms with and without node i as a potential
parent of node j. With the whole set of estimated parents,
the estimated weights and residuals are given by MMSE
estimation as

B̂j,P̂j
=

(
X⊤

P̂j
XP̂j

)−1
X⊤

P̂j
(Xj − 1νj), (14)

rj(P̂j) =
[
I −XP̂j

(
X⊤

P̂j
XP̂j

)−1
X⊤

P̂j

]
(Xj − 1νj). (15)

Note that XP represents the sub-matrix consisting of columns
corresponding to the nodes in the set P . Denote the projection
matrices onto the column and left null space of XP by

Φ(XP)
.
= XP

(
X⊤

PXP
)−1

X⊤
P , (16)

ΦC(XP)
.
= I −XP

(
X⊤

PXP
)−1

X⊤
P . (17)

which allow us to rewrite the residual vector as

rj(P̂j) =
[
I − Φ

(
XP̂j

)]
(Xj − 1νj) (18)

=
[
I − Φ

(
ΦC(XP̂j\i

)
Xi

)]
ΦC(XP̂j\i

)
(Xj − 1νj) (19)

= ΦC(ΦC(XP̂j\i
)
Xi

)
· rj(P̂j\i). (20)

Essentially, the residual vector is successively projected onto
orthogonal subspaces [29]. Lastly, we define the normalized
difference in squared residual norms as

∆ij
.
=

(∥∥rj(P̂j\i)
∥∥2
2
−
∥∥rj(P̂j)

∥∥2
2

)
/tj , (21)

where tj denotes the number of time slots, or equivalently,
number of samples of interest. Intuitively, a small ∆ij indi-
cates that keeping the edge (i, j) does not strongly improve
the estimation quality of the value of node j. The edge with
the smallest ∆ij is removed from the edge set in each step to
minimize the increase of the objective. The complete algorithm
is provided in Algorithm 1.

Since the proposed algorithm stops once the estimated
graph satisfies the DAG constraint, it does not depend on
any predefined threshold. Nonetheless, there exists an implicit
threshold on the objective induced by the stopping time. Since
the threshold determines the number of edges to be rejected,
it corresponds to a specific balance between the false negative
rate (FNR) and false positive rate (FPR), defined as

FNR
.
=

∑
i,j I

(
Bij ̸= 0, B̂ij = 0

)
∑

i,j I (Bij ̸= 0)
, (22)

FPR
.
=

∑
i,j I

(
Bij = 0, B̂ij ̸= 0

)
∑

i,j I (Bij = 0)
. (23)

Algorithm 1 The CSL-SI Algorithm
Require: The set of nodes V and node values X .

1: Initialize the estimated edge set to include all possible
directed edges: B̂ = {(i, j) | i ̸= j, ∀i, j ∈ V}.

2: while (V, B̂) is not a DAG do
3: Compute differences in residual norms ∆ij , ∀(i, j) ∈ B̂,

by MMSE estimation, with X .
4: Find the edge (i, j) = argmini,j ∆ij and remove it

from the estimated edge set B̂.
5: end while
6: Compute [B̂]ij , ∀(i, j) ∈ B̂, by linear MMSE estimation,

with X . For any (i, j) /∈ B̂, set B̂ij = 0.
7: return Estimated weight matrix B̂.

Since the proposed algorithm does not reject edges once the
estimate becomes a DAG, the corresponding implicit threshold
cannot be reduced without violating the DAG constraint. Thus,
one can interpret the proposed scheme as a greedy approach
for minimizing the FNR over possible DAGs. Furthermore,
Theorem 1 shows that if a sufficient condition is met, the pro-
posed algorithm asymptotically achieves zero false negatives.

IV. ASYMPTOTIC ANALYSIS

We next show that our proposed algorithm, asymptotically,
achieves zero false negatives. To ensure that the estimated
causal graph contains no false negative error, a sufficient
condition is

min
j∈[N ],i∈Pj

∆ij > min
j∈[N ],i∈P̂j\Pj

∆ij , (24)

which requires that every true parent has a larger normalized
difference in residual norms than at least one non-parent. Thus,
this condition guarantees that true parents will not be rejected
if non-parents exist in the estimate. Note that the normalized
differences in both cases depend on the intervention selection
strategy π, which determines distribution of the samples. A
good strategy results in large ∆ij for true parents and small
∆ij for non-parents.

To understand when Equation (24) is satisfied, we examine
the range of ∆ij by evaluating the asymptotic limits of the
terms in (24).

Lemma 1. If Pj ⊆ P̂j and i ∈ P̂j\Pj , ∆ij converges almost
surely to a limit for sufficiently large tj ,

∆ij
a.s.−→

[
Cπ

jiϵ
2
j − ϵ2j Cπ

j,P̂j\i

(
Mπ

P̂j\i

)−1
Mπ

P̂j\i,i

]2
Mπ

ii −Mπ
i,P̂j\i

(
Mπ

P̂j\i

)−1
Mπ

P̂j\i,i
.
= ∆∗

ij(F parent). (25)

Proof Sketch: The proof exploits properties of the projection
embedded in MMSE estimation and the fact that observations
of the parents for node j reside in the subspace resulting from
the projection. The strong law of large numbers is invoked
as well as the continuous mapping theorem. The full proof is
provided in [30].



There are several key remarks regarding Lemma 1.

Remark 1. As node i is not a parent of node j, a small ∆ij

is desired in order to reject the edge i → j. Since the limit
is a function of the intervention selection strategy π, we can
minimize ∆ij by optimizing the strategy.

Remark 2. When node i is not a descendant of node j, the
flow weight in the numerator is zero, Cπ

ji = 0. In this case,
the magnitude of ∆ij is determined by the second term in the
numerator, which essentially measures the correlation between
node i and other potential parents.

Remark 3. When node i is a descendant of node j under
certain interventions, a net flow weight Cπ

ji exists and often it
is larger than the second term. However, the causal confusion
caused by descendants can be mitigated by applying a diverse
set of soft interventions. Specifically, we have∣∣∣∑

a

π(a) [Ca]ji

∣∣∣ ≤ max
a

∣∣[Ca]ji
∣∣, (26)

which states that the averaged flow could be much smaller
than the strongest causal flow under a particular intervention.

Lemma 2. If Pj ⊆ P̂j and i ∈ Pj , ∆ij converges almost
surely to a limit for sufficiently large tj , that is,

∆ij
a.s.−→ ∆∗

ij(T parent)
.
=[

BijM
π
ii −

(
BijM

π
i,P̂j\i

+ ϵ2jC
π
j,P̂j\i

)(
Mπ

P̂j\i

)−1
Mπ

P̂j\i,i

]2
Mπ

ii −Mπ
i,P̂j\i

(
Mπ

P̂j\i

)−1
Mπ

P̂j\i,i
(27)

Proof Sketch: As with the proof of Lemma 1, we use the fact
that the observations at the parents for node j reside in the
subspace resulting from the projection. We invoke the strong
law of large numbers and the continuous mapping theorem for
our asymptotic result. The full proof is provided in [30].

Remark 4. As node i is a parent of node j, a large ∆ij is
desired in order to preserve the true edge i → j. Maximization
of ∆ij can be achieved by optimization of the intervention
strategy π as the limit is a function of π.

Remark 5. Equation (27) shows that the normalized dif-
ference ∆ij is positively correlated with the strength of the
causal link, Bij . However, the strength of this true link can
be weakened by the correlation between node i and other
potential parents, as suggested by the second term in the
numerator in (27). To determine the true strength of the link,
having a diverse set of interventions is helpful: even if strong
correlation exists under certain interventions, the averaged
correlation can be much weaker, due to the existence of weak
or reversed correlation under other interventions.

Finally, combination of the Lemmas enables us to develop
the following sufficient condition for ensuring identification
free of false negative errors.
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Fig. 1. Limits on ∆ij from Lemmas 1, 2 and empirical values.

Theorem 1. For sufficiently large tj , ∀j, the proposed algo-
rithm ensures no false negative error if the following condition
is satisfied,

min
j∈[N ],i∈Pj

∆∗
ij(T parent) > min

j∈[N ],i∈P̂j\Pj

∆∗
ij(F parent).

(28)

Proof: Since the algorithm starts with an estimated edge set
that includes all possible edges, initially, no false negative error
exists. In subsequent steps, if ∀j, Pj ⊆ P̂j is satisfied before
edge rejection, Lemma 1, Lemma 2 and the condition (28)
guarantee that

min
j∈[N ],i∈Pj

∆ij > min
j∈[N ],i∈P̂j\Pj

∆ij , (29)

which suggests that the minimum ∆ij corresponds to a non-
existent causal edge. Thus, after rejecting this edge, ∀j,
Pj ⊆ P̂j remains satisfied. Applying mathematical induction
completes the proof.

V. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed CSL-SI algorithm, for a linear structural equation
model and soft interventions. For each Monte Carlo run, the
causal structure is randomly generated, with the edge weights
randomly sampled from the uniform distribution U(−2, 2).
The exogenous variables are independently sampled in each
time step from the Gaussian distribution N (1, 1). For each set
of parameters, we repeat the Monte Carlo run M = 100 times.

To better understand the behavior of the normalized differ-
ence, we compute both the empirical values and the limits
provided in Lemmas 1 and 2. We take N = 10 and average
over 100 Monte Carlo runs, with results presented in Fig. 1.
In each time step, an intervention is conducted and a vector
of node values is collected. As expected, empirical values
converge to the corresponding limits, and true parents have
larger normalized difference ∆ij compared with false parents.

To evaluate graph identification performance, we consider
the DAGMA algorithm [12] and the GA-LCB-SL algorithm
[26] for comparison. The DAGMA algorithm estimates the
weight matrix by minimizing the following objective function,

− logL(X; B̂)+β1

∥∥B̂∥∥
1
− log det(β2I−B̂◦B̂)+N log β2,
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where L(·) denotes the likelihood function, β1, β2 are weights
for the penalty and log-determinant terms and the operator
◦ denotes the Hadamard product. Since DAGMA identifies
entire graphs, half of the interventions are set as 0 to learn
B while the other half are set as 1 for B′. The GA-LCB-SI
algorithm first estimates the descendant set of each node as{

j ∈ [N ] :
∣∣µ̂j(0)− µ̂j(ai = 1, ak = 0, ∀k)

∣∣ > η

2

}
, (30)

where η is the threshold given by the regularity assumption.
The empirical mean for node j for the cases of with and
without atomic interventions on node i are compared to
determine whether node j is a descendant of node i. Then, the
parent set of each node is determined by the Lasso regression
[31] on the ancestors of that node.

Figure 2 plots the FNR (defined in (22)) as a function of
time steps, for two different graph sizes. As expected, FNR
of all algorithms decrease as more samples are collected.
For N = 8, the average FNR achieved by the proposed
CSL-SI scheme is lower than the DAGMA algorithm and
the GA-LCB-SL algorithm by 34.8% and 85.9% respectively.
For N = 12, the gain in FNR becomes 29.4% and 85.4%,
compared with DAGMA and GA-LCB-SI. We also observe
that, initially, the FNR of CSL-SI is higher compared to
DAGMA, but decreases rapidly and becomes almost zero at
the end. This phenomenon confirms that the proposed scheme
has low sample complexity and vanishing FNR.

In Fig. 3, the normalized Hamming distance is plotted as a
function of time steps, which is defined as

d(B, B̂)
.
=

∑
i,j

[
I(Bij = 0, B̂ij ̸= 0)+ I(Bij ̸= 0, B̂ij = 0)

− I(Bij ̸= 0, B̂ij = 0, B̂ji ̸= 0)
]
/N2. (31)

Compared to DAGMA and GA-LCB-SI, the average perfor-
mance gains provided by the CSL-SI scheme are 59.6% and
83.2% for N = 8, 66.2% and 87.3% for N = 12. An
interesting observation is that, both DAGMA and GA-LCB-SI
perform better on a smaller graph (N = 8), while the proposed
scheme performs better on a larger graph. This result suggests
that as N increases, the number of mistaken edges increases
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more slowly than the normalization factor, which is quadratic
in N .

The observed gain in both FNR and normalized structural
Hamming distance for CSL-SI has a two-fold explanation.
First, CSL-SI leverages the power of sub-graph learning to
achieve lower sample complexity, which partially explains the
improvement over DAGMA. Second, CSL-SI fully exploits
soft interventions to reduce causal ambiguities. As discussed in
the Remarks, enforcing a diverse set of soft interventions can
improve sub-structures identification. Specifically, the number
of utilized soft interventions is 2 for DAGMA, N +1 for GA-
LCB-SI, and 2N for CSL-SI. For GA-LCB-SI, we emphasize
that although pair-wise comparison in means (see (30)) en-
ables a finite sample performance analysis, it also imposes
restrictions on intervention selection, degrading performance
in the limited data region. Moreover, since GA-LCB-SI is
designed for reward optimization, which may not require an
accurate causal graph, the comparison is not completely fair.
However, as noted previously, GA-LCB-SI does employ soft
interventions in contrast to most prior work.

VI. CONCLUSIONS

In this paper, we investigated causal graph identification
under soft intervention. A sub-graph learning based greedy
algorithm is proposed, focusing on the reduction of the false
negative rate. Further, we derived a sufficient condition, under
which the proposed algorithm ensures no false negative error,
almost surely as the number of observations grows large. Nu-
merical results show that the proposed algorithm outperforms
existing approaches by exploiting the sub-graph structure and
exploring a broader set of soft interventions.
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