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Abstract

We study a stochastic PDE model for an evolving set M(r) € RI*! that resem-
bles a continuum version of origin-excited or reinforced random walk (Benjamini
and Wilson in Electron Commun Probab 8:86-92, 2003; Davis in Probab Theory
Relat Fields 84(2):203-229, 1990; Kosygina and Zerner in Bull Inst Math Acad
Sinica (N.S.) 8(1):105-157, 2013; Kozma in Oberwolfach Rep 27:1552, 2007;
Kozma in: European congress of mathematics. European Mathematical Society,
Zurich, 429-443, 2013). We show that long-time fluctuations of an associated
height function are given by a regularized Kardar—Parisi-Zhang (KPz)-type PDE
on a hypersurface in R4*!, modulated by a Dirichlet-to-Neumann operator. We
also show that, for d 4+ 1 = 2, the regularization in this KPz-type equation can be
removed after renormalization. To the best of our knowledge, this gives the first in-
stance of KPz-type behavior in Laplacian growth, which investigated (for somewhat
different models) in Parisi and Zheng (Phys Rev Lett 53:1791, 1984), Ramirez and
Sidoravicius (J Eur Math Soc 6(3):293-334, 2004).
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1. Introduction

Stochastic interfaces driven by harmonic measure provide rich models for many
biological and physical processes, including (internal) diffusion-limited aggrega-
tion [26,34], dielectric breakdown [28], as well as the Hastings—Levitov process
[17], the last of which also has connections to turbulence in fluid mechanics. Be-
cause the driving mechanism for the growth is determined by harmonic measure,
such interfaces are often known as (stochastic) Laplacian growth models.

A central question concerns the long-time behavior of said interfaces [3,7,22—
24].1In[31], the authors asked whether or not the stochastic interface studied therein
has a Kardar—Parisi—Zhang (kpz) scaling limit. (See also [29] in the physics litera-
ture, which addresses a related question for diffusion-limited aggregation, namely
its relation to the “Eden model".) Since then, the derivation of kpz-related scal-
ing limits in Laplacian growth models more generally has remained open, despite
surging interest in KPZ universality over the past few decades [1,4,5,30].

The goal of this paper is to derive a KPz-type stochastic PDE (1.9) for a Laplacian
growth model that resembles a continuum version the origin-excited random walk
and once-reinforced random walk with strong reinforcement, whose history and
background is addressed at length in [3,7,22-24]. To be more precise, we show the
following two results:

(1) Fluctuations of an associated “height function” converge (in some scaling limit)
to a regularized Kpz-type equation. (See Theorem 1.5.)

(2) After renormalization, solutions to the KPz-type equation converge as we re-
move the regularization; this is done on hypersurfaces of dimension d = 1 in
R2. (See Theorem 1.6.)

Throughout this paper, we often use subscripts for inputs at which we evaluate
functions of space, time, or space—time. This is in lieu of parentheses, which would
make formulas and displays overloaded.

1.1. xpz-Type Equation for the Random Growth

The model of interest in this paper is an SPDE for random growth driven by a
Brownian particle. Before we present a precise formulation of this SPDE, which we
defer to Construction 1.1, let us describe the model in words.

Fix a compact, connected set IM C R4+ with smooth boundary; run the
“boundary trace” of a reflecting Brownian motion in IM. That is, run a reflecting
Brownian motion in IM with unit inwards normal reflection off of d1M, time-change
it according to level sets of its boundary local time, then speed it up by ¢!, where
& K 11is ascaling parameter. We will be interested in the evolution of the interface
process t > dIM(#); this will be the graph of a “height function” (¢, x) — If
(with respect to x). The evolution of this height function is given by simultaneously
“inflating” or “growing” I around the boundary trace particle and smoothing I¢,
e.g. via heat flow. Finally, we specify that the Riemannian metric on IM with respect
to which the reflecting Brownian motion is defined is determined by the evolving
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height function I¢. Thus, neither the “boundary trace” particle nor the height func-
tion I° is Markovian on its own; this is a key feature of the origin-excited and
once-reinforced random walk models from [3,7,22-24].

Intuitively, the boundary trace particle is “inflating” the set IM outwards while
its boundary smooths out. A discrete-time and discrete-step version of the above
model, phrased in terms of a growing set IM(r) € RI*! beginning at M, could be
given as follows: run a reflecting Brownian motion inside IM(#) until its boundary
local time is equal to ¢ ~!. At the point where the Brownian motion is stopped,
inflate IM(¢) outwards. Then, we smooth dIM(¢). We now iterate, but with the new
starting location of the particle and the updated set. See Fig. 1 for a depiction of
this discrete version. However, instead of the MI(#) process in this paragraph, we
study the graph of an evolving height function as our growth model since it is more
amenable to analysis.

We emphasize that the smoothing and inflation dynamics of the growth occur on
the same time-scale as a reflecting Brownian motion that is time-changed according
to boundary local time. Using local time instead of “real time” has the benefit that
the inflation does not slow down or speed up as the volume of the set grows; this puts
all dynamics on the same footing. More generally, fixing the interface dynamics to
be of unit speed and reparameterizing the particle speed into these units is standard
in Laplacian growth models [25].

We will now present a precise formulation for the model of interest in this paper.

Construction 1.1. Fix d > 1, and take a compact, connected subset M C Rd+!
with smooth boundary 9IM; we will assume that Vol(0M) = 1. Lett — (If , q7) €
€ (0IM) x dM be the following Markov process.

(1) With notation to be explained afterwards, we let I° solve
DI = AL + 5 4 VolpK, g (1.1)

e ¢ > 0 is a scaling parameter that we eventually take to 0.

e A is the Laplacian on the embedded submanifold dIM.

e For any I € €°°(0IM), the term Voly is the volume of the image of dIM
under 1, that is the volume of its graph. By a standard change-of-variables
computation, we have

Voly = [, (1 + |VL[%)2dz, (1.2)

where dz is integration with respect to surface measure on 0IM and V
denotes gradient on 0M (given its Euclidean surface metric).
o The kernel K € €°°(0M x 0IM) is real-valued, symmetric, and it satisfies
Jopg Kx,zdz = 1.
(2) Now, with notation to be explained after, we define the following “boundary
trace” valued in 0M:

a7 = b1, t(e7 ') ==sup{s > 0: LY <e7l1).

Above, L® is the boundary local time process of b, which is a reflecting Brownian
motion on M (with unit inwards normal reflection off of 9IM) with respect to a
Riemannian metric on M determined by 1¢; we define it precisely as follows:



50

70

Page 5 of

(2025) 249:50

Arch. Rational Mech. Anal.

S9[oI10 dAndadsar oY) pue g ‘o opdures
0 91e1) “(I 1B PRIAIUD J[OII0 B SUIppe Aq 19s Ay} Juowdny 'ssa001d aures ay) Suiop pue ) Je Jas pajepdn 2y} uo uorow uerumorg 3unodyl e Junels Aq
porduwes st ( °[[Bq [[BWS © ppe ‘D IV "8 SIY oW [e20] Arepunoq si1 uoym 3urddos pue ¢ uonow uerumolg Junoogar Sunrels £q parduwes st ) (3391 ayd
uo) g yiIm 1aels “(dags moyf 1pay paixa ay1 jnoyiim pup) y yutod je paIejuad oI B ST AT 1S [eNIUT Y} UM [oPOU 2} JO UOTSIOA QWIT}-JAI0SIP V °T *Si




50 Page6of 70 Arch. Rational Mech. Anal. (2025) 249:50

e For any I € €*°(0IM), consider the graph map 0IM — 9IM x R given by
x = (x, I). We equip 0IM x R with the product metric (here 0M is given
Euclidean surface metric), and give the graph of 1 its induced Riemannian
metric. Let g[VI] be the pullback of this metric under the graph map. (It is
a metric on dIM. This notation is used since it depends only on first-order
derivatives of 1.)

e For concreteness, we extend g[VI] from 0IM to M in the following fashion.
Choose a collar Clpg] € M, that is a set such that for some pg > 0, we
have an isomorphism Clpg] >~ dIM x [0, po] that identifies a pair (z, p)
with the unique point x € C|po] that is distance p from z. Next, fix a smooth
function x : R — [0, 1] such that x = 0 on (—o0,0] and x = 1 on
[po, 00). For any p € [0, pol, we define the following metric on 1M

glVI], := (I — x[p]) - g[VI] + x[p]g[O].

In particular, we interpolate between g[VI] on 9 at p = 0 and Euclidean
surface metric on 0M at p = po. This is a smooth family of metrics on 0IM
parameterized by p € [0, pol, so in order to define a metric on the foliation
Clpo] >~ dM x [0, po], it suffices to take the flat metric on [0, po]. Finally,
on M\ C[po], we let g[VI] be the standard Euclidean metric. (We anticipate
that our work would hold for many other extensions as well.)

e Let b be reflecting Brownian motion on M with respect to the time-dependent
metric g[VI7]. (So, its infinitesimal generator at time t is the Laplacian on
M with respect to the metric g[VI;] and Neumann boundary conditions
with respect to the unit inward normal vector induced by the embedding
M C RY*L. This agrees with the unit inward normal vector coming from
the extended metric above.)

Remark 1.2. The Vol factorin (1.1) is there because the particle g° evolves at speed
¢~ ! and thus “averages out”. The Vol factor in (1.1) ensures that the leading-order
behavior of I¢ corresponds to inflating 1M (r) at speed £ ~'/4 everywhere. (Without
the Vol factor, the leading-order behavior would correspond to sampling a point on
o0IM(¢) uniformly at random to inflate. Such a flux is non-local, in that the evolution
at a point in dIM(¢) depends on the entire volume of dIM(#) and thus globally on
dIM(¢).) Our interest is in local flux, which is why we include the Vol factorin (1.1).
However, one could also study (1.1) without the Vol factor and perhaps obtain a
similar small-¢ limit. We discuss this further after the statement of Theorem 1.5.)

Since q° averages out, the leading order behavior of I° is a constant-speed
growth. What is more interesting is the following fluctuation field:

_1 _1
Y[, =e 4[], — e 4t]. (1.3)

Assumption 1.3. Assume that Yj . = Ygf‘ for some Y})“yi‘t € €*°(0M, R) indepen-
dent of &.
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It turns out that the small-¢ limit of Y? is given by the following SPDE, which we
explain afterwards:

_1
b, = ABK, + [ Ke I VO 12dz + [ Kz — 1(—2) 72§ .dz
by = Yo (1.4)

Technically, by (1.4), we mean the Duhamel representation (see Lemma A.1)

b, = (exple AT + [i fexpl —9)A1 [, Ko VHE. dz| a5 (1.9)

+ [exp[(t — )ALl f,ylK. - — 1](—5)*%5,,2&})( ds. (1.6)

e cxp[tA] is the associated heat semigroup for A, and V denotes the gradient on
oM.

e _Z denotes the Dirichlet-to-Neumann map on IM. Given any ¢ € €°°(dIM), the
function Z¢ is defined tobe x > V4 U, where Vy [x] is gradient in the unit
inwards normal direction at x € dIM, and % ¢ is the harmonic extension of ¢ to
M (so that Ay ? = 0, where Ay is Laplacian on M C Rd+1),

The operator .Z is a self-adjoint with core €°°(dIM) (with respect to the surface
measure on dIM, that is the Riemannian measure induced by surface metric on dIM).
It is negative semi-definite with a discrete spectrum and a one-dimensional null-
space spanned by constant functions on dIM. So, (—%)~1/2 on the RHS of (1.9) is
well-defined, since the function z — K ; — 1 is orthogonal to the null-space of .Z
(that is it has vanishing integral on dIM for any x). See Lemmas B.1 and B.3.

& is a space—time white noise on [0, co) x dIM. Intuitively, it is the Gaussian field
with covariance kernel E; ,&; , = 6,—36x=y. More precisely, for any orthonormal
basis {e;}x of L?(3IM), it has the following representation (in the language of Itd
calculus), where b; ; are independent standard Brownian motions:

&.dt = db e (1.7)
k

We emphasize that (1.4) is essentially the usual kPz equation (see [4, 19]) except for
two differences. The first is the regularization kernel K; we will shortly consider the
delta-function limit for K in the case d = 1. The second is the (—.%)~1/2 operator.
‘We explain this term immediately after Theorem 1.5.

Before we state the first main result (convergence of Y¢ — hK), we comment
on the well-posedness of (1.4). By smoothing of the A semigroup (see Lemma A.2)
and since - maps smooth functions to smooth functions (see Lemma B.1), the
SPDE (1.5)—(1.6) is locally well-posed in € (9IM) (until a possibly random, finite
stopping time denoted by 7y ).

Finally, let us introduce the following notion of high probability (to be used
throughout this paper):

Definition 1.4. We say an event & holds with high probability if P[&] — 1 as
e — 0.
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Theorem 1.5. There exists a coupling between {Y¢}_.o and H¥ such that with high
probability, for any § > 0 and 0 < © < tyx — 6, the following holds for some
k[8, €] = 0 that vanishes as ¢ — O:

sup  [IYE. — b lgzonny < &8, €l (1.8)
o<l

(Here, €% (dM) is the usual space of k-times continuously differentiable functions
on the hypersurface 0\M, and its norm is clarified in Section 2. Also, we have used
the notation a A b = min(a, b).)

We now clarify the statement of Theorem 1.5.

e Theorem 1.5 essentially asserts convergence in law of Y* to h¥. Because of the
need for a stopping time 7k, we found it most convenient to state it in terms of
couplings.

e Stopping before 1 is to make sure we work on compact time-intervals; there is
nothing special about 1.

e We could have used €% (0IM) for any k > 2. Going to k = 1, for example,
perhaps requires more work.

e Theorem 1.5 holds locally in time. This is more-or-less because we work in
the €2 (9IM) topology, not a weaker topology like €°(9IM), for example; see
Remark 1.7.

The mechanism from which Theorem 1.5 will ultimately follow is that the depen-
dence on ¢ in the last term in (1.1) averages out, as noted after Construction 1.1.
More precisely, it will turn out that

g4 (a—%Voh;Kx,q; - s—%t) - g—%(/ Ky .\/1+ |V [2dz — 1) + noise,
oM

where the first term comes from a change-of-variables calculation for the Rieman-
nian measure induced by g[VI’], and where the noise term above is a fluctuation
that will ultimately produce the noise in (1.4). (The exact form of the noise in (1.4)
ultimately follows from standard formulas for cLTs of Markov processes in terms
of their generators; see Chapter 2.6 of [21]. Indeed, the generator for the bound-
ary trace of a reflecting Brownian motion in IM is . [18].) By Taylor expanding
(1+|VIE[$)!/2and VIC = e!/4VY?, we get

e—%(/ K,.\/1+ VI, [2dz — 1) ~ g—%(/ K, .dz — 1)
oM oM
+/ K, |VY! |2dz,
oM

where &~ means equality up to terms with strictly positive powers of €. The first term
on the RHS vanishes by assumption, so this explains the quadratic term in (1.4). The
main technical difficulty in making the above picture rigorous is that the particle
process ¢ — g is not Markovian. We discuss this more in Section 3.4.1.
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We now briefly mention what would happen if we dropped the Vol factor in
(1.1). The necessary Taylor expansion (corresponding to the quadratic nonlinearity
in (1.4)) would then be

VIHIVE P B ~ -
</ K, “ fong V1HIVE, |2dwd 1) / (Ky.z — DIVY,  |7dz.

Our main interest, to be discussed in the following subsection, is what happens
to (1.4) when K converges to a delta function on the diagonal of dIM x 9IM (to
obtain a growth model with spatially local flux). Dropping the Vol factor in (1.1), as
illustrated in the above display, instead yields an SPDE limit for I° that is given by
(1.4), except with the following replacement therein:

Joni K 2| VO 2dz ~ [0, Ky o — 1) - VK. [7dz.

Even as K localizes, the nonlinearity on the RHS is non-local in space, whereas our
interest is in spatially local flux (since this is the type of term encountered in the Kkpz
equation). We do not anticipate any significant mathematical differences, however,
between (1.4) with and without the modification in the previous display.

1.2. The Singular Limit of (1.4)

In (1.4), if we formally replace K by the delta function on the diagonal of
oM x 9IM, we get the following sPDE, which we (formally) pose in any dimension
d>1:

by = Abry + |V > + TTH(—2) 728, (t.x) € (0,00) x IM. (1.9)

Above, [T+ denotes projection away from the null-space of .Z, that is away from
the span of constant functions on dIM. Our goal now is to make sense of (1.9) itself,
so that we can rigorously show convergence of (1.4) to (1.9) in the limit where K
converges to a delta function. However, (1.9) is not classically well-posed. Indeed,
% is a first-order pseudo-differential operator, so (—.%) ~!/? gains half a derivative.
But integrating the heat kernel for A against £, in dimension 1, lets us take strictly
less than half a derivative. We cannot take a full derivative and expect to get a function
that we can square to define the quadratic nonlinearity in (1.9).

Therefore, we perform the standard procedure for singular SPDEs via regular-
ization, renormalization, and showing existence of limits as we remove the regu-
larization. Although we do not anticipate that the specific choice of regularization
is important, it will be convenient to work with and fix the following. (In particu-
lar, we do not expect the choice of regularization to affect what the limiting object
ultimately is.) First, however, let us restrict to the case d = 1.

e Since M is a compact one-dimensional Riemannian manifold, it is a disjoint
union 0IM = T U --- U Ty where each T; is isometric to a circle. Therefore,
we have the decomposition

N N oo
L2 M) ~ PLAT) ~ PP Vi,
i=1

i=1 k=0
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where V;, . denotes the eigenspace of (—ATI.)_” 2 of eigenvalue A; ;. Here,
A, is the Laplacian on T;, and we order the eigenvalues {)L,-)k},fio in increasing
order, so that A; 0 = O and X; 41 > A; k. (Since T; is isometric to a circle, we
have that A; x = 27 |k]||T; |~! is the k-th eigenvalue of the half-Laplacian on a
circle of length |T;|.)

e Forany 5 > 0, we let [T be the composition of two projections. First, we let
17 be the projection onto

1

N [n7]
P P V. (1.10)
k=0

i=1

Then, we compose I17 with projection onto the orthogonal complement of the
space of constant functions on dIM. (Note that T+ — TT+ and 117 — 1d as
n — 0 in the strong operator topology.)

e We now consider the following SPDE:

_1
by = Ab] + T|Vh] |2 =€) + T H(—L) 26,4, (1.11)
n~ o 2
€, = Lokl o Z g (n). 1.12

Above, the notation ~ means that the difference converges as n — 0 to a finite
constant.

Let us briefly clarify this construction. First, since 1”7 projects away from the
space of constant functions on dIM, which is the null-space of ., the noise term in
(1.11) is well-defined (after integrating against space—time test functions). Second,
the 1" in front of the quadratic term in (1.11) corresponds to the K-smoothing in the
quadratic termin (1.4). Finally, while the exact form of the renormalization constants
requires some calculations to justify, we note that (1.12) diverges logarithmically as
n — 0, which agrees with the regularity heuristic given after (1.9). (See the proof
of Lemma 8.3 for where (1.12) comes from more precisely.)

Standard PDE theory implies that (1.11) is locally well-posed with smooth solu-
tions for any n > 0 fixed. The following result, which restricts tod + 1 = 2, states
that the  — 0 limit of these solutions exists:

Theorem 1.6. Suppose that M C R? is a compact subset with smooth boundary
M.

For any H"ial ¢ ©2(QIM) independent of n > 0, the sequence of solutions
{6"}y>0 to (1.11) with initial data pinital converges in probability in the following
(analytically) weak sense. There exists an almost surely positive (and possibly
random) time Tgop, which may depend on pinitialsych that for any test function F €
E° (R x dM), the sequence of random variables below converges in probability
asn — 0:

f[o,rm@ SomFr.xby cdxdr. (1.13)
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In Theorem 1.6 above, we can take Ty to be any time that is strictly smaller than an
appropriate blow-up time for the PDE (8.7)—(8.8), which resembles (1.11) without
any noise; see Lemma 8.5.

Remark 1.7. One can also solve (1.9) by using the Cole-Hopf map § := log 3,
where 3 solves a linear spDE (though this exponential map does not linearize (1.11)
because of the I17 operator). It is likely, but possibly difficult to prove, that this
Cole-Hopf solution agrees with the limit constructed in Theorem 1.6. If it does,
then it gives a way to show infinite lifetime for (1.9) (and that z4op in Theorem 1.6
is infinite almost surely).

Theorem 1.6 gives a weak type of convergence for h”. It can be upgraded rather
easily to more quantitative convergence using our methods. We do not pursue this
here, because it is more of a detail than the main point. (Similarly, the assumption
that h"ia! js in €2 (dIM) is likely sub-optimal, but this is also besides the point.)

By Theorems 1.5 and 1.6, in the case d = 1 (so hypersurfaces in R?), we get a
singular Kpz-type equation limit for (1.3). In particular, we can take K in Theorem
1.5 to converge to a delta function on the diagonal of dIM x dIM sufficiently slowly
and deduce convergence of Y to (1.11).

Let us also mention that the analytic topologies used in Theorems 1.5 and 1.6
are quite different (% 2(3IM) versus weak-x convergence). As mentioned above,
improving the topology of convergence in Theorem 1.6 is probable, but it cannot
hold in €2(3IM) since (1.11)is a singular spDE. Convergence in Theorem 1.5 in a
topology weaker than €% (9M) seems to be difficult (as noted after Theorem 1.5),
since the proof is largely based on elliptic regularity. It would be interesting to
close this gap; this would strengthen the double-scaling limit result (e.g. quantify
convergence of K to a delta).

1.3. Background and Previous Work

1.3.1. KPZ from Flows To our knowledge, KPz-type SPDES for diffusions inter-
acting with their range had not appeared in the literature before. The closest work
that we are aware of to ours is [15], which derives the kpz equation from a stochas-
tic version of mean-curvature flow. However, [15] has randomness coming from a
background environment (with mixing and independence-type properties), while
the randomness in our flow model comes from a single particle.

1.3.2. Singular spDEs on Manifolds While we were finishing this work, [16] was
posted to the arXiv. This treats singular SPDEs on manifolds via regularity structures
[14]. However, due to the Dirichlet-to-Neumann operator in (1.11), the SPDES here
and in [16] are a bit different.

1.3.3. Shape Theorems This paper studies fluctuation scaling for the height func-
tion, that is study (1.3). In [9], we studied (a Poissonization of) the discrete version of
Fig. 1 without heat flow regularization. The main result of [9] was a shape theorem
for the growth model therein, in particular a scaling limit for the evolving vector
field process that we alluded to before Construction 1.1 but with speed slowed down
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by & 1/4 50 that the interface evolves at speed 1; see (1.1). (We clarify that the particle
speed in [9] is also denoted by e~ so that & here refers to £*/3 in [9]. In particular,
under the scaling of [9], the heat flow term in (1.1) vanishes, so the results of [9] hold
even if we included said term. A similar shape theorem (for more general processes
than Brownian motion but for radial growth) was shown in [8].

1.4. A Word About Universality

The methods we use require very little about the Brownian nature of the ran-
domness in (1.1). (Indeed, as indicated in Section 3.4.1, only spectral gap estimates
are needed.) This can be interpreted as another instance of universality. (Of course,
if we change Brownian motion to another process, the .Z-operator in (1.9) may
change. The quadratic term, however, will not.)

If we drop Laplacians in (1.1) and (1.4), Theorem 1.5 would still hold for the
resulting sPDEs. In addition, if one were to take a singular limit as in Theorem 1.6
without said Laplacians, then one should arrive (formally) at (1.9) without the Lapla-
cian therein. However, we currently cannot take such a singular limit. Furthermore,
it is an interesting question as to whether or not (1.9) has a kpz fixed point scaling
limit (after posing it on the real line instead of 9IM).

1.5. A Changing Diffeomorphism Class

The evolving graph of the height function is always diffeomorphic to the original
interface dIM. Another situation of interest would be to study a random growth
model driven by a diffusive particle which can change its diffeomorphism class at a
possibly random time. For work along these lines (in the case of a Stefan PDE whose
singularities are resolved through a particle system), see [10].

1.6. Organization of the Paper

Section 3 outlines the methods (and essentially proves Theorems 1.6 and 1.5
modulo technicalities to be checked). The rest of the paper is outlined at the end of
Section 3.

2. Function Spaces and Other Notation

We now give a list of function spaces (and a few other pieces of notation) to be
used throughout the paper.

(1) For any set I and a, b € R, when we write a <; b, we mean |a| < Alb| for an
implied constant A > 0 depending only on /. (If / is a finite subset of R" for
some n > 1, the dependence of A is assumed to be smooth in the elements of
I)Bya 27 b,wemean b <; a.Bya < b,wemeana < b and b < a with
possibly different implied constants. Also, by a = O;(b), we meana < b.
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(2) Itwill be convenient to adopt the following convention. When we say thata <; b
with high probability for a finite set I = {iy, ..., i,} of real numbers, we mean
that there exists a parameter v[e] — 0 such that P[|a| < C(iy, ..., iy)|b|]] =
1 — v[e] for some deterministic continuous function C : R” — [0, o0). We
note that this function C can depend on €.

(3) Foranya, b € R, we define a A b = min(a, b).

(4) When we say 8 € R is uniformly positive, we mean § > C for C > 0 that
depends on no parameters.

(5) For p > 1,let L? = L?(0M) be the usual L”-space, where dIM C RI+L g
given the Riemannian surface measure.

(6) Fix any integer k > 0. Fix an orthonormal frame ey, . . ., €4 (that is a smoothly
varying orthonormal basis for tangent spaces of the manifold 9 IM with Euclidean
surface metric). For smooth ¢ : 0IM — R, set

lellgr :=llellgr oy = Sup lx| + sup sup [Viy ... Vig@rxl,  (2.1)
xeaM iy,

where V; is gradient in the direction of the orthonormal frame vector €;, and the
inner supremum is over subsets of size k in {1, ..., d}. Let €% :=%€*(3]M) be
the corresponding closure of smooth functions on dIM. (We will also consider
similar spaces but for different domains, such as IM instead of dIM, in which
case we explicitly write the domain at hand. In particular, we only use the €%
shorthand for €% (9IM). A similar comment applies to other function spaces to
be introduced below.)

(7) Let €0V .=V (9M), for v € (0, 1), be the Holder norm on the manifold 1M
with Euclidean surface metric.

(8) Fix t > 0. Let €°¢"™ be the space of smooth ¢ : [0,t] x d]M — R. Fix
integers k1, kp > 0 and set

k
I0ltign = sup {1K gl + lor g} ¢ e €26 @2)
o 0t

X

We let %tk 1€k be the closure of smooth functions on [0, ] x 1M under this
norm.
(9) Fix any integer k > 0. For any ¢ : dIM — R smooth, we define

ol =i o = el + sup |V, .. Vel (@23)

Let H* :=H*(3IM) denote the closure of ¥ (9IM) under this norm. For any
fractionale > 0,define the H* :=H®* (dIM) via the usual interpolation procedure
(though it is enough to take ¢ > 0 to be an integer throughout this paper.
Alternatively, one can cover dIM with an atlas, define the H* (dIM)-norm by
using a diffeomorphism with an open subset of R, and sum over all charts in
the atlas.)

(10) Fix any integer k > O and @ > 0. Fix any t > 0. Forany ¢ : [0, t] x M — R
smooth, we define

k
Ielgine = sup {10 g1.llyo + lor e | (2.4)

o<t
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We let %tk H” be the closure of smooth functions on [0, t] x M under this norm.

3. Outline of the Proofs of Theorems 1.5 and 1.6

We give steps towards proving Theorem 1.5. We then describe the technical
heart to prove each step (and Theorem 1.6) in Section 3.4. We conclude this section
with an outline for the rest of the paper.

3.1. Step 1: Comparing Y¢ to an e-Dependent SPDE

Even if one computes the evolution equation for Y# using (1.1) and (1.3), it is
not clearly an approximation to (1.4). (The problem is the last term in (1.1).) The
first step towards proving Theorem 1.5 is to therefore compare Y to the PDE

dMme
ohe = AR+ [ Ka o[ VhE [Pdz + =5

h§ . =Y, (3.1

where M? denotes a martingale that “resembles” the last term in the differential equa-
tion (1.4). Let us make precise what “resembles” means in the following definition
(which we explain afterwards).

Definition 3.1. We say that the family of processes 1 — My . € €*°(9IM), indexed
by e > 0, is a (family of) good martingales if the following hold. (First, for notation,
see point (2) in Section 2.)

e The process t > M; . € ¢°°(3M) is a cadlag martingale with respect to the
filtration of (I¢, g°).
Next, fix any stopping time 0 < 7 < 1. With probability 1, if t < T is a jump time,
then for any k£ > 0 and for some « [¢] that vanishes as ¢ — 0, we have
M. — M- llgr Skoye klel. (3.2)

lly 042
Fix any A > 0 and any stopping time 0 < 7 < 1 such that for all + < 7, we
have ||Y{ [l42 < A.Forany k > 0 deterministic, we have the following with high
probability:

sup [IM7 llgx Skoa 1 (3.3)

0<r<r

For any stopping time 0 < t < 1, with high probability, we have the following for
any k > 0:

sup [[[M?],. — MM, e Spopye ef, (3.4)

ll, 0o, 2
¢ ¢
0<r<t T

The exponent 8 > 0 is fixed (e.g. independent of all other data, including ¢), and
(M, i 2K — 1] % H—z—l[Kx,z - 1]} dz (3.5)

is a time-integrated “energy” functional. Above, the operator .2 ~! acts on the z-
variable in the function z — K, ; — 1.
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Remark 3.2. In this paper, we use the notation that resembles Z ¢x,z and Z Ox,q°
Here, . is the Dirichlet-to-Neumann operator on IM with respect to a metric that
will be clarified in context, and ¢ € €*°(dM x 0IM). Also, x, z,¢° € dM. In
this notation, the Dirichlet-to-Neumann operator . will act on the second variable,
which we then evaluate at z or q° (depending on the context), as in (3.5).

Let us now explain Definition 3.1. The cadlag-in-time and smooth-in-space regular-
ity of M? is enough for local well-posedness of (3.1) in €2, for example. Indeed, if
one writes (3.1) in its Duhamel form (see Lemma A.1), then one can move the time-
derivative acting on M? in (3.1) onto the heat kernel of the semigroup t — exp[tA].
This turns into a Laplacian A acting on said heat kernel, which is okay since we
integrate against M¢ in space, and M? is smooth in space (see Lemma A.2).

We now explain the second bullet point in Definition 3.1. It first states a priori
control on regularity of the martingale (in a way that is technically convenient later
on). It also says that at the level of bracket processes, M® matches the last term in
(1.4) up to O(¢?). By standard martingale theory, this is enough to characterize the
small-¢ limit of M?. We expand on this in the discussion of the next step, Theorem
34.

Theorem 3.3. There exists a family of good martingales MF in the sense of Defini-
tion 3.1 such that if ¢ is the solution to (3.1) with this choice of M?, then we have
the following:

e First, for any A > 0, define the stopping time
the, A = inf{t > 0: [|h7 [l42 > A} (3.6)

o There exists a constant B > 0 independent of all other parameters, including
g, and a parameter v|e] > 0 that vanishes as ¢ — 0 such that the following
holds. For any deterministic A > 0 and § > 0, we have the following estimate
with probability at least 1 — v|e]:

sup Y. —h¢ llg2 Soon 6. (3.7)
Ogté(rhqAAl)—S

(The A notation means minimum. Also, B here may not match B in Definition
3.1.)

Let us now briefly explain what Theorem 3.3 is saying exactly (and why it is even
plausible).

e In words, Theorem 3.3 says that we can couple Y to the solution h® of (3.1)
if we make an appropriate choice of good martingales M? that comes from a
martingale decomposition for the last term in (1.1).

e The Laplacian in (1.1) clearly matches that in (3.1).

e Take the second term on the RHS of (1.1). Even though g° is not Markovian
since the underlying metric is determined by the I process, it is faster than I¢,
so it is the unique “fast variable” (in the language of homogenization). Thus, we
expect that the second term on the RHS of (1.1) homogenizes in q° with respect
to the Riemannian measure induced by g[VI?]. (Intuitively, on time-scales for
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which g® homogenizes, I¢ is roughly constant. So, q° “looks” Markovian, and
we have homogenization.) Thus, we replace the second term on the RHS of (1.1)
by the following homogenized statistic (if we include the e ~1/4 scaling in (1.3)):

67 K1+ IVE P2 dz. (3.8)

(We clarify that (1 + |VI, Z|2)1/ 2dz is the Riemannian measure induced by
g[ VI ].) We can now Taylor expand in VI* = e!/4VY? to second-order to turn
(3.8) into the second term on the RHS of (3.1) but evaluated at Y¢ instead of h®
(plus lower-order errors).

e Itremains to explain the noise in (3.1). It turns out replacing the second term on
the RHS of (1.1) by (3.8) does not introduce vanishing errors. This fluctuation
is order 1. Indeed, the difference of the last term in (1.1) and (3.8) is a noise
of speed e~!. After we time-integrate, we get square-root cancellation and a
power-saving of (e~H~1/2 = ¢1/2 This cancels the 5_1/2-scaling of (3.8).

3.2. Step 2: The Small-¢ Limit of h®

The remaining ingredient to proving Theorem 1.5 is the following (it is essen-
tially Theorem 1.5 but for h® instead of Y¢. Recall notation of Theorem 1.5):

Theorem 3.4. There exists a coupling between the sequence {h®},_.o and H¥ such
that the following two points hold with high probability:

(1) For any p > O, there exists A = A(p) so that for all ¢ > 0 small, we have
TpK A The, A = Tpk — 0.
(2) For any 6 > 0, there exists k[§, €] > 0 that vanishes as ¢ — 0 such that

sup IhE . — b llg2 < k[8, &) (3.9)
Ogtg(rbK/\l)—a

(To be totally clear, point (1) in Theorem 3.4 states that The o = ThK if we take
A > 0 sufficiently large and ¢ > O sufficiently small. The key feature is that the
necessary choice of A does not depend on ¢ > 0.)

Taking a minimum with 7y is probably unnecessary in the first point of Theorem
3.4, but it makes things easier. In any case, convergence in both points (1) and (2) of
Theorem 3.4 is classical, because both SPDEs (3.1) and (1.4) are parabolic equations
with smooth RHS. The one detail that may be subtle is that the noise in (3.1) is
only weakly close to that in (1.4). (Indeed, control of predictable brackets (3.4) is
not a very strong statement.) Thus, we need to show that (1.4) is characterized by a
martingale problem (which, again, is not hard because (3.1) and (1.4) have smooth
RHS).

3.3. Proof of Theorem 1.5, Assuming Theorems 3.3 and 3.4

Take § > O small and 0 < 7 < [1 A yx] — 8. By the triangle inequality, we
have

K K
sup [IY;. = b llg2 < sup [[Y;. —hi [le2+ sup [y —b; llg2. (3.10)
0<<t 0<r<t 0<t<t
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The last term on the RHS vanishes as ¢ — 0 in probability by point (2) of Theorem
3.4.In order to control the first term on the RHS, we first know with high probability
that ThK — 8 < The A — %6 if we take A > 0 large enough (but independent of ¢);
this is by point (1) of Theorem 3.4. We can now use Theorem 3.3 to show vanishing
of the first term on the RHS of the previous display as ¢ — O. O

3.4. Technical Challenges and Methods for Theorems 3.3 and 1.6

As noted after Theorem 3.4, there is not much to its proof; so, we focus on the
ideas behind Theorems 3.3 and 1.6.

3.4.1. Theorem 3.3 Suppose, just for now until we say otherwise, that the Brow-
nian particle q° evolves on the set IM with respect to the fixed, initial metric g[VO0].
(Put differently, suppose just for now that in the definition of q° in Construction 1.1,
we replace g[VI?] by g[ V0], where O denotes the O function.) In this case, we know
that g° is Markovian.

Take the second term on the RHS of (1.1); itis a function of q°. We are interested
in the following fluctuation, in which I € €’ is arbitrary:

1 1 1
Freqe o= & 2VoliK, g¢ — &2 fypKeo(1+ [VL|?)2dz. (3.11)

(We will only use the F-notation in this outline.) Because of the italicized temporary
assumption above, we will first consider the case where I = 0 until we say otherwise.

Asexplained in the bullet points after Theorem 3.3, showing that (3.11) is asymp-
totically the desired noise term is the only goal left. We first write the following,
where . and its inverse act on the second spatial variable (which is then evaluated
at q;, per Remark 3.2):

Forq =& ' Lle L1 Fox g (3.12)

The inverse operator on the RHS of (3.12) is well-defined, since (3.11) (for I = 0)
vanishes with respect to the invariant measure of . by construction (see Lemma
B.1 for the invariant measure of q°).

Since £ 7! Z is the generator of ¢° by our italicized assumption above and Propo-
sition 4.1 of [18], we can use the Itd formula to remove the outer ¢ ~!.% operator at
the cost of two copies of [¢ ™! .#]~!F evaluated at different times (that is boundary
terms) plus a martingale. Boundary terms are easy to control, since [¢ ™' .Z]7'F is
intuitively O(¢!/2). (This is by a spectral gap for ., which bounds . ~!, plus the
a priori bound of order £ ~2/3 for (3.11).) The martingale has scaling of order 1 as
explained in the fourth bullet point after Theorem 3.3. That its bracket is given by
a time-integrated energy (3.5) (more or less) is because quadratic variations of Itd
martingales are Carre-du-Champ operators.

Now, we return the actual context in which the metric for q° is determined by 1.
In this case, we will be interested in (3.11) for the actual interface process I = If,,:

_1 _1 1
Fre qr =& 2 Vol Ky qr — 72 [ Ky (14 VI _[*)7dz. (3.13)
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By the same reasoning as we gave after (3.12), this term vanishes in expectation
with respect to the invariant measure of the Dirichlet-to-Neumann operator on IM
equipped with the metric g[ VI; ] from Construction 1.1. However, we do not have an
Itd formula forjust g°, since itis nolonger Markovian. But, as we noted after Theorem
3.3, g° is still the unique fast variable; on time-scales for which it would homoge-
nize if it were Markovian, I? is approximately constant. So, q° “looks Markovian”
on time-scales that it sees as long. Thus, the same homogenization picture above
should hold, if we replace .Z by Dirichlet-to-Neumann on the Riemannian manifold
(M, g[ VI ]), and the measure for homogenization is Riemannian measure induced
by g[VI] ].

The way we make the previous paragraph rigorous and study (3.11) resembles
(3.12), except we include the generator of the If . process as well. Let £ | be the
generator for the Markov process (I?, q°). Write

FI,E,., ”Zotdl["iﬁ?‘)tal]_l Flf,.,x,qf' (3.14)

We can then use It as before to remove the outer . -operator to get bound-
ary terms and a martingale. Since q° is much faster than I, the operator £} | is
asymptotically just the Dirichlet-to-Neumann operator on (IM, g[VI®]). In other

words, dynamics of I¢, and their O(e‘l/ 4) contribution to the generator .,Ziot a1> T

lower-order. So, if ,ZSQI\I denotes the same scaling factor e~! times the Dirichlet-

to-Neumann map on (IM, g[VI]), then since .,?D N’ is the generator for g at time ¢
(again, see Proposition 4.1 in [18]), we get

eI
I:I‘ g8~ total[thN ] ]Flf,.,x,fﬁ' (3.15)

(Note that ,,2”];;11\1 depends on If , reflecting the non-Markovianity of q°.)

Thus, our estimation of the boundary terms and martingale is the same as before.
We deduce from (3.15) and the 1t6 formula that (3.14) is asymptotically a martingale
whose bracket is (3.5), except .Z, which is the Dirichlet-to-Neumann map on IM
with metric g[VO0], in (3.5) i 1s replaced by the Dirichlet-to-Neumann map on IM with

metric g[VI?], that is EthN Since Y¢ should be order 1, g[VI?] = g[e!/4VY?]
(see (1.3)) should be close to g[VO]. So, (3.5) as written is indeed the right answer
for asymptotics of the bracket for the martingale part of (3.11).

There are obstructions to this argument. The most prominent of which is that we
cannot just remove the generator of I from . in (3.14). Indeed, this term acts on
the resolvent in (3.14); when it does, it varies the metric defining the resolvent and
(3.11) itself. However, our estimate for the resolvent in (3.14) depends on vanishing
of (3.11) for I = I? after integration with respect to the measure on dIM induced
by g[VI?] (which, again, is changing when we act by the generator of I?). In other
words, estimates for the resolvent in (3.14) rely on an unstable algebraic property of
(3.11) that is broken when we vary I°. For this reason, we actually need regularize
£ With a resolvent parameter A, that is consider —A + £ | for 0 < A < gl
instead of .Z{ ;. Indeed, the inverse of —A + £ | is always at most order 1~ I
regardless of what it acts on. Moreover, since A < ¢~ is much smaller than the

speed of q°, once we use A-regularization to remove the generator of I, we can then
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remove A itself, essentially by perturbation theory for resolvents. This is how we
ultimately arrive at (3.15) rigorously.

We also mention the issue of the core/domain of the generator for I?, because I
is valued in an infinite-dimensional space of smooth functions. We must compute
explicitly the action of the I°-generator whenever we use it. This, again, is built on
perturbation theory for operators and resolvents.

3.4.2. Theorem 1.6 The idea is built on the method of Da Prato—Debussche [6].
We treat (1.11) as a perturbation of the following equation:

BT = ARTI 4 TP (=) 1g (3.16)

Above, [1" further projects onto the subspace (1.10) after dropping the A; y = O-
eigenspaces, so that A is self-adjoint and invertible on the image of this space. We
note that the solution to (3.16) admits an explicit Gaussian Fourier series represen-
tation, since 0IM is a finite union of circles.

After (3.16), the remaining piece to the equation (1.11) is the following equation:

athn rem. Ahn ,rem + H'”Vf)n lin2 %r)
+ ZHU(VUW lm bn rem) + Hn'Vbn rem|
+ A 7 - oy e+ @ - T ) g

The renormalized quadratic on the rRHS is treated using the explicit Gaussian repre-
sentation for (3.16). The second line above is okay essentially because h7-"*™ turns
out be sufficiently regular. To handle the last line, we will analyze —.% as a per-
turbation of (—A)!/? (after projecting onto the image of M7+, on which both are
self-adjoint, positive semi-definite, and invertible). We also remark that I nL_ it
is a projection onto a subspace spanned by smooth (piecewise constant) functions on
oM whose dimension is independent of 7. In particular, the last term in the previous
display is smooth in space. The proof of Theorem 1.6 is dedicated to making this
picture precise.

3.5. Outline of the Paper

This paper has two halves to it. The first half is focused on the proof of Theorem
3.3. This consists of Sections 4—7. The second half focuses on the proof of Theorem
1.6. Let us now explain the goal of each individual section in more detail.

(1) Proof of Theorem 3.3.

o In Section 4, we give the ingredients for the proof. This includes computing a
stochastic equation for Y¢. We ultimately reduce Theorem 3.3 to the problem
of getting anoise out of a fluctuation, exactly as we explained in Section 3.4.1.
(Said problem is proving Proposition 4.3.)

e In Section 5, we give a precise version of heuristics in Section 3.4.1. In
particular, we reduce the proof of Proposition 4.3 to perturbation theory
estimates, which are proved in Sections 6 and 7.
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(2) Proof of Theorem 1.6.
e In Section 8, we make rigorous the Da Prato—Debussche-type schematic
from Section 3.4.2.
(3) Proof of Theorem 3.4.
e This is the last non-appendix section; as we mentioned after Theorem 3.4, it
is a classical argument.

Finally, the goal of the appendix is to gather useful auxiliary estimates used through-
out this paper.

4. Proof Outline for Theorem 3.3

In this section, we give the main ingredients for Theorem 3.3. All but one of them
(Proposition 4.3) will be proven; Proposition 4.3 requires a sequence of preparatory
lemmas, so we defer it to a later section.

4.1. Stochastic Equation for Y¢

The first step is to use (1.1) and (1.3) to write an equation for Y¢, decomposing
it into terms that we roughly outlined after Theorem 3.3. First, we recall notation
from after (1.9) and from Construction 1.1. We also consider the heat kernel

Ol vw =AT v Tixw — im0t Sx=w, “4.1)
where the Laplacian acts either on x or w, where t > 0 and x, w € dIM in the

PDE, and where the convergence as ¢t — 0 from above is in the space of probability
measures on d1M.

Lemma 4.1. Fixt > 0 and x € oM. We have

1 1
0 Y =AY +e72 [ Ke o [(1+ VI[P — 1dz (42)
1 1
73 [Volp Ko g = Ko (1 + VI Ddz]. - (43)

By the Duhamel principle (Lemma A.1), we therefore deduce that

Vi = ol Yordz + @107 4+ @1, “4)
where
1 1
O = o foniTrmsoe |72 SonKuncl (14 VI )7 = 11dz} duwds (4.5)

noise,e ,__ [t
CDI,X T fO fa]MFt*S,x,w

{8—% [Voh?,_Kw,q§ — fonKus(1+ |VI§‘Z|2)%dz]} dwds. (4.6)
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Proof. Plug (1.1) into the time-derivative of (1.3). This gives that
1 1 1 1
8,Yf’x =g 7 AIf’x +e7 Vol Ky o —e72 =674 Alf’x
+ 72 [Voly K, ¢ — 11. 4.7)
By (1.3), we can replace 8‘1/4AI,8,X > AYj .. This turns the first term on the
far RHS of (4.7) into the first term on the RHS of (4.2). The remaining two terms

(the last in (4.2) and (4.3)) add to the last term in (4.7), so (4.2)—(4.3) follows. The
Duhamel expression (4.4) follows by Lemma A.1 and Assumption 1.3. O

Let us now explain Lemma 4.1 in the context of the proof strategy briefly described
after Theorem 3.3. The second bullet point there says (4.5) gives |VY?|? integrated
against K (by Taylor expansion). The third bullet point says that (4.6) gives a noise.

4.2. Producing a Quadratic from (4.5)

Let us first establish some notation. First, define
SN = L3 oo | oK VYG Pz dwds @8)
as the heat kernel acting on a K-regularized quadratic. Recall the ‘Kto €*-norm from
Section 2.

Lemma 4.2. Fix any integer k > 0 and any time-horizon t > 0. We have the
deterministic estimate

; 1
I PKPE — @I gocgr Sk ¥ 1Y g (4.9)
Proof. Taylor expansion gives (1 + v?)!/2 =1+ %vz + O(v?). This implies
£ 12y1 _ Ligye 2 e 3
(14 |VE )2 — 1 = JIVE_ |2+ O(VE ). (4.10)
By (1.3), we know that VI¢ = e1/4VY?. Thus, we deduce
-1 e 12\ 4 1 e 2 1 e (3

e 2(1+ VI, |92 — 1= 5|VY |” + O(e* VY |7). 4.11)

By (4.5), (4.8), and (4.11), we can compute

d, 1
O — M = LT fon KO T VYE P)dzdwds.  (4.12)

t,x

Integrating against I" is a bounded operator from the Sobolev space H* (see Sec-
tion 2) to itself, withnorm <, 1locally uniformly in time; this holds by Lemma A.2.
Also, K is smooth in both variables by assumption. So (4.12) implies a version of
(4.9) where we replace € on the LHS by H*. But then Sobolev embedding implies
(4.9) as written if we take o sufficiently large depending on k. O

We note that (4.9) is meaningful, in the sense that Y¢ is supposed to be controlled
in €7 if Theorem 3.3 is true. In particular, the upper bound on the RHS of (4.9) is
supposed to vanish as ¢ — 0.
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4.3. Producing a Noise from (4.6)

Roughly speaking, we want to compare ®"5¢:¢ to the following function (the
firstline is just a formal way of writing it, and the second line is a rigorous definition
of said function in terms of integration-by-parts in time):

ME¢ . t dMi,z
(Dt,x = f() fa]MFI—S,X,ZTdZdS (413)
= Mle,x - fa]MFt,x,z (6),zdZ - f(; IBIMBSFZ—SJ,ZM?ZdZdS' (4'14)

In the next result, we will make a choice of M? for which we can actually compare
(Dnoise,s and CI)MS .

Proposition 4.3. There exists a family of good martingalest — M _(see Definition
3.1) such that:

e For any stopping time 0 < v < 1 and k > 0, there exists universal B > 0 such
that with high probability,

ise. ME
”q)nmses _® ||<g§<gk §k,||Y9|\%;9(572 B (4.15)

The proof of Proposition 4.3 is essentially the point of Section 3.4.1.

4.4. Proof of Theorem 3.3 Assuming Proposition 4.3

First define the stopping time ty: 5 as the first time the ©’>-norm of Y¢ equals
A. (Note that Y? is continuous in time.) Throughout this argument, we will fix
A > 0 (independently of ¢). Define X® = Y® — h®, where h® solves (3.1) with the
martingale M? from Proposition 4.3. We claim, with explanation after, that

X: o= 30 oo [ oK c(VYE 12 = [VHE Pydz] dwds — (4.16)

+ ppoises _ My @RPZe _ pauade, @.17)
To see this, recall ®9%24-¢ from (4.8) and ®™° from (4.13)—(4.14). Now, rewrite
(3.1) in its Duhamel form (by Lemma A.1). Equations (4.16)—(4.17) now follows
directly from (4.4) and this Duhamel form for (3.1). (In particular, the martingale
integrals in the Y and h® equations cancel out.)

In what follows, everything holds with high probability. Because we make
finitely many such statements, by a union bound, the intersection of the events
on which our claims hold also holds with high probability.

Let 7 be any stopping time in [0, tys A ]. By Lemma 4.2 and Proposition 4.3, we
have

141D llgog2 Sivel, o> €° Sa €, (4.18)

where > 0 is strictly positive (uniformly in €). Note the second estimate in (4.18)
follows by definition of Ty= o > 7. On the other hand, by the elementary calculation
a’? — b*> = 2b[a — b] + [a — b]?, we have

IVY:_ |2 — |VhE | S [VYE_[|[VYE, — VhE | (4.19)
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+[VY:, — VhE T (4.20)
= Opvy: |(IVXE |+ VXS ), (4.21)

where the dependence of the big-Oh term in (4.21) is smooth in | VY?|. Now, recall
that K is a smooth kernel, and that I" is the kernel for a bounded operator %’ ki gk
(for any k> > 0 and for k1 big enough depending on k;; indeed this is the argument
via Lemma A.2 and Sobolev embedding that we used in the proof of Lemma 4.2).
Using this and (4.19)—(4.21), we claim the following for any ¢ < t:

IRHS(4.16) 12 < folIVYE 2 — [VhE [ 4ods 4.22)
<A JolIVXE| + [VXE P [l gogods. (4.23)

Indeed, to get the first bound, when we take derivatives in 1M of the RHS of (4.16),
boundedness of integration against I" lets us place all derivatives onto K. Now, use
that K is smooth. This leaves the integral of ||VY§,,|2 — |Vh§’_|2| on dIM (which
we can bound by its €%-norm since dM is compact). The second inequality above
follows by (4.19)—(4.21) (and noting that for# < v < tye , the implied constant in
(4.21) is controlled in terms of A). Since ¢ < 7, we can extend the time-integration
in (4.23) from [0, ¢] to [0, t]. The resulting bound is independent of the ¢-variable
on the LHS of (4.22), so

IRHS(4.16) | z042 < f0t|||VX6| + |VX€|2||<550%0(1S. (4.24)
Combine (4.16)—(4.17), (4.18), and (4.24). We get the deterministic bound
X llgo2 Sa 6 + fg 1VXE] + [VXE P llgog0ds. (4.25)

Now, recall the 4 is the first time that the %2-norm of he is at least A. Since X¢ =
Y? — h®, for any time s < Tys A A The A, We know that the €? of X¢ at time s is
< 1. Thus, for T < Tye o A The A, we can bound the square on the RHS of (4.25)
by a linear term, so that (4.25) becomes

IXE llgog2 Sa & + i IVXE [lgog0ds. (4.26)
It now suffices to use Gronwall to deduce that for T < tye o A The A, We have
X llg0 g2 Sa ef 4.27)

We now claim that it holds for all T < the o2 — 6 for § > 0 fixed, aslongas & > 0
is small enough depending only on A, §. This would yield (3.7) (upon rescaling
A therein) and thus complete the proof. To prove this claim, it suffices to show
Tys, A AThe, A = The,A/2— 8. Suppose the opposite, so that Tye o < the a2 —8 (since
The,A/2 < The, A trivially). This means that (4.27) holds for all T < tys 5. From this
and X? = Y? — h?, we deduce that at time 7y: 5, we have Y = h® 4+ O, (e?). But
at time Tys A < The A2, this implies that the %?-norm of Y¢ is < %A + 0 (eP).
If ¢ > 0 is small enough, then this is < %A, violating the definition of tye . This
completes the contradiction, so the proof is finished. O
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5. Proof Outline for Proposition 4.3

In Sections 5-7, we need to track dependence on the number of derivatives we
take of I® (since estimates for certain operators depend on the metric g[VI?]). In
particular, we will need to control said number of derivatives by the ¢>-norm of
Y¥ (see the implied constant in (4.15)). We will be precise about this. However, by
Lemma C.1, as long as the number of derivatives of I that we take is O(1), this is
okay.

5.1. A Preliminary Reduction

Recall (4.13)—(4.14) and (4.6) for the notation in the statement of Proposition
4.3. We first have

noise,e __ [t noise, &
P x - fO ths,x,waslms,w,q§,1§:dw (5.1
= noise, & noise, &
- Inttvxvqf,lfg - fBMFl,x,wInto,w’qg’I§dw
4 noise, &
- o -[3]1\/[85Ft—s,x,wlnts’w’qg’[;deS. (5.2)

where used integration-by-parts in s and introduced the following time-integral:

Intnoise,s . 8—%/‘01 [VOllfo,qf _ fa]MKX»Z(l + |VI§’Z|2)%dz] ds. (53)

t,x,q8 18 T

Now, by standard regularity estimates for the heat kernel I along with (5.1)—(5.2)
and (4.13)—(4.14), to prove Proposition 4.3 amounts to proving the following instead.

Proposition 5.1. There exists a family of good martingales t — Mj € € (see
Definition 3.1) such that the following is satisfied:

e For any stopping time 0 < © < 1 and k > 0, there exists universal > 0 such
that with high probability,

sup [|Tng; 7005 — My llge Skpye
0<r<r o

&P, (5.4)

H%/?%/Z

In (5.4), the €*-norm on the LHS is with respect to the omitted x-variables in

noise, & e
Intt’x’q”.g and M,’x.

5.2. Step 1: Setting up an Ité Formula for (I¢, q°)

See Section 3.4.1 for the motivation for an It6 formula for the joint process
(T, g%). We must now explicitly write the generator of this joint process. It has the
form

Lo = Lot + LN (55)

flow

The first term is the instantaneous flow of I¢ defined by (1.1) (for ¢° € 9IM), and
the second term is a scaled Dirichlet-to-Neumann map with metric g[VI?] on IM
determined by I¥° € €°°. (Superscripts for these operators always indicate what
is being fixed, that is the opposite of whose dynamics we are considering.) To be
precise:
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e Forany I € ¥, recall the metric g[ VI] on M (see Construction 1.1). Let At
denote the Laplacian with respect to this metric. Now, given any ¢ € €°°, we
set

Lol ="'y, (5.6)

where N is the inward unit normal vector field on dIM, and Z ! is A1 M-
harmonic extension of ¢ to M. (In particular, we have Ay % ¢l = 0 and
52/‘p’l|3]M = @. Again, we refer to Proposition 4.1 in [18] for why (5.6) is the
generator of q°, and that its dependence on I° shows non-Markovianity of q°.)

e Fix q° € dM. The second term in (5.5) is a directional derivative on functions
¢ — R such that, when evaluated at I € 4€"*°, it is in the direction of the
function x — AI{ + e~V 4V01]Kx’q£. Precisely, given any functional .#
*° — RandI € ¥°°, we have

L0 F] = hm A F O+ hAL+ hVol K. g:] — Z (11}, (5.7

provided that this limit exists (which needs to be verified carefully, since ¢
is infinite-dimensional). We note that the exact domain of Zg(’)jvl will not be

important for us to know. However, we also note that the domain of fﬁi’)\i
consists of continuous linear functionals °° — R. By the Leibniz rule, it also
contains polynomials of such continuous linear functionals.

5.2.1. Issues About the Domain of fﬂow Throughout this section, we will often

let £ £:9" hit various functionals of the I process. Of course, as noted immediately
above, anytime we do this, we must verify that the limit (5.7) which defines it exists.
Each verification (or statement of such) takes a bit to write down. So, instead of
stating explicitly that each application of fﬂow is well-defined throughout this
section, we instead take it for granted, and, in Section 6, we verify explicitly that

all applications of &5 .. are justified.

ﬂow
5.2.2. An Expansion for Int"@ise:¢  Before we start, we first introduce notation for
the following fluctuation term, which is just the time-derivative of (5.3):

Fluce = 73 [VolIer o = fon Koo (1 + VI |2)%dz] . (5.8)
Not only is this notation useful, but we emphasize that it does not depend on time ¢
(except through (I¢, g%)). So, as far as an Itd formula is concerned, we do not have
to worry about time-derivatives.

As discussed in Section 3.4.1, we will eventually get a martingale from In
by the Itd formula. We also noted in Section 3.4.1 that we have to regularize the total
generator (5.5) by a spectral parameter A. In particular, for the sake of illustrating
the idea, we will want to write the following for A chosen shortly:

tnoise,s

Flucz‘);seli = (0= Lok — L]~ Fluc) . (5.9)
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1t6 tells us how to integrate .5\ [A — ,iﬂtf)[al]_lFluczO;sf’Ii in time. We are still left
P e
with terms of the form

M — 2207 Fluc™se (5.10)

& £ .
x,q;. 07

We will again hit this term with (A — £ DA — .,Sftfnal]’l (so that the previous
display now plays the role of Fluc"®'*®-¢). If we repeat (that is use the 1td formula to

take care of £ \[A — Dﬁgta]]_l ), we are left with

(A — 28 1] )2 Fluc™se:¢ (5.11)

otal x,qf,If'

By iterating, the residual terms become just higher and higher powers of A[A —
Diﬂtf)tal]_l. For later and later terms in this expansion to eventually become very

small, we will want to choose the spectral parameter
A= 117, (5.12)

where y > O strictly positive and universal (though eventually small). Indeed, (5.12)
is much smaller than the ¢ ~! speed of L 1> S0 €ach power of A[A — ,iﬂtf)tal]’] gives
us < e’

Let us now make this precise with the following set of results. We start with
an elementary computation. It effectively writes more carefully how to go from
Mr = ZE 17D o M — ZE 17D (Except, it uses .ZS;II\I instead of £, |
in the resolvents, which only requires a few cosmetic adjustments.)

Lemma 5.2. Fix any integer £ > 0. We have the following deterministic identity:

Ro— 258 )~ Fluel e ds (5.13)
= [0 - XS;IIE)’I]”]Fluc;‘f’;s;’I‘E ds (5.14)
— e O — LT MG — L0 %) T FuchE d (5.15)
0 =< total DtN DtN x,q5,1¢ ’
€ IS _ .IZ'T _ .
+ JoLiaow O = Lon) T O = L) T T Fluc g ds. (5.16)

Proof. Note that the operators in (5.15) and (5.16) add to
I L B (.
— LN O = L) T 0= Lo (5.17)

Adding this to the operator in (5.14), which can be written as A (A — féig)_l [A(A—
el 190
L) IE gives
N I _ I _ I _
o= L5 — L) T = L5071 = v — LT (5.18)

This is just the operator in (5.13). Act on Fluc;m;sf’li and integrate over s € [0, 7] to

get (5.13)~(5.16). O

Next, we use the Itd formula to compute (5.15) in terms of a martingale and bound-
ary terms. We can also compute the predictable bracket of the martingale we get
(essentially by standard theory).
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Lemma 5.3. Fix any £ > 0. There exists a martingale t +— Mfl € € such that

N - I e,
(5.15) = My + (0 — Z50) 7 0 = Z50) T T el i =0 (5.19)

LK
X I - ise,
— O = L) O = L) T TR e i=r (5:20)

The predictable bracket [M®] of M®, that is the process such that |M{''|> —
[M®4], . is a martingale, is

98 B
M54, = [L(Ld 4 258

flow

(10— 5 00— Lo 1R Plas s

x,q5,15

S 2N — Lo TG — L) e ) (5.22)

5. 15

¢ 8 o B
X {(Low + Lo MO — L) ™!

flow

hOh — gg;;ff)—l]‘fFluc;‘f;?E]}ds. (5.23)

Proof. The It6—Dynkin formula (see Appendix 1.5 of [20]) says that for any Markov
process X (valued in a Polish space) with generator ¢, and for any ¢ in the domain
of 4, we have

JoGexis1ds = @xp) — @x10) — MY, (5.24)

where t > MY is a martingale whose predictable bracket is a time-integrated
Carre-du-Champ:

Jol@ (loxs1?) — 20x1 9 0x(s11ds. (5.25)
Use this with X = (I°,¢") and ¥ = (5.5) and ¢ = (A — Zo) "' [A(Gh —
Lo )T I 0

We now combine Lemmas 5.2 and 5.3 to write the expansion for Int"*%¢¢_ Indeed,
note that (5.13) for £ = 0 is just Int™®¢ We remark that the following result,
namely its expansion (5.26)—(5.30), will only ever be a finite sum (that we do not
iterate to get an infinite sum). Thus there is no issue of convergence. (As we noted
before Lemma 5.2, every step in the iteration gives a uniformly positive power of ¢,
so only finitely many steps are needed to gain a large enough power-saving in € to
beat every other e-dependent factor.)

Corollary 5.4. Fix any integer £max = 0. Recall (5.3), (5.8) and notation from
Lemma 5.3. We have
Intfo8eF = S imane! (5.26)

(ENLN

I ) i
+ JolrGe = L)~ e Fluc o ds (5.27)

flow

¢ AR 2B |
+ 2020 JoLhow A — L)
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[0 — L) 1 Flucte ds (5.28)
. N F- N - i
+ 00 0 = Lo )T A = L) T RIS o (5:29)

— Y = L) T G — L) T I [, (5.30)

X, 95,15
Proof. By (5.3) and (5.8), we clearly have
IntfRf = [TFluc™Sf ds. (5.31)

tx,q% 08 x,q5.1I§

Letusnow prove (5.26)—(5.30) for £iax = 0. This follows immediately from (5.13)-
(5.16) for £ = 0 and (5.19)—(5.20) to compute (5.15) for £ = 0. So, for the sake of
induction, it suffices to assume that (5.26)—(5.30) holds for £,,x > 0, and get it for
£max + 1. For this, we compute (5.27) for £ pax using (5.13)—(5.16) for £ = £yax + 1.
We deduce that its contribution is equal to

Jol0 = )™ 1 I ds (5.32)
,I? - ’If - max ise,

— Jo L — L) T A = L5 FIFlucl’ oy ds (5.33)

t Jo Lo O = Lo G — ) T IR ds. (5,34

Thus, we have upgraded (5.27) into (5.27) but with £,ax + 2 instead of €5 + 1, at
the cost of the second and third lines of the previous display. The third line lets us
turn the sumover £ = 0, ..., €yax in (5.28) into asumover £ = 0, ..., £pax + 1.
Moreover, if we apply (5.19)—(5.20) for £ = €pnax + 1, the second line gives a
contribution that turns the sums over £ = 0, ..., £yax in (5.26), (5.29), and (5.30)
toover £ = 0,...,¢max + 1. What we ultimately get is just (5.26)—(5.30) but
Cmax > €max + 1, which completes the induction. |

5.3. Step 2: Estimates for (5.26)—(5.30) for £max 2y 1

Perhaps unsurprisingly, the martingale M® that we are looking for is the RHS of
(5.26). Thus, we must do two things.

(1) Show that (5.27)—(5.30) vanish as ¢ — 0.
(2) Compare the predictable bracket of the RHS of (5.26) (using (5.21)—(5.23)) to
[M''™it] given in (3.5).

Indeed, one can check directly that this would yield Proposition 5.1.

5.3.1. Dirichlet-to-Neumann Estimates Let us start with (5.27), (5.29), and
(5.30), that is the terms which only have Dirichlet-to-Neumann maps (and no X;(;\qv—
terms). The estimate which essentially handles all of these terms is the content of

the following result.
Lemma 5.5. Recall A = ¢~ ' from (5.12), and recall (5.8). For any stopping time
T € [0, 1], we have the following with probability 1 for any £ > 0 and k > 0:

e I8 1 eI5 140 noise, &
sup [(A — L)~ A — L) ] Fluc_,qg,ls [l x
0<s<t soLs
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_1
ShIYel, 0,0 & - [he]" 672, (5.35)

(The norm on the LHS is with respect to the omitted x-variable, which we indicated
with -.)

Proof. Intuitively, every inverse gives €, and each A is just bounded by A, and we
bound Fluc™®:¢ by ¢ ~1/2 directly (see (5.8)). This gives (5.35), roughly speaking.
Let us make this precise.

In what follows, we denote by (()),, the H*-Sobolev norm of order « with respect
to the q;-variable (see Section 2). We now make the following observations.

(1) For any I € €°°, let u[VI] be Riemannian measure on dIM induced by g[V].
As explained in Construction 1.1, change-of-variables shows that

dulVIl, = (1 + |VL )2 dx. (5.36)

(2) ConsiderL2(3IM, u[VIZ]). The Dirichlet-to-Neumann operator,,i”S;II\l5 hasaself-
adjoint extension to L2(aM, u[VIE]), and it has a one-dimensional null-space
spanned by constant functions. It has a strictly positive spectral gap of order
¢~ ! times something that depends only on the €' -norm of VI .. (For the order
of the spectral gap, see Lemma B.3. For the dependence on VI{ , it suffices to
control the density of the measure induced by g[VI ] with respect to surface
measure on dIM, that is g[ VO], where 0 is the O function. Indeed, spectral gaps
are stable under multiplicative perturbations of the measure. But this measure
depends only on the determinant of g[ VI ] in local coordinates.)

(3) The Fluc?‘;if?if , as a function of q¢ € dIM, is orthogonal to the null-space of
e, 15

Z1iN - This follows by construction; see (5.8). Moreover, so does every power

I . i . JIE . ..
of (A — Z5) ™! acting on Flucfl’(;?el’g , since £ is self-adjoint.
(4) Thus, we get that for any x € M and o > 0, we have the estimate below (for

n<1):

(= L) [0 = L) I Fluc

x, 45,1
04+14¢ noise,&
Sa,z,nvvuww e A (Flue, o g Do (5.37)
{4142 noise, &
SQV@,HYSHW?%;Z e A <<F1ucx,q§,lf»a' (5.38)

(To get the second estimate, use Lemma C.1 to control the implied constant in
(5.37).)

(5) Finally, we note thatthe Sobolevnormin (5.38)is < ¢~ 172 with implied constant
depending only on the € -norm of VI¢ = ¢!/4VY?_ (This follows immediately
by (5.8).)

Note that (5.37)—(5.38) is true for all @« > 0; taking @ > 0 big enough depending on
dimension d, we can use a Sobolev embedding and deduce that with probability 1,
we have the uniform estimate
IS~ IS~ ise,
I — L5 " A — L) ™ 1 Fluct iy |

x,q5.I
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04150 4
Sl Yol 0,0 € A2 (5.39)

This is true for all 0 < s < 7, so the desired estimate (5.35) follows for k = 0. For
general k > 0, just use the same argument, but replace Fluc"®'*®:¢ by its k-th order
derivatives in x. (Indeed, the mean-zero property used in point (3) above is still true
if we take derivatives in x, since it is a linear condition in the q§-variable. One can
also check this by direct inspection via (5.8).) This finishes the proof. O

As an immediate consequence of Lemma 5.5, we can bound (5.27), (5.29), and
(5.30). The latter terms (namely (5.29), and (5.30)) are bounded directly by (5.35),
so we only treat (5.27). Again, recall (5.12).

Lemma 5.6. Fix any stopping time t € [0, 1] and any €max, k = 0. With probability
1, we have

sup [ fgTAGk — L)~ 1m T Fluc™ e ds |

0<r<t T
_l

Sjk’emax’uye”%j 0,2 [)LE]ZmHX+1 L& 2, (540)

Proof. Use the triangle inequality to move the €*-norm into the ds-integral, then

use (5.35) for £ = €yax + 1. (The extra factor of A on the RHS of (5.40) compared

to the RHS of (5.35) for £ = £,,.x + 1 is because there is an extra factor of A on the

LHS of (5.40) compared to the LHS of (5.35).) O

5.3.2. .,2’; (’):1; Estimates We first give an estimate for (5.28), that is bounding it by
auniformly positive power of . We then give an estimate comparing the predictable
bracket for the martingale on the RHS of (5.26) to the proposed limit [M'™i] (see
(3.4) and (3.5)).

Our estimate for (5.28) is captured by the following result. This result was
intuitively explained in Section 3.4.1, but let us be a little more precise about power-
counting in ¢ (before we give a complete proof), just to provide intuition. As noted

in Section 3.4.1, the R -operator in (5.28) destroys the algebraic property that

flow

allowed us to leverage spectral gap estimates in the proof of Lemma 5.5. Thus, each
resolvent in (5.28) only gives a factor of < A~!. Fortunately, .i”;c;zf has scaling
< e71/4. S0, (5.28) should be < e~ 1/41e~1/2 < g!/4=7 since the Fluc"!®¢ has
scaling of order e~ 1/2 (see (5.8)).If we choose y > 0 small enough, this is sufficient.

To make it rigorous, we must first compute the action of f;&gx on the resolvents
in (5.28) (e.g. show that the resolvents are in the domain of fff(’)if ). We must also
be a little careful about how many derivatives of Y® our estimates require, but this
is not a big deal (especially given Lemma C.1).

Lemma 5.7. Take any stopping time © € [0, 1] and k > 0. Let Errfﬁ“"’") be (5.28).
There exists a uniformly positive B > 0 such that with probability 1, we have the
following estimate:

4
Bl ik Sk tmensI¥21,, 0,2 €7 (5.41)
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The proof of Lemma 5.7 requires the calculations in the next section for computing
the ds-integrand of (5.28), so we delay this proof for Section 7.

Letusnow analyze the predictable bracket of the martingale on the RHS of (5.26).
A rigorous proof of the result also requires the calculations in the next section, so
we delay a proof until Section 7 as well. However, let us at least give an intuitive
argument (which is essentially how the proof goes).

e Take ¢ = 0 on the RHS of (5.26); the predictable bracket of this martingale is

(5.21)—(5.23) for £ = 0. The first step we take is to drop all ,,2”;(’)35 -operators. One
can justify this by proving that they are lower-order as described before Lemma
5.7. However, it is also a first-order differential operator, so by the Leibniz rule,

the f;(’)jf -operators actually cancel each other out exactly. After this, (5.21)—

(5.23) for £ = 0 becomes
Lo 10— Lo Fluct it s

t N | ise, e, I¢ N | ise,
—2[0(r = ZHN) Fluc;?:;é x Lo [ — L) Fluci%?é]ds.
e Every resolvent is order ¢ (see the beginning of the proof of Lemma 5.5). Ev-
ery Dirichlet-to-Neumann operator itself is order e ~!. Also, Fluc"*¢: is order
< ¢~ 1/2. With this, it is not hard to see that the previous display is order 1.
Moreover, we time-average, thus we expect to replace the ds-integrand above
by its expectation in the particle q§ with respect to the Riemannian measure
w[VI{]induced by g[ VI{ ]. (This is exactly the idea behind Section 3.4.1.) After
this replacement, the previous display becomes
IS I - ise,
Jo S Zo l10- = L) ™ Flue 3 1Al VI .ds

x,2,I§

I ise.
20y SO~ L

x,z,I§

X Lo L0 — Z50) ” Fluc 5 Jd [ VI L ds.
The firstlinein this display vanishes, since thedu[ VI{ ] . -integrand is in the image
of the Dirichlet-to-Neumann map, which has u[VI{] as an invariant measure.

Since A = ¢~'*7 is much smaller than the scaling ¢! of fg;ﬁ, we can drop
A-terms in the second line above. We are therefore left with
—2 [ FIUchSe® s [0 17 RIuce [ VIE] ds, (5.42)

& &
x,z,I¢ x,2,I¢

where operators act on z. Finally, all dependence on I above is through VI® =
e!/4VY? (which should be < 1), so we can replace I* by 0. In view of (5.8) and
(3.5), we get [M&0] a2 [Mlimit],

e Now take £ > 1 both on the RHS of (5.26) and in (5.21)—(5.23). Again, drop all
fff(’)jf -operators as before in our discussion of £ = 0. Now, note that every term

in (5.21)—(5.23) has at least one additional factor of A(A — fgﬂlj )~!, which is
< ¢ asused in the proof of Lemma 5.5. As (5.21)—(5.23) was order 1 with£ = 0
(so without the helpful e -factors), the RHS of (5.26) has vanishing predictable
bracket for £ > 1.
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The actual proof of Lemma 5.8 is slightly different for ease of writing, but the idea
is the same.

Before we state the result precisely, we recall (3.5) and the notation of Lemma
5.3.

Lemma 5.8. Take any stopping time t € [0, 1] and any k > 0. There exists uni-
formly positive B > 0 such that the following hold with high probability:

i
M7 — IM*™ g0t Skvel, o, 5 &7 (5.43)
sup  [IIM*“Ulsgoegt: St 11, 0,2 € (5.44)
1< bmax e
Remark 5.9. For n > 0 fixed, take any tangent vectors &;,, ..., €;, on the tangent

space of 0IM to differentiate along. (These tangent vectors depend on an implicit
variable x € dIM.) The first estimate (5.43) still holds even if we make the following
replacements, as we explain shortly.

e Replace M? 0 byits n-thorderderivativeine;, , ..., €;,. Thisisstillamartingale,
since martingales are closed under linear operations.

e Replace [M'™it] by the object obtained by replacing K in (3.5) by its n-th order
derivative with respect to the x-variable in €;, ..., €;,. We denote this object
by [Vi,...., MIMit] (It is easy to see from (3.5) that [V;,. ; M'™] is uniformly
smooth in the x € dIM-variable; its regularity is controlled by that of K.)

Indeed, the only difference in the argument is to replace K by its aforementioned
derivative. We only rely on regularity of K (as alluded to in the outline of Lemma
5.8 before its statement and as the proof will make clear), so our claim follows.
Ultimately, combining this remark with (5.44) and M® = M*9 + Zf;“:“"f M&¢, we
deduce that the following estimate holds with high probability:

10V, ME] = [V, i, M U0t Sk ye el (5.45)

g 042

5.4. Proof of Proposition 5.1 (and thus of Proposition 4.3)

Define M? in the statement of Proposition 5.1 be the RHS of (5.26) (for £max < 1
chosen shortly). In particular, the quantity of interest

It — ME, (5.46)

t,x,q°,I¢

equals the sum of (5.27), (5.28), (5.29), and (5.30). Now, use Lemmas 5.5, 5.6, and

5.7 to control ‘fro%k—norms of (5.27), (5.28), (5.29), and (5.30) altogether by

elfmotl g7 4 sup e -[hel’-e7Z + 6P (5.47)
0<€<lmax

<
~k,Lmax, HYSH%/??; 2

Since A = ¢~ !*7 for y > 0 uniformly positive (see (5.12)), we know the upper
bound (5.47) is < &f for B > 0 uniformly positive, as long as £may is sufficiently
large depending only on y (we can take £max Sy 1). Therefore, using what we said
immediately before (5.47), we deduce (5.4).
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We now show M? is a family of good martingales (see Definition 3.1). Itis smooth
since every other term in (5.26)—(5.30) is smooth. It is cadlag for the same reason
(note (I?, q°) is cadlag). Also, by Corollary 5.4, the jumps of M? are given by the
sum of jumps of (5.29)—(5.30), since the other non-martingale terms in that display
are time-integrals. Thus, it suffices to show these terms vanish deterministically as
& — 0 uniformly in time (at a rate depending on || Y? ||<gr()<52). For this, see Lemma
5.5. Next, we show the derivative bounds on M?. Fix tangent vectors &; , ..., €;, as
in Remark 5.9. Fix any stopping time t € [0, 1] for which:

° ||Yf,.||<gz < AforA >0fixedforall0 <r <.
e (5.45)holds forall 0 < ¢ < t and for n > 0 fixed.

‘We claim that

E sup j31M|Vi1---ian,x *dx S ]31ME|V:'1...[,,M?X|2CIX Saan L (5.48)
0<i<r

The first bound is by Doob’s maximal inequality (note that M¢ and its derivatives are
all martingales, since the martingale property is preserved under linear operations).
The second inequality follows by (5.45), the a priori ¢’ bound on Y¢ before time
7, and bounds on [V,'].U,-HM“‘““] as explained in Remark 5.9. This is true for all
n < 1,so we can use a Sobolev embedding H" < % (for any k and for any  large
enough depending only on k) to deduce the desired derivative estimates for good
martingales. (Said derivative estimates hold with high probability, since the claims
of Remark 5.9 hold with high probability.)

It remains to show that the martingale M? satisfies (3.4). Intuitively, this should
be immediate because of Lemma 5.8, but we have to be (a little) careful about taking
the predictable bracket of the sum. We first use [m + n] = [m] + [n] + 2[m, n] for
brackets of martingales m, n, where [, ] is the cross bracket. (We will takem = Me0
andn = M&! + ... 4 M&¥max: see Lemma 5.3 for notation.) This is just a standard
inner product calculation, so that

[M?] = [meast Z:I [M£:0] 0 I:Z/ZmaxMe Z]
+2 (M0, et (5.49)

By (5.43), we can compare the first term on the far RHS to [Mlimi‘]. Thus, to show
that [M?] — [M"™i!] vanishes (that is prove that M? satisfies (3.4)), it suffices to
show that, with high probability,

|[x=tzime]

<
Nk,fmax»”YEH%ng,,n 2

8,0 Kmax 8,@
COGk + H [M » 2= M ] COGk
&P, (5.50)

We assume k = 0 in what follows; for general k, use the same argument but replace
brackets by their k-th order derivatives in x. To bound the first term on the LHS of
(5.50), use the Schwarz inequality with (5.44):

[ M| S imME, (5.51)



50 Page34of 70 Arch. Rational Mech. Anal. (2025) 249:50

For the second term on the LHS of (5.50), we use another Cauchy—Schwarz combined
with (5.44):

1

[ve0, simme ]| < et ([Simpmee]) (552)

1
Shobmans [¥ell 02 & X IMP0]2. (5.53)

By (5.43), we can replace [M*°] by [M''™i] in (5.53) with error < . But we know
that the €°%* -norm of [M'™i] is <; 1; this holds by differentiating (3.5) in x up to
k-th order, using regularity of K in (3.5) in both of its inputs, and using the spectral
gap of .Z. (Indeed, this spectral gap ingredient, which comes from Lemma B.3, just
says that K — 1 is smooth both before and after we hit it by .#~1.) Ultimately, we
deduce that (5.53) < &f. Combining this with every display starting after (5.50)
then shows (5.50). ]

5.5. What is Left

As far as Proposition 5.1 (and thus Proposition 4.3 and Theorem 3.3) is con-
cerned, we are left Witl}g Lemmas 5.7 and 5.8. However, we must also show that
every term we hit ,i”ﬂi)gj with in this section is actually in its domain. Said terms
include (5.21)—(5.23) and (5.28). This will be dealt with in this next section, whereas
Lemmas 5.7 and 5.8 are proved in Section 7.

6. Computations for the Action of .,2”; (’)gj -Operators

6.1. Setup for Our Calculations
The main goal of this section is to compute, for any x, q € dIM,

L 230 00— L5007 T — 500 1 Fluei g (6.1)
Above, all of the operators act on the g-variable. We emphasize the relevance of
(6.1) by recalling the need to estimate (5.28) in Lemma 5.7.

Part of computing (6.1) means showing existence of the limit (5.7) that defines
,Z;(’)gv on the RHS of (6.1). For convenience, we recall Fluc"®¢ from (5.8) below,

in which Voly := [;,(1 + [VI[*)!/2dz:

Fluc! ey =677 [VoliKyq = fynKeo(l+ VL 2dz] . (62)

Our computation of (6.1) takes the following steps.

(1) First, wecomputel — % éngluc;?;ffi’g. This is not hard given the formula (6.2).
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(2) Next, we compute the following operator on 6"*°:
i Z580 = lim H{ 2 - 251 ] (6.3)
where J[I] is given by the following direction of differentiation in (5.7):

1> J[I] = AL+ ¢ 73 Vol K. 4 € €. (6.4)

(Although J[I] depends on q € dIM, we omit this dependence since it will not
be very important.) The equality in (6.3) meant as operators on ¢ (so it holds
true when we apply the RHS to generic ¢ € ¢°°). We clarify that the above
is not a composition of operators, but rather the directional derivative of the
operator XSH{I in I. (More precisely, its action on any ¢ € ¢°° is given by the
directional derivative of fé&(p. Again, computing this involves showing that it
is well-defined.)

(3) Using point (2) and classical resolvent perturbation identities from functional
analysis, we compute the operator I — .,‘fﬂg(;g, - fég\])_l. It is not too hard
to use this result and the same resolvent identities to derive a Leibniz-type rule

for the directional derivative .Zﬂi;;’, and then compute the operator

I 23800 — 2507 o — 251 (6.5)
The subtlety is that (A — fé{{,)_l [A(A — .i”ﬁhl\l)_]]Z is a product of operators;
we need a non-commutative version of the Leibniz rule (which requires a bit of
attention but is not difficult to derive).

(4) Finally, we use a Leibniz rule for fﬂe(;gv (we emphasize that ffi’)\i is just a
derivative!) with points (1) and (3) above to compute (6.1).

6.2. Point (1): Computing 1 — £33 Fluc"i5%¢

flow x,q,I

As noted earlier, this computation is easy given (6.2). In particular, when we
differentiate in I, we must only do so pointwise in z € 9IM, that is differentiate
analytic functions of I, and VI, per z € dIM. Ultimately, we get

Lemma 6.1. Fix x, q € 0M and I € €°°. The following limit exists:

£,q noise,e __ q: 1 noise, & noise, &
LionFluci e = lim £ {Flchie ) — Flucl ] (6.6)

Also, (6.6) is jointly smooth in x, q with k-th order derivatives satisfying the fol-
lowing estimate:

_3
Skl 2,1V, 2 €2 (6.7)
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Proof. Byusingtheidentity (a +hb)2—a? = 2hab+o(h) foreach partial derivative
in V, we have

lim 4 {IVL +# VI P — VL] = 2V, VL), 6.8)

where (-, -) is the dot product. Using (6.8) with the chain rule then gives
lim § {(1 F VL + hVIILD? — (1 + |VIZ|2)%} 6.9)
=31+ VL%~ - 2(VJ[Il,, VL,). (6.10)

Note that (6.10) is £~ '/4 times a smooth function of I and its k-th derivatives for
k < 3 indeed, see (6.4). Since Fluc"!%®:¢_noise is determined by integrals of (6.10)
against smooth functions (like K and 1) on dIM, verifying existence of (6.6) and
showing (6.7) is straightforward. (For (6.7), it suffices to use the e~V 2-scaling in
(6.2) and the g~ 1/4 scaling in (6.10), which can be seen from (6.4), to get 8_3/4.) |

If we now specialize Lemma 6.1 to I given by the I® process, we get the following.

Corollary 6.2. Fix x € 0M and any stopping time t € [0, 1]. Forany 0 < s < 7,
the quantity

5T Ry choisere 6.11)

flow x,q5.I¢

is jointly smooth in x, q5 with k-th order derivatives S ye |, o, » e=3/4. (This is
0¢

all deterministic.)

Proof. Use Lemma 6.1 and Lemma C.1 to control [V |2 <1+ [[Y®|lg2. O
6.3. Point (2): Computing I — f&g(fg&)

Our goal now is to prove Lemma 6.3 below, that is compute (and show existence
of) (6.3). Recall (5.6) and fix ¢ € ¥*°. Using this, we get (essentially by definition
of Dirichlet-to-Neumann) the following with notation explained after:

i$§i§+hJ[I] - féhlq} g = e oy MY —gle). (6.12)

Above, N is the inward unit normal vector field on dIM, and Vy is gradient in
this direction. The % -terms are harmonic extensions of ¢ with respect to metrics
g[VI + AJ])] and g[VI], respectively. To write this precisely, let Ay be the
Laplacian on IM with respect to the metric g[ VI] (see before (5.6)). We have

Arprym 2 WY ALy =0 and TINe g 0 = 0. (6.13)

For convenience, let us define ¥ 179 .= g/I+hIllle _ ¢ Lo, By (6.13), we get the
PDE

A/ = —[Arpngmm — Al 2 and 7B = 0. 6.14)

We now make two claims.
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e))

@)

The operator Apypyay, M — Ap g : €52 (M) — €*(IM) is bounded. Its norm
is < h, with implied constant depending on at most 4 derivatives of I. Indeed,
in local coordinates, we have the following in which we view g[-]-metrics as
matrices (normalized by the square root of their determinants):

Arppym,M — AL

— Xd: v [(g[VI +hVI; g[vui;‘) vj} . (6.15)
ij=1

(Above, V; is derivative in the direction of the orthonormal frame vector €;.)
Since the metric matrix g[-] is strictly positive definite, the inverse matrix g[-] ! is
smoothin theinput. (Everything here is allowed to depend on as many derivatives
of I as we need.) Thus, (6.15) turns into the following (noting that J[I] in (6.4)
has scaling of order ¢ ~1/4):

d

1
Avrama = Aun = Y Vi {ote™Hv,], (6.16)
i,j=1

where O(¢~1/4h) is something smooth whose k-derivatives are <y 1 eV,
Moreover, 2 1+1IW-¢ is smooth with derivatives <p, 1 (indeed, use elliptic
regularity for (6.13).) If we use this estimate with (6.16), then (6.14) plus elliptic
regularity shows that #1/-¢ has €% (IM)-norm that is Sk,Le h. To finish this
first step, we now rewrite (6.14) by replacing % 1"I-.¢ with /¢ with error
yLho.

AL = —[Argmm — ALmIZM — [Arngm — Al 7 ¢

Y Lo = 0. (6.17)

We investigate (6.15) a little more carefully. We got (6.16) by smoothness of
g[-]_1 entry-wise. We now claim that h_l[AI+hJ[]]’]1\/[ — Ap] is not only
bounded as a differential operator as # — 0, but it has a limit. In particular,
we claim that

oh = lim & { A — A} (6.18)

exists, and it is bounded as a map € k+2(M) — €% (M) for any k, with norm
bounded above by £ ~/4 times something depending only on k and the €3-norm
of I. Indeed, this holds by Taylor expanding the smooth matrix g[-]~! entry-
wise in (6.15) and controlling regularity of J[I] by directly inspecting (6.4).
(The dependence on I of the norm of ¢! comes from the €' -dependence of
(6.4) in T and V;I, which gets upgraded to ¢>-data because of the additional
V;-differential on the outside on the RHS of (6.16).) To conclude this step, we
note the last term [Agisg1. v — Arn]# ¢ in the PDE in (6.17) is O(h2). (This
follows by (6.16) and our estimate 7 1.-¢ < h from after (6.16).)
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We can now divide (6.17) by & and take 7 — 0 using (6.18). By standard elliptic
regularity, we can take this limit in the “naive” sense, so that

A {hn}) Loy L, “’} — 0" Y% and “in})%”ifl’h""} lsm = 0. (6.19)
—

In view of (6.12) and (6.19), we ultimately deduce the following:

Lemma 6.3. Fix I € €°°. We have the following, where the limit is taken as an
operator €°° — €°°, and ¢ € € is any test function:

Lo (L5x)e = lim | Hsa - 25k e =Tt 620

where VY is gradient in the direction of the inward unit normal vector field N, and
VL9 solves the following PDE (with notation explained afterwards):

A ¥ = "% and Yy = 0. 6.21)

o OV is a bounded linear map €*>(IM) — €* (M) with norm <. I, g~ 1/4,
o ULY is the g[VI]-harmonic extension of ¢ to IM:

ALM%W =0 and % |yn = ®. (6.22)
Proof. See everything from (6.3) until the statement of Lemma 6.3. O

Corollary 6.4. Fix any stopping time t € [0, 1]. For any 0 < s < 7, the operator

8 qs
Lhow (thN ) (6.23)
is bounded as an operator €* — €* with operator norm Sk, Y ly 02 g4,
0%

Proof. Asin the proof of Corollary 6.2, by Lemma C.1, we know that for alln > 0,
we have

IVE lgogn S 1+ IY° llgoge. (6.24)

How (fggj) and elliptic regularity for (6.21)
and (6.22); this argument was given in the proof of Lemma 6.3. (Indeed, all the
elliptic regularity bounds there depend only on a finite number of derivatives of
g[VI]. Thus, by Construction 1.1, they are controlled via ||I||¢» forn = O(1).) O

It now suffices to use the formula for %" s
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6.4. Point (3), Part 1: Computing ,,?ﬂs(’)gv A= .,?S;II\I)_1 and
Ziaow O = L) 110 = L0~
The basis for this step is the following resolvent identity:
AT B '=A"'B-A)B. (6.25)

Indeed, this turns computation of fﬂs (’)3‘/ (= f];hl\l)_l into an application of Lemma
6.3. More precisely, we have the following result (in which we retain the notation
from Lemma 6.3):

Lemma 6.5. Fix any I € €°°. We have the following limit of operators €*° —
E>:
. 1 J4-RJI]N —1 J\—1
lim 1 {6, — 3™~ — 6. - ™'

= (= Lo g 28 0o — L) (6.26)

ow
Proof. We first use (6.25) with A = (h — 50" "Tand B = (0 — £51)

J4-hJ[I]N — J.—
()"_Z];LN—F JI ]) 1_()\'_$DgtN) 1

The resolvents are bounded operators on any Sobolev space by Lemma B.3. By

Lemma 6.3 and standard elliptic regularity, for any test function ¢ € €, the
quantity ||[$S;II\I+M[H — zﬁg\l]@ncgk is O(h) for any fixed integer k& > 0. Thus, up
to an error of O(h?%), we can replace the resolvent (A — D?S;I{I+h'][l])_l on the RHS

of (6.27) by (A — ZS;II\I)’I. Dividing by 4 and sending &7 — 0 then gives (6.26). O

‘We now use another chain-rule-type argument to differentiate (A — XS;II\I)’] [A(A —

DS,”S;II\I)_I 1¢ in I To this end, we require another resolvent identity. In particular, we

first claim that
4
A_[Z-'rl] _ B—[Z-I—l] — ZA—” (A—l _ B_I)B_E+n. (628)
n=0

Indeed, if £ = 0, this is trivial. To induct, we first write
AT gl — A=l A=t — B~ 4 (A7 =BT IB7Y, (6.29)

and plug (6.28) (but with £ instead of £ 4 1) into the first term on the RHS above to
deduce (6.28) for £ + 1.

Lemma 6.6. Fix any I € €°°. We have the following limit of operators €*° —
C>:

. I+AJ]\ — I+hrJ[]\ —

1}%% [(/\_g&NJr J[]) I[A()‘_D?SEN+ Jl ]) e

—0o= L5007 10— L5007 (6.30)
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4
=33 0= L) T L Lo O — L) T (6.31)

flow
n=0

Proof. We firstuse (6.28) for with A = (A — XS;II\,MJ[H)’] andB = (A — ,,S,”S;II\I)’] :

(A _ gD&\;lI\]+hJ[I])_1[)‘()\ _ g];;ll\?‘hz][l])—]]e _ ()L _ géhl\])_l[)"()" _ gDSEII\])_l]e

(6.32)
— ¢ {(A _ glghl\]+hJ[I])—[4+l] — (L — XS{II\I)_[HI]} (6.33)
¢
— ¢ ZO‘ — LI - {(A — eyl XS;II\I)—I}
n=0
(L= e~ (6.34)

We can replace the difference of resolvents by & x (A — fg&l\])_liﬂ £ XSII\I (o

flow t

(Z];II\I)_I plus an error of o(h) by Lemma 6.5. By the same token, in (6.34), we

can also replace (A — XS;II\IMJ[I])_" by (A — .ZS;II\I)_” with an error of O (h?) (this
replacement has error O (h), but the difference of resolvents in (6.34) is O (h) as
we just mentioned). Thus, when we divide by 4 and send 7 — 0, (6.34) becomes

(6.31), so we are done. O

6.5. Point (4): Putting it Altogether via Leibniz Rule

Observe that the operator (5.7) is an actual derivative, so the Leibniz rule applies.
Thus, to compute (6.1), we get two terms. The first comes from differentiating the
operator in I, and the second comes from differentiating Fluc"*'¢-¢ in I In particular,
by Lemmas 6.1 and 6.6, we get the following (whose proof is, again, immediate by

the Leibniz rule, so we omit it).

Lemma 6.7. Retain the notation from Lemmas 6.1 and 6.3. Fix x,q € oM and
I € €°. The quantity (6.1), which is defined as a limit via (5.7), exists, and

14
6.1) =2 "0 = L5 " Lo LN O — L) T T TR (6.35)
n=0

+ (= LT 0 — L8 TELE d Flutose (6.36)

t t flow x,q,1

7. Proofs of Lemmas 5.7 and 5.8

Before we start, we invite the reader to go back to right before the statements of
Lemmas 5.7 and 5.8 to get the idea behind their proofs, respectively. (In a nutshell,
the proofs are just power-counting and explicitly writing out the topologies in which
we get estimates. The only other idea is the homogenization step for the proof of
(5.43) that we described briefly in the second bullet point after Lemma 5.7. But
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even this is built on the same ideas via the It6 formula that are present in Section 5.
Moreover, it is easier in this case, since there will be no singular e~ Y4 factor to
fight.)

7.1. Proof of Lemma 5.7

Lett € [0, 1] be a generic stopping time. Our goal is to bound (5.28); see (5.41)
for the exact estimate we want. Because T < 1, we can bound the time-integral (5.28)
by the supremum of its integrand (in ’*-norm); this is by the triangle inequality. In
particular, we have

.q5 LN
165.28) | g0 < sup (1w — L) !
0<s<t
eIf  —1q¢ noise, &

A — L) ] F]ucnqﬁ.’l?.”gk. (7.1)
We compute the term in the norm on the RHS of (7.1) using Lemma 6.7. In particular,
the RHS of (7.1) is

e, I8

14 eI\ —n—1 8.5
Se At max  osup (A — L) Lhow Lo

flow
SR 0oL<s<t

(= L) ™ T I N (7.2)
N (- B [ .45 ise,

+ sup (|0 — LoD T RO — L) T Lo Fluc il g (7.3)
0<s<t A

We will now assume that k& = 0; bounds for general £k > 0 follow by the exact
same argument but replacing Fluc™5®¢ by its k-th order derivatives in x. Now, fix
x € 0M. Let (()) g« be the H*-norm in the q¢-variable. We also set ((})r to be the
¢ -norm in q§. To control (7.2), observe that:

e The resolvents in (7.2) are bounded operators on Sobolev spaces with norm
< A~L. Thus, for any o > 0, we get the following (the last bound follows since
L controls L? on the compact manifold §IM):

(0= Loyl gl ok (o = oy~ mp oy L (7.4)

A 2
flow x,q8,I¢

—n—1 .45 .15 e If —t—1+4 noise, &
St AN Lipol L O — L) ™ T I ) (1.5)
< )L,n,] «gs,qué‘,li ()L _ gsvli)flfl+nl_—;1 noise, & » (7 6)
ot flow “<DIN DIN UCy qe /1 :

Now, we use the operator norm bound for Z;(’)gj ﬁgﬂl\f from Corollary 6.4. We
deduce that
6) < —%)L—"—l A — gg»lf —Z—H—nFl noise, &
(7.6) Sivell, 0,2 € (« o) uc Degario. (7.7)

x,q5,I§
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Use a Sobolev embedding to control the norm on the RHS of (7.7) by the H"‘2

HOISC &3

norm (for o depending only on «). Now, Fluc isin the null-space of thN ,

and Zéﬂl\f has a spectral gap that is scaled by £ ~!. (See the proof of Lemma 5.5.)
So, as in the proof of Lemma 5.5, each resolvent in (7.7) gives a factor of . Since
Fluc™®:¢ is smooth with derivatives of order £ ~1/? (see (5.8)), we ultimately
get the estimate below for some 8 > 0 uniformly positive:

5 1

RHS(7.7) Sevel, 000 €7 cgttlmmymn=l g, (7.8)

o If we now combine every display in the previous bullet point, we deduce that

(O — thN) n=1 gt qf.,s,ﬂtN (O — thN) t=ltnpy, c“"‘s”»Ha (7.9)

flow

7
) — g bHl—ny—n—1
gLaﬁngnge ig A . (7.10)

If we choose « > 0 sufficiently large, then by Sobolev embedding, the same
estimate holds but for the ¥°-norm in (7.9) instead of H¥. In particular, the
term inside ())e in (7.9) is bounded by (7.10) uniformly over possible values
of x, q5 € 9IM.

In view of (7.9)—(7.10) and the paragraph after it, we get

_71 e —p—
(72) St ¥l 0,2 Aemagttl-ny—n—l1 (7.11)

— pbnlgten—l=ie2 < od (7.12)
where the lastbound followsby A = e~ 117 fory > 0(see(5.12)). Letusnow control
(7.3). To this end, a very similar argument works. In particular, each resolvent in
(7.3) givesus A~ L in (()) pe -norm. On the other hand, by Corollary 6.2, we know that

EN[N)

(L5 Flu Chne T D Sal¥el, g, € (7.13)
If we combine the previous display and paragraph, we deduce that
IS — s
(0= L5 T I — L) 1 Lo Fluc i e
<Al <1 (7.14)

Taking o large enough gives us the same estimate in ((})c0. Because we can take
y > 0as small as we want (as long as it is uniformly positive), we get the following
for 8 > 0 uniformly positive:

(7.3) S ve eb. (7.15)

lly 042

Combining this with (7.11)—(7.12) and (7.1)—(7.3) produces the estimate (5.41), so
we are done. O
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7.2. Proof of Lemma 5.8

We start by removing the f;(’)\?f -operator from (5.21)—(5.23), which is helpful
for all £ > O (in particular, for proving both estimates (5.43) and (5.44)). Indeed,
as noted in the first bullet point after Lemma 5.7, we have the following. Fix any

&€ €
Z : €*° — R in the domain of .,2”;0& By the Leibniz rule, since .,S,”;Og; is a

first-order differential (see (5.7)), we know that .,2”; Ojvf |.# 1] |2 exists, and

Lol | FWP - 270 x L F11] =0, (7.16)

flow flow

Now use (7.16) for Z[1] = (n — Z53) "' A (h — fgg])—l]‘fFluc;";i?f to show

that (5.21)—(5.23) is equal to the following (which is just removing ﬁ;(’)\j; from
(5.21)—(5.23)):

I X X se,
M, = [3 Lo 10— Lo ) " A = L) ™ Fluc®SE P1ds (7.17)

X, 45,15
Lo L e,
=25 {0 = L5 TR0 — L) Fluc | (7.18)

x R0 = Lo T G = L5 T 1 P ds.

x,q5.15

(7.19)

Let us first prove the second estimate (5.44), because it requires one less step (and
is thus easier) compared to (5.43). (We explain this later when relevant in the proof
of (5.43).) In particular, (5.44) serves as a warm-up to the more complicated (5.43).

7.2.1. Proof of (5.44) Fix a stopping time t € [0, 1]. Our goal is to estimate
the <Kro‘gk—norm of (7.17)—(7.19) for 1 < £ < £ and control it by a positive
power of e. We assume k = 0; for general &, just replace (7.17)—(7.19) by k-th order
derivatives in x. (Again, all we need is an algebraic property for Fluc"*s®¢ that is
closed under linear combinations and only concerns ¢, I{-variables.) We start with
the RHS of (7.17). By the triangle inequality and 7 < 1, we have

X 3 -
1L IO — L) ™!

IRHS(7.17)llg0g0 < sup
0<s<t
’IE- _ .
AL — L) Pl Pl (7.20)

Let {()),, be the H*-norm with respect to q; € dIM. We claim that the norm of fg&l\] :
HYt! — HY is O(¢~") (due to the scaling in (5.6)) times something depending
continuously only on ||I|l¢» for some n = O(1). Indeed, let H”(0IM, g[VI]) be the
Sobolev space on dIM with respect to the Riemannian measure induced by the metric
g[VI]. By Lemma B.2, the principal symbol of XS&I\I, as amap on H”(dIM, g[VI])
spaces, is |£|, so that the map XS;II\I - HeH1(OIM, g[VI]) — H*(dIM, g[VI]) has
operator norm O(1). Since the Riemannian measure induced by g[VI] is bounded
above and away from 0 depending only on a finite number of derivatives of I (see
Construction 1.1), it now suffices to change measure and go from H" (dIM, g[ VI])
to H". Thus, the claim follows.
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So, given that the " -norm of I* is bounded by that of Y? (see (1.3)), for any
x € 0lM, we deduce

e, I8 B . I nois
(LES IO — Lo ) A — Loy )™ 1 FIuc™Bee 127y, (7.21)

x,q5.I5

_ N (R £ (. ise,
SVl gy 2 & (IO = Lo )T A = Lo ) T T FICEE P -
(7.22)

Now, use Sobolev multiplication (see Lemma C.2). In particular, if we take o suffi-
ciently large depending on the dimension d, then we can bound the Sobolev norm
of the square by the square of the Sobolev norm:

_ R i - i 2
(71.22) < g {«(/\ — Lo )~ L) T Pl ) oy } . (7.23)
Now, we power-count using Sobolev estimates for operators in (7.23). Fortunately,
we already did this; use Lemma 5.5 to bound the norm on the RHS of (7.23). We
deduce

2
RHS(7.23) <p.a|v* g {s[xa]‘fs—%} AU < 2E 704y

”%f/ 9(5? 2
for y > 0 uniformly positive, where the last bound follows from (5.12). If we now
combine (7.20), (7.21)—(7.22), (7.23), and (7.24) with the same Sobolev embedding
argument that we explained after (7.9)—(7.10), we ultimately deduce the following
for some f > 0 uniformly positive:

IRHS(7.17) 5050 St ve eb. (7.25)

g 042

We now move to (7.18)—(7.19). First, we rewrite the ds-integrand in (7.19) as

LN = Lo — o) 1 Fluc) ey (7.26)
= 0.~ LopI0.— Lo ) T — Lo )T RS (7.27)
A0~ Ly ) A — o) 1 Fluc e (7.28)
= D0~ L) 1Pl (7.29)
MO — L) Tk — Lo ) 1 Fluce ), (7.30)

In particular, if we plug (7.29)—(7.30) into (7.19) and multiply by the integrand in
(7.18), we get the following expression for (7.18)—(7.19):

X Lo e,
2fy {0 = Lo )T 100 = Lo 1 Pl |
 [AL — zg;ﬁ")*l]ﬁlrlucg?;s;’é ds (1.31)
’IS _ ’IS o . 2
=2 fy {0 = Lo T = Zo) T R s (732)

x,q5.I5
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Given the representation (7.31)—(7.32) for (7.18)—(7.19), in order to bound the
%?‘ﬁo-norm of (7.18)—(7.19), by the triangle inequality, it suffices to show the
following estimate for 8 > 0 uniformly positive:

I X i
sup || = Z5 ) A6 — L) 1P |
Ogsgf §°7s
X i
X A = 5 ) R oo
N F. N F- i 2
+ sup ||x{(,\—.,sf,§tN~) G — L5 l]ﬂFlucT{‘;‘S?ff} llp0
0<s<t sols

Stal¥el, g, 2 & (7.33)

We give a power-counting argument that can be made rigorous using the ()),-
norms and Sobolev embeddings (and Lemma C.2) that gave us (7.25). (We omit the
explanation behind these steps, because they are identical to the proof of (7.25).)

noise, &
a5 I8

e Take the first line of the display (7.33). First, we note Fluc as a function

of qf, is in the null-space of ,,?S;IIE, which has a spectral gap of > ¢!, See the
proof of Lemma 5.5. Thus, each resolvent in the first line of (7.33) gives a factor
&. Since Fluc"5¢-¢ jtself is smooth with order e ~1/2 derivatives, the first line of
(7.33) satisfies the estimate

2¢.2¢ —1 2¢ .20 2¢
SVl 0,0 €17 €T SATET ST (7.34)

for y > 0 uniformly positive (for the last bound, see (5.12)).
o By the same token, the second line in (7.33) satisfies the estimate

2
0 t+1 -4 204120 _2—1 2041
SVl 0,2 /\{k etle 2} S a2l < Y (7.35)

for the same uniformly positive y > 0.
o We clarify that the dependence of these estimates on just the °%2-norm of Y*
comes from tracking the same argument given in the proof of Lemma 5.5.

In view of the previous two bullet points, the estimate (7.33) follows since £ > 1 by
assumption. Thus, as noted right before (7.33), we deduce that the ‘fro%o-norm of
(7.18)—(7.19) is

Seavel, g, 2 € (7.36)

Combining this with (7.25) and (7.17)—(7.19) completes the proof of (5.44).

7.2.2. Proof of (5.43) To make the reading easier, let us recap the goal of this
estimate. We want to prove that with high probability, we have the following estimate:

IIME0] — IME ™ Tl g0 Sk ye e, (7.37)

lly 042

where 8 > 0 is uniformly positive, T € [0, 1] is any stopping time, k > 0, and

M0, = o L5110 — L)~ Fluci e 21ds (7.38)
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—2f! [(x A I U T }

x,q5.I
x (A 0 = L) P s (1.39)
(M, 0 [ K — 1] [.,S,”_I[Km - 1]] dz. (7.40)

(See (7.17)—(7.19) and (3.5).) We now explain the main steps needed to prove (7.37).
(These are essentially outlined before the statement of Lemma 5.8. We refer the
reader there for intuition for this argument. But for reasons that entirely technical,
we do things in a slightly different manner.) Also, throughout this argument, we
will assume that £ = 0 in the desired estimate (7.37); for general k, just replace
[M#:0] — [Mlimit by its k-th order derivatives in x. The argument is otherwise
completely identical.
(1) In [M?:9], we first replace féﬂl\% with e 71, that is replace the metric in the
Dirichlet-to-Neumann from g[VI{] to the surface metric on dIM (which can be
thought of as g[0]). In particular, define

MEO, = el — s_l.,?)_lFluc;?;S;’élz]ds (7.41)
—2f {0 =Tty e |
x [ 20— e ) Fluciey L as. (7.42)
We then want to show that for 8 > 0 uniformly positive, we have
IIME07 = M llgogn Sven, g, € (7.43)

(2) Next, in (7.41)—~(7.43), we want to further replace I? by 0 in the Fluc"s¢-¢-term
therein. In particular, we want to show the estimate below (for 8 > 0 uniformly

positive)
IV — M2 llgoige Seven, g, 5 € (7.44)
where the term [M# 2] is the following time-integral:
M=02], = [re7 2l — e 2) 7 Fluel’s s 11ds (7.45)
—2f{o e ) e |
x [e 120 - e ) Fueier s (7.46)

(3) The next step is averaging. In particular, let @’ " be the ds-integrand in (7.45)—
(7.46) (which is a Carre-du-Champ operator), so that

M*02], = [y € geds. (7.47)

Now, define the following homogenized version of (7.47) (that is one where we
integrate over q¢ therein):

HomM,  := [y [yph . dzds. (7.48)
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We claim the following estimates: the first states [M?:9-2] &~ HomM, that is that
time-averaging in (7.47) is enough to introduce a space-average. The second
states HomM ~ [M!Mit] that is closing the argument and allowing us to deduce
(7.37). In particular,

IIM>2] — HomM lgoegr Sk, 1¥), o, » € (7.49)
|[HomM — [Mlimit]H%Io%Jk Sk,HYSH%O%z &P, (7.50)

Above, f > 0 is uniformly positive, and (7.49) is claimed to hold with high
probability.

By the triangle inequality and (7.43), (7.44), (7.49), and (7.50), we get (7.37) with
high probability, thereby finishing the proof of this entire lemma. So, we are left to
show (7.43), (7.44), (7.49), and (7.50). Before we embark on this, however, let us
present the following key estimates, with proofs given immediately after. (In what
follows, ag depends only on d, and the joint € (1M x dIM)-norm is with respect
to x, q5-variables. Also, v > 0 can be taken arbitrarily small.)

FS

noise, & noise,& _
||F111Cx’q§y1§ — Flucx’qi’o ”‘f’"(B]MXBIM) Sm,HYs ”‘679‘52 & (751)
e.I5 -1 < -3y
”DithN — & Z”H‘“’”d—)HD‘ N“1‘|YS‘|Y)O<{)2 e 4 (752)
676
eI\ -1 —1 epy—1 —2 -3
||()\, — D%Dﬂ\;) — ()\. — & 92”) “H"“*’"‘daH” Sa’nys”%?% 2 A ceTITY
5
Sei (7.53)

e The estimate (7.51) is immediate by (5.8) and the relation VI* = el/4VY? (see
(1.3)). Indeed, by (5.8), the dependence on If of Fluc;“)):]s;’f§ is via e~ 12 times a
smooth function of VI (dependence on x, q§ isuniformly smooth as well). Thus,
(7.51) is by Taylor expansion in VI¢ about 0, combined with VI¢ = g!/4VY?,
which introduces a factor that brings £ ~!/? scaling in (5.8) down to £ ~1/4,

e To prove (7.52), we use Lemma B.3, which controls the difference of Dirichlet-
to-Neumann operators on the LHS of (7.52) by some %" -norm of the difference
of metrics g[VI?] — g[0]. However, g is smooth, so a similar Taylor expansion
argument as in the previous bullet point shows g[VI®] — g[0] = 0('/*) with
implied constant depending only on | Y? ||<gr()<6/2; this is in ¢'!*V-norm for any
v € [0, 1). (For this, again use (1.3) to deduce VI® = ¢ 1/4vY? and gain an extra
factor of £!/4.) On the other hand, for any k > 0, the same Taylor expansion
but now combined with Lemma C.1 shows that g[VI¢] — g[0] = O(1) with
implied constant depending only on || Y?||o42. Interpolation of Holder norms
then shows the following (see Theorem 3.2'in [2]). Foranyn > O and v > 0,
we can choose k > 0 large enough so that for v € (0, 1) fixed, we have

Ig[VI*] — g[0]llzogn < lIg[VI'] — g[Olllg)?ﬂu IZlVI"] = &[0l 705
(7.54)

L=
Sivel 0,2 83077 (7.55)
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As noted in the previous paragraph, Lemma B.3 then shows (7.52) by using the
previous display. (Note the extra ¢ ~!-scaling on the LHS of (7.52).
e For (7.53), we start with the resolvent expansion

I 1 oepr—
=L =Tt
i . Ir o _ _ _
=0 L NN —e - )7 (7.56)
By Lemma B.3, the resolvents each have operator norm on H” — HP?; that is,

-1
S Yol 0p0 27 (1.57)

(Indeed, we should have dependence on a ¢”*-norm of I in the implied constant
above, but that is controlled by the %2-norm of Y¢; see Lemma C.1.) Now,
it suffices to combine the previous bound with (7.52) to get the first bound in
(7.53). The last bound in (7.53) follows by A = e~ (see (5.12)).

Proof of (7.43). See (7.38)—(7.39) and (7.41)—(7.42). From these, it is easy to see
that
M0 — M0 = [y

x,q5.1§

ds + fix®

x,q5.0¢

ds, (7.58)

where Y™ and T are obtained by comparing Dirichlet-to-Neumann maps and
their resolvents:

(n R e If —1 noise,& |2
Yoger = Lo N0 = Zop) ™ Flue ey ]
—eleno - g—‘.,zﬂ)—‘Flucﬁf’;S;g 1] (7.59)
2) o e I5 1 noise, &
Y, e =2 {(x 7 Flucx’qﬁk}
fe,lﬁ 2 gs,lﬁ ~1g] noise, & 7.60
X 1ZpN (= ZpN) - Flue, -y (7.60)
—1 —1 noise, &
) {(x ) Flucx’qi’li}
X {a_lg(k — 8_13)_1F1uc2?;ie’”§} ) (7.61)

If we now fix any stopping time t € [0, 1], then by triangle inequality and (7.58),
we have

1 2
IIME] = M g S sup I pellgn + sup 1T ellgn. (7.62)
< §°7s PSS

0<s<t 0<s<t
(Recall that we have assumed k = 0 for simplicity; see after (7.40).) We start by
estimating the first term on the RHS of (7.62). In view of (7.59), we write T ag
the error obtained by replacing the outer .,Sféﬂl\j -operator in the first term on the RHS

of (7.59) by e~ .Z, plus the error obtained by making the same replacement but in
the resolvent. In particular, we have the identity

T(l) — géﬂl\?[l(k N g];ll\?-)—lF]uCnoise,s |2]

PR 05,18
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- i - ise,
— e LI — L) Fluc i ] (7.63)
- I — is
+e7 L0 = L)~ Fluel’ g ]
— e ZI( = e L) T Pl . (7.64)

Again, forany o > 0, let (()),, be the H*-norm in the g;-variable. By (7.52), we have
(forag < 1)

3 I ise,
(RHS(7.63)) ¢ Sa¥ell, g, 2 € (10— Zp) ™ FIUC e P Doty (7.65)

Again, if « is sufficiently large but depending only on the dimension d, then H* is
a Hilbert algebra (see Lemma C.2), so the Sobolev norm of the square is controlled
by the square of the Sobolev norm. This gives

RHS(7.65) < e~ 1 (A — xg;ﬁ)—lFluc;‘fg’é D2y (7.66)
The resolvent is bounded on Sobolev spaces with norm < 2~1 (see Lemma B.3).
Moreover, Fluc"$¢-¢ has derivatives of order £~ /% (see (5.8)). Thus, the RHS
of (7.66) is < e73/4x72¢=1 < £!/4=27 (with implied constant depending on the
%?‘52-norm of Y? as before, since the metric in the Dirichlet-to-Neumann map on
the RHS of (7.66) depends on at most two derivatives of I?; see the proof of Lemma
5.5 for this argument, for example). By the previous two displays, if we take o large
enough depending on dimension d, then by Sobolev embedding in the q-variable,
we deduce that

1
IRHS(7.63)| <jvel, , > g1, (7.67)

We now control (7.64). First, .2 : H*t! — H? is bounded with norm O(1) (see
LemmaB.1). By this and difference of squares and the algebra property of H*-spaces
(for @ big enough), we get

B o o o e
(7640 S e (O = L) ™ Flucl iy — G — 7' ) 7 Fluel’ i Do
(7.68)

x (A — zg;ﬁ)—lFluc;‘?;?’l“; + (- 8_13)_1F1uc;?;?’é Vet 1- (7.69)
Use (7.53) and the fact that derivatives of Fluc™s¢-¢ are order ¢ ~1/2 to show that the
RHS of (7.68) is order e ~1/4=27 =V Use the A ! -estimate for resolvents in (7.69) to
show that (7.69) is < A~ 1e~1/2 < /277 Thus, the LHS of (7.68) is < g!/4=3v =V,
All estimates have implied constants depending on « and the €% ?-norm of Y?, as
before. Taking o big enough to use a Sobolev embedding like we did after (7.9)—
(7.10), we get the following for v > 0 fixed but arbitrarily small:

]_ —
|76 Sivel, g, &7 vy, (7.70)
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Now, combine (7.63)—(7.64),(7.67),and (7.70). This shows thatfor 8 > Ouniformly
positive,

(1)
|Tx,q§,1§| SHYSH%’Q%Z Eﬂ' (7.71)

We now treat Y@ (see (7.60)—(7.61)). This follows from the same type of argument.
Let us be precise. We first rewrite (7.60)—(7.61) as the error obtained by replacing
Zgﬂl\} — ¢~ 1.2 outside of the resolvents, plus the error obtained by this replacement
inside the resolvents:

@ eI5) 1y noise,
T = -2 {0 - £ Pl |
eIt e If 1 noise, &
X LN O = L) Fluel e (1.72)
el5 1 ise,
+2{0. - o) Py |
x {g*lz(x — )*lFluc;?;ie’li} (1.73)
e L5 —1 ise,
—2{ = 0 e |
x [e71 20, - 250 ey | (7.74)
+2{0.— e ) Pl |
x el 20— e ) Euele (7.75)

Look at RHS(7.72) + (7.73). This contribution gives us

2 { (O — L% )~ TFlucholes ]

x,q5.I5

< 128 — 7' 210, - Z50 Pt ] (7.76)
The first factor is < A~'e~1/2 < ¢1/277 (for reasons we explained in the proof
of (7.71)). By (7.52), the difference of Dirichlet-to-Neumann maps is < g3/,
it acts on something of order < £!/277 as we just noted. Therefore, (7.76), which
is RHS(7.72) + (7.73), is < e!/4=2r=v (with implied constant depending on the
%”,O‘gz-norm of Y?, as before). Of course, this heuristic can be made precise by the
same Sobolev multiplication and embedding argument that we just illustrated. We
omit the lengthy details.

Take (7.74)+(7.75). When we replace resolvents ()L—,,?S;IIE)_I > (A—e~ )]
in one of the factors in (7.74), by (7.53), we pick up a factor of &>/4=2Y=V This acts
on Fluc"¢¢ which has derivatives of order ¢ ~!/2. We then multiply by the sec-
ond factor in (7.74), which is order < e~'A"1e=1/2 < ¢=1/2=7 By multiplying
all bounds together, we get that the error in replacing resolvents in the first fac-
tor in (7.74) is < €!/473¥=V_ The rest of (7.74)+(7.75) is obtained by making this
same replacement of resolvents in the second factor in (7.74). By the same argu-
ment, this error is < &!'/473 Thus, for v > 0 fixed but arbitrarily small, we get
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|(7.74) + (7.75)] < €!/473v=v_ By combining the previous two paragraphs and
(7.72)—(7.75), we deduce that for 8 > 0 uniformly positive,

2
ozl Siven o, €. (1.77)

X,

Combine (7.62) with (7.71) and (7.77) to get the desired bound (7.43) (recall we
assumed that k = 0). |

Proof of (7.44). By (7.41)—(7.42) and (7.45)—(7.46) (and the triangle inequality
argument that gave (7.62)),

1 2 3 4
IIMEO 1] = IO Tllgogn S sup IS el + 105G gl (7.78)

0<s<t
where
T =6 LU0 — e D) Flucls i 1]
— e 20— 7 D) Fluc) 5 1] (7.79)
T = 2o - e ) R |
x {8*1$()\ - g*lj)*lFluc;?;?’é] (7.80)
-1 -1 ise,
+2{0. - e ) Pl |
< o120 - e ) Eei ] (7.81)

We first treat Y3, By difference of squares, we have

T = e 2 [0 = e T Rl - 6. — e 7L T Fuel |
(1.82)
x [(A —&712) IFlueleE + (1 - 5—13)—1F1uc§?;?ﬁ’§]} . (7.83)

We now give a heuristic that immediately turns rigorous when we use the Sobolev
multiplication/embedding framework that we explained in detail in the proof (7.43).
The e~ % operator gives a factor of ¢ ~!. The resolvent on the RHS of (7.82) gives
afactor of < 2~ L It acts on the difference of Fluc"s¢:¢ _terms, which by (7.51), has
derivatives of order < £ ~1/4. Thus, the factor in the curly braces on the RHS of (7.82)
is < A7le /4 < £3/477 (see (5.12)). It multiplies (7.83), which is < A~ 1e™1/2 <
e!/2=7 since the resolvents give A !, and the Fluc"®i¢-¢ _terms are < &7 1/2 Thus,
the term inside the curly brackets in (7.82)—(7.83) is < e3/47vgl/2=v < 3/4=2r,
Multiplying by e ~! therefore shows that for 8 > 0 uniformly positive,

3)
Y qexe L SIvel o, el (7.84)

For Y™ (see (7.80)—(7.81)), a similar argument works. When we replace I — 0Oin
the first factor in (7.80), the error we get is something of order < ¢~/ (by (7.51))
which is hit by a resolvent that gives < A~!. We then multiply by the second factor
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in (7.80), which is < e71A~1e~1/2 < ¢=1/2=7 Multiplying all bounds, the error
is S A le™/4e=1/27r < ¢1/4=2Y When we replace I¢ + 0 in the second factor
in (7.80), the error is estimated in the same way. Thus, since these two errors are
exactly what gives (7.80)—(7.81), we deduce that for 8 > 0 uniformly positive, we
have

“
Y aeasl SI¥ell, o, 2 eb. (7.85)

Now, combine (7.84)—(7.85) and (7.78) (recall k = 0). This gives the desired esti-
mate (7.44). |

Proof of (7.50). To start, we compute HomM in detail. By (7.48) (with ¢* equal to
the ds-integrand of (7.45)—(7.46)), we claim that

HomM; , = —Zf(; falM {()L _ S—IZ)—lFluCnoise,s}

x,z,0

x,2,0

[8713()» — 8*1,,2”)*1F1ucn°ise’8} dzds. (7.86)

Indeed, the claim is just that if we integrate the ds-integrand in (7.45) over 1M (in
the qf-variable), we get 0. This is because said ds-integrand is in the image of .Z’ by
construction, and . has invariant measure given by the surface measure on 1M (see
Lemma B.1). We now proceed in two steps. First, rewrite e 7! ¥ = 7! — A 4 A
for the Dirichlet-to-Neumann map in (7.86) that is not inside any resolvent. The
e~1.% — X piece, when multiplied by the outer negative sign, cancels the resolvent
(r — e~ 1.%). Thus,

HomM, , =2 [y Fluci™ 6 x (n — &7'.2) 7 'Fluc}’ 5 * dzds (7.87)

x,z,0

— 2)‘f()[ fan\/ﬂ()‘ _ 8713)71F1ucn0186’8|2dzds. (7.88)

x,2,0

The RHS of (7.87) has integrand that is independent of s, so we can replace the
ds-integration by a factor of 7. The same is true for (7.88). Now, recall [M™i!] from
(7.40). By triangle inequality (exactly like in what gave us (7.62)), we therefore get
the bound

[HomM — [M"™ |z S 1T [l g

A Hfamm — 8_13)_1F1u032{%e’8|2dz‘

o
(7.89)
where
TO = [Pl [ — e 7L) Rl e
+ oKz — 11 {:f*‘[l{,c,Z — 1]] dz. (7.90)

Let us control the second term on the RHS of (7.89). By ¢~ '/2-bounds for Fluc™is-¢
(see (5.8)) and (5.35) for £ = 0 (and setting If = 0, which is okay because we never
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used any data about I? in the proof), the term in the square is < ¢!/2, so its square
is < . Multiply by A = =117 (see (5.12)) to get

A fonl G = &7 ) P e

y
g <ev. (7.91)
We now treat Y, First, by (5.8), we have (since Volg = 1; see Construction 1.1)

Fluch™e = 673 [K, . — [, Kewdw] = 2[K, . — 1], (7.92)

x,2,0

since K is normalized to have total mass 1 (see Construction 1.1). Using (7.92), we
can rewrite (7.90) as

TO = [ Ke: — 11 x {[s—l(,\ —e ' 2K, L - 1]} dz. (7.93)

Now, we use a resolvent expansion (see (6.25) with A = e(A — e 1 Z)and B =
—.%). This implies

clo—e ) 2 =l — e L) T en) 2!
=Ar—e ') el (7.94)

Now, note that K, . — 1 is orthogonal to the null-space of .Z (since 1 is just the
projection of K, . onto the space of constant functions on dIM, which is exactly the
null-space of .Z’; see Lemma B.1). Thus, we can use a spectral gap for .Z (see Lemma
B.3) when we apply its inverse and resolvents to K, . — 1. So, when we apply the
far RHS of (7.94) to K. — 1, the .#~!-operator is bounded. For A(A — e ~1.2)~ 1,
we ignore A inside the resolvent (since A only regularizes the resolvent), and then
we have Ae.Z~!. By spectral gap for . and A = ¢~!*7, the term in curly braces
in (7.93) is < &”. (Technically, this is all in Sobolev norms in z; we need to use
Sobolev embedding as in the proof of (7.43).) So, by smoothness of K,

1T Nn < 7. (7.95)
Now, combine (7.89), (7.91), and (7.95). This gives the desired bound (7.50). O

Proof of (7.49). For the sake of clarity, we want to estimate the %”To%k -norm (for
T € [0, 1]) of

M*02], , — HomM, . = fi {&h o = fy@odefds.  796)

(Indeed, see (7.47) and (7.48).) Again, we assume k = 0; for general k, just apply
the argument below but for the k-th order derivatives of (7.96) in x. For notational
convenience, we define

Fluc€} oo = € g — [yn s .dz (7.97)

to be the fluctuation of ¢*, more or less (or equivalently, the ds-integrand in (7.96)).
Note that Fluch;,, is in the image of ., since it vanishes under integration over
q5 € 0IM with respect to the invariant measure dz of .Z’; see Lemma B.1. (We
emphasize that we are integrating with respect to a measure that, in principle, can
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have nothing to do with the law of qf. Also, this is true for all x € dIM.) So, we can
rigorously (not just formally) hit Fluc@c’ q: by £ %~ and rewrite (7.96) as follows,
where all operators act on the gf-variable:

(M*%2], . — HomM, , = fée‘l.f[(s_lg)_lFluCQfg,q?]ds (7.98)
= féﬁégj[(e‘lf)_lFluCCﬁ’qi]ds (7.99)

+ fle7' L — Z5R1E L) Flued . 1ds. (7.100)

Let us first control the ‘@0‘5" -norm of (7.100). Again, by triangle inequality, we
have

1(7.100) ot S sup ||[8_1.$—féig][(s_l.,?)_lliluc@.qs]I|<gk. (7.101)
0<s<t o

We now give the heuristic for controlling the RHS of (7.101) (that can be made
precise by the same Sobolev embedding argument given throughout this section).
Note that Fluc@ﬁ’, isin the image of . as noted after (7.97), and thus it is orthogonal
to its null-space. Thus, when we apply the inverse of .Z to Fluc@ii’,, we can use a
spectral gap estimate (see Lemma B.3). This means that the difference of Dirichlet-
to-Neumann maps hits something of order ¢. (Indeed, Fluc@” has derivatives of
O(1). This is by (7.97) and that ¢* has derivatives of O(1). For this last fact, recall
¢* as the ds-integrand in (7.45)—~(7.46), and use the estimate (5.35) with £ = 0
and If  replaced by 0. Indeed, this estimate shows that all resolvents acting on
Fluc"i5¢:¢ _terms in (7.45)—(7.46) are < £!/2; all of these factors are then cancelled
by ¢~ ! factors hitting .Z’-operators in (7.45)—(7.46).) Next, by (7.52), the difference
of Dirichlet-to-Neumann maps on the RHS of (7.101) is < ¢ 73/47". So, the RHS
of (7.101) is < &!/4~" for v > 0 fixed but arbitrarily small, and thus

1

||(7100)||<0010(6)I\ Sk,HYE 817‘). (7102)

”g}ﬂ[)(,;)Z

(The dependence on Y? can be tracked from (7.52); all other estimates used to get
(7.102)donot depend on Y¢.) We now move to (7.99). This is now where randomness
comes in; so far, our estimates in this section have all been deterministic, whereas

our estimate for (7.99) will be with high probability. Note that we can add ,Zs‘qi

flow
to f;tg in (7.99), because the term in square brackets in (7.99) does not depend
on If. We then end up with the full generator of (I°, q°), and the It6 formula can
be applied. (There is no issue of domain for the generator of I¢ because, again, the
square bracket in (7.99) does not depend on I¢.) So,

(7.99) = My + (7' L) Fluee;, ;o — (¢7'.2) ' Flue€y (o, (7.103)

where 91 is a martingale with predictable bracket given by
B, :=f0’.,zﬂl§;§[|(a;‘%iﬂ)‘lFluc@ﬁqf 1?1ds (7.104)
— 2[5 (e 2) " Fluc] 4 x fé;g[(s_l.,%)_lFluc@;q?]ds. (7.105)
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As we explained in the paragraph after (7.101), the last two terms on the RHS of
(7.103) are deterministically controlled as follows:

sup ||(e”'.2)" 'Fluce? gellgn Ske (7.106)
0<s<t
It remains to treat the first term on the RHS of (7.103). To this end, we use Doob’s
maximal inequality (and that |9t|> — 9B is a martingale) to get the following (for
7 € [0, 1] a stopping time):

E{ sup M >t S KBl (7.107)
0<s<t
We now estimate (7.104)—(7.105) with the following heuristic (which is, again,

immediately rigorous once we use Sobolev norms, embeddings, and multiplication).
Asexplained in the paragraph after (7.101), the (e’ 1 #)~1Fluce*-terms in (7.104)—

(7.105)are < ¢. The.ZD ' have scaling of < ¢!, Thus, we deduce that even without
expectations, the RHS of (7.107) is < ¢, so that

E{ sup |ml,x|2} SI¥ell, 042 €- (7.108)
0<s<t nTe

The Y?-dependence comes from the fact that the metric defining .,?D depends
on the first derivative of the metric g[VI;] at most; see the paragraph after (7.20).
(7.108) gives a pointwise-in-x estimate with high probability. To upgrade this into
a uniform-in-x estimate with high probability, it suffices to show that

19 log0n S 1 (7.109)

~n

with high probability for sufficiently large n. (Indeed, by (7.108) and union bound,
we can bound 9T uniformly in time until 7 and uniformly over a discretization of
dIM of size e ~!*P for B > 0 uniformly positive, on one high probability event. We
can then use (7.109) to show that 91 cannot change by more than & between points
in said discretization of 1M for some ¥ > O uniformly positive.) To show (7.109), it
suffices to control every other term in (7.103). For the last two terms in (7 109), use

(7.106). For the LHS of (7.109), see (7.99); the ,,?D has scaling < &7, and the
square-bracketed term in (7.99) has scaling < ¢ (see the paragraph after (7.101)).
So, the LHS of (7.109) is < 1 in ‘@O‘K"-norm for any n. We arrive at (7.109). (The
point is that we only need an O(1) bound in (7.109).) As explained before (7.109),
combining (7.108) and (7.109) shows

1Ml gogx Skavel, o0 € (7.110)

with high probability, where § > 0 is uniformly positive. Combining this with
(7.103) and (7.106) gives

179 llgogr Sk.ve

Now combine (7.98)—(7.100) with (7.102) and (7.111). This gives the desired bound
(7.49). O

(7.111)

e
g 042
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8. Proof of Theorem 1.6

We make precise the content of Section 3.4.2. Many of the results and analysis in
this section are standard in the singular SPDE literature; we only detail parts that are,
for example, special to the Dirichlet-to-Neumann operator and L2-based Sobolev
spaces. (Our analysis below is likely to hold in ¥°*-Holder spaces after some more
work; the use of L2-based Sobolev spaces lets us more readily use symbol calculus
for Z.)

8.1. The Da Prato-Debussche Schematic

We first give a decomposition of the spDE (1.11) of interest. For the reader’s
convenience, we recall h1'" from (3.16). Consider the projection

N [n7l

-+ L2M) — ) @ Vi, (8.1)

i=1 k=1

where we recall the notation from (1.10). We now recall the spDE (3.16) as follows:
N N R N (8.2)

We will give (8.2) a stationary initial condition. To specify this precisely, we make
preliminary observations. Since dIM is a finite union of circles, the space V,  is two-
dimensional, and any smooth function on dIM admits a Fourier series representation.
In these Fourier coordinates, we specify the initial data

b= D e Z{z,k1wlk1<x)+z,kzw,k2(x>} (8.3)

i=1,...,N k=1

Up to an isometry that maps T to a circle, the v; 4.1 have the form |T;|~!/24/2 -
cos(27 |k|x/|T;|), and the ¥; 1 » have the form |T;|~1/2/2 - sin(27|k|x/|T;|), all
forx € [0, |T;]). The {Z; k, j}i r,; are independent Gaussian random variables with
Zikj~ N0, |)\,-,k|’3) (where A; j is the eigenvalue of (— A, y~1/2 corresponding
to ¥ k.1, Vi k.2). Since the noise in (8.2) projects away from 0-eigenspaces of A, in
Fourier coordinates, the equation (8.2) can be written as

o = > L, Z{Zz kWi 1(X) + Zi k2,0 Wik 2(X)} (8.4)

i=1,...,.N k=1

where z; ;. ;; are solutions to the following SDEs (driven by independent standard
Brownian motions b; ¢ ; ;)

1
1,2 -2
dZik i = —3hixZik,jadt + A 2 A0k . (8.5)
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By construction, the solutions to (8.5) are (statistically) stationary. We now move to
the next piece of (1.11). Let h™™& ! solve the following with zero initial data (which
turns out to be convenient):

ahleEt = AplEE! 4 (- - T (—2) g
o (G2 R CN R (8.6)

(We use the reg superscript because we will ultimately be able to use regularity
arguments to make sense of (8.6).) Keeping track of what is left, the final piece of
(1.11) is given by the following PDE:

o7 E? = AbTEE 4 T (jVe" + Vol ) - 8.7)

+ 27 { (VO7" + VHEE VR 4 R (8.8)

The initial data f)" reg.2 b‘“mdl h" i o (8.7) is specified by the initial data to
(8.2), (8.6), and (1 11). As before, we call (8.7)—(8.8) a “regular piece” because
we can solve it classically, it turns out, once we provide a stochastic estimate for
the squared gradient of h7lin Note that (8.7)—(8.8) is nonlinear in its solution, so
local-in-time solutions are all we guarantee for now.

We now record the following; it will be convenient to reference but follows
essentially by construction.

Lemma 8.1. There is a stopping time T > 0 with respect to the filtration generated
by & so that (8.2), (8.6), and (8.7)—(8.8) are well-posed in € °¢ . Moreover, for
t < t, we have the identity

bt L= hn lin + hn ,;reg, 1 + hn ,reg, 2‘ (8.9)

8.2. Estimates for h!in

The goal of this subsection is to record the key properties of h7i". Before we
state the following result, recall the spaces ‘K,LOH“ from Section 2.

Lemma 8.2. Fix any deterministic t > 0 and 8 > 0 and p > 1. The sequence §™™
converges in %PHI*S forany § > Qasn — 0.

Proof. We note that (—A)!/#h71in solves (8.2) with (statistically) stationary initial
data, but after we replace (—A)~ Vg by & therein. In particular, because 0IM is a
finite union of circles, we are left with the additive-noise SHE (with the zero Fourier
mode projected away) on each such circle. The additive SHE is well-posed in H!/2~9
for any § > 0. It now suffices to use that (—A)~'/4 maps H* to H**!/2 after
projecting to the orthogonal complement of the null-space of A, and the fact that
h7lin Jives in said orthogonal complement by construction (see (8.4)). Therefore,
well-posedness of the additive SHE in %{OHV 2=% implies well-posedness of (8.2) in
%to H!=%, which completes the proof. O
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We now present a result for the renormalized square of Vh7!i" which appears in
(8.7)—(8.8). In a nutshell, the result below follows because VH7-1'" lives in €~ for
any 8 > 0 (see (8.5), for example). Thus, its Wick square also lives in €' ~° for any
8 > 0. Then, we use smoothing properties of the heat semigroup. We sketch this
argument in more detail below.

Lemma 8.3. Fix any deterministict > 0. Recall ¢, € R from (1.12). The following
Sfunction of (t, x) € [0, t] x 0M converges in CK,LOHH'V in probability for some y > 0
uniformly positive:

fO ./BIM r—s.x, Z[]‘["|Vh’) lm %n}]dzds- (8.10)

Proof. Recall that I17 denotes projection onto (1.10). Note also that 1cT, belongs
to'V;, ,in(1.10), since itis an element in L2(T;) that vanishes under Ar;. Therefore,
1;ct; = "1 ¢, , which implies

Z //r,s” {|vh"‘m (f}dzds

—1'1'7 Z f/rtuz |vh'7““ _ ]dzds) 8.11)

where in the last line, the projection acts on the x-variable in I". (The last line follows
because I17 and the A-semigroup commute.) Because I1" converges strongly to the
identity as an operator from H'*7 toitself, it suffices to show that the function inside
the I1"7 operator converges in ‘KPHH‘V. By (8.5), we have

0! 2
Vb, lin 2 -6, = Z{Zi,k,l,svwi,k,l(Z) + Zi,k,z,sVIﬂi,k,z(Z)} - %,
k=1
for z € T;.
Recall that T; is isometric to a circle (of length |T;|); we will assume for the rest of

the argument that T; is indeed such a circle. In this case, recall from the paragraph
after (8.3) that

V2 ' V2 :
Yik1(2) = cos2m [k||T;|”"z) and ¥ x2(z) = ——==sinn|k||T;|” z)
’ IT;] ’ ’ VT ’

Using this, we can compute

27 |k|Zi k1,5

Zik1,sVYik1(2) + Zik 2,5 V¥ik2(2) = —Tlﬂi,k,z(Z)
1
2 |k|Zi k2,5
— Vi k,1(2).
T | l

We note that ; ¢, ; form an orthonormal basis for L2(T;). Moreover, recall Zik,js ™
(0, |)»,-,k|_3). Using these inputs, the previous two displays, and the formula
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(1.12) for renormalization constants, we deduce that |Vb" lln|2 — ¢, is the Wick-
renormalized square of V™" We also deduce from the same calculations that

f)" in jiself belongs to €% (T;) as a function of z for any § > 0, and thus so does
its Wick square. (See Lemma 3.2 in [6], for example.) The heat semigroup in (8.11)
is smoothing by 2 derivatives (see Proposition 2.4 in [27]), so we get convergence
of the following in ‘5?%2_5 (T;) foranyi and 6 > O:

//1", AXZ{N[]”]“‘ —%n}dzds.

Since €*(T;)-norms control H*(T;)-norms for any non-integer &« > 0 (see, for
example, the Littlewood—Paley representation of 4 (T;)-norms in [27]), we deduce
that the term in parentheses in (8.11) converges in € H>~% for any § > 0. This
finishes the proof. O

8.3. Estimates for hree:!

We will now use properties of .Z and A to control (8.6) as n — 0.

Lemma 8.4. Fix any deterministic t > 0 and § > 0 and p > 1. The sequence
hrreel converges in %PH3’5.

Proof. By the Duhamel formula (see Lemma A.1), we have
i / / Fimg o (T — T4 (—.2) 72, dzds (8.12)

+ / / T e Vel [ DR CREY
0 JolM
We note that the operators hitting the noise terms in (8.12)—(8.13) are compositions

of self-adjoint operators with respect to Euclidean surface measure on 9IM (see
Lemma B.1). Thus, we have

1
pres, // FinTresx.fs odzds

O (8.14)
0 JoM
where 71 ,, 5 5 are the following operators acting on I' through the z-variable:
Ty = (—2) 2 - fird), (8.15)
Ty = [(—.,zﬂ)*% _ (—A)*%}ﬁ"»i. (8.16)

Wefirststudy .7 ,; the operator .7 ,, is simpler to analyze. We use standard resolvent
identities to rewrite

Py = (0 =0 — oyt hay L
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‘We now use the theory of pseudo-differential operators and their symbols in Chapter
7 of [32]. Specifically, we use the spaces S{'fo consisting of symbols that, as functions
of £ € R, behave like degree m polynomials as |§| — oo. As explained in Chapter
7.101n [32], this theory extends readily to Riemannian manifolds, and by Proposition
5.5 of Chapter 7 of [32], operators with symbols in S}'; map H**t" — H“ for any
aeR.

Lemma B.2 gives —% = (—A)!/2 + 0, where € is a pseudo-differential
operator of order —1. Since the symbol of (—A)!/? is |£|, by Taylor expansion,
the principal symbol of (=N — (= )12 55 %|$ |71/25 (&), where s (£) is the
principal symbol of &; see Proposition 3.3 in Chapter 7 of [32] for the computation
of the symbol of the operator square-root. Thus, the map (—A)!/4 — (—=.£)1/2 :
H® — H**3/2 is bounded.

Recall that [17-+ projects away from the null-space of A (see (8.1)), and on this
orthogonal complement, the operator (—A)~'/4 maps H* to H*+1/2, Also, on the
image of (—A) /4 _ (= 2)V/2 whichis orthogonal to the space of constant functions
on d1M, the operator (—.%)~ /2 maps H* to H**!/2, Thus, .y HY — Het5/2
is a bounded map. Moreover, this argument shows that this operator converges in
the strong topology to % = {(—.%)" /2 — (—=A)~V/*}T1+, where 1+ denotes
the projection onto the orthogonal complement of functions that are constant on
T;-components. Thus, by a standard Galerkin-type approximation, in order to show
convergence for the last term in (8.14), it suffices to show that the function

t
(t,x)l—)// Pl x..Es.2dzds (8.17)
0 JoM

isin Cgto H37% forany § > 0 with probability 1, where .7 acts on the z-variable. This
follows by boundedness of .75 : H* — H**5/2 and well-posedness of the additive
sHE in €"H!/2~? as in the proof of Lemma 8.2.

It remains to show convergence of the first term on the rRHS of (8.14). We make
a few observations about the projections therein. First, [T"-- — [T is a projection
onto the space of continuous, piecewise constant functionson dIM = T; U---U Ty
modulo the space of constant functions on M. Note that this image of 17+ — it
is a finite-dimensional space of smooth functions that are orthogonal to constant
functions on 1M which is independent of 1. Moreover, (—.%)~'/? maps smooth
functions that are orthogonal to constant functions on dIM to smooth functions. Thus,
S,y HY — HP isindependent of 7 > 0 and bounded for any o, /8, so the argument
showing convergence of the last term in (8.14) also gives the desired convergence
of the first term on the rRHS of (8.14). This completes the proof. O

8.4. Estimates for g2

Instead of considering h”"®&2 it will be more convenient to study the following
(for @ > 0 small):

n.reg,2,w | n,reg,2
RO o, (8.18)

The reason why (8.18) is “better” is because to analyze (8.7)—(8.8), we will need
estimates for its solution in H'*? -norms. However, the initial data for h”-7°22 is in
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H!'-3 for any § > 0 (see after (8.7)—(8.8) and Lemma 8.2). Of course, integrating
this initial data against I" regularizes a little (see Lemma A.2), but at the cost of a
factor which is cancelled out by #*. (In any case, because @ > 0 is small and we
ask for convergence in Theorem 1.6 to be analytically weak, this extra factor #“ is
harmless after integration in time.)

We now state the main result for h7°%2¢ Tt states that the blow-up time for
h772:2:@ in an appropriate Sobolev space remains positive almost surely as 7 — 0.
It also gives convergence of h-7&2? as 5y — 0 in said Sobolev space upon stopping
it strictly before the aforementioned blow-up time.

Lemma 8.5. Fixany (small) constant w > 0. There exists a constanty = y (w) > 0
such that

TRy i= inf{ >0 : lim sup || h7e&2 “llgopi+y = } > 0.
n—0

with probability 1. Moreover, for any possibly random tsqp € (0, TU), the sequence
of functions (t, x) — f)" reg. 2. converges in probability in %gprHV asn— 0.

Remark 8.6. The limit of h”7"&? is the solution of the PDE obtained from formally
taking n — O for every term in (8.7)—(8.8) (with the renormalized square of V!
handled by Lemma 8.3, and with all other terms in (8.7)—(8.8) handled by Lemmas
8.2 and 8.4.) We do not record this SPDE as it does not serve any immediate purpose
for us as far as we can tell, and it is a little complicated to write down. We note,
however, that proving this remark amounts to following the proof of Lemma 8.5.

Proof. By (8.7)—(8.8) and the Duhamel formula, we have
st _go [Ty e dz (8.19)
12 5 foniTrmsone - U (IVB2ER 4 VBLEE 2 — 6, )dzds (8.20)
+ 2twf0t s~ fa]MFt —5,x.2
. n"{(vr;g;‘“ + vplreelyyyree w}dzds (8.21)
F 1O o720 [T T VHEEE ) dzds. (8.22)

We will now show that there exists v > 0 such that if we choose w > Oand y > 0
small enough, then

1819 ligopir Sy 1 (823)
1820) lgoptsr Syt 1 (824)
18 2Dllgprer Sy 1™ 2 lgopgray (8.25)
1822 llgprisr Sy I 2 N0y, (8.26)

(The implied constants are possibly random but tight as random variablesas  — 0.)
From this, we get

,reg,2,
15722 | oy Sy 1
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if tis sufficiently small but almost surely positive (and possibly random). Moreover,
we will also show that for any t > 0, the rHS of (8.19) and (8.20) converge in
probability asn — Oin ‘Kto H'*7, and that (8.21)—(8.22) are continuous with respect
to h"'lin in the %PHI_‘S-norm, with respect to h"'reg’l in the ‘ﬁtOH3_5 -norm, and with
respect to b”*reg’z'w in the %PHHV norm, where y, 8 > 0 are small. Combining
all of this with the fact that IT7 — Id in the strong operator topology (as maps
H® — H“ for any «) ultimately finishes the proof of Lemma 8.5 (e.g. by a standard
Picard iteration and Galerkin approximation argument).
We will now treat each of (8.19)—(8.22) as follows.

e The first estimate (8.23) (and convergence of the RHS of (8.19) in C5’0H1+7’)

follows by the convergence of f)n &2 in HI7S for any 6 > 0 (see Lemmas

8.2 and 8.3) and the boundedness of t“ exp(rA) : H'™® — H!*7 with norm
0,0 (1) (assuming that y, § are small and @ > y + §); see Lemma A.2.

e We first expand the square in (8.20) to get the following (in which we recall
(8.10)):

t
(8-20)=t‘“\1',”,x+2t“’/f | PP H”(VU”I‘“V[)"regl)dzds (8.27)

1 f/ Ty_grz - TT(VHTEE 2)dzds. (8.28)

Lemma 8.4 implies that t“W" converges as n — 0 in %PHHV, and that
Yoy, <, 1. Next, we use Lemma C.2 to show that if y > §, then
I EOHI+Y Sy 14

VOO s < IV s VO v (i particular, point

(1) in Lemma C.2). (We always take § > 0 small and y > 0 depending on §.)
Now, we use Lemmas 8.2 and 8.3 to deduce ||Vh§’,’}1“Vb;7,’Feg’l lg-1/2-5 <s 1. Thus,
by Lemma A.2, we can use the heat semigroup to gain 3/2+ y + §-many derivatives;
more precisely, we get the estimate below for §, v > Osmall enough and forall¢ < t:

/Ot

The same argument also shows that the second term in (8.27) is continuous in
prolin pnoree] with respect to the %PHI”S and ‘KPH”V topologies, respectively, if
we restrict (8.27) to t < t. Finally, everything we proved about the second term in
(8.27) also applies to (8.28), since h""°&! is more regular than h7-'"" (see Lemmas
8.2 and 8.3). Ultimately, since b1, h7-7&1 converge in the %?HI_B and %?HH‘V
topologies (see Lemmas 8.2 and 8.3), we deduce (8.24), as well as convergence of
(8.20) in GPH! 7.

The previous bullet point only requires convergence of h" in <KPHI"3 and con-
vergence of h7 &1 in %PHHV. Since h!in 4 p7-ree ! converges in CKPHI —%, wecan
use the same argument from the previous bullet point, namely our analysis of the
second term in (8.27) but with h7i" replaced by h7!i"  prreel and with §7-ve9!
replaced by h"&2, Doing so shows (8.25), and that (8.21) is continuous in 722
with respect to the %to H!*7 topology. By the same token, our analysis of (8.28) (but
with h"&! replaced by h™7™€2) also gives (8.26) and that (8.22) is continuous in
h7e2:2 with respect to the %{JHHV topology.

f N UCU G T U
oM



Arch. Rational Mech. Anal. (2025) 249:50 Page 63 of 70 50
Therefore, as we explained after (8.23)—(8.26), the proof is complete. O

8.5. Proof of Theorem 1.6

By Lemma 8.1, we have the following for any tyop € (0, TBU), as in Lemma
8.5:

i
S0,y St Frxbixdxdt = fio o [y Frcbr" dxds
,reg, 1
gy S Pt s (820
,reg,2
+ Ji0.20p) JopaFroxhi & dxdr. (8.30)

The RHS of the first line converges in probability as  — 0 by Lemmas 8.2, 8.4
since Tgop 18 finite almost surely. For the second line, we first use (8.18) to get that

reg.2 - reg.2,
f[O,rstop) SomFrabl® dthzf[O,Tstop) Somt " CFrabE T dxde. (831)

As w > 0is small, ™ is integrable near 0. Since 7 is finite almost surely, the
above quantity converges in probability as  — 0 by Lemma 8.5. This completes
the proof. O
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Appendix A. Deterministic Results About the Heat Kernel I" on 0IM

Lemma A.1. (Duhamel formula) Suppose F € ‘5,055;0 solves 0,F; = AF; x +
G;x fort > 0 and x € M, where G € L®(Rxo x dlM). For all t > 0 and
x € 0M, we have
Ft,x = faMF;’x’yFO,ydy
+ Jo ST,y Geydyds. (A1)
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Proof. By the Leibnizrule, the pDE for F, and the pDE for I, for 0 < s < 7, we have

asfa]Mrt—s,x,yFSyydy
= _faMArt—s,x,yFS,)'dy + fa]MFl—s,x,yAFSaydy + .[a]MFt—s,x,yGS,ydy‘

Since I' is the kernel for the A-semigroup, integrating against it commutes with A.
So, we can move A onto F in the first term on the RHS, and the first two terms above
cancel. Now, by calculus,

lim oy Frpdy = /BM Ty yFoydy + lim 7 [T Gy ydyds.
(A2)

The last limit above is computed by plugging r = ¢; the ds-integral is certainly
continuous in . Moreover, by definition of the heat kernel, the LHS converges to a
delta function at x = y integrating against F. We can plug in r = ¢ for F on the LHS
because F € €% . Thus, the LHS of the previous display is F; .. o

Lemma A.2. Fix any T > 0 and o) < ap. The operator exp[tA] : H*' — H*? is
bounded with norm < (Ct)~1%2=41/2 for q constant C > 0 depending only on M.

Proof. See (1.15) in Chapter 15 of [33]. (Roughly, one derivative is worth 7 ~1/2.)
m}

Appendix B. Deterministic Estimates for the Dirichlet-to-Neumann Map

Lemma B.1. We have the following properties of £.

e For any a, the map £ : H**! — H® is bounded with norm < 1. So, the
map €°° — € is continuous in the Fréchet topology on €. Also, it is self-
adjoint with respect to the surface measure on 0\, and it vanishes on constant
functions on M.

Hence, the invariant measure of £ is the surface measure on 0. (By invariant
measure, we mean the measure [, up to a constant factor, such that |, a2 edu =0
forall p € €.

Proof. See Section 1.1 of [12]. (The vanishing on constants is clear by definition
of .Z, since the harmonic extension of any constant function is constant; see after
(1.5)—(1.6).) O

We now compute the difference —% — [—A]'/? in terms of pseudo-differential
operators. In particular, in what follows, we use the theory of pseudo-differential
operators from Chapter 7 of [32] as noted earlier in the proof of Lemma 8.4.

Lemma B.2. Suppose d = 1. In this case, we have — = [—A]'/? + O, where O
is a pseudo-differential operator of order —1. Thus, the principal symbol of —%
is |€|. Moreover, A + 7 is a zeroth-order pseudo-differential operator, that is a
bounded map H* — H*.
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Proof. For the first claim, see Proposition C.1 in Chapter 12 of [32]. (Here, it is
shown that —.% = [—A]'/2 4+ @, where € is zeroth-order, and the zeroth-order
term in ¢ has a coefficient given by the second fundamental form of 1M minus its
trace. Butind = 1, these vanish, and we are left with an order —1 operator.) For the
second claim, we note that

A+ L =[-A1Z6 + O[-A]? + 62 (B.1)

The [—A]'/? has order 1, and ¢ has order —1, so their product is zeroth-order, and
02 is order —2. O

Lemma B.3. We have the following.

e (Spectral gap) The null-space of —.% is one-dimensional. So, it has a spectral
gap, that is its first eigenvalue A1 is strictly positive.

o (Resolvent estimates) Take any ». > Oando € R. The resolventmap (A —2)~1
HY — H is bounded with norm < =1 forall a.

o (Regularity in metric) Let g be a smooth Riemannian metric on 0IM, which
extends to a Riemannian metric on M in the same way as in Construction 1.1.
Let £4 be the Dirichlet-to-Neumann map with respect to g (defined in the same
way as after (1.5)—(1.6) but the harmonic extension is with respect to g). We
have the operator norm estimate below for any o > 0, where g[0] is surface
metric on )M and where aq, ny.q depend only on o, d:

1-%g — L llpetea o pe Seligly nga 118 — 80T gmea (B.2)

(The € -norm of a metric means said norm of its entries under any fixed choice
of local coordinates.)

Proof. For the spectral gap, see the beginning of [13] and Lemma B.1. For the
resolvent estimate, we use

O —2)" = [Pe 70 Ddr (B.3)

and contractivity of the .Z-semigroup on H* (which holds since . < 0). Finally,
we are left with (B.2). By definition, for any ¢ € €, we have

Lo — Lo = VNIUBY — U], (B.4)

where N is the inward unit normal vector field (and Vy is gradient in this direction),
and % &%, ¢ are harmonic extensions of ¢ with respect to g and surface metric
on 1M, respectively. In particular, we have

Ag,]M?/g’(p, AM%Z? =0 and %%, U3 = o, (B.5)

where Ag i is the Laplacian on IM with respect to the metric g, and Ay is the
Laplacian on IM with its standard Euclidean metric. The previous PDE implies the
following for ¥ := %&Y — U ¥:

AV =[Anm — A]M,g]%w +[An — Agm]? and Yo = 0. (B.6)
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We now use a usual elliptic regularity argument for Sobolev spaces. First, by con-
struction, we have .,nggo — %@ = VNV, and therefore, for any k > 0, we have

ILg9 — Lollge SNV gty (B.7)

By elliptic regularity, we can control the RHS of the previous display by €™ -data
of the RHS of the PDE for ¥ (for m depending appropriately on k). In particular,
by Theorem 2.35 of [11] (with Q there given by M C RY*+! here), we deduce the
estimate

17 lgenrany S NAM — Ag 1% ¢ Ml
+ I[AM — Ag ]l ? llgr—1 - (B.8)

The implied constant depends only on IM (since it is based on elliptic regularity for
Ann).

Now, for the rest of this argument, let n; < 1 be a positive integer depending only
on k. If the " (IM)-norm of g — g[0] is small enough, then even with the implied
constant, the last term on the RHS of the previous display is strictly less than half
of the LHS. Indeed, in local coordinates, it is easy to see that Ap; — Agqy is a
second-order operator whose coefficients are smooth functions of g — g[0] and its
first-derivatives. So, if these quantities are sufficiently small, then the operator norm
of Ayt — Ag.v : H*F! — H*~!is strictly less than 1/2. By the same token, under
the same assumption on g — g[0], we bound the first term on the RHS of the previous
display as follows:

ITAM — Ag 1% Nlgr-1 vy Skolighy ne 18 — 8I0Mgmi % Nl ppy- - (B.9)

(The implied constant should depend on ||g[0]||4» as well, but this depends only
on IM.)

Elliptic regularity (e.g. Theorem 2.35 in [11]) lets us replace the €**! (IM)-norm of
¢ with ||@||x+1 itself. So, by the previous two displays and the paragraph between
them, we deduce

17 g1 nay < Ok gy me (N8 — &IONligme i) + S llegrsr gy (B.10)

By changing the implied constant in the big-Oh term above, we can drop the last
term in (B.10) (by moving it to the LHS and multiply by 2). Combining this with
(B.7), we deduce (B.2) except with " -norms instead of H*-norms. To conclude,
we trade € -norms for H*-norms by the trivial embedding 6™ < H™ and, again,
the Sobolev embedding H* — %™ (for « large). This gives (B.2), assuming the
"+ -norm of g — g[0] is less than a fixed, positive threshold depending only on IM.
In the case where this is not met, the RHS of (B.2) is 2 1, while the LHS of (B.2) is
< 1 by the boundedness of .Z, %, so (B.2) follows immediately in this case. (To
see that % : HYT® — H® has norm depending only on ||g||» for appropriate ng
depending on o, use Lemma B.1.) O
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Appendix C. Auxiliary Estimates

Appendix C.1. A Priori Bounds for I¢ and Y*®

The following bounds higher derivatives of I¢ by only two derivatives of Y¢. In a
nutshell, this is because the RHS of (1.1) is smoothing, and because at the level of
gradients, I° is much smaller than Y? (see (1.3)). (For a reality check, note that the
following result (C.1)is obvious just from (1.3)if wetake k = 2and v = 0.Itiseven
sub-optimal in this case by a factor of e ~!/4. The following result says that on the
LHS of (C.1), we can trade this additional factor that we gain fork = 2 and v = 0 for
more derivatives on the LHS of (C.1). It essentially follows by interpolation theory.)

Lemma C.1. Fixany t > 0 and k > 0 and v € [0, 1). We have the estimate

IVE oo Stk T+ 1Y llgog0. (C.1)

Proof. It suffices to assume v # 0; the claim for v = 0 follows because the norms
on the LHS of (C.1) are non-decreasing in v. As explained above, by (1.3), we
trivially have the inequality

IVE lgogie S IVE lgogz S €3 1Y llgoq- (C2)

Now, by Duhamel (Lemma A.1) and (1.1), for any # < t, we have
I . = expltA] (I ' AllemtvoleK | d C3
rx = explt ]{ 0’.}x +f0 expl(t — s)A] e ol K. 4 N s. (C.3)

(Here, the terms inside the curly braces are the functions on 1M that the semigroup
acts on, and the subscript x means evaluate the image of this function under the
semigroup at x.) By Taylor expanding to get (14a2)!/? = 14+0(a) in the definition
of Voly from Construction 1.1, we have

Voli: =1+ O(||VIS||%£0%0). (C4)

The heat semigroup operator is bounded on Sobolev spaces by Lemma A.2. Thus,
by smoothness of K and (C.3), we deduce the following for any o > O:

1 1
IVE lgope Sta &5+ IV llgogo) S 673 + [¥ellgoge.  (CS5)

(The second bound follows by (C.2).) Now, for any fixed n, v, we can take ¢ > 0
big enough so that the H*-norm on the far LHS of (C.5) controls the "V -norm.
This is by Sobolev embedding. Thus,

_1
IVE llgogno Semo 875 + 1Y llgogn. (C6)

Recall the fixed choices of k, v from the statement of this lemma. If we take n big
enough depending only on &, v, then we have the following interpolation bound of
norms by Theorem 3.2 in [2] (which needs v # 0):

12 172
<
Hegoigto S Mlefoqgn. Iifongr.o- (%)
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Applying this to VI? and using (C.2) and (C.6) shows that

1

1 1 1
& e < -3 g2 3 E2 < &€ e
IVE lgpepn Stk (s Y ||W2)e IV S 1+ IV e
(C.8)

(For the last bound in this display, we also used a'/> < 1 4 a for any @ > 0.) This
gives (C.1). o

Appendix C.2. Sobolev Multiplication

When we say a multiplication map is bounded, we mean that multiplication of
smooth functions extends continuously in the topology of interest.

Lemma C.2. We have the following multiplication estimates in Sobolev spaces.

(1) Suppose a1, oz, a € R satisfy the following conditions.
e We have a1, a0 > «, and o1 A ap < O (that is at least one is negative).
Suppose that a1 + oy > 0.
e Suppose that a1 + ap > % + «. (In words, we lose d/2-many derivatives in
multiplication.)
Then the multiplication map H*! xH*2 — H® is bounded withnorm <o, ¢y 1.
(2) Suppose a1, az, a € R satisfy the following conditions.
o We have ay, 00 > o > 0 and ay + g > %+o¢.
Then the multiplication map H*' x H*2 — H® is bounded withnorm Sy, gy 1.
Thus, if @ > d/2, then H* is a Hilbert algebra.

Proof. For the point (1), see Theorem 8.1 of [2]. For the second bullet point, see
Theorem 5.1 of [2]. O
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