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Abstract

We study a stochastic pde model for an evolving setM(t) ⊆ R
d+1 that resem-

bles a continuum version of origin-excited or reinforced random walk (Benjamini

and Wilson in Electron Commun Probab 8:86–92, 2003; Davis in Probab Theory

Relat Fields 84(2):203–229, 1990; Kosygina and Zerner in Bull Inst Math Acad

Sinica (N.S.) 8(1):105–157, 2013; Kozma in Oberwolfach Rep 27:1552, 2007;

Kozma in: European congress of mathematics. European Mathematical Society,

Zurich, 429–443, 2013). We show that long-time fluctuations of an associated

height function are given by a regularized Kardar–Parisi–Zhang (kpz)-type pde

on a hypersurface in R
d+1, modulated by a Dirichlet-to-Neumann operator. We

also show that, for d + 1 = 2, the regularization in this kpz-type equation can be

removed after renormalization. To the best of our knowledge, this gives the first in-

stance of kpz-type behavior in Laplacian growth, which investigated (for somewhat

different models) in Parisi and Zheng (Phys Rev Lett 53:1791, 1984), Ramirez and

Sidoravicius (J Eur Math Soc 6(3):293–334, 2004).
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1. Introduction

Stochastic interfaces driven by harmonic measure provide rich models for many

biological and physical processes, including (internal) diffusion-limited aggrega-

tion [26,34], dielectric breakdown [28], as well as the Hastings–Levitov process

[17], the last of which also has connections to turbulence in fluid mechanics. Be-

cause the driving mechanism for the growth is determined by harmonic measure,

such interfaces are often known as (stochastic) Laplacian growth models.

A central question concerns the long-time behavior of said interfaces [3,7,22–

24]. In [31], the authors asked whether or not the stochastic interface studied therein

has a Kardar–Parisi–Zhang (kpz) scaling limit. (See also [29] in the physics litera-

ture, which addresses a related question for diffusion-limited aggregation, namely

its relation to the “Eden model".) Since then, the derivation of kpz-related scal-

ing limits in Laplacian growth models more generally has remained open, despite

surging interest in kpz universality over the past few decades [1,4,5,30].

The goal of this paper is to derive a kpz-type stochastic pde (1.9) for a Laplacian

growth model that resembles a continuum version the origin-excited random walk

and once-reinforced random walk with strong reinforcement, whose history and

background is addressed at length in [3,7,22–24]. To be more precise, we show the

following two results:

(1) Fluctuations of an associated “height function” converge (in some scaling limit)

to a regularized kpz-type equation. (See Theorem 1.5.)

(2) After renormalization, solutions to the kpz-type equation converge as we re-

move the regularization; this is done on hypersurfaces of dimension d = 1 in

R
2. (See Theorem 1.6.)

Throughout this paper, we often use subscripts for inputs at which we evaluate

functions of space, time, or space–time. This is in lieu of parentheses, which would

make formulas and displays overloaded.

1.1. kpz-Type Equation for the Random Growth

The model of interest in this paper is an spde for random growth driven by a

Brownian particle. Before we present a precise formulation of this spde, which we

defer to Construction 1.1, let us describe the model in words.

Fix a compact, connected set M ⊆ R
d+1 with smooth boundary; run the

“boundary trace” of a reflecting Brownian motion in M. That is, run a reflecting

Brownian motion inMwith unit inwards normal reflection off of ∂M, time-change

it according to level sets of its boundary local time, then speed it up by ε−1, where

ε � 1 is a scaling parameter. We will be interested in the evolution of the interface

process t �→ ∂M(t); this will be the graph of a “height function” (t, x) �→ Iε
t,x

(with respect to x). The evolution of this height function is given by simultaneously

“inflating” or “growing” Iε around the boundary trace particle and smoothing Iε,

e.g. via heat flow. Finally, we specify that the Riemannian metric onMwith respect

to which the reflecting Brownian motion is defined is determined by the evolving
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height function Iε. Thus, neither the “boundary trace” particle nor the height func-

tion Iε is Markovian on its own; this is a key feature of the origin-excited and

once-reinforced random walk models from [3,7,22–24].

Intuitively, the boundary trace particle is “inflating” the setM outwards while

its boundary smooths out. A discrete-time and discrete-step version of the above

model, phrased in terms of a growing setM(t) ⊆ R
d+1 beginning atM, could be

given as follows: run a reflecting Brownian motion insideM(t) until its boundary

local time is equal to ε−1. At the point where the Brownian motion is stopped,

inflateM(t) outwards. Then, we smooth ∂M(t). We now iterate, but with the new

starting location of the particle and the updated set. See Fig. 1 for a depiction of

this discrete version. However, instead of the M(t) process in this paragraph, we

study the graph of an evolving height function as our growth model since it is more

amenable to analysis.

We emphasize that the smoothing and inflation dynamics of the growth occur on

the same time-scale as a reflecting Brownian motion that is time-changed according

to boundary local time. Using local time instead of “real time” has the benefit that

the inflation does not slow down or speed up as the volume of the set grows; this puts

all dynamics on the same footing. More generally, fixing the interface dynamics to

be of unit speed and reparameterizing the particle speed into these units is standard

in Laplacian growth models [25].

We will now present a precise formulation for the model of interest in this paper.

Construction 1.1. Fix d � 1, and take a compact, connected subset M ⊆ R
d+1

with smooth boundary ∂M; we will assume that Vol(∂M) = 1. Let t �→ (Iε
t,·, q

ε
t ) ∈

C ∞(∂M) × ∂M be the following Markov process.

(1) With notation to be explained afterwards, we let Iε solve

∂t I
ε
t,x = 	Iε

t,x + ε− 1
4 VolIε

t
Kx,qε

t
. (1.1)

• ε > 0 is a scaling parameter that we eventually take to 0.

• 	 is the Laplacian on the embedded submanifold ∂M.

• For any I ∈ C ∞(∂M), the term VolI is the volume of the image of ∂M

under I, that is the volume of its graph. By a standard change-of-variables

computation, we have

VolI =
∫
∂M

(1 + |∇Iz|2)
1
2 dz, (1.2)

where dz is integration with respect to surface measure on ∂M and ∇
denotes gradient on ∂M (given its Euclidean surface metric).

• The kernel K ∈ C ∞(∂M× ∂M) is real-valued, symmetric, and it satisfies∫
∂M

Kx,zdz = 1.

(2) Now, with notation to be explained after, we define the following “boundary

trace” valued in ∂M:

qε
t := bτ(ε−1t), τ (ε−1t) := sup{s � 0 : Lb

s � ε−1t}.

Above, Lb is the boundary local time process of b, which is a reflecting Brownian

motion onM (with unit inwards normal reflection off of ∂M) with respect to a

Riemannian metric onM determined by Iε; we define it precisely as follows:
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• For any I ∈ C ∞(∂M), consider the graph map ∂M→ ∂M× R given by

x �→ (x, Ix ). We equip ∂M× R with the product metric (here ∂M is given

Euclidean surface metric), and give the graph of I its induced Riemannian

metric. Let g[∇I] be the pullback of this metric under the graph map. (It is

a metric on ∂M. This notation is used since it depends only on first-order

derivatives of I.)

• For concreteness, we extend g[∇I] from ∂M toM in the following fashion.

Choose a collar C[ρ0] ⊆ M, that is a set such that for some ρ0 > 0, we

have an isomorphism C[ρ0] 	 ∂M × [0, ρ0] that identifies a pair (z, ρ)

with the unique point x ∈ C[ρ0] that is distance ρ from z. Next, fix a smooth

function χ : R → [0, 1] such that χ ≡ 0 on (−∞, 0] and χ ≡ 1 on

[ρ0,∞). For any ρ ∈ [0, ρ0], we define the following metric on ∂M:

g[∇I]ρ := (1 − χ [ρ]) · g[∇I] + χ [ρ]g[0].

In particular, we interpolate between g[∇I] on ∂M at ρ = 0 and Euclidean

surface metric on ∂M at ρ = ρ0. This is a smooth family of metrics on ∂M

parameterized by ρ ∈ [0, ρ0], so in order to define a metric on the foliation

C[ρ0] 	 ∂M× [0, ρ0], it suffices to take the flat metric on [0, ρ0]. Finally,

onM\C[ρ0], we let g[∇I] be the standard Euclidean metric. (We anticipate

that our work would hold for many other extensions as well.)

• Let b be reflecting Brownian motion onMwith respect to the time-dependent

metric g[∇Iε
t ]. (So, its infinitesimal generator at time t is the Laplacian on

M with respect to the metric g[∇Iε
t ] and Neumann boundary conditions

with respect to the unit inward normal vector induced by the embedding

M ⊆ R
d+1. This agrees with the unit inward normal vector coming from

the extended metric above.)

Remark 1.2. The Vol factor in (1.1) is there because the particle qε evolves at speed

ε−1 and thus “averages out”. The Vol factor in (1.1) ensures that the leading-order

behavior of Iε corresponds to inflating ∂M(t) at speed ε−1/4 everywhere. (Without

the Vol factor, the leading-order behavior would correspond to sampling a point on

∂M(t) uniformly at random to inflate. Such a flux is non-local, in that the evolution

at a point in ∂M(t) depends on the entire volume of ∂M(t) and thus globally on

∂M(t).) Our interest is in local flux, which is why we include the Vol factor in (1.1).

However, one could also study (1.1) without the Vol factor and perhaps obtain a

similar small-ε limit. We discuss this further after the statement of Theorem 1.5.)

Since qε averages out, the leading order behavior of Iε is a constant-speed

growth. What is more interesting is the following fluctuation field:

Yε
t,x = ε− 1

4 [Iε
t,x − ε− 1

4 t]. (1.3)

Assumption 1.3. Assume that Yε
0,· = Yinit

0,· for some Yinit
0,· ∈ C ∞(∂M, R) indepen-

dent of ε.
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It turns out that the small-ε limit of Yε is given by the following spde, which we

explain afterwards:

∂th
K
t,x = 	hK

t,x +
∫
∂M

Kx,z |∇hK
t,z |

2dz +
∫
∂M

[Kx,z − 1](−L )−
1
2 ξt,zdz

hK
0,· = Yinit

0,· . (1.4)

Technically, by (1.4), we mean the Duhamel representation (see Lemma A.1)

hK
t,x = {exp[t	]Yinit

0,· }x +
∫ t

0

{
exp[(t − s)	]

∫
∂M

K·,z |∇hK
s,z |

2dz
}

x
ds (1.5)

+
∫ t

0

{
exp[(t − s)	]

∫
∂M

[K·,z − 1](−L )−
1
2 ξt,zdz

}
x

ds. (1.6)

• exp[t	] is the associated heat semigroup for 	, and ∇ denotes the gradient on

∂M.

• L denotes the Dirichlet-to-Neumann map onM. Given any ϕ ∈ C ∞(∂M), the

function L ϕ is defined to be x �→ ∇N[x]U
ϕ

x , where ∇N[x] is gradient in the unit

inwards normal direction at x ∈ ∂M, and U ϕ is the harmonic extension of ϕ to

M (so that 	MU ϕ = 0, where 	M is Laplacian onM ⊆ R
d+1).

The operator L is a self-adjoint with core C ∞(∂M) (with respect to the surface

measure on ∂M, that is the Riemannian measure induced by surface metric on ∂M).

It is negative semi-definite with a discrete spectrum and a one-dimensional null-

space spanned by constant functions on ∂M. So, (−L )−1/2 on the RHS of (1.9) is

well-defined, since the function z �→ Kx,z − 1 is orthogonal to the null-space of L

(that is it has vanishing integral on ∂M for any x). See Lemmas B.1 and B.3.

• ξ is a space–time white noise on [0,∞) × ∂M. Intuitively, it is the Gaussian field

with covariance kernel Eξt,xξs,y = δt=sδx=y . More precisely, for any orthonormal

basis {ek}k of L2(∂M), it has the following representation (in the language of Itô

calculus), where bt,k are independent standard Brownian motions:

ξt,·dt =
∑

k

dbt,kek . (1.7)

We emphasize that (1.4) is essentially the usual kpz equation (see [4,19]) except for

two differences. The first is the regularization kernel K; we will shortly consider the

delta-function limit for K in the case d = 1. The second is the (−L )−1/2 operator.

We explain this term immediately after Theorem 1.5.

Before we state the first main result (convergence of Yε → hK), we comment

on the well-posedness of (1.4). By smoothing of the 	 semigroup (see Lemma A.2)

and since L maps smooth functions to smooth functions (see Lemma B.1), the

spde (1.5)–(1.6) is locally well-posed in C 2(∂M) (until a possibly random, finite

stopping time denoted by τhK ).

Finally, let us introduce the following notion of high probability (to be used

throughout this paper):

Definition 1.4. We say an event E holds with high probability if P[E ] → 1 as

ε → 0.
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Theorem 1.5. There exists a coupling between {Yε}ε→0 and hK such that with high

probability, for any δ > 0 and 0 � τ � τhK − δ, the following holds for some

κ[δ, ε] � 0 that vanishes as ε → 0:

sup
0�t�τ∧1

‖Yε
t,· − hK

t,·‖C 2(∂M) � κ[δ, ε]. (1.8)

(Here, C k(∂M) is the usual space of k-times continuously differentiable functions

on the hypersurface ∂M, and its norm is clarified in Section 2. Also, we have used

the notation a ∧ b = min(a, b).)

We now clarify the statement of Theorem 1.5.

• Theorem 1.5 essentially asserts convergence in law of Yε to hK. Because of the

need for a stopping time τhK , we found it most convenient to state it in terms of

couplings.

• Stopping before 1 is to make sure we work on compact time-intervals; there is

nothing special about 1.

• We could have used C k(∂M) for any k � 2. Going to k = 1, for example,

perhaps requires more work.

• Theorem 1.5 holds locally in time. This is more-or-less because we work in

the C 2(∂M) topology, not a weaker topology like C 0(∂M), for example; see

Remark 1.7.

The mechanism from which Theorem 1.5 will ultimately follow is that the depen-

dence on qε
t in the last term in (1.1) averages out, as noted after Construction 1.1.

More precisely, it will turn out that

ε− 1
4

(
ε− 1

4 VolIε
t
Kx,qε

t
− ε− 1

4 t
)

= ε− 1
2

( ∫

∂M

Kx,z

√
1 + |∇Iε

t,x |2dz − 1
)

+ noise,

where the first term comes from a change-of-variables calculation for the Rieman-

nian measure induced by g[∇Iε
t ], and where the noise term above is a fluctuation

that will ultimately produce the noise in (1.4). (The exact form of the noise in (1.4)

ultimately follows from standard formulas for clts of Markov processes in terms

of their generators; see Chapter 2.6 of [21]. Indeed, the generator for the bound-

ary trace of a reflecting Brownian motion inM is L [18].) By Taylor expanding

(1 + |∇Iε
t,z |2)1/2 and ∇Iε = ε1/4∇Yε, we get

ε− 1
2

( ∫

∂M

Kx,z

√
1 + |∇Iε

t,x |2dz − 1
)

≈ ε− 1
2

( ∫

∂M

Kx,zdz − 1
)

+
∫

∂M

Kx,z |∇Yε
t,z |

2dz,

where ≈ means equality up to terms with strictly positive powers of ε. The first term

on the rhs vanishes by assumption, so this explains the quadratic term in (1.4). The

main technical difficulty in making the above picture rigorous is that the particle

process t �→ qε
t is not Markovian. We discuss this more in Section 3.4.1.



Arch. Rational Mech. Anal.          (2025) 249:50 Page 9 of 70    50 

We now briefly mention what would happen if we dropped the Vol factor in

(1.1). The necessary Taylor expansion (corresponding to the quadratic nonlinearity

in (1.4)) would then be

ε− 1
2

(∫

∂M

Kx,z

√
1+|∇Iε

t,x |2
∫
∂M

√
1+|∇Iε

t,w |2dw
dz − 1

)
≈

∫

∂M

(Kx,z − 1)|∇Yε
t,z |

2dz.

Our main interest, to be discussed in the following subsection, is what happens

to (1.4) when K converges to a delta function on the diagonal of ∂M × ∂M (to

obtain a growth model with spatially local flux). Dropping the Vol factor in (1.1), as

illustrated in the above display, instead yields an spde limit for Iε that is given by

(1.4), except with the following replacement therein:
∫
∂M

Kx,z |∇hK
t,z |

2dz �
∫
∂M

(Kx,z − 1) · |∇hK
t,z |

2dz.

Even as K localizes, the nonlinearity on the rhs is non-local in space, whereas our

interest is in spatially local flux (since this is the type of term encountered in the kpz

equation). We do not anticipate any significant mathematical differences, however,

between (1.4) with and without the modification in the previous display.

1.2. The Singular Limit of (1.4)

In (1.4), if we formally replace K by the delta function on the diagonal of

∂M× ∂M, we get the following spde, which we (formally) pose in any dimension

d � 1:

∂tht,x = 	ht,x + |∇ht,x |2 + �⊥(−L )−
1
2 ξt,x , (t, x) ∈ (0,∞) × ∂M. (1.9)

Above, �⊥ denotes projection away from the null-space of L , that is away from

the span of constant functions on ∂M. Our goal now is to make sense of (1.9) itself,

so that we can rigorously show convergence of (1.4) to (1.9) in the limit where K

converges to a delta function. However, (1.9) is not classically well-posed. Indeed,

L is a first-order pseudo-differential operator, so (−L )−1/2 gains half a derivative.

But integrating the heat kernel for 	 against ξ , in dimension 1, lets us take strictly

less than half a derivative. We cannot take a full derivative and expect to get a function

that we can square to define the quadratic nonlinearity in (1.9).

Therefore, we perform the standard procedure for singular spdes via regular-

ization, renormalization, and showing existence of limits as we remove the regu-

larization. Although we do not anticipate that the specific choice of regularization

is important, it will be convenient to work with and fix the following. (In particu-

lar, we do not expect the choice of regularization to affect what the limiting object

ultimately is.) First, however, let us restrict to the case d = 1.

• Since ∂M is a compact one-dimensional Riemannian manifold, it is a disjoint

union ∂M = T1 ∪ · · · ∪ TN where each Ti is isometric to a circle. Therefore,

we have the decomposition

L2(∂M) 	
N⊕

i=1

L2(Ti ) 	
N⊕

i=1

∞⊕

k=0

Vλi,k
,
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where Vλi,k
denotes the eigenspace of (−	Ti

)−1/2 of eigenvalue λi,k . Here,

	Ti
is the Laplacian on Ti , and we order the eigenvalues {λi,k}∞k=0 in increasing

order, so that λi,0 = 0 and λi,k+1 > λi,k . (Since Ti is isometric to a circle, we

have that λi,k = 2π |k||Ti |−1 is the k-th eigenvalue of the half-Laplacian on a

circle of length |Ti |.)
• For any η > 0, we let �η,⊥ be the composition of two projections. First, we let

�η be the projection onto

N⊕

i=1

�η−1�⊕

k=0

Vλi,k
. (1.10)

Then, we compose �η with projection onto the orthogonal complement of the

space of constant functions on ∂M. (Note that �η,⊥ → �⊥ and �η → Id as

η → 0 in the strong operator topology.)

• We now consider the following spde:

∂th
η
t,x = 	h

η
t,x + �η|∇h

η
t,x |2 − Cη + �η,⊥(−L )−

1
2 ξt,x , (1.11)

Cη :=
�η−1�∑

k=1

16π2|k|2
λ3

i,k |Ti |3
∼

2

π
log(η−1). (1.12)

Above, the notation ∼ means that the difference converges as η → 0 to a finite

constant.

Let us briefly clarify this construction. First, since �η projects away from the

space of constant functions on ∂M, which is the null-space of L , the noise term in

(1.11) is well-defined (after integrating against space–time test functions). Second,

the �η in front of the quadratic term in (1.11) corresponds to the K-smoothing in the

quadratic term in (1.4). Finally, while the exact form of the renormalization constants

requires some calculations to justify, we note that (1.12) diverges logarithmically as

η → 0, which agrees with the regularity heuristic given after (1.9). (See the proof

of Lemma 8.3 for where (1.12) comes from more precisely.)

Standard pde theory implies that (1.11) is locally well-posed with smooth solu-

tions for any η > 0 fixed. The following result, which restricts to d + 1 = 2, states

that the η → 0 limit of these solutions exists:

Theorem 1.6. Suppose that M ⊆ R
2 is a compact subset with smooth boundary

∂M.

For any hinitial ∈ C 2(∂M) independent of η > 0, the sequence of solutions

{hη}η>0 to (1.11) with initial data hinitial converges in probability in the following

(analytically) weak sense. There exists an almost surely positive (and possibly

random) time τstop, which may depend on hinitial, such that for any test function F ∈
C ∞(R × ∂M), the sequence of random variables below converges in probability

as η → 0:

∫
[0,τstop)

∫
∂M

Ft,xh
η
t,x dxdt. (1.13)
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In Theorem 1.6 above, we can take τstop to be any time that is strictly smaller than an

appropriate blow-up time for the pde (8.7)–(8.8), which resembles (1.11) without

any noise; see Lemma 8.5.

Remark 1.7. One can also solve (1.9) by using the Cole–Hopf map h := log Z,

where Z solves a linear spde (though this exponential map does not linearize (1.11)

because of the �η operator). It is likely, but possibly difficult to prove, that this

Cole–Hopf solution agrees with the limit constructed in Theorem 1.6. If it does,

then it gives a way to show infinite lifetime for (1.9) (and that τstop in Theorem 1.6

is infinite almost surely).

Theorem 1.6 gives a weak type of convergence for hη. It can be upgraded rather

easily to more quantitative convergence using our methods. We do not pursue this

here, because it is more of a detail than the main point. (Similarly, the assumption

that hinitial is in C 2(∂M) is likely sub-optimal, but this is also besides the point.)

By Theorems 1.5 and 1.6, in the case d = 1 (so hypersurfaces in R
2), we get a

singular kpz-type equation limit for (1.3). In particular, we can take K in Theorem

1.5 to converge to a delta function on the diagonal of ∂M× ∂M sufficiently slowly

and deduce convergence of Yε to (1.11).

Let us also mention that the analytic topologies used in Theorems 1.5 and 1.6

are quite different (C 2(∂M) versus weak-∗ convergence). As mentioned above,

improving the topology of convergence in Theorem 1.6 is probable, but it cannot

hold in C 2(∂M) since (1.11) is a singular spde. Convergence in Theorem 1.5 in a

topology weaker than C 2(∂M) seems to be difficult (as noted after Theorem 1.5),

since the proof is largely based on elliptic regularity. It would be interesting to

close this gap; this would strengthen the double-scaling limit result (e.g. quantify

convergence of K to a delta).

1.3. Background and Previous Work

1.3.1. KPZ from Flows To our knowledge, kpz-type spdes for diffusions inter-

acting with their range had not appeared in the literature before. The closest work

that we are aware of to ours is [15], which derives the kpz equation from a stochas-

tic version of mean-curvature flow. However, [15] has randomness coming from a

background environment (with mixing and independence-type properties), while

the randomness in our flow model comes from a single particle.

1.3.2. Singular spdes on Manifolds While we were finishing this work, [16] was

posted to the arXiv. This treats singular spdes on manifolds via regularity structures

[14]. However, due to the Dirichlet-to-Neumann operator in (1.11), the spdes here

and in [16] are a bit different.

1.3.3. Shape Theorems This paper studies fluctuation scaling for the height func-

tion, that is study (1.3). In [9], we studied (a Poissonization of) the discrete version of

Fig. 1 without heat flow regularization. The main result of [9] was a shape theorem

for the growth model therein, in particular a scaling limit for the evolving vector

field process that we alluded to before Construction 1.1 but with speed slowed down
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by ε1/4 so that the interface evolves at speed 1; see (1.1). (We clarify that the particle

speed in [9] is also denoted by ε−1, so that ε here refers to ε4/3 in [9]. In particular,

under the scaling of [9], the heat flow term in (1.1) vanishes, so the results of [9] hold

even if we included said term. A similar shape theorem (for more general processes

than Brownian motion but for radial growth) was shown in [8].

1.4. A Word About Universality

The methods we use require very little about the Brownian nature of the ran-

domness in (1.1). (Indeed, as indicated in Section 3.4.1, only spectral gap estimates

are needed.) This can be interpreted as another instance of universality. (Of course,

if we change Brownian motion to another process, the L -operator in (1.9) may

change. The quadratic term, however, will not.)

If we drop Laplacians in (1.1) and (1.4), Theorem 1.5 would still hold for the

resulting spdes. In addition, if one were to take a singular limit as in Theorem 1.6

without said Laplacians, then one should arrive (formally) at (1.9) without the Lapla-

cian therein. However, we currently cannot take such a singular limit. Furthermore,

it is an interesting question as to whether or not (1.9) has a kpz fixed point scaling

limit (after posing it on the real line instead of ∂M).

1.5. A Changing Diffeomorphism Class

The evolving graph of the height function is always diffeomorphic to the original

interface ∂M. Another situation of interest would be to study a random growth

model driven by a diffusive particle which can change its diffeomorphism class at a

possibly random time. For work along these lines (in the case of a Stefan pde whose

singularities are resolved through a particle system), see [10].

1.6. Organization of the Paper

Section 3 outlines the methods (and essentially proves Theorems 1.6 and 1.5

modulo technicalities to be checked). The rest of the paper is outlined at the end of

Section 3.

2. Function Spaces and Other Notation

We now give a list of function spaces (and a few other pieces of notation) to be

used throughout the paper.

(1) For any set I and a, b ∈ R, when we write a �I b, we mean |a| � �|b| for an

implied constant � � 0 depending only on I . (If I is a finite subset of R
n for

some n � 1, the dependence of � is assumed to be smooth in the elements of

I .) By a �I b, we mean b �I a. By a � b, we mean a � b and b � a with

possibly different implied constants. Also, by a = OI (b), we mean a �I b.
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(2) It will be convenient to adopt the following convention. When we say that a �I b

with high probability for a finite set I = {i1, . . . , in} of real numbers, we mean

that there exists a parameter υ[ε] → 0 such that P[|a| � C(i1, . . . , in)|b|] �

1 − υ[ε] for some deterministic continuous function C : R
n → [0,∞). We

note that this function C can depend on ε.

(3) For any a, b ∈ R, we define a ∧ b = min(a, b).

(4) When we say β ∈ R is uniformly positive, we mean β � C for C > 0 that

depends on no parameters.

(5) For p � 1, let Lp = Lp(∂M) be the usual Lp-space, where ∂M ⊆ R
d+1 is

given the Riemannian surface measure.

(6) Fix any integer k � 0. Fix an orthonormal frame e1, . . . , ed (that is a smoothly

varying orthonormal basis for tangent spaces of the manifold ∂Mwith Euclidean

surface metric). For smooth ϕ : ∂M→ R, set

‖ϕ‖C k :=‖ϕ‖C k (∂M) := sup
x∈∂M

|ϕx | + sup
x∈∂M

sup
i1,...,ik

|∇i1 . . . ∇ik
ϕt,x |, (2.1)

where ∇i is gradient in the direction of the orthonormal frame vector ei , and the

inner supremum is over subsets of size k in {1, . . . , d}. Let C k :=C k(∂M) be

the corresponding closure of smooth functions on ∂M. (We will also consider

similar spaces but for different domains, such as M instead of ∂M, in which

case we explicitly write the domain at hand. In particular, we only use the C k

shorthand for C k(∂M). A similar comment applies to other function spaces to

be introduced below.)

(7) Let C 0,υ :=C 0,υ(∂M), for υ ∈ (0, 1), be the Hölder norm on the manifold ∂M

with Euclidean surface metric.

(8) Fix t � 0. Let C ∞
t C ∞ be the space of smooth ϕ : [0, t] × ∂M → R. Fix

integers k1, k2 � 0, and set

‖ϕ‖
C

k1
t C k2

:= sup
0�t�t

{
‖∂k1

t ϕt,·‖C 0 + ‖ϕt,·‖C k2

}
, ϕ ∈ C

∞
t C

∞. (2.2)

We let C
k1
t C k2 be the closure of smooth functions on [0, t] × ∂M under this

norm.

(9) Fix any integer k � 0. For any ϕ : ∂M→ R smooth, we define

‖ϕ‖Hk :=‖ϕ‖2
Hk (∂M)

:= ‖ϕ‖2
L2 + sup

i1,...,ik

‖∇i1 . . . ∇ik
ϕ‖2

L2 . (2.3)

Let Hk :=Hk(∂M) denote the closure of C ∞(∂M) under this norm. For any

fractionalα � 0, define the Hα :=Hα(∂M)via the usual interpolation procedure

(though it is enough to take α � 0 to be an integer throughout this paper.

Alternatively, one can cover ∂M with an atlas, define the Hα(∂M)-norm by

using a diffeomorphism with an open subset of R
d, and sum over all charts in

the atlas.)

(10) Fix any integer k � 0 and α � 0. Fix any t � 0. For any ϕ : [0, t] × ∂M→ R

smooth, we define

‖ϕ‖
C k

t Hα := sup
0�t�t

{
‖∂k1

t ϕt,·‖H0 + ‖ϕt,·‖Hα

}
. (2.4)
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We let C k
t Hα be the closure of smooth functions on [0, t]×∂M under this norm.

3. Outline of the Proofs of Theorems 1.5 and 1.6

We give steps towards proving Theorem 1.5. We then describe the technical

heart to prove each step (and Theorem 1.6) in Section 3.4. We conclude this section

with an outline for the rest of the paper.

3.1. Step 1: Comparing Yε to an ε-Dependent spde

Even if one computes the evolution equation for Yε using (1.1) and (1.3), it is

not clearly an approximation to (1.4). (The problem is the last term in (1.1).) The

first step towards proving Theorem 1.5 is to therefore compare Yε to the pde

∂t h
ε
t,x = 	hε

t,x +
∫
∂M

Kx,z |∇hε
t,z |

2dz + dMε
t,x

dt

hε
0,· = Yinit

0,· , (3.1)

where Mε denotes a martingale that “resembles” the last term in the differential equa-

tion (1.4). Let us make precise what “resembles” means in the following definition

(which we explain afterwards).

Definition 3.1. We say that the family of processes t �→ Mε
t,· ∈ C ∞(∂M), indexed

by ε > 0, is a (family of) good martingales if the following hold. (First, for notation,

see point (2) in Section 2.)

• The process t �→ Mε
t,· ∈ C ∞(∂M) is a càdlàg martingale with respect to the

filtration of (Iε, qε).

Next, fix any stopping time 0 � τ � 1. With probability 1, if t � τ is a jump time,

then for any k � 0 and for some κ[ε] that vanishes as ε → 0, we have

‖Mε
t,· − Mε

t−,·‖C k �k,‖Yε‖
C 0

τ C 2
κ[ε]. (3.2)

• Fix any � � 0 and any stopping time 0 � τ � 1 such that for all t � τ , we

have ‖Yε
t,·‖C 2 � �. For any k � 0 deterministic, we have the following with high

probability:

sup
0�t�τ

‖Mε
t,·‖C k �k,� 1. (3.3)

For any stopping time 0 � τ � 1, with high probability, we have the following for

any k � 0:

sup
0�t�τ

‖[Mε]t,· − [Mlimit]t,·‖C k �k,‖Yε‖
C 0

τ C 2
εβ , (3.4)

The exponent β > 0 is fixed (e.g. independent of all other data, including ε), and

[Mlimit]t,x := 2t
∫
∂M

[Kx,z − 1] ×
{
−L

−1[Kx,z − 1]
}

dz (3.5)

is a time-integrated “energy” functional. Above, the operator L −1 acts on the z-

variable in the function z �→ Kx,z − 1.
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Remark 3.2. In this paper, we use the notation that resembles L̃ ϕx,z and L̃ ϕx,qε .

Here, L̃ is the Dirichlet-to-Neumann operator onM with respect to a metric that

will be clarified in context, and ϕ ∈ C ∞(∂M × ∂M). Also, x, z, qε ∈ ∂M. In

this notation, the Dirichlet-to-Neumann operator L̃ will act on the second variable,

which we then evaluate at z or qε (depending on the context), as in (3.5).

Let us now explain Definition 3.1. The càdlàg-in-time and smooth-in-space regular-

ity of Mε is enough for local well-posedness of (3.1) in C 2, for example. Indeed, if

one writes (3.1) in its Duhamel form (see Lemma A.1), then one can move the time-

derivative acting on Mε in (3.1) onto the heat kernel of the semigroup t �→ exp[t	].
This turns into a Laplacian 	 acting on said heat kernel, which is okay since we

integrate against Mε in space, and Mε is smooth in space (see Lemma A.2).

We now explain the second bullet point in Definition 3.1. It first states a priori

control on regularity of the martingale (in a way that is technically convenient later

on). It also says that at the level of bracket processes, Mε matches the last term in

(1.4) up to O(εβ). By standard martingale theory, this is enough to characterize the

small-ε limit of Mε. We expand on this in the discussion of the next step, Theorem

3.4.

Theorem 3.3. There exists a family of good martingales Mε in the sense of Defini-

tion 3.1 such that if hε is the solution to (3.1) with this choice of Mε, then we have

the following:

• First, for any � � 0, define the stopping time

τhε,� = inf{t � 0 : ‖hε
t,·‖C 2 � �}. (3.6)

• There exists a constant β > 0 independent of all other parameters, including

ε, and a parameter υ[ε] > 0 that vanishes as ε → 0 such that the following

holds. For any deterministic � � 0 and δ > 0, we have the following estimate

with probability at least 1 − υ[ε]:

sup
0�t�(τhε,�∧1)−δ

‖Yε
t,· − hε

t,·‖C 2 �δ,� εβ . (3.7)

(The ∧ notation means minimum. Also, β here may not match β in Definition

3.1.)

Let us now briefly explain what Theorem 3.3 is saying exactly (and why it is even

plausible).

• In words, Theorem 3.3 says that we can couple Yε to the solution hε of (3.1)

if we make an appropriate choice of good martingales Mε that comes from a

martingale decomposition for the last term in (1.1).

• The Laplacian in (1.1) clearly matches that in (3.1).

• Take the second term on the RHS of (1.1). Even though qε is not Markovian

since the underlying metric is determined by the Iε process, it is faster than Iε,

so it is the unique “fast variable” (in the language of homogenization). Thus, we

expect that the second term on the RHS of (1.1) homogenizes in qε with respect

to the Riemannian measure induced by g[∇Iε]. (Intuitively, on time-scales for
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which qε homogenizes, Iε is roughly constant. So, qε “looks” Markovian, and

we have homogenization.) Thus, we replace the second term on the RHS of (1.1)

by the following homogenized statistic (if we include the ε−1/4 scaling in (1.3)):

ε− 1
2
∫
∂M

Kx,z(1 + |∇Iε
t,z |

2)
1
2 dz. (3.8)

(We clarify that (1 + |∇Iε
t,z |2)1/2dz is the Riemannian measure induced by

g[∇Iε
t,·].) We can now Taylor expand in ∇Iε = ε1/4∇Yε to second-order to turn

(3.8) into the second term on the RHS of (3.1) but evaluated at Yε instead of hε

(plus lower-order errors).

• It remains to explain the noise in (3.1). It turns out replacing the second term on

the RHS of (1.1) by (3.8) does not introduce vanishing errors. This fluctuation

is order 1. Indeed, the difference of the last term in (1.1) and (3.8) is a noise

of speed ε−1. After we time-integrate, we get square-root cancellation and a

power-saving of (ε−1)−1/2 = ε1/2. This cancels the ε−1/2-scaling of (3.8).

3.2. Step 2: The Small-ε Limit of hε

The remaining ingredient to proving Theorem 1.5 is the following (it is essen-

tially Theorem 1.5 but for hε instead of Yε. Recall notation of Theorem 1.5):

Theorem 3.4. There exists a coupling between the sequence {hε}ε→0 and hK such

that the following two points hold with high probability:

(1) For any ρ > 0, there exists � = �(ρ) so that for all ε > 0 small, we have

τhK ∧ τhε,� � τhK − ρ.

(2) For any δ > 0, there exists κ[δ, ε] � 0 that vanishes as ε → 0 such that

sup
0�t�(τ

hK ∧1)−δ

‖hε
t,· − hK

t,·‖C 2 � κ[δ, ε]. (3.9)

(To be totally clear, point (1) in Theorem 3.4 states that τhε,� ≈ τhK if we take

� > 0 sufficiently large and ε > 0 sufficiently small. The key feature is that the

necessary choice of � does not depend on ε > 0.)

Taking a minimum withτhK is probably unnecessary in the first point of Theorem

3.4, but it makes things easier. In any case, convergence in both points (1) and (2) of

Theorem 3.4 is classical, because both spdes (3.1) and (1.4) are parabolic equations

with smooth RHS. The one detail that may be subtle is that the noise in (3.1) is

only weakly close to that in (1.4). (Indeed, control of predictable brackets (3.4) is

not a very strong statement.) Thus, we need to show that (1.4) is characterized by a

martingale problem (which, again, is not hard because (3.1) and (1.4) have smooth

RHS).

3.3. Proof of Theorem 1.5, Assuming Theorems 3.3 and 3.4

Take δ > 0 small and 0 � τ � [1 ∧ τhK ] − δ. By the triangle inequality, we

have

sup
0�t�τ

‖Yε
t,· − hK

t,·‖C 2 � sup
0�t�τ

‖Yε
t,· − hε

t,·‖C 2 + sup
0�t�τ

‖hε
t,· − hK

t,·‖C 2 . (3.10)
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The last term on the RHS vanishes as ε → 0 in probability by point (2) of Theorem

3.4. In order to control the first term on the RHS, we first know with high probability

that τhK − δ < τhε,� − 1
2
δ if we take � � 0 large enough (but independent of ε);

this is by point (1) of Theorem 3.4. We can now use Theorem 3.3 to show vanishing

of the first term on the RHS of the previous display as ε → 0. ��

3.4. Technical Challenges and Methods for Theorems 3.3 and 1.6

As noted after Theorem 3.4, there is not much to its proof; so, we focus on the

ideas behind Theorems 3.3 and 1.6.

3.4.1. Theorem 3.3 Suppose, just for now until we say otherwise, that the Brow-

nian particle qε evolves on the setM with respect to the fixed, initial metric g[∇0].
(Put differently, suppose just for now that in the definition of qε in Construction 1.1,

we replace g[∇Iε] by g[∇0], where 0 denotes the 0 function.) In this case, we know

that qε is Markovian.

Take the second term on the RHS of (1.1); it is a function of qε. We are interested

in the following fluctuation, in which I ∈ C ∞ is arbitrary:

FI,x,qε
t

:= ε− 1
2 VolIKx,qε

t
− ε− 1

2
∫
∂M

Kx,z(1 + |∇Iz |2)
1
2 dz. (3.11)

(We will only use the F-notation in this outline.) Because of the italicized temporary

assumption above, we will first consider the case where I ≡ 0 until we say otherwise.

As explained in the bullet points after Theorem 3.3, showing that (3.11) is asymp-

totically the desired noise term is the only goal left. We first write the following,

where L and its inverse act on the second spatial variable (which is then evaluated

at qε
t , per Remark 3.2):

F0,x,qε
t

= ε−1
L [ε−1

L ]−1
F0,x,qε

t
. (3.12)

The inverse operator on the RHS of (3.12) is well-defined, since (3.11) (for I ≡ 0)

vanishes with respect to the invariant measure of L by construction (see Lemma

B.1 for the invariant measure of qε).

Since ε−1L is the generator of qε by our italicized assumption above and Propo-

sition 4.1 of [18], we can use the Itô formula to remove the outer ε−1L operator at

the cost of two copies of [ε−1L ]−1
F evaluated at different times (that is boundary

terms) plus a martingale. Boundary terms are easy to control, since [ε−1L ]−1
F is

intuitively O(ε1/2). (This is by a spectral gap for L , which bounds L −1, plus the

a priori bound of order ε−2/3 for (3.11).) The martingale has scaling of order 1 as

explained in the fourth bullet point after Theorem 3.3. That its bracket is given by

a time-integrated energy (3.5) (more or less) is because quadratic variations of Itô

martingales are Carre-du-Champ operators.

Now, we return the actual context in which the metric for qε is determined by Iε.

In this case, we will be interested in (3.11) for the actual interface process I = Iε
t,·:

FIε
t,·,x,qε

t
:= ε− 1

2 VolIε
t,·Kx,qε

t
− ε− 1

2
∫
∂M

Kx,z(1 + |∇Iε
t,z |

2)
1
2 dz. (3.13)
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By the same reasoning as we gave after (3.12), this term vanishes in expectation

with respect to the invariant measure of the Dirichlet-to-Neumann operator onM

equipped with the metric g[∇Iε
t ] from Construction 1.1. However, we do not have an

Itô formula for justqε, since it isno longerMarkovian.But, aswenotedafterTheorem

3.3, qε is still the unique fast variable; on time-scales for which it would homoge-

nize if it were Markovian, Iε is approximately constant. So, qε “looks Markovian”

on time-scales that it sees as long. Thus, the same homogenization picture above

should hold, if we replace L by Dirichlet-to-Neumann on the Riemannian manifold

(M, g[∇Iε
t,·]), and the measure for homogenization is Riemannian measure induced

by g[∇Iε
t,·].

The way we make the previous paragraph rigorous and study (3.11) resembles

(3.12), except we include the generator of the Iε
t,· process as well. Let L

ε
total be the

generator for the Markov process (Iε, qε). Write

FIε
t,·,x,qε

t
= L

ε
total[L

ε
total]

−1
FIε

t,·,x,qε
t
. (3.14)

We can then use Itô as before to remove the outer L
ε

total-operator to get bound-

ary terms and a martingale. Since qε is much faster than Iε, the operator L
ε

total is

asymptotically just the Dirichlet-to-Neumann operator on (M, g[∇Iε]). In other

words, dynamics of Iε, and their O(ε−1/4) contribution to the generator L
ε

total, are

lower-order. So, if L
ε,I

DtN denotes the same scaling factor ε−1 times the Dirichlet-

to-Neumann map on (M, g[∇I]), then since L
ε,Iε

t,·
DtN is the generator for qε

t at time t

(again, see Proposition 4.1 in [18]), we get

FIε
t,·,x,qε

t
≈ L

ε
total[L

ε,Iε
t,·

DtN ]−1
FIε

t,·,x,qε
t
. (3.15)

(Note that L
ε,I

DtN depends on Iε
t,·, reflecting the non-Markovianity of qε.)

Thus, our estimation of the boundary terms and martingale is the same as before.

We deduce from (3.15) and the Itô formula that (3.14) is asymptotically a martingale

whose bracket is (3.5), except L , which is the Dirichlet-to-Neumann map onM

with metric g[∇0], in (3.5) is replaced by the Dirichlet-to-Neumann map onMwith

metric g[∇Iε], that is εL
ε,Iε

t,·
DtN . Since Yε should be order 1, g[∇Iε] = g[ε1/4∇Yε]

(see (1.3)) should be close to g[∇0]. So, (3.5) as written is indeed the right answer

for asymptotics of the bracket for the martingale part of (3.11).

There are obstructions to this argument. The most prominent of which is that we

cannot just remove the generator of Iε from L
ε

total in (3.14). Indeed, this term acts on

the resolvent in (3.14); when it does, it varies the metric defining the resolvent and

(3.11) itself. However, our estimate for the resolvent in (3.14) depends on vanishing

of (3.11) for I = Iε after integration with respect to the measure on ∂M induced

by g[∇Iε] (which, again, is changing when we act by the generator of Iε). In other

words, estimates for the resolvent in (3.14) rely on an unstable algebraic property of

(3.11) that is broken when we vary Iε. For this reason, we actually need regularize

L
ε

total with a resolvent parameter λ, that is consider −λ + L
ε

total for 0 � λ � ε−1

instead of L
ε

total. Indeed, the inverse of −λ + L
ε

total is always at most order λ−1,

regardless of what it acts on. Moreover, since λ � ε−1 is much smaller than the

speed of qε, once we use λ-regularization to remove the generator of Iε, we can then
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remove λ itself, essentially by perturbation theory for resolvents. This is how we

ultimately arrive at (3.15) rigorously.

We also mention the issue of the core/domain of the generator for Iε, because Iε

is valued in an infinite-dimensional space of smooth functions. We must compute

explicitly the action of the Iε-generator whenever we use it. This, again, is built on

perturbation theory for operators and resolvents.

3.4.2. Theorem 1.6 The idea is built on the method of Da Prato–Debussche [6].

We treat (1.11) as a perturbation of the following equation:

∂th
η,lin
t,x = 	h

η,lin
t,x + �̃η,⊥(−	)−

1
4 ξt,x . (3.16)

Above, �̃η,⊥ further projects onto the subspace (1.10) after dropping the λi,k = 0-

eigenspaces, so that 	 is self-adjoint and invertible on the image of this space. We

note that the solution to (3.16) admits an explicit Gaussian Fourier series represen-

tation, since ∂M is a finite union of circles.

After (3.16), the remaining piece to the equation (1.11) is the following equation:

∂th
η,rem
t,x = 	h

η,rem
t,x + �η|∇h

η,lin
t,x |2 − Cη

+ 2�η(∇h
η,lin
t,x ∇h

η,rem
t,x ) + �η|∇h

η,rem
t,x |2

+ �̃η,⊥
{
(−L )−

1
2 − (−	)−

1
4

}
ξt,x + (�η,⊥ − �̃η,⊥)(−L )−

1
2 ξt,x .

The renormalized quadratic on the rhs is treated using the explicit Gaussian repre-

sentation for (3.16). The second line above is okay essentially because hη,rem turns

out be sufficiently regular. To handle the last line, we will analyze −L as a per-

turbation of (−	)1/2 (after projecting onto the image of �̃η,⊥, on which both are

self-adjoint, positive semi-definite, and invertible). We also remark that�η,⊥−�̃η,⊥

is a projection onto a subspace spanned by smooth (piecewise constant) functions on

∂Mwhose dimension is independent of η. In particular, the last term in the previous

display is smooth in space. The proof of Theorem 1.6 is dedicated to making this

picture precise.

3.5. Outline of the Paper

This paper has two halves to it. The first half is focused on the proof of Theorem

3.3. This consists of Sections 4–7. The second half focuses on the proof of Theorem

1.6. Let us now explain the goal of each individual section in more detail.

(1) Proof of Theorem 3.3.

• In Section 4, we give the ingredients for the proof. This includes computing a

stochastic equation for Yε. We ultimately reduce Theorem 3.3 to the problem

ofgettinganoiseoutofafluctuation, exactlyasweexplained inSection3.4.1.

(Said problem is proving Proposition 4.3.)

• In Section 5, we give a precise version of heuristics in Section 3.4.1. In

particular, we reduce the proof of Proposition 4.3 to perturbation theory

estimates, which are proved in Sections 6 and 7.
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(2) Proof of Theorem 1.6.

• In Section 8, we make rigorous the Da Prato–Debussche-type schematic

from Section 3.4.2.

(3) Proof of Theorem 3.4.

• This is the last non-appendix section; as we mentioned after Theorem 3.4, it

is a classical argument.

Finally, the goal of the appendix is to gather useful auxiliary estimates used through-

out this paper.

4. Proof Outline for Theorem 3.3

In this section, we give the main ingredients for Theorem 3.3. All but one of them

(Proposition 4.3) will be proven; Proposition 4.3 requires a sequence of preparatory

lemmas, so we defer it to a later section.

4.1. Stochastic Equation for Yε

The first step is to use (1.1) and (1.3) to write an equation for Yε, decomposing

it into terms that we roughly outlined after Theorem 3.3. First, we recall notation

from after (1.9) and from Construction 1.1. We also consider the heat kernel

∂t�t,x,w = 	�t,x,w �t,x,w →t→0+ δx=w, (4.1)

where the Laplacian acts either on x or w, where t > 0 and x, w ∈ ∂M in the

pde, and where the convergence as t → 0 from above is in the space of probability

measures on ∂M.

Lemma 4.1. Fix t � 0 and x ∈ ∂M. We have

∂t Y
ε
t,x = 	Yε

t,x + ε− 1
2
∫
∂M

Kx,z[(1 + |∇Iε
t,z |

2)
1
2 − 1]dz (4.2)

+ ε− 1
2

[
VolIε

t
Kx,qε

t
−

∫
∂M

Kx,z(1 + |∇Iε
t,z |

2)
1
2 dz

]
. (4.3)

By the Duhamel principle (Lemma A.1), we therefore deduce that

Yε
t,x :=

∫
∂M

�t,x,zYinit
0,z dz + �

KPZ,ε
t,x + �

noise,ε
t,x , (4.4)

where

�
KPZ,ε
t,x :=

∫ t

0

∫
∂M

�t−s,x,w

{
ε− 1

2
∫
∂M

Kw,z[(1 + |∇Iε
s,z |

2)
1
2 − 1]dz

}
dwds (4.5)

�
noise,ε
t,x :=

∫ t

0

∫
∂M

�t−s,x,w{
ε− 1

2

[
VolIε

s,·Kw,qε
s
−

∫
∂M

Kw,z(1 + |∇Iε
s,z |

2)
1
2 dz

]}
dwds. (4.6)
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Proof. Plug (1.1) into the time-derivative of (1.3). This gives that

∂t Y
ε
t,x = ε− 1

4 	Iε
t,x + ε− 1

2 VolIε
t,·Kx,qε

t
− ε− 1

2 = ε− 1
4 	Iε

t,x

+ ε− 1
2 [VolIε

t,·Kx,qε
t
− 1]. (4.7)

By (1.3), we can replace ε−1/4	Iε
t,x �→ 	Yε

t,x . This turns the first term on the

far RHS of (4.7) into the first term on the RHS of (4.2). The remaining two terms

(the last in (4.2) and (4.3)) add to the last term in (4.7), so (4.2)–(4.3) follows. The

Duhamel expression (4.4) follows by Lemma A.1 and Assumption 1.3. ��

Let us now explain Lemma 4.1 in the context of the proof strategy briefly described

after Theorem 3.3. The second bullet point there says (4.5) gives |∇Yε|2 integrated

against K (by Taylor expansion). The third bullet point says that (4.6) gives a noise.

4.2. Producing a Quadratic from (4.5)

Let us first establish some notation. First, define

�
quad,ε
t,x := 1

2

∫ t

0

∫
∂M

�t−s,x,z

{∫
∂M

Kw,z |∇Yε
s,z |

2dz
}

dwds (4.8)

as the heat kernel acting on a K-regularized quadratic. Recall the C 0
t C k-norm from

Section 2.

Lemma 4.2. Fix any integer k � 0 and any time-horizon t � 0. We have the

deterministic estimate

‖�KPZ,ε − �quad,ε‖
C 0

t C k �t,k ε
1
4 ‖Yε‖3

C 0
t C 1 . (4.9)

Proof. Taylor expansion gives (1 + υ2)1/2 = 1 + 1
2
υ2 + O(υ3). This implies

(1 + |∇Iε
s,z |

2)
1
2 − 1 = 1

2
|∇Iε

s,z |
2 + O(|∇Iε

s,z |
3). (4.10)

By (1.3), we know that ∇Iε = ε1/4∇Yε. Thus, we deduce

ε− 1
2 (1 + |∇Iε

s,z |
2)

1
2 − 1 = 1

2
|∇Yε

s,z |
2 + O(ε

1
4 |∇Yε

s,z |
3). (4.11)

By (4.5), (4.8), and (4.11), we can compute

�
KPZ,ε
t,x − �

quad,ε
t,x =

∫ t

0

∫
∂M

�t−s,x,w

∫
∂M

Kw,zO(ε
1
4 |∇Yε

s,z |
3)dzdwds. (4.12)

Integrating against � is a bounded operator from the Sobolev space Hα (see Sec-

tion 2) to itself, with norm �α 1 locally uniformly in time; this holds by Lemma A.2.

Also, K is smooth in both variables by assumption. So (4.12) implies a version of

(4.9) where we replace C k on the LHS by Hα . But then Sobolev embedding implies

(4.9) as written if we take α sufficiently large depending on k. ��

We note that (4.9) is meaningful, in the sense that Yε is supposed to be controlled

in C 2 if Theorem 3.3 is true. In particular, the upper bound on the RHS of (4.9) is

supposed to vanish as ε → 0.
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4.3. Producing a Noise from (4.6)

Roughly speaking, we want to compare �noise,ε to the following function (the

first line is just a formal way of writing it, and the second line is a rigorous definition

of said function in terms of integration-by-parts in time):

�Mε

t,x :=
∫ t

0

∫
∂M

�t−s,x,z

dMε
s,z

ds
dzds (4.13)

:= Mε
t,x −

∫
∂M

�t,x,zMε
0,zdz −

∫ t

0

∫
∂M

∂s�t−s,x,zMε
s,zdzds. (4.14)

In the next result, we will make a choice of Mε for which we can actually compare

�noise,ε and �Mε
.

Proposition 4.3. There exists a family of good martingales t �→ Mε
t,· (see Definition

3.1) such that:

• For any stopping time 0 � τ � 1 and k � 0, there exists universal β > 0 such

that with high probability,

‖�noise,ε − �Mε

‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ . (4.15)

The proof of Proposition 4.3 is essentially the point of Section 3.4.1.

4.4. Proof of Theorem 3.3 Assuming Proposition 4.3

First define the stopping time τYε,� as the first time the C 2-norm of Yε equals

�. (Note that Yε is continuous in time.) Throughout this argument, we will fix

� � 0 (independently of ε). Define Xε = Yε − hε, where hε solves (3.1) with the

martingale Mε from Proposition 4.3. We claim, with explanation after, that

Xε
t,x := 1

2

∫ t

0

∫
∂M

�t−s,x,w

[∫
∂M

Kw,z(|∇Yε
s,z |

2 − |∇hε
s,z |

2)dz
]

dwds (4.16)

+ �
noise,ε
t,x − �Mε

t,x + �
KPZ,ε
t,x − �

quad,ε
t,x . (4.17)

To see this, recall �quad,ε from (4.8) and �Mε
from (4.13)–(4.14). Now, rewrite

(3.1) in its Duhamel form (by Lemma A.1). Equations (4.16)–(4.17) now follows

directly from (4.4) and this Duhamel form for (3.1). (In particular, the martingale

integrals in the Yε and hε equations cancel out.)

In what follows, everything holds with high probability. Because we make

finitely many such statements, by a union bound, the intersection of the events

on which our claims hold also holds with high probability.

Let τ be any stopping time in [0, τYε,�]. By Lemma 4.2 and Proposition 4.3, we

have

‖(4.17)‖C 0
τ C 2 �‖Yε‖

C 0
τ C 2

εβ �� εβ , (4.18)

where β > 0 is strictly positive (uniformly in ε). Note the second estimate in (4.18)

follows by definition of τYε,� � τ . On the other hand, by the elementary calculation

a2 − b2 = 2b[a − b] + [a − b]2, we have

|∇Yε
s,z |

2 − |∇hε
s,z |

2 � |∇Yε
s,z ||∇Yε

s,z − ∇hε
s,z | (4.19)
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+ [∇Yε
s,z − ∇hε

s,z]
2 (4.20)

= O|∇Yε
s,z |(|∇Xε

s,z | + |∇Xε
s,z |

2), (4.21)

where the dependence of the big-Oh term in (4.21) is smooth in |∇Yε|. Now, recall

that K is a smooth kernel, and that � is the kernel for a bounded operatorC k1 → C k2

(for any k2 > 0 and for k1 big enough depending on k2; indeed this is the argument

via Lemma A.2 and Sobolev embedding that we used in the proof of Lemma 4.2).

Using this and (4.19)–(4.21), we claim the following for any t � τ :

‖RHS(4.16)‖C 2 �
∫ t

0 ‖|∇Yε
s,·|

2 − |∇hε
s,·|

2‖C 0 ds (4.22)

��

∫ t

0 ‖|∇Xε| + |∇Xε|2‖C 0
s C 0 ds. (4.23)

Indeed, to get the first bound, when we take derivatives in ∂M of the RHS of (4.16),

boundedness of integration against � lets us place all derivatives onto K. Now, use

that K is smooth. This leaves the integral of ||∇Yε
s,·|2 − |∇hε

s,·|2| on ∂M (which

we can bound by its C 0-norm since ∂M is compact). The second inequality above

follows by (4.19)–(4.21) (and noting that for t � τ � τYε,�, the implied constant in

(4.21) is controlled in terms of �). Since t � τ , we can extend the time-integration

in (4.23) from [0, t] to [0, τ ]. The resulting bound is independent of the t-variable

on the LHS of (4.22), so

‖RHS(4.16)‖C 0
τ C 2 �

∫ τ

0 ‖|∇Xε| + |∇Xε|2‖C 0
s C 0 ds. (4.24)

Combine (4.16)–(4.17), (4.18), and (4.24). We get the deterministic bound

‖Xε‖C 0
τ C 2 �� εβ +

∫ τ

0 ‖|∇Xε| + |∇Xε|2‖C 0
s C 0 ds. (4.25)

Now, recall τhε,� is the first time that the C 2-norm of hε is at least �. Since Xε =
Yε − hε, for any time s � τYε,� ∧ τhε,�, we know that the C 2 of Xε at time s is

�� 1. Thus, for τ � τYε,� ∧ τhε,�, we can bound the square on the RHS of (4.25)

by a linear term, so that (4.25) becomes

‖Xε‖C 0
τ C 2 �� εβ +

∫ τ

0 ‖∇Xε‖C 0
s C 0 ds. (4.26)

It now suffices to use Gronwall to deduce that for τ � τYε,� ∧ τhε,�, we have

‖Xε‖
C 0

τ∧1C
2 �� εβ . (4.27)

We now claim that it holds for all τ � τhε,�/2 − δ for δ > 0 fixed, as long as ε > 0

is small enough depending only on �, δ. This would yield (3.7) (upon rescaling

� therein) and thus complete the proof. To prove this claim, it suffices to show

τYε,�∧τhε,� � τhε,�/2−δ. Suppose the opposite, so that τYε ,� � τhε,�/2−δ (since

τhε,�/2 � τhε,� trivially). This means that (4.27) holds for all τ � τYε,�. From this

and Xε = Yε − hε, we deduce that at time τYε,�, we have Yε = hε + O�(εβ). But

at time τYε,� � τhε,�/2, this implies that the C 2-norm of Yε is � 1
2
� + O�(εβ).

If ε > 0 is small enough, then this is � 2
3
�, violating the definition of τYε,�. This

completes the contradiction, so the proof is finished. ��



   50 Page 24 of 70 Arch. Rational Mech. Anal.          (2025) 249:50 

5. Proof Outline for Proposition 4.3

In Sections 5–7, we need to track dependence on the number of derivatives we

take of Iε (since estimates for certain operators depend on the metric g[∇Iε]). In

particular, we will need to control said number of derivatives by the C 2-norm of

Yε (see the implied constant in (4.15)). We will be precise about this. However, by

Lemma C.1, as long as the number of derivatives of Iε that we take is O(1), this is

okay.

5.1. A Preliminary Reduction

Recall (4.13)–(4.14) and (4.6) for the notation in the statement of Proposition

4.3. We first have

�
noise,ε
t,x =

∫ t

0 �t−s,x,w∂sInt
noise,ε
s,w,qε

s ,I
ε
s
dw (5.1)

= Int
noise,ε
t,x,qε

· ,I
ε
·
−

∫
∂M

�t,x,wInt
noise,ε
0,w,qε

· ,I
ε
·
dw

−
∫ t

0

∫
∂M

∂s�t−s,x,wInt
noise,ε
s,w,qε

· ,I
ε
·
dwds. (5.2)

where used integration-by-parts in s and introduced the following time-integral:

Int
noise,ε
t,x,qε

· ,I
ε
·

:= ε− 1
2
∫ t

0

[
VolIε

s
Kx,qε

s
−

∫
∂M

Kx,z(1 + |∇Iε
s,z |

2)
1
2 dz

]
ds. (5.3)

Now, by standard regularity estimates for the heat kernel � along with (5.1)–(5.2)

and (4.13)–(4.14), toproveProposition4.3amounts toproving the following instead.

Proposition 5.1. There exists a family of good martingales t �→ Mε
t,· ∈ C ∞ (see

Definition 3.1) such that the following is satisfied:

• For any stopping time 0 � τ � 1 and k � 0, there exists universal β > 0 such

that with high probability,

sup
0�t�τ

‖Int
noise,ε
t,·,qε

· ,I
ε
·
− Mε

t,·‖C k �k,‖Yε‖
C 0

τ C 2
εβ . (5.4)

In (5.4), the C k-norm on the LHS is with respect to the omitted x-variables in

Int
noise,ε
t,x,qε

· ,I
ε
·

and Mε
t,x .

5.2. Step 1: Setting up an Itô Formula for (Iε, qε)

See Section 3.4.1 for the motivation for an Itô formula for the joint process

(Iε, qε). We must now explicitly write the generator of this joint process. It has the

form

L
ε

total = L
ε,qε

flow + L
ε,Iε

DtN . (5.5)

The first term is the instantaneous flow of Iε defined by (1.1) (for qε ∈ ∂M), and

the second term is a scaled Dirichlet-to-Neumann map with metric g[∇Iε] onM

determined by Iε ∈ C ∞. (Superscripts for these operators always indicate what

is being fixed, that is the opposite of whose dynamics we are considering.) To be

precise:
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• For any I ∈ C ∞, recall the metric g[∇I] onM (see Construction 1.1). Let 	I,M

denote the Laplacian with respect to this metric. Now, given any ϕ ∈ C ∞, we

set

L
ε,Iε

DtN ϕ = ε−1∇NU
ϕ,Iε

, (5.6)

where N is the inward unit normal vector field on ∂M, and U ϕ,I is 	I,M-

harmonic extension of ϕ to M. (In particular, we have 	I,MU ϕ,I = 0 and

U ϕ,I|∂M = ϕ. Again, we refer to Proposition 4.1 in [18] for why (5.6) is the

generator of qε, and that its dependence on Iε shows non-Markovianity of qε.)

• Fix qε ∈ ∂M. The second term in (5.5) is a directional derivative on functions

C ∞ → R such that, when evaluated at I ∈ C ∞, it is in the direction of the

function x �→ 	Iε
x + ε−1/4VolIKx,qε . Precisely, given any functional F :

C ∞ → R and I ∈ C ∞, we have

L
ε,qε

flow F [I] := lim
h→0

1
h

{
F [I + h	I + hVolIK·,qε ] − F [I]

}
, (5.7)

provided that this limit exists (which needs to be verified carefully, since C ∞

is infinite-dimensional). We note that the exact domain of L
ε,qε

flow will not be

important for us to know. However, we also note that the domain of L
ε,qε

flow

consists of continuous linear functionals C ∞ → R. By the Leibniz rule, it also

contains polynomials of such continuous linear functionals.

5.2.1. Issues About the Domain of L
ε,qε

flow Throughout this section, we will often

let L
ε,qε

flow hit various functionals of the Iε process. Of course, as noted immediately

above, anytime we do this, we must verify that the limit (5.7) which defines it exists.

Each verification (or statement of such) takes a bit to write down. So, instead of

stating explicitly that each application of L
ε,qε

flow is well-defined throughout this

section, we instead take it for granted, and, in Section 6, we verify explicitly that

all applications of L
ε,qε

flow are justified.

5.2.2. An Expansion for Intnoise,ε Before we start, we first introduce notation for

the following fluctuation term, which is just the time-derivative of (5.3):

Fluc
noise,ε
x,qε

t ,I
ε
t

:= ε− 1
2

[
VolIε

t
Kx,qε

t
−

∫
∂M

Kx,z(1 + |∇Iε
t,z |

2)
1
2 dz

]
. (5.8)

Not only is this notation useful, but we emphasize that it does not depend on time t

(except through (Iε, qε)). So, as far as an Itô formula is concerned, we do not have

to worry about time-derivatives.

As discussed in Section 3.4.1, we will eventually get a martingale from Intnoise,ε

by the Itô formula. We also noted in Section 3.4.1 that we have to regularize the total

generator (5.5) by a spectral parameter λ. In particular, for the sake of illustrating

the idea, we will want to write the following for λ chosen shortly:

Fluc
noise,ε
x,qε

t ,I
ε
t

= (λ − L
ε

total)[λ − L
ε

total]
−1Fluc

noise,ε
x,qε

t ,I
ε
t
. (5.9)
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Itô tells us how to integrate L
ε

total[λ − L
ε

total]
−1Fluc

noise,ε
x,qε

t ,I
ε
t

in time. We are still left

with terms of the form

λ[λ − L
ε

total]
−1Fluc

noise,ε
x,qε

t ,I
ε
t
. (5.10)

We will again hit this term with (λ − L
ε

total)[λ − L
ε

total]
−1 (so that the previous

display now plays the role of Flucnoise,ε). If we repeat (that is use the Itô formula to

take care of L
ε

total[λ − L
ε

total]
−1), we are left with

(λ[λ − L
ε

total]
−1)2Fluc

noise,ε
x,qε

t ,I
ε
t
. (5.11)

By iterating, the residual terms become just higher and higher powers of λ[λ −
L

ε
total]

−1. For later and later terms in this expansion to eventually become very

small, we will want to choose the spectral parameter

λ = ε−1+γ , (5.12)

whereγ > 0 strictly positive and universal (though eventually small). Indeed, (5.12)

is much smaller than the ε−1 speed of L
ε

total, so each power of λ[λ−L
ε

total]
−1 gives

us � εγ .

Let us now make this precise with the following set of results. We start with

an elementary computation. It effectively writes more carefully how to go from

(λ[λ − L
ε

total]
−1)� to (λ[λ − L

ε
total]

−1)�+1. (Except, it uses L
ε,I

DtN instead of L
ε

total

in the resolvents, which only requires a few cosmetic adjustments.)

Lemma 5.2. Fix any integer � � 0. We have the following deterministic identity:

∫ t

0 [λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
ds (5.13)

=
∫ t

0 [λ(λ − L
ε,Iε

s

DtN )−1]�+1Fluc
noise,ε
x,qε

s ,I
ε
s
ds (5.14)

−
∫ t

0 L
ε

total(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
ds (5.15)

+
∫ t

0 L
ε,qε

s

flow (λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
ds. (5.16)

Proof. Note that the operators in (5.15) and (5.16) add to

−L
ε,Iε

s

DtN (λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�. (5.17)

Adding this to the operator in (5.14), which can be written as λ(λ−L
ε,Iε

s

DtN )−1[λ(λ−
L

ε,Iε
s

DtN )−1]�, gives

(λ − L
ε,Iε

s

DtN )(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]� = [λ(λ − L
ε,Iε

s

DtN )−1]�. (5.18)

This is just the operator in (5.13). Act on Fluc
noise,ε
x,qε

s ,I
ε
s

and integrate over s ∈ [0, t] to

get (5.13)–(5.16). ��

Next, we use the Itô formula to compute (5.15) in terms of a martingale and bound-

ary terms. We can also compute the predictable bracket of the martingale we get

(essentially by standard theory).
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Lemma 5.3. Fix any � � 0. There exists a martingale t �→ M
ε,�
t,· ∈ C ∞ such that

(5.15) = M
ε,�
t,x + (λ − L

ε,Iε
s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
|s=0 (5.19)

− (λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
|s=t . (5.20)

The predictable bracket [Mε,�] of Mε,�, that is the process such that |Mε,�
t,· |2 −

[Mε,�]t,· is a martingale, is

[Mε,�]t,x =
∫ t

0 (L
ε,qε

s

flow + L
ε,Iε

s,·
DtN )

{
|(λ − L

ε,Iε
s,·

DtN )−1[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s
|2

}
ds (5.21)

− 2
∫ t

0 {(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
} (5.22)

× {(L ε,qε
s

flow + L
ε,Iε

s,·
DtN )[(λ − L

ε,Iε
s,·

DtN )−1

[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s
]}ds. (5.23)

Proof. The Itô–Dynkin formula (see Appendix 1.5 of [20]) says that for any Markov

process X (valued in a Polish space) with generator G , and for any ϕ in the domain

of G , we have

∫ t

0 G ϕX[s]ds = ϕX[t] − ϕX[0] − M
ϕ
t , (5.24)

where t �→ M
ϕ
t is a martingale whose predictable bracket is a time-integrated

Carre-du-Champ:

∫ t

0 [G (|ϕX[s]|2) − 2ϕX[s]G ϕX[s]]ds. (5.25)

Use this with X = (Iε, qε) and G = (5.5) and ϕ = (λ − L
ε,Iε

s,·
DtN )−1[λ(λ −

L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s
. ��

We now combine Lemmas 5.2 and 5.3 to write the expansion for Intnoise,ε. Indeed,

note that (5.13) for � = 0 is just Intnoise,ε. We remark that the following result,

namely its expansion (5.26)–(5.30), will only ever be a finite sum (that we do not

iterate to get an infinite sum). Thus there is no issue of convergence. (As we noted

before Lemma 5.2, every step in the iteration gives a uniformly positive power of ε,

so only finitely many steps are needed to gain a large enough power-saving in ε to

beat every other ε-dependent factor.)

Corollary 5.4. Fix any integer �max � 0. Recall (5.3), (5.8) and notation from

Lemma 5.3. We have

Int
noise,ε
t,x,qε,Iε

·
=

∑�max

�=0 M
ε,�
t,x (5.26)

+
∫ t

0 [λ(λ − L
ε,Iε

s

DtN )−1]�max+1Fluc
noise,ε
x,qε

s ,I
ε
s
ds (5.27)

+
∑�max

�=0

∫ t

0 L
ε,qε

s

flow (λ − L
ε,Iε

s,·
DtN )−1
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[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s,·

ds (5.28)

+
∑�max

�=0 (λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s,·

|s=0 (5.29)

−
∑�max

�=0 (λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s,·

|s=t . (5.30)

Proof. By (5.3) and (5.8), we clearly have

Int
noise,ε
t,x,qε,Iε

·
=

∫ t

0 Fluc
noise,ε
x,qε

s ,I
ε
s
ds. (5.31)

Let us now prove (5.26)–(5.30) for�max = 0. This follows immediately from (5.13)–

(5.16) for � = 0 and (5.19)–(5.20) to compute (5.15) for � = 0. So, for the sake of

induction, it suffices to assume that (5.26)–(5.30) holds for �max � 0, and get it for

�max +1. For this, we compute (5.27) for �max using (5.13)–(5.16) for � = �max +1.

We deduce that its contribution is equal to

∫ t

0 [λ(λ − L
ε,Iε

s

DtN )−1]�max+2Fluc
noise,ε
x,qε

s ,I
ε
s
ds (5.32)

−
∫ t

0 L
ε

total(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�max+1Fluc
noise,ε
x,qε

s ,I
ε
s
ds (5.33)

+
∫ t

0 L
ε,qε

s

flow (λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�max+1Fluc
noise,ε
x,qε

s ,I
ε
s
ds. (5.34)

Thus, we have upgraded (5.27) into (5.27) but with �max + 2 instead of �max + 1, at

the cost of the second and third lines of the previous display. The third line lets us

turn the sum over � = 0, . . . , �max in (5.28) into a sum over � = 0, . . . , �max + 1.

Moreover, if we apply (5.19)–(5.20) for � = �max + 1, the second line gives a

contribution that turns the sums over � = 0, . . . , �max in (5.26), (5.29), and (5.30)

to over � = 0, . . . , �max + 1. What we ultimately get is just (5.26)–(5.30) but

�max �→ �max + 1, which completes the induction. ��

5.3. Step 2: Estimates for (5.26)–(5.30) for �max �γ 1

Perhaps unsurprisingly, the martingale Mε that we are looking for is the RHS of

(5.26). Thus, we must do two things.

(1) Show that (5.27)–(5.30) vanish as ε → 0.

(2) Compare the predictable bracket of the RHS of (5.26) (using (5.21)–(5.23)) to

[Mlimit] given in (3.5).

Indeed, one can check directly that this would yield Proposition 5.1.

5.3.1. Dirichlet-to-Neumann Estimates Let us start with (5.27), (5.29), and

(5.30), that is the terms which only have Dirichlet-to-Neumann maps (and no L
ε,q

flow-

terms). The estimate which essentially handles all of these terms is the content of

the following result.

Lemma 5.5. Recall λ = ε−1+γ from (5.12), and recall (5.8). For any stopping time

τ ∈ [0, 1], we have the following with probability 1 for any � � 0 and k � 0:

sup
0�s�τ

‖(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
·,qε

s ,I
ε
s
‖C k
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�k,�,‖Yε‖
C 0

τ C 2
ε · [λε]� · ε− 1

2 . (5.35)

(The norm on the LHS is with respect to the omitted x-variable, which we indicated

with ·.)

Proof. Intuitively, every inverse gives ε , and each λ is just bounded by λ, and we

bound Flucnoise,ε by ε−1/2 directly (see (5.8)). This gives (5.35), roughly speaking.

Let us make this precise.

In what follows, we denote by 〈〈〉〉α the Hα-Sobolev norm of order α with respect

to the qε
s -variable (see Section 2). We now make the following observations.

(1) For any I ∈ C ∞, let μ[∇I] be Riemannian measure on ∂M induced by g[∇].
As explained in Construction 1.1, change-of-variables shows that

dμ[∇I]x = (1 + |∇Ix |2)
1
2 dx . (5.36)

(2) ConsiderL2(∂M, μ[∇Iε
s ]).TheDirichlet-to-NeumannoperatorL

ε,Iε
s

DtN hasaself-

adjoint extension to L2(∂M, μ[∇Iε
s ]), and it has a one-dimensional null-space

spanned by constant functions. It has a strictly positive spectral gap of order

ε−1 times something that depends only on the C 1-norm of ∇Iε
s,·. (For the order

of the spectral gap, see Lemma B.3. For the dependence on ∇Iε
s,·, it suffices to

control the density of the measure induced by g[∇Iε
s,·] with respect to surface

measure on ∂M, that is g[∇0], where 0 is the 0 function. Indeed, spectral gaps

are stable under multiplicative perturbations of the measure. But this measure

depends only on the determinant of g[∇Iε
s,·] in local coordinates.)

(3) The Fluc
noise,ε
·,qε

s ,I
ε
s
, as a function of qε

s ∈ ∂M, is orthogonal to the null-space of

L
ε,Iε

s

DtN . This follows by construction; see (5.8). Moreover, so does every power

of (λ − L
ε,Iε

s

DtN )−1 acting on Fluc
noise,ε
·,qε

s ,I
ε
s
, since L

ε,Iε
s

DtN is self-adjoint.

(4) Thus, we get that for any x ∈ ∂M and α � 0, we have the estimate below (for

n � 1):

〈〈(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
〉〉α

�α,�,‖∇Iε‖
C 0

s C n
ε�+1λ�〈〈Fluc

noise,ε
x,qε

s ,I
ε
s
〉〉α (5.37)

�α,�,‖Yε‖
C 0

s C 2
ε�+1λ�〈〈Fluc

noise,ε
x,qε

s ,I
ε
s
〉〉α. (5.38)

(To get the second estimate, use Lemma C.1 to control the implied constant in

(5.37).)

(5) Finally, we note that the Sobolev norm in (5.38) is� ε−1/2, with implied constant

depending only on the C 0-norm of ∇Iε = ε1/4∇Yε. (This follows immediately

by (5.8).)

Note that (5.37)–(5.38) is true for all α � 0; taking α � 0 big enough depending on

dimension d, we can use a Sobolev embedding and deduce that with probability 1,

we have the uniform estimate

|(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
|
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�α,�,‖Yε‖
C 0

s C 2
ε�+1λ�ε− 1

2 . (5.39)

This is true for all 0 � s � τ , so the desired estimate (5.35) follows for k = 0. For

general k � 0, just use the same argument, but replace Flucnoise,ε by its k-th order

derivatives in x . (Indeed, the mean-zero property used in point (3) above is still true

if we take derivatives in x , since it is a linear condition in the qε
s -variable. One can

also check this by direct inspection via (5.8).) This finishes the proof. ��

As an immediate consequence of Lemma 5.5, we can bound (5.27), (5.29), and

(5.30). The latter terms (namely (5.29), and (5.30)) are bounded directly by (5.35),

so we only treat (5.27). Again, recall (5.12).

Lemma 5.6. Fix any stopping time τ ∈ [0, 1] and any �max, k � 0. With probability

1, we have

sup
0�t�τ

‖
∫ t

0 [λ(λ − L
ε,Iε

s

DtN )−1]�max+1Fluc
noise,ε
·,qε

s ,I
ε
s
ds‖C k

�k,�max,‖Yε‖
C 0

τ C 2
[λε]�max+1 · ε− 1

2 . (5.40)

Proof. Use the triangle inequality to move the C k-norm into the ds-integral, then

use (5.35) for � = �max + 1. (The extra factor of λ on the RHS of (5.40) compared

to the RHS of (5.35) for � = �max + 1 is because there is an extra factor of λ on the

LHS of (5.40) compared to the LHS of (5.35).) ��

5.3.2. L
ε,qε

s

flow Estimates We first give an estimate for (5.28), that is bounding it by

a uniformly positive power of ε. We then give an estimate comparing the predictable

bracket for the martingale on the RHS of (5.26) to the proposed limit [Mlimit] (see

(3.4) and (3.5)).

Our estimate for (5.28) is captured by the following result. This result was

intuitively explained in Section 3.4.1, but let us be a little more precise about power-

counting in ε (before we give a complete proof), just to provide intuition. As noted

in Section 3.4.1, the L
ε,qε

s

flow -operator in (5.28) destroys the algebraic property that

allowed us to leverage spectral gap estimates in the proof of Lemma 5.5. Thus, each

resolvent in (5.28) only gives a factor of � λ−1. Fortunately, L
ε,qε

s

flow has scaling

� ε−1/4. So, (5.28) should be � ε−1/4λε−1/2 � ε1/4−γ , since the Flucnoise,ε has

scaling of order ε−1/2 (see (5.8)). If we chooseγ > 0 small enough, this is sufficient.

To make it rigorous, we must first compute the action of L
ε,qε

s

flow on the resolvents

in (5.28) (e.g. show that the resolvents are in the domain of L
ε,qε

s

flow ). We must also

be a little careful about how many derivatives of Yε our estimates require, but this

is not a big deal (especially given Lemma C.1).

Lemma 5.7. Take any stopping time τ ∈ [0, 1] and k � 0. Let Err
(�max)
t,x be (5.28).

There exists a uniformly positive β > 0 such that with probability 1, we have the

following estimate:

‖Err(�max)‖C 0
τ C k �k,�max,‖Yε‖

C 0
τ C 2

εβ . (5.41)
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The proof of Lemma 5.7 requires the calculations in the next section for computing

the ds-integrand of (5.28), so we delay this proof for Section 7.

Letusnowanalyze thepredictablebracketof themartingaleon theRHSof (5.26).

A rigorous proof of the result also requires the calculations in the next section, so

we delay a proof until Section 7 as well. However, let us at least give an intuitive

argument (which is essentially how the proof goes).

• Take � = 0 on the RHS of (5.26); the predictable bracket of this martingale is

(5.21)–(5.23) for � = 0. The first step we take is to drop allL
ε,qε

s

flow -operators. One

can justify this by proving that they are lower-order as described before Lemma

5.7. However, it is also a first-order differential operator, so by the Leibniz rule,

the L
ε,qε

s

flow -operators actually cancel each other out exactly. After this, (5.21)–

(5.23) for � = 0 becomes

∫ t

0 L
ε,Iε

s

DtN [|(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]ds

− 2
∫ t

0 (λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
× L

ε,Iε
s

DtN [(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
]ds.

• Every resolvent is order ε (see the beginning of the proof of Lemma 5.5). Ev-

ery Dirichlet-to-Neumann operator itself is order ε−1. Also, Flucnoise,ε is order

� ε−1/2. With this, it is not hard to see that the previous display is order 1.

Moreover, we time-average, thus we expect to replace the ds-integrand above

by its expectation in the particle qε
s with respect to the Riemannian measure

μ[∇Iε
s ] induced by g[∇Iε

s ]. (This is exactly the idea behind Section 3.4.1.) After

this replacement, the previous display becomes

∫ t

0

∫
∂M

L
ε,Iε

s

DtN [|(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,z,Iε

s
|2]dμ[∇Iε

s ]zds

− 2
∫ t

0

∫
∂M

(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,z,Iε

s

× L
ε,Iε

s

DtN [(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,z,Iε

s
]dμ[∇Iε

s ]zds.

Thefirst line in thisdisplayvanishes, since thedμ[∇Iε
s ]z-integrand is in the image

of the Dirichlet-to-Neumann map, which has μ[∇Iε
s ] as an invariant measure.

Since λ = ε−1+γ is much smaller than the scaling ε−1 of L
ε,Iε

s

DtN , we can drop

λ-terms in the second line above. We are therefore left with

−2
∫ t

0

∫
∂M

Fluc
noise,ε
x,z,Iε

s
× [L ε,Iε

s

DtN ]−1Fluc
noise,ε
x,z,Iε

s
dμ[∇Iε

s ]zds, (5.42)

where operators act on z. Finally, all dependence on Iε above is through ∇Iε =
ε1/4∇Yε (which should be � 1), so we can replace Iε by 0. In view of (5.8) and

(3.5), we get [Mε,0] ≈ [Mlimit].
• Now take � > 1 both on the RHS of (5.26) and in (5.21)–(5.23). Again, drop all

L
ε,qε

s

flow -operators as before in our discussion of � = 0. Now, note that every term

in (5.21)–(5.23) has at least one additional factor of λ(λ − L
ε,Iε

s

DtN )−1, which is

� εγ as used in the proof of Lemma 5.5. As (5.21)–(5.23) was order 1 with � = 0

(so without the helpful εγ -factors), the RHS of (5.26) has vanishing predictable

bracket for � � 1.
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The actual proof of Lemma 5.8 is slightly different for ease of writing, but the idea

is the same.

Before we state the result precisely, we recall (3.5) and the notation of Lemma

5.3.

Lemma 5.8. Take any stopping time τ ∈ [0, 1] and any k � 0. There exists uni-

formly positive β > 0 such that the following hold with high probability:

‖[Mε,0] − [Mlimit]‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ (5.43)

sup
1����max

‖[Mε,�]‖C 0
τ C k �k,�max,‖Yε‖

C 0
τ C 2

εβ . (5.44)

Remark 5.9. For n � 0 fixed, take any tangent vectors ei1 , . . . , ein on the tangent

space of ∂M to differentiate along. (These tangent vectors depend on an implicit

variable x ∈ ∂M.) The first estimate (5.43) still holds even if we make the following

replacements, as we explain shortly.

• Replace Mε,0 by its n-th order derivative inei1 , . . . , ein . This is still a martingale,

since martingales are closed under linear operations.

• Replace [Mlimit] by the object obtained by replacing K in (3.5) by its n-th order

derivative with respect to the x-variable in ei1 , . . . , ein . We denote this object

by [∇i1...in Mlimit]. (It is easy to see from (3.5) that [∇i1...in Mlimit] is uniformly

smooth in the x ∈ ∂M-variable; its regularity is controlled by that of K.)

Indeed, the only difference in the argument is to replace K by its aforementioned

derivative. We only rely on regularity of K (as alluded to in the outline of Lemma

5.8 before its statement and as the proof will make clear), so our claim follows.

Ultimately, combining this remark with (5.44) and Mε = Mε,0 +
∑�max

�=1 Mε,�, we

deduce that the following estimate holds with high probability:

‖[∇i1...in Mε] − [∇i1...in Mlimit]‖C 0
τ C k �n,k,‖Yε‖

C 0
τ C 2

εβ . (5.45)

5.4. Proof of Proposition 5.1 (and thus of Proposition 4.3)

Define Mε in the statement of Proposition 5.1 be the RHS of (5.26) (for �max � 1

chosen shortly). In particular, the quantity of interest

Int
noise,ε
t,x,qε

· ,I
ε
·
− Mε

t,x (5.46)

equals the sum of (5.27), (5.28), (5.29), and (5.30). Now, use Lemmas 5.5, 5.6, and

5.7 to control C 0
τ C k-norms of (5.27), (5.28), (5.29), and (5.30) altogether by

�k,�max,‖Yε‖
C 0

τ C 2
[λε]�max+1 · ε− 1

2 + sup
0����max

ε · [λε]� · ε− 1
2 + εβ . (5.47)

Since λ = ε−1+γ for γ > 0 uniformly positive (see (5.12)), we know the upper

bound (5.47) is � εβ for β > 0 uniformly positive, as long as �max is sufficiently

large depending only on γ (we can take �max �γ 1). Therefore, using what we said

immediately before (5.47), we deduce (5.4).
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WenowshowMε is a familyofgoodmartingales (seeDefinition3.1). It is smooth

since every other term in (5.26)–(5.30) is smooth. It is càdlàg for the same reason

(note (Iε, qε) is càdlàg). Also, by Corollary 5.4, the jumps of Mε are given by the

sum of jumps of (5.29)–(5.30), since the other non-martingale terms in that display

are time-integrals. Thus, it suffices to show these terms vanish deterministically as

ε → 0 uniformly in time (at a rate depending on ‖Yε‖C 0
τ C 2 ). For this, see Lemma

5.5. Next, we show the derivative bounds on Mε. Fix tangent vectors ei1 , . . . , ein as

in Remark 5.9. Fix any stopping time τ ∈ [0, 1] for which:

• ‖Yε
t,·‖C 2 � � for � � 0 fixed for all 0 � t � τ .

• (5.45) holds for all 0 � t � τ and for n � 0 fixed.

We claim that

E sup
0�t�τ

∫
∂M

|∇i1...in Mε
t,x |

2dx �
∫
∂M

E|∇i1...in Mε
τ,x |

2dx ��,n 1. (5.48)

The first bound is by Doob’s maximal inequality (note that Mε and its derivatives are

all martingales, since the martingale property is preserved under linear operations).

The second inequality follows by (5.45), the a priori C 2 bound on Yε before time

τ , and bounds on [∇i1...in Mlimit] as explained in Remark 5.9. This is true for all

n � 1, so we can use a Sobolev embedding Hn ↪→ C k (for any k and for any n large

enough depending only on k) to deduce the desired derivative estimates for good

martingales. (Said derivative estimates hold with high probability, since the claims

of Remark 5.9 hold with high probability.)

It remains to show that the martingale Mε satisfies (3.4). Intuitively, this should

be immediate because of Lemma 5.8, but we have to be (a little) careful about taking

the predictable bracket of the sum. We first use [m + n] = [m] + [n] + 2[m, n] for

brackets of martingales m, n, where [, ] is the cross bracket. (We will take m = Mε,0

and n = Mε,1 + · · · + Mε,�max ; see Lemma 5.3 for notation.) This is just a standard

inner product calculation, so that

[Mε] =
[∑�max

�=0 Mε,�
]

= [Mε,0] +
[∑�max

�=1 Mε,�
]

+ 2
[
Mε,0,

∑�max

�=1 Mε,�
]
. (5.49)

By (5.43), we can compare the first term on the far RHS to [Mlimit]. Thus, to show

that [Mε] − [Mlimit] vanishes (that is prove that Mε satisfies (3.4)), it suffices to

show that, with high probability,
∥∥∥
[∑�max

�=1 Mε,�
]∥∥∥

C 0
τ C k

+
∥∥∥
[
Mε,0,

∑�max

�=1 Mε,�
]∥∥∥

C 0
τ C k

�k,�max,‖Yε‖
C 0

τ C 2
εβ . (5.50)

We assume k = 0 in what follows; for general k, use the same argument but replace

brackets by their k-th order derivatives in x . To bound the first term on the LHS of

(5.50), use the Schwarz inequality with (5.44):

[∑�max

�=1 Mε,�
]

��max

∑�max

�=1 [Mε,�]. (5.51)
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For thesecondtermontheLHSof(5.50),weuseanotherCauchy–Schwarzcombined

with (5.44):

∣∣∣
[
Mε,0,

∑�max

�=1 Mε,�
]∣∣∣ � [Mε,0]

1
2

([∑�max

�=1 Mε,�
]) 1

2
. (5.52)

�k,�max,‖Yε‖
C 0

τ C 2
εβ × [Mε,0]

1
2 . (5.53)

By (5.43), we can replace [Mε,0] by [Mlimit] in (5.53) with error � εβ . But we know

that the C 0
τ C k-norm of [Mlimit] is �k 1; this holds by differentiating (3.5) in x up to

k-th order, using regularity of K in (3.5) in both of its inputs, and using the spectral

gap of L . (Indeed, this spectral gap ingredient, which comes from Lemma B.3, just

says that K − 1 is smooth both before and after we hit it by L −1.) Ultimately, we

deduce that (5.53) � εβ . Combining this with every display starting after (5.50)

then shows (5.50). ��

5.5. What is Left

As far as Proposition 5.1 (and thus Proposition 4.3 and Theorem 3.3) is con-

cerned, we are left with Lemmas 5.7 and 5.8. However, we must also show that

every term we hit L
ε,qε

s

flow with in this section is actually in its domain. Said terms

include (5.21)–(5.23) and (5.28). This will be dealt with in this next section, whereas

Lemmas 5.7 and 5.8 are proved in Section 7.

6. Computations for the Action of L
ε,qε

s

flow -Operators

6.1. Setup for Our Calculations

The main goal of this section is to compute, for any x, q ∈ ∂M,

I �→ L
ε,q

flow(λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]�Fluc
noise,ε
x,q,I . (6.1)

Above, all of the operators act on the q-variable. We emphasize the relevance of

(6.1) by recalling the need to estimate (5.28) in Lemma 5.7.

Part of computing (6.1) means showing existence of the limit (5.7) that defines

L
ε,q

flow on the RHS of (6.1). For convenience, we recall Flucnoise,ε from (5.8) below,

in which VolI :=
∫
∂M

(1 + |∇Iz |2)1/2dz:

Fluc
noise,ε
x,q,I := ε− 1

2

[
VolIKx,q −

∫
∂M

Kx,z(1 + |∇Iz|2)
1
2 dz

]
. (6.2)

Our computation of (6.1) takes the following steps.

(1) First, we compute I �→ L
ε,q

flowFluc
noise,ε
x,q,I . This is not hard given the formula (6.2).
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(2) Next, we compute the following operator on C ∞:

L
ε,q

flow(L
ε,I

DtN) := lim
h→0

1
h

{
L

ε,I+hJ[I]
DtN − L

ε,I
DtN

}
, (6.3)

where J[I] is given by the following direction of differentiation in (5.7):

I �→ J[I] = 	I + ε− 1
4 VolIK·,q ∈ C

∞. (6.4)

(Although J[I] depends on q ∈ ∂M, we omit this dependence since it will not

be very important.) The equality in (6.3) meant as operators on C ∞ (so it holds

true when we apply the RHS to generic ϕ ∈ C ∞). We clarify that the above

is not a composition of operators, but rather the directional derivative of the

operator L
ε,I

DtN in I. (More precisely, its action on any ϕ ∈ C ∞ is given by the

directional derivative of L
ε,I

DtNϕ. Again, computing this involves showing that it

is well-defined.)

(3) Using point (2) and classical resolvent perturbation identities from functional

analysis, we compute the operator I �→ L
ε,q

flow(λ − L
ε,I

DtN)−1. It is not too hard

to use this result and the same resolvent identities to derive a Leibniz-type rule

for the directional derivative L
ε,q

flow and then compute the operator

I �→ L
ε,q

flow(λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]�. (6.5)

The subtlety is that (λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]� is a product of operators;

we need a non-commutative version of the Leibniz rule (which requires a bit of

attention but is not difficult to derive).

(4) Finally, we use a Leibniz rule for L
ε,q

flow (we emphasize that L
ε,q

flow is just a

derivative!) with points (1) and (3) above to compute (6.1).

6.2. Point (1): Computing I �→ L
ε,q

flowFluc
noise,ε
x,q,I

As noted earlier, this computation is easy given (6.2). In particular, when we

differentiate in I, we must only do so pointwise in z ∈ ∂M, that is differentiate

analytic functions of Iz and ∇Iz per z ∈ ∂M. Ultimately, we get

Lemma 6.1. Fix x, q ∈ ∂M and I ∈ C ∞. The following limit exists:

L
ε,q

flowFluc
noise,ε
x,q,I = lim

h→0

1
h

{
Fluc

noise,ε
x,q,I+hJ[I] − Fluc

noise,ε
x,q,I

}
. (6.6)

Also, (6.6) is jointly smooth in x, q with k-th order derivatives satisfying the fol-

lowing estimate:

�k,‖I‖
C 2 ,‖∇I‖

C 2 ε− 3
4 . (6.7)
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Proof. Byusing the identity (a+hb)2−a2 = 2hab+o(h) for eachpartialderivative

in ∇, we have

lim
h→0

1
h

{
|∇Iz + h∇J[I]z |2 − |∇Iz |2

}
= 2〈∇J[I]z,∇Iz〉, (6.8)

where 〈·, ·〉 is the dot product. Using (6.8) with the chain rule then gives

lim
h→0

1
h

{
(1 + |∇Iz + h∇J[I]z |2)

1
2 − (1 + |∇Iz |2)

1
2

}
(6.9)

= 1
2
(1 + |∇Iz |2)−

1
2 · 2〈∇J[I]z,∇Iz〉. (6.10)

Note that (6.10) is ε−1/4 times a smooth function of I and its k-th derivatives for

k � 3 indeed, see (6.4). Since Flucnoise,ε-noise is determined by integrals of (6.10)

against smooth functions (like K and 1) on ∂M, verifying existence of (6.6) and

showing (6.7) is straightforward. (For (6.7), it suffices to use the ε−1/2-scaling in

(6.2) and the ε−1/4 scaling in (6.10), which can be seen from (6.4), to get ε−3/4.) ��

If we now specialize Lemma 6.1 to I given by the Iε process, we get the following.

Corollary 6.2. Fix x ∈ ∂M and any stopping time τ ∈ [0, 1]. For any 0 � s � τ ,

the quantity

L
ε,qε

s

flow Fluc
noise,ε
x,qε

s ,I
ε
s

(6.11)

is jointly smooth in x, qε
s with k-th order derivatives �k,‖Yε‖

C 0
τ C 2

ε−3/4. (This is

all deterministic.)

Proof. Use Lemma 6.1 and Lemma C.1 to control ‖∇Iε
s ‖C 2 � 1 + ‖Yε‖C 2 . ��

6.3. Point (2): Computing I �→ L
ε,q

flow(L
ε,I

DtN)

Our goal now is to prove Lemma 6.3 below, that is compute (and show existence

of) (6.3). Recall (5.6) and fix ϕ ∈ C ∞. Using this, we get (essentially by definition

of Dirichlet-to-Neumann) the following with notation explained after:
{
L

ε,I+hJ[I]
DtN − L

ε,I
DtN

}
ϕ = ε−1∇N[U I+hJ[I],ϕ − U

I,ϕ]. (6.12)

Above, N is the inward unit normal vector field on ∂M, and ∇N is gradient in

this direction. The U -terms are harmonic extensions of ϕ with respect to metrics

g[∇(I + hJ[I])] and g[∇I], respectively. To write this precisely, let 	I,M be the

Laplacian onM with respect to the metric g[∇I] (see before (5.6)). We have

	I+hJ[I],MU
I+hJ[I],ϕ,	I,MU

I,ϕ = 0 and U
I+hJ[I],ϕ,U I,ϕ |∂M = ϕ. (6.13)

For convenience, let us define V I,h,ϕ := U I+hJ[I],ϕ − U I,ϕ . By (6.13), we get the

pde

	I,MV
I,h,ϕ = −[	I+hJ[I],M − 	I,M]U I+hJ[I],ϕ and V

I,h,ϕ |∂M = 0. (6.14)

We now make two claims.
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(1) The operator 	I+hJ[I],M−	I,M : C k+2(M) → C k(M) is bounded. Its norm

is � h, with implied constant depending on at most 4 derivatives of I. Indeed,

in local coordinates, we have the following in which we view g[·]-metrics as

matrices (normalized by the square root of their determinants):

	I+hJ[I],M − 	I,M

=
d∑

i, j=1

∇i

{(
g[∇I + h∇J[I]]−1

i j − g[∇I]−1
i j

)
∇ j

}
. (6.15)

(Above, ∇i is derivative in the direction of the orthonormal frame vector ei .)

Since themetricmatrixg[·] is strictlypositivedefinite, the inversematrixg[·]−1 is

smooth in the input. (Everything here is allowed to depend on as many derivatives

of I as we need.) Thus, (6.15) turns into the following (noting that J[I] in (6.4)

has scaling of order ε−1/4):

	I+hJ[I],M − 	I,M =
d∑

i, j=1

∇i

{
O(hε− 1

4 )∇ j

}
, (6.16)

where O(ε−1/4h) is something smooth whose k-derivatives are �k,I ε−1/4h.

Moreover, U I+hJ[I],ϕ is smooth with derivatives �I,ϕ 1 (indeed, use elliptic

regularity for (6.13).) If we use this estimate with (6.16), then (6.14) plus elliptic

regularity shows that V I,h,ϕ has C k(M)-norm that is �k,I,ϕ h. To finish this

first step, we now rewrite (6.14) by replacing U I+hJ[I],ϕ with U I,ϕ with error

V I,h,ϕ :

	I,MV
I,h,ϕ = −[	I+hJ[I],M − 	I,M]U I,ϕ − [	I+hJ[I],M − 	I,M]V I,h,ϕ

V
I,h,ϕ |∂M = 0. (6.17)

(2) We investigate (6.15) a little more carefully. We got (6.16) by smoothness of

g[·]−1 entry-wise. We now claim that h−1[	I+hJ[I],M − 	I,M] is not only

bounded as a differential operator as h → 0, but it has a limit. In particular,

we claim that

O
I := lim

h→0

1
h

{
	I+hJ[I],M − 	I,M

}
(6.18)

exists, and it is bounded as a map C k+2(M) → C k(M) for any k, with norm

bounded above by ε−1/4 times something depending only on k and the C 3-norm

of I. Indeed, this holds by Taylor expanding the smooth matrix g[·]−1 entry-

wise in (6.15) and controlling regularity of J[I] by directly inspecting (6.4).

(The dependence on I of the norm of OI comes from the C 1-dependence of

(6.4) in I and ∇i I, which gets upgraded to C 2-data because of the additional

∇i -differential on the outside on the RHS of (6.16).) To conclude this step, we

note the last term [	I+hJ[I],M−	I,M]V I,h,ϕ in the pde in (6.17) is O(h2). (This

follows by (6.16) and our estimate V I,h,ϕ � h from after (6.16).)
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We can now divide (6.17) by h and take h → 0 using (6.18). By standard elliptic

regularity, we can take this limit in the “naive” sense, so that

	I,M

{
lim
h→0

1
h
V

I,h,ϕ

}
= −O

I
U

I,ϕ and

{
lim
h→0

1
h
V

I,h,ϕ

}
|∂M = 0. (6.19)

In view of (6.12) and (6.19), we ultimately deduce the following:

Lemma 6.3. Fix I ∈ C ∞. We have the following, where the limit is taken as an

operator C ∞ → C ∞, and ϕ ∈ C ∞ is any test function:

L
ε,q

flow(L
ε,I

DtN)ϕ := lim
h→0

1
h

{
L

ε,I+hJ[I]
DtN − L

ε,I
DtN

}
ϕ = ε−1∇NV

I,ϕ, (6.20)

where ∇N is gradient in the direction of the inward unit normal vector field N, and

V I,ϕ solves the following pde (with notation explained afterwards):

	I,MV
I,ϕ = O

I
U

I,ϕ and V
I,ϕ |∂M = 0. (6.21)

• OI is a bounded linear map C k+2(M) → C k(M) with norm �k,‖I‖
C 3 ε−1/4.

• U I,ϕ is the g[∇I]-harmonic extension of ϕ toM:

	I,MU
I,ϕ = 0 and U

I,ϕ |∂M = ϕ. (6.22)

Proof. See everything from (6.3) until the statement of Lemma 6.3. ��

Corollary 6.4. Fix any stopping time τ ∈ [0, 1]. For any 0 � s � τ , the operator

L
ε,qε

s

flow (L
ε,Iε

s

DtN ) (6.23)

is bounded as an operator C k → C k with operator norm �k,‖Yε‖
C 0

τ C 2
ε−5/4.

Proof. As in the proof of Corollary 6.2, by Lemma C.1, we know that for all n � 0,

we have

‖∇Iε‖C 0
τ C n �n 1 + ‖Yε‖C 0

τ C 2 . (6.24)

It now suffices to use the formula for L
ε,qε

s

flow (L
ε,Iε

s

DtN ) and elliptic regularity for (6.21)

and (6.22); this argument was given in the proof of Lemma 6.3. (Indeed, all the

elliptic regularity bounds there depend only on a finite number of derivatives of

g[∇I]. Thus, by Construction 1.1, they are controlled via ‖I‖C n for n = O(1).) ��
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6.4. Point (3), Part 1: Computing L
ε,q

flow(λ − L
ε,I

DtN)−1 and

L
ε,q

flow(λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]�

The basis for this step is the following resolvent identity:

A−1 − B−1 = A−1(B − A)B−1. (6.25)

Indeed, this turns computation of L
ε,q

flow(λ−L
ε,I

DtN)−1 into an application of Lemma

6.3. More precisely, we have the following result (in which we retain the notation

from Lemma 6.3):

Lemma 6.5. Fix any I ∈ C ∞. We have the following limit of operators C ∞ →
C ∞:

lim
h→0

1
h

{
(λ − L

ε,I+hJ[I]
DtN )−1 − (λ − L

ε,I
DtN)−1

}

= (λ − L
ε,I

DtN)−1
L

ε,q
flowL

ε,I
DtN(λ − L

ε,I
DtN)−1. (6.26)

Proof. We first use (6.25) with A = (λ − L
ε,I+hJ[I]

DtN )−1 and B = (λ − L
ε,I

DtN)−1:

(λ − L
ε,I+hJ[I]

DtN )−1 − (λ − L
ε,I

DtN)−1

= (λ − L
ε,I+hJ[I]

DtN )−1[L ε,I+hJ[I]
DtN − L

ε,I
DtN](λ − L

ε,I
DtN)−1. (6.27)

The resolvents are bounded operators on any Sobolev space by Lemma B.3. By

Lemma 6.3 and standard elliptic regularity, for any test function ϕ ∈ C ∞, the

quantity ‖[L ε,I+hJ[I]
DtN − L

ε,I
DtN]ϕ‖C k is O(h) for any fixed integer k � 0. Thus, up

to an error of O(h2), we can replace the resolvent (λ − L
ε,I+hJ[I]

DtN )−1 on the RHS

of (6.27) by (λ − L
ε,I

DtN)−1. Dividing by h and sending h → 0 then gives (6.26). ��

We now use another chain-rule-type argument to differentiate (λ−L
ε,I

DtN)−1[λ(λ−
L

ε,I
DtN)−1]� in I. To this end, we require another resolvent identity. In particular, we

first claim that

A−[�+1] − B−[�+1] =
�∑

n=0

A−n(A−1 − B−1)B−�+n . (6.28)

Indeed, if � = 0, this is trivial. To induct, we first write

A−[�+1] − B−[�+1] = A−1[A−� − B−�] + [A−1 − B−1]B−�, (6.29)

and plug (6.28) (but with � instead of � + 1) into the first term on the RHS above to

deduce (6.28) for � + 1.

Lemma 6.6. Fix any I ∈ C ∞. We have the following limit of operators C ∞ →
C ∞:

lim
h→0

1
h

{
(λ − L

ε,I+hJ[I]
DtN )−1[λ(λ − L

ε,I+hJ[I]
DtN )−1]�

−(λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]�
}

(6.30)
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= λ�

�∑

n=0

(λ − L
ε,I

DtN)−n−1
L

ε,q
flowL

ε,I
DtN(λ − L

ε,I
DtN)−�−1+n . (6.31)

Proof. We first use (6.28) for with A = (λ−L
ε,I+hJ[I]

DtN )−1 and B = (λ−L
ε,I

DtN)−1:

(λ − L
ε,I+hJ[I]

DtN )−1[λ(λ − L
ε,I+hJ[I]

DtN )−1]� − (λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]�

(6.32)

= λ�
{
(λ − L

ε,I+hJ[I]
DtN )−[�+1] − (λ − L

ε,I
DtN)−[�+1]

}
(6.33)

= λ�

�∑

n=0

(λ − L
ε,I+hJ[I]

DtN )−n
{
(λ − L

ε,I+hJ[I]
DtN )−1 − (λ − L

ε,I
DtN)−1

}

(λ − L
ε,I

DtN)−�+n . (6.34)

We can replace the difference of resolvents by h × (λ − L
ε,I

DtN)−1L
ε,q

flowL
ε,I

DtN(λ −
L

ε,I
DtN)−1 plus an error of o(h) by Lemma 6.5. By the same token, in (6.34), we

can also replace (λ − L
ε,I+hJ[I]

DtN )−n by (λ − L
ε,I

DtN)−n with an error of O(h2) (this

replacement has error O(h), but the difference of resolvents in (6.34) is O(h) as

we just mentioned). Thus, when we divide by h and send h → 0, (6.34) becomes

(6.31), so we are done. ��

6.5. Point (4): Putting it Altogether via Leibniz Rule

Observe that the operator (5.7) is an actual derivative, so the Leibniz rule applies.

Thus, to compute (6.1), we get two terms. The first comes from differentiating the

operator in I, and the second comes from differentiating Flucnoise,ε in I. In particular,

by Lemmas 6.1 and 6.6, we get the following (whose proof is, again, immediate by

the Leibniz rule, so we omit it).

Lemma 6.7. Retain the notation from Lemmas 6.1 and 6.3. Fix x, q ∈ ∂M and

I ∈ C ∞. The quantity (6.1), which is defined as a limit via (5.7), exists, and

(6.1) = λ�

�∑

n=0

(λ − L
ε,I

DtN)−n−1
L

ε,q
flowL

ε,I
DtN(λ − L

ε,I
DtN)−�−1+nFluc

noise,ε
x,q,I (6.35)

+ (λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]�L ε,q
flowFluc

noise,ε
x,q,I . (6.36)

7. Proofs of Lemmas 5.7 and 5.8

Before we start, we invite the reader to go back to right before the statements of

Lemmas 5.7 and 5.8 to get the idea behind their proofs, respectively. (In a nutshell,

the proofs are just power-counting and explicitly writing out the topologies in which

we get estimates. The only other idea is the homogenization step for the proof of

(5.43) that we described briefly in the second bullet point after Lemma 5.7. But
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even this is built on the same ideas via the Itô formula that are present in Section 5.

Moreover, it is easier in this case, since there will be no singular ε−1/4-factor to

fight.)

7.1. Proof of Lemma 5.7

Let τ ∈ [0, 1] be a generic stopping time. Our goal is to bound (5.28); see (5.41)

for the exact estimate we want. Because τ � 1, we can bound the time-integral (5.28)

by the supremum of its integrand (in C k-norm); this is by the triangle inequality. In

particular, we have

‖(5.28)‖C 0
τ C k � sup

0�s�τ

‖L ε,qε
s

flow (λ − L
ε,Iε

s,·
DtN )−1

[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
·,qε

s ,I
ε
s,·

‖C k . (7.1)

We compute the term in the norm on the RHS of (7.1) using Lemma 6.7. In particular,

the RHS of (7.1) is

�� λ� max
0�n��

sup
0�s�τ

‖(λ − L
ε,Iε

s

DtN )−n−1
L

ε,qε
s

flow L
ε,Iε

s

DtN

(λ − L
ε,Iε

s

DtN )−�−1+nFluc
noise,ε
·,qε

s ,I
ε
s
‖C k (7.2)

+ sup
0�s�τ

‖(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�L ε,qε
s

flow Fluc
noise,ε
·,qε

s ,I
ε
s
‖C k . (7.3)

We will now assume that k = 0; bounds for general k � 0 follow by the exact

same argument but replacing Flucnoise,ε by its k-th order derivatives in x . Now, fix

x ∈ ∂M. Let 〈〈〉〉Hα be the Hα-norm in the qε
s -variable. We also set 〈〈〉〉C r to be the

C r -norm in qε
s . To control (7.2), observe that:

• The resolvents in (7.2) are bounded operators on Sobolev spaces with norm

� λ−1. Thus, for any α � 0, we get the following (the last bound follows since

L∞ controls L2 on the compact manifold ∂M):

〈〈(λ − L
ε,Iε

s

DtN )−n−1
L

ε,qε
s

flow L
ε,Iε

s

DtN (λ − L
ε,Iε

s

DtN )−�−1+nFluc
noise,ε
x,qε

s ,I
ε
s
〉〉Hα (7.4)

��,α λ−n−1〈〈L ε,qε
s

flow L
ε,Iε

s

DtN (λ − L
ε,Iε

s

DtN )−�−1+nFluc
noise,ε
x,qε

s ,I
ε
s
〉〉Hα (7.5)

�α,� λ−n−1〈〈L ε,qε
s

flow L
ε,Iε

s

DtN (λ − L
ε,Iε

s

DtN )−�−1+nFluc
noise,ε
x,qε

s ,I
ε
s
〉〉C α . (7.6)

Now, we use the operator norm bound for L
ε,qε

s

flow L
ε,Iε

s

DtN from Corollary 6.4. We

deduce that

(7.6) �‖Yε‖
C 0

τ C 2
ε− 5

4 λ−n−1〈〈(λ − L
ε,Iε

s

DtN )−�−1+nFluc
noise,ε
x,qε

s ,I
ε
s
〉〉C α+10 . (7.7)
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Use a Sobolev embedding to control the norm on the RHS of (7.7) by the Hα2 -

norm (for α2 depending only on α). Now, Flucnoise,ε is in the null-space of L
ε,Iε

s

DtN ,

and L
ε,Iε

s

DtN has a spectral gap that is scaled by ε−1. (See the proof of Lemma 5.5.)

So, as in the proof of Lemma 5.5, each resolvent in (7.7) gives a factor of ε . Since

Flucnoise,ε is smooth with derivatives of order ε−1/2 (see (5.8)), we ultimately

get the estimate below for some β > 0 uniformly positive:

RHS(7.7) ��,‖Yε‖
C 0

τ C 2
ε− 5

4 · ε�+1−nλ−n−1 · ε− 1
2 . (7.8)

• If we now combine every display in the previous bullet point, we deduce that

〈〈(λ − L
ε,Iε

s

DtN )−n−1
L

ε,qε
s

flow L
ε,Iε

s

DtN (λ − L
ε,Iε

s

DtN )−�−1+nFluc
noise,ε
x,qε

s ,I
ε
s
〉〉Hα (7.9)

��,α,‖Yε‖
C 0

τ C 2
ε− 7

4 ε�+1−nλ−n−1. (7.10)

If we choose α � 0 sufficiently large, then by Sobolev embedding, the same

estimate holds but for the C 0-norm in (7.9) instead of Hα . In particular, the

term inside 〈〈〉〉Hα in (7.9) is bounded by (7.10) uniformly over possible values

of x, qε
s ∈ ∂M.

In view of (7.9)–(7.10) and the paragraph after it, we get

(7.2) ��,α,‖Yε‖
C 0

τ C 2
λ�ε− 7

4 ε�+1−nλ−n−1 (7.11)

= λ�−n−1ε�−n−1ε− 7
4 ε2 � ε

1
4 , (7.12)

where the lastboundfollowsbyλ = ε−1+γ forγ > 0(see (5.12)).Letusnowcontrol

(7.3). To this end, a very similar argument works. In particular, each resolvent in

(7.3) gives us λ−1 in 〈〈〉〉Hα -norm. On the other hand, by Corollary 6.2, we know that

〈〈L ε,qε
s

flow Fluc
noise,ε
x,qε

s ,I
ε
s
〉〉Hα �α,‖Yε‖

C 0
τ C 2

ε− 3
4 . (7.13)

If we combine the previous display and paragraph, we deduce that

〈〈(λ − L
ε,Iε

s

DtN )−1[λ(λ − L
ε,Iε

s

DtN )−1]�L ε,qε
s

flow Fluc
noise,ε
x,qε

s ,I
ε
s
〉〉Hα

� λ−1−�ε− 3
4 � ε

1
4 −γ . (7.14)

Taking α large enough gives us the same estimate in 〈〈〉〉C 0 . Because we can take

γ > 0 as small as we want (as long as it is uniformly positive), we get the following

for β > 0 uniformly positive:

(7.3) �α,‖Yε‖
C 0

τ C 2
εβ . (7.15)

Combining this with (7.11)–(7.12) and (7.1)–(7.3) produces the estimate (5.41), so

we are done. ��



Arch. Rational Mech. Anal.          (2025) 249:50 Page 43 of 70    50 

7.2. Proof of Lemma 5.8

We start by removing the L
ε,qε

s

flow -operator from (5.21)–(5.23), which is helpful

for all � � 0 (in particular, for proving both estimates (5.43) and (5.44)). Indeed,

as noted in the first bullet point after Lemma 5.7, we have the following. Fix any

F : C ∞ → R in the domain of L
ε,qε

s

flow . By the Leibniz rule, since L
ε,qε

s

flow is a

first-order differential (see (5.7)), we know that L
ε,qε

s

flow |F [I]|2 exists, and

L
ε,qε

s

flow |F [I]|2 − 2F [I] × L
ε,qε

s

flow F [I] = 0. (7.16)

Now use (7.16) for F [I] = (λ − L
ε,I

DtN)−1[λ(λ − L
ε,I

DtN)−1]�Fluc
noise,ε
x,qε

s ,I
to show

that (5.21)–(5.23) is equal to the following (which is just removing L
ε,qε

s

flow from

(5.21)–(5.23)):

[Mε,�]t,x =
∫ t

0 L
ε,Iε

s

DtN [|(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
|2]ds (7.17)

− 2
∫ t

0

{
(λ − L

ε,Iε
s,·

DtN )−1[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s

}
(7.18)

×
{
L

ε,Iε
s

DtN [(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
]
}

ds.

(7.19)

Let us first prove the second estimate (5.44), because it requires one less step (and

is thus easier) compared to (5.43). (We explain this later when relevant in the proof

of (5.43).) In particular, (5.44) serves as a warm-up to the more complicated (5.43).

7.2.1. Proof of (5.44) Fix a stopping time τ ∈ [0, 1]. Our goal is to estimate

the C 0
τ C k-norm of (7.17)–(7.19) for 1 � � � �max and control it by a positive

power of ε. We assume k = 0; for general k, just replace (7.17)–(7.19) by k-th order

derivatives in x . (Again, all we need is an algebraic property for Flucnoise,ε that is

closed under linear combinations and only concerns qε
s , Iε

s -variables.) We start with

the RHS of (7.17). By the triangle inequality and τ � 1, we have

‖RHS(7.17)‖C 0
τ C 0 � sup

0�s�τ

‖L ε,Iε
s

DtN [|(λ − L
ε,Iε

s,·
DtN )−1

[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
·,qε

s ,I
ε
s
|2]‖C 0 . (7.20)

Let 〈〈〉〉α be the Hα-norm with respect to qε
s ∈ ∂M. We claim that the norm of L

ε,I
DtN :

Hα+1 → Hα is O(ε−1) (due to the scaling in (5.6)) times something depending

continuously only on ‖I‖C n for some n = O(1). Indeed, let Hν(∂M, g[∇I]) be the

Sobolev space on ∂Mwith respect to the Riemannian measure induced by the metric

g[∇I]. By Lemma B.2, the principal symbol of L
ε,I

DtN, as a map on Hν(∂M, g[∇I])
spaces, is |ξ |, so that the map L

ε,I
DtN : Hα+1(∂M, g[∇I]) → Hα(∂M, g[∇I]) has

operator norm O(1). Since the Riemannian measure induced by g[∇I] is bounded

above and away from 0 depending only on a finite number of derivatives of I (see

Construction 1.1), it now suffices to change measure and go from Hν(∂M, g[∇I])
to Hν . Thus, the claim follows.
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So, given that the C n-norm of Iε is bounded by that of Yε (see (1.3)), for any

x ∈ ∂M, we deduce

〈〈L ε,Iε
s

DtN [|(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
|2]〉〉α (7.21)

�‖Yε‖
C 0

τ C 2 ,α ε−1〈〈|(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
|2〉〉α+1.

(7.22)

Now, use Sobolev multiplication (see Lemma C.2). In particular, if we take α suffi-

ciently large depending on the dimension d, then we can bound the Sobolev norm

of the square by the square of the Sobolev norm:

(7.22) � ε−1
{
〈〈(λ − L

ε,Iε
s,·

DtN )−1[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s
〉〉α+1

}2

. (7.23)

Now, we power-count using Sobolev estimates for operators in (7.23). Fortunately,

we already did this; use Lemma 5.5 to bound the norm on the RHS of (7.23). We

deduce

RHS(7.23) ��,α,‖Yε‖
C 0

τ C 2
ε−1

{
ε[λε]�ε− 1

2

}2
� λ2�ε2� � ε2γ � (7.24)

for γ > 0 uniformly positive, where the last bound follows from (5.12). If we now

combine (7.20), (7.21)–(7.22), (7.23), and (7.24) with the same Sobolev embedding

argument that we explained after (7.9)–(7.10), we ultimately deduce the following

for some β > 0 uniformly positive:

‖RHS(7.17)‖C 0
τ C 0 ��,α,‖Yε‖

C 0
τ C 2

εβ . (7.25)

We now move to (7.18)–(7.19). First, we rewrite the ds-integrand in (7.19) as

L
ε,Iε

s

DtN [(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
] (7.26)

= −(λ − L
ε,Iε

s

DtN )[(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
] (7.27)

+ λ[(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
] (7.28)

= −[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s

(7.29)

+ λ[(λ − L
ε,Iε

s,·
DtN )−1[λ(λ − L

ε,Iε
s,·

DtN )−1]�Fluc
noise,ε
x,qε

s ,I
ε
s
]. (7.30)

In particular, if we plug (7.29)–(7.30) into (7.19) and multiply by the integrand in

(7.18), we get the following expression for (7.18)–(7.19):

2
∫ t

0

{
(λ − L

ε,Iε
s,·

DtN )−1[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s

}

× [λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s
ds (7.31)

− 2λ
∫ t

0

{
(λ − L

ε,Iε
s,·

DtN )−1[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
x,qε

s ,I
ε
s

}2

ds. (7.32)
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Given the representation (7.31)–(7.32) for (7.18)–(7.19), in order to bound the

C 0
τ C 0-norm of (7.18)–(7.19), by the triangle inequality, it suffices to show the

following estimate for β > 0 uniformly positive:

sup
0�s�τ

‖
{
(λ − L

ε,Iε
s,·

DtN )−1[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
·,qε

s ,I
ε
s

}

× [λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
·,qε

s ,I
ε
s
‖C 0

+ sup
0�s�τ

‖λ
{
(λ − L

ε,Iε
s,·

DtN )−1[λ(λ − L
ε,Iε

s,·
DtN )−1]�Fluc

noise,ε
·,qε

s ,I
ε
s

}2

‖C 0

��,α,‖Yε‖
C 0

τ C 2
εβ . (7.33)

We give a power-counting argument that can be made rigorous using the 〈〈〉〉α-

norms and Sobolev embeddings (and Lemma C.2) that gave us (7.25). (We omit the

explanation behind these steps, because they are identical to the proof of (7.25).)

• Take the first line of the display (7.33). First, we note Fluc
noise,ε
·,qε

s ,I
ε
s
, as a function

of qε
s , is in the null-space of L

ε,Iε
s

DtN , which has a spectral gap of � ε−1. See the

proof of Lemma 5.5. Thus, each resolvent in the first line of (7.33) gives a factor

ε . Since Flucnoise,ε itself is smooth with order ε−1/2 derivatives, the first line of

(7.33) satisfies the estimate

��,‖Yε‖
C 0

τ C 2
ελ2�ε2�ε−1 � λ2�ε2� � ε2�γ (7.34)

for γ > 0 uniformly positive (for the last bound, see (5.12)).

• By the same token, the second line in (7.33) satisfies the estimate

��,‖Yε‖
C 0

τ C 2
λ

{
λ�ε�+1ε− 1

2

}2
� λ2�+1ε2�ε2−1 � ε[2�+1]γ (7.35)

for the same uniformly positive γ > 0.

• We clarify that the dependence of these estimates on just the C 0
τ C 2-norm of Yε

comes from tracking the same argument given in the proof of Lemma 5.5.

In view of the previous two bullet points, the estimate (7.33) follows since � � 1 by

assumption. Thus, as noted right before (7.33), we deduce that the C 0
τ C 0-norm of

(7.18)–(7.19) is

��,‖Yε‖
C 0

τ C 2
εβ . (7.36)

Combining this with (7.25) and (7.17)–(7.19) completes the proof of (5.44).

7.2.2. Proof of (5.43) To make the reading easier, let us recap the goal of this

estimate.Wewant toprove thatwithhighprobability,wehave thefollowingestimate:

‖[Mε,0] − [Mlimit]‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ , (7.37)

where β > 0 is uniformly positive, τ ∈ [0, 1] is any stopping time, k � 0, and

[Mε,0]t,x =
∫ t

0 L
ε,Iε

s

DtN [|(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]ds (7.38)



   50 Page 46 of 70 Arch. Rational Mech. Anal.          (2025) 249:50 

− 2
∫ t

0

{
(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
L

ε,Iε
s

DtN (λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}
ds (7.39)

[Mlimit]t,x = −2t
∫
∂M

[Kx,z − 1] ×
{
L

−1[Kx,z − 1]
}

dz. (7.40)

(See (7.17)–(7.19) and (3.5).) We now explain the main steps needed to prove (7.37).

(These are essentially outlined before the statement of Lemma 5.8. We refer the

reader there for intuition for this argument. But for reasons that entirely technical,

we do things in a slightly different manner.) Also, throughout this argument, we

will assume that k = 0 in the desired estimate (7.37); for general k, just replace

[Mε,0] − [Mlimit] by its k-th order derivatives in x . The argument is otherwise

completely identical.

(1) In [Mε,0], we first replace L
ε,Iε

s

DtN with ε−1L , that is replace the metric in the

Dirichlet-to-Neumann from g[∇Iε
s ] to the surface metric on ∂M (which can be

thought of as g[0]). In particular, define

[Mε,0,1]t,x =
∫ t

0 ε−1
L [|(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]ds (7.41)

− 2
∫ t

0

{
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
ε−1

L (λ − ε−1
L )−1Fluc

noise,ε
x,qε

s ,I
ε
s

}
ds. (7.42)

We then want to show that for β > 0 uniformly positive, we have

‖[Mε,0] − [Mε,0,1]‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ . (7.43)

(2) Next, in (7.41)–(7.43), we want to further replace Iε by 0 in the Flucnoise,ε-term

therein. In particular, we want to show the estimate below (for β > 0 uniformly

positive)

‖[Mε,0,1] − [Mε,0,2]‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ , (7.44)

where the term [Mε,0,2] is the following time-integral:

[Mε,0,2]t,x =
∫ t

0 ε−1
L [|(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,0
|2]ds (7.45)

− 2
∫ t

0

{
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,0

}

×
{
ε−1

L (λ − ε−1
L )−1Fluc

noise,ε
x,qε

s ,0

}
ds. (7.46)

(3) The next step is averaging. In particular, let Cλ
x,qε be the ds-integrand in (7.45)–

(7.46) (which is a Carre-du-Champ operator), so that

[Mε,0,2]t,x =
∫ t

0 Cλ
x,qε

s
ds. (7.47)

Now, define the following homogenized version of (7.47) (that is one where we

integrate over qε
s therein):

HomMt,x :=
∫ t

0

∫
∂M

Cλ
x,zdzds. (7.48)
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We claim the following estimates: the first states [Mε,0,2] ≈ HomM, that is that

time-averaging in (7.47) is enough to introduce a space-average. The second

states HomM ≈ [Mlimit], that is closing the argument and allowing us to deduce

(7.37). In particular,

‖[Mε,0,2] − HomM‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ (7.49)

‖HomM − [Mlimit]‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ . (7.50)

Above, β > 0 is uniformly positive, and (7.49) is claimed to hold with high

probability.

By the triangle inequality and (7.43), (7.44), (7.49), and (7.50), we get (7.37) with

high probability, thereby finishing the proof of this entire lemma. So, we are left to

show (7.43), (7.44), (7.49), and (7.50). Before we embark on this, however, let us

present the following key estimates, with proofs given immediately after. (In what

follows, αd depends only on d, and the joint C m(∂M× ∂M)-norm is with respect

to x, qε
s -variables. Also, ν > 0 can be taken arbitrarily small.)

‖Fluc
noise,ε
x,qε

s ,I
ε
s
− Fluc

noise,ε
x,qε

s ,0
‖C m (∂M×∂M) �m,‖Yε‖

C 0
τ C 2

ε− 1
4 (7.51)

‖L ε,Iε
s

DtN − ε−1
L ‖Hα+αd →Hα �α,‖Yε‖

C 0
τ C 2

ε− 3
4 −ν (7.52)

‖(λ − L
ε,Iε

s

DtN )−1 − (λ − ε−1
L )−1‖Hα+αd →Hα �α,‖Yε‖

C 0
τ C 2

λ−2ε− 3
4 −ν

� ε
5
4 −2γ−ν . (7.53)

• The estimate (7.51) is immediate by (5.8) and the relation ∇Iε = ε1/4∇Yε (see

(1.3)). Indeed, by (5.8), the dependence on Iε
s of Fluc

noise,ε
x,qε

s ,I
ε
s

is via ε−1/2 times a

smooth function of∇Iε
s (dependence on x, qε

s is uniformly smooth as well). Thus,

(7.51) is by Taylor expansion in ∇Iε about 0, combined with ∇Iε = ε1/4∇Yε,

which introduces a factor that brings ε−1/2 scaling in (5.8) down to ε−1/4.

• To prove (7.52), we use Lemma B.3, which controls the difference of Dirichlet-

to-Neumann operators on the LHS of (7.52) by some C n-norm of the difference

of metrics g[∇Iε] − g[0]. However, g is smooth, so a similar Taylor expansion

argument as in the previous bullet point shows g[∇Iε] − g[0] = O(ε1/4) with

implied constant depending only on ‖Yε‖C 0
τ C 2 ; this is in C 1,υ -norm for any

υ ∈ [0, 1). (For this, again use (1.3) to deduce ∇Iε = ε1/4∇Yε and gain an extra

factor of ε1/4.) On the other hand, for any k � 0, the same Taylor expansion

but now combined with Lemma C.1 shows that g[∇Iε] − g[0] = O(1) with

implied constant depending only on ‖Yε‖C 0
τ C 2 . Interpolation of Hölder norms

then shows the following (see Theorem 3.2 in [2]). For any n � 0 and ν > 0,

we can choose k � 0 large enough so that for υ ∈ (0, 1) fixed, we have

‖g[∇Iε] − g[0]‖C 0
τ C n � ‖g[∇Iε] − g[0]‖1−ν

C 0
τ C 1,υ ‖g[∇Iε] − g[0]‖ν

C 0
τ C k

(7.54)

�‖Yε‖
C 0

τ C 2
ε

1
4 (1−ν). (7.55)
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As noted in the previous paragraph, Lemma B.3 then shows (7.52) by using the

previous display. (Note the extra ε−1-scaling on the LHS of (7.52).

• For (7.53), we start with the resolvent expansion

(λ − L
ε,Iε

s

DtN )−1 − (λ − ε−1
L )−1

= (λ − L
ε,Iε

s

DtN )−1(L
ε,Iε

s

DtN − ε−1
L )(λ − ε−1

L )−1. (7.56)

By Lemma B.3, the resolvents each have operator norm on Hρ → Hρ ; that is,

�ρ,‖Yε‖
C 0

τ C 2
λ−1. (7.57)

(Indeed, we should have dependence on a C n-norm of Iε in the implied constant

above, but that is controlled by the C 2-norm of Yε; see Lemma C.1.) Now,

it suffices to combine the previous bound with (7.52) to get the first bound in

(7.53). The last bound in (7.53) follows by λ = ε−1+γ (see (5.12)).

Proof of (7.43). See (7.38)–(7.39) and (7.41)–(7.42). From these, it is easy to see

that

[Mε,0]t,x − [Mε,0,1]t,x =
∫ t

0 ϒ
(1)
x,qε

s ,I
ε
s
ds +

∫ t

0 ϒ
(2)
x,qε

s ,I
ε
s
ds, (7.58)

where ϒ (1) and ϒ (2) are obtained by comparing Dirichlet-to-Neumann maps and

their resolvents:

ϒ
(1)
x,qε

s ,I
ε
s

:= L
ε,Iε

s

DtN [|(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]

− ε−1
L [|(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2] (7.59)

ϒ
(2)
x,qε

s ,I
ε
s

:= −2
{
(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
L

ε,Iε
s

DtN (λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}
(7.60)

+ 2
{
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
ε−1

L (λ − ε−1
L )−1Fluc

noise,ε
x,qε

s ,I
ε
s

}
. (7.61)

If we now fix any stopping time τ ∈ [0, 1], then by triangle inequality and (7.58),

we have

‖[Mε,0] − [Mε,0,1]‖C 0
τ C k � sup

0�s�τ

‖ϒ (1)
·,qε

s ,I
ε
s
‖C k + sup

0�s�τ

‖ϒ (2)
·,qε

s ,I
ε
s
‖C k . (7.62)

(Recall that we have assumed k = 0 for simplicity; see after (7.40).) We start by

estimating the first term on the RHS of (7.62). In view of (7.59), we write ϒ (1) as

the error obtained by replacing the outer L
ε,Iε

s

DtN -operator in the first term on the RHS

of (7.59) by ε−1L , plus the error obtained by making the same replacement but in

the resolvent. In particular, we have the identity

ϒ
(1)
x,qε

s ,I
ε
s

:= L
ε,Iε

s

DtN [|(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]
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− ε−1
L [|(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2] (7.63)

+ ε−1
L [|(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]

− ε−1
L [|(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]. (7.64)

Again, for any α � 0, let 〈〈〉〉α be the Hα-norm in the qε
s -variable. By (7.52), we have

(for αd � 1)

〈〈RHS(7.63)〉〉α �α,‖Yε‖
C 0

τ C 2
ε− 3

4 −ν〈〈|(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2〉〉α+αd

. (7.65)

Again, if α is sufficiently large but depending only on the dimension d, then Hα is

a Hilbert algebra (see Lemma C.2), so the Sobolev norm of the square is controlled

by the square of the Sobolev norm. This gives

RHS(7.65) � ε− 3
4 〈〈(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
〉〉2

α+αd
. (7.66)

The resolvent is bounded on Sobolev spaces with norm � λ−1 (see Lemma B.3).

Moreover, Flucnoise,ε has derivatives of order ε−1/2 (see (5.8)). Thus, the RHS

of (7.66) is � ε−3/4λ−2ε−1 � ε1/4−2γ (with implied constant depending on the

C 0
τ C 2-norm of Yε as before, since the metric in the Dirichlet-to-Neumann map on

the RHS of (7.66) depends on at most two derivatives of Iε; see the proof of Lemma

5.5 for this argument, for example). By the previous two displays, if we take α large

enough depending on dimension d, then by Sobolev embedding in the qε
s -variable,

we deduce that

|RHS(7.63)| �‖Yε‖
C 0

τ C 2
ε

1
4 −2γ . (7.67)

We now control (7.64). First, L : Hα+1 → Hα is bounded with norm O(1) (see

Lemma B.1). By this and difference of squares and the algebra property of Hα-spaces

(for α big enough), we get

〈〈(7.64)〉〉α � ε−1〈〈(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
− (λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
〉〉α+1

(7.68)

× 〈〈(λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s
+ (λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
〉〉α+1. (7.69)

Use (7.53) and the fact that derivatives of Flucnoise,ε are order ε−1/2 to show that the

RHS of (7.68) is order ε−1/4−2γ−ν . Use the λ−1-estimate for resolvents in (7.69) to

show that (7.69) is � λ−1ε−1/2 � ε1/2−γ . Thus, the LHS of (7.68) is � ε1/4−3γ−ν .

All estimates have implied constants depending on α and the C 0
τ C 2-norm of Yε, as

before. Taking α big enough to use a Sobolev embedding like we did after (7.9)–

(7.10), we get the following for ν > 0 fixed but arbitrarily small:

|(7.64)| �‖Yε‖
C 0

τ C 2
ε

1
4 −3γ−ν . (7.70)
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Now, combine (7.63)–(7.64), (7.67), and (7.70). This shows that forβ > 0 uniformly

positive,

|ϒ (1)
x,qε

s ,I
ε
s
| �‖Yε‖

C 0
τ C 2

εβ . (7.71)

We now treat ϒ (2) (see (7.60)–(7.61)). This follows from the same type of argument.

Let us be precise. We first rewrite (7.60)–(7.61) as the error obtained by replacing

L
ε,Iε

s

DtN �→ ε−1L outsideof theresolvents,plus theerrorobtainedbythis replacement

inside the resolvents:

ϒ
(2)
x,qε

s ,I
ε
s

= −2
{
(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
L

ε,Iε
s

DtN (λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}
(7.72)

+ 2
{
(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
ε−1

L (λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}
(7.73)

− 2
{
(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
ε−1

L (λ − L
ε,Iε

s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}
(7.74)

+ 2
{
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
ε−1

L (λ − ε−1
L )−1Fluc

noise,ε
x,qε

s ,I
ε
s

}
. (7.75)

Look at RHS(7.72) + (7.73). This contribution gives us

− 2
{
(λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
[L ε,Iε

s

DtN − ε−1
L ](λ − L

ε,Iε
s

DtN )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}
. (7.76)

The first factor is � λ−1ε−1/2 � ε1/2−γ (for reasons we explained in the proof

of (7.71)). By (7.52), the difference of Dirichlet-to-Neumann maps is � ε−3/4−ν ;

it acts on something of order � ε1/2−γ as we just noted. Therefore, (7.76), which

is RHS(7.72) + (7.73), is � ε1/4−2γ−ν (with implied constant depending on the

C 0
τ C 2-norm of Yε, as before). Of course, this heuristic can be made precise by the

same Sobolev multiplication and embedding argument that we just illustrated. We

omit the lengthy details.

Take(7.74)+(7.75).Whenwereplaceresolvents(λ−L
ε,Iε

s

DtN )−1 �→ (λ−ε−1L )−1

in one of the factors in (7.74), by (7.53), we pick up a factor of ε5/4−2γ−ν . This acts

on Flucnoise,ε, which has derivatives of order ε−1/2. We then multiply by the sec-

ond factor in (7.74), which is order � ε−1λ−1ε−1/2 � ε−1/2−γ . By multiplying

all bounds together, we get that the error in replacing resolvents in the first fac-

tor in (7.74) is � ε1/4−3γ−ν . The rest of (7.74)+(7.75) is obtained by making this

same replacement of resolvents in the second factor in (7.74). By the same argu-

ment, this error is � ε1/4−3γ . Thus, for ν > 0 fixed but arbitrarily small, we get
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|(7.74) + (7.75)| � ε1/4−3γ−ν . By combining the previous two paragraphs and

(7.72)–(7.75), we deduce that for β > 0 uniformly positive,

|ϒ (2)
x,qε

s ,I
ε
s
| �‖Yε‖

C 0
τ C 2

εβ . (7.77)

Combine (7.62) with (7.71) and (7.77) to get the desired bound (7.43) (recall we

assumed that k = 0). ��

Proof of (7.44). By (7.41)–(7.42) and (7.45)–(7.46) (and the triangle inequality

argument that gave (7.62)),

‖[Mε,0,1] − [Mε,0,2]‖C 0
τ C k � sup

0�s�τ

‖ϒ (3)
·,qε

s ,I
ε
s
‖C k + ‖ϒ (4)

·,qε
s ,I

ε
s
‖C k , (7.78)

where

ϒ
(3)
x,qε

s ,I
ε
s

:= ε−1
L [|(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
|2]

− ε−1
L [|(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,0
|2] (7.79)

ϒ
(4)
x,qε

ε,I
ε
s

:= −2
{
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s

}

×
{
ε−1

L (λ − ε−1
L )−1Fluc

noise,ε
x,qε

s ,I
ε
s

}
(7.80)

+ 2
{
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,0

}

×
{
ε−1

L (λ − ε−1
L )−1Fluc

noise,ε
x,qε

s ,0

}
. (7.81)

We first treat ϒ (3). By difference of squares, we have

ϒ
(3)
x,qε

s ,I
ε
s

= ε−1
L

{[
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
− (λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,0

]

(7.82)

×
[
(λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,I
ε
s
+ (λ − ε−1

L )−1Fluc
noise,ε
x,qε

s ,0

]}
. (7.83)

We now give a heuristic that immediately turns rigorous when we use the Sobolev

multiplication/embedding framework that we explained in detail in the proof (7.43).

The ε−1L operator gives a factor of ε−1. The resolvent on the RHS of (7.82) gives

a factor of � λ−1. It acts on the difference of Flucnoise,ε-terms, which by (7.51), has

derivatives of order� ε−1/4. Thus, the factor in the curly braces on the RHS of (7.82)

is � λ−1ε−1/4 � ε3/4−γ (see (5.12)). It multiplies (7.83), which is � λ−1ε−1/2 �

ε1/2−γ , since the resolvents give λ−1, and the Flucnoise,ε-terms are � ε−1/2. Thus,

the term inside the curly brackets in (7.82)–(7.83) is � ε3/4−γ ε1/2−γ � ε5/4−2γ .

Multiplying by ε−1 therefore shows that for β > 0 uniformly positive,

|ϒ (3)
x,qε

s ,I
ε
s
| �‖Yε‖

C 0
τ C 2

εβ . (7.84)

For ϒ (4) (see (7.80)–(7.81)), a similar argument works. When we replace Iε
s �→ 0 in

the first factor in (7.80), the error we get is something of order � ε−1/4 (by (7.51))

which is hit by a resolvent that gives � λ−1. We then multiply by the second factor
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in (7.80), which is � ε−1λ−1ε−1/2 � ε−1/2−γ . Multiplying all bounds, the error

is � λ−1ε−1/4ε−1/2−γ � ε1/4−2γ . When we replace Iε
s �→ 0 in the second factor

in (7.80), the error is estimated in the same way. Thus, since these two errors are

exactly what gives (7.80)–(7.81), we deduce that for β > 0 uniformly positive, we

have

|ϒ (4)
x,qε

s ,I
ε
s
| �‖Yε‖

C 0
τ C 2

εβ . (7.85)

Now, combine (7.84)–(7.85) and (7.78) (recall k = 0). This gives the desired esti-

mate (7.44). ��

Proof of (7.50). To start, we compute HomM in detail. By (7.48) (with Cλ equal to

the ds-integrand of (7.45)–(7.46)), we claim that

HomMt,x = −2
∫ t

0

∫
∂M

{
(λ − ε−1

L )−1Fluc
noise,ε
x,z,0

}

{
ε−1

L (λ − ε−1
L )−1Fluc

noise,ε
x,z,0

}
dzds. (7.86)

Indeed, the claim is just that if we integrate the ds-integrand in (7.45) over ∂M (in

the qε
s -variable), we get 0. This is because said ds-integrand is in the image of L by

construction, and L has invariant measure given by the surface measure on ∂M (see

Lemma B.1). We now proceed in two steps. First, rewrite ε−1L = ε−1L − λ + λ

for the Dirichlet-to-Neumann map in (7.86) that is not inside any resolvent. The

ε−1L − λ piece, when multiplied by the outer negative sign, cancels the resolvent

(λ − ε−1L ). Thus,

HomMt,x = 2
∫ t

0

∫
∂M

Fluc
noise,ε
x,z,0 × (λ − ε−1

L )−1Fluc
noise,ε
x,z,0 dzds (7.87)

− 2λ
∫ t

0

∫
∂M

|(λ − ε−1
L )−1Fluc

noise,ε
x,z,0 |2dzds. (7.88)

The RHS of (7.87) has integrand that is independent of s, so we can replace the

ds-integration by a factor of t . The same is true for (7.88). Now, recall [Mlimit] from

(7.40). By triangle inequality (exactly like in what gave us (7.62)), we therefore get

the bound

‖HomM − [Mlimit]‖C 0
τ C k � ‖ϒ (5)‖C k

+ λ

∥∥∥
∫
∂M

|(λ − ε−1
L )−1Fluc

noise,ε
·,z,0 |2dz

∥∥∥
C k

,

(7.89)

where

ϒ (5)
x :=

∫
∂M

Fluc
noise,ε
x,z,0

{
(λ − ε−1

L )−1Fluc
noise,ε
x,z,0

}
dz

+
∫
∂M

[Kx,z − 1]
{
L

−1[Kx,z − 1]
}

dz. (7.90)

Let us control the second term on the RHS of (7.89). By ε−1/2-bounds for Flucnoise,ε

(see (5.8)) and (5.35) for � = 0 (and setting Iε
s = 0, which is okay because we never
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used any data about Iε in the proof), the term in the square is � ε1/2, so its square

is � ε . Multiply by λ = ε−1+γ (see (5.12)) to get

λ

∥∥∥
∫
∂M

|(λ − ε−1
L )−1Fluc

noise,ε
·,z,0 |2dz

∥∥∥
C k

� εγ . (7.91)

We now treat ϒ (5). First, by (5.8), we have (since Vol0 = 1; see Construction 1.1)

Fluc
noise,ε
x,z,0 = ε− 1

2 [Kx,z −
∫
∂M

Kx,wdw] = ε− 1
2 [Kx,z − 1], (7.92)

since K is normalized to have total mass 1 (see Construction 1.1). Using (7.92), we

can rewrite (7.90) as

ϒ (5)
x =

∫
∂M

[Kx,z − 1] ×
{
[ε−1(λ − ε−1

L )−1 + L
−1][Kx,z − 1]

}
dz. (7.93)

Now, we use a resolvent expansion (see (6.25) with A = ε(λ − ε−1L ) and B =
−L ). This implies

ε−1(λ − ε−1
L )−1 + L

−1 = ε−1(λ − ε−1
L )−1(ελ)L −1

= λ(λ − ε−1
L )−1

L
−1. (7.94)

Now, note that Kx,· − 1 is orthogonal to the null-space of L (since 1 is just the

projection of Kx,· onto the space of constant functions on ∂M, which is exactly the

null-space ofL ; see Lemma B.1). Thus, we can use a spectral gap forL (see Lemma

B.3) when we apply its inverse and resolvents to Kx,· − 1. So, when we apply the

far RHS of (7.94) to Kx,· − 1, the L −1-operator is bounded. For λ(λ − ε−1L )−1,

we ignore λ inside the resolvent (since λ only regularizes the resolvent), and then

we have λεL −1. By spectral gap for L and λ = ε−1+γ , the term in curly braces

in (7.93) is � εγ . (Technically, this is all in Sobolev norms in z; we need to use

Sobolev embedding as in the proof of (7.43).) So, by smoothness of K,

‖ϒ (5)‖C k � εγ . (7.95)

Now, combine (7.89), (7.91), and (7.95). This gives the desired bound (7.50). ��

Proof of (7.49). For the sake of clarity, we want to estimate the C 0
τ C k-norm (for

τ ∈ [0, 1]) of

[Mε,0,2]t,x − HomMt,x =
∫ t

0

{
Cλ

x,qε
s
−

∫
∂M

Cλ
x,zdz

}
ds. (7.96)

(Indeed, see (7.47) and (7.48).) Again, we assume k = 0; for general k, just apply

the argument below but for the k-th order derivatives of (7.96) in x . For notational

convenience, we define

FlucCλ
x,qε

s
:= Cλ

x,qε
s
−

∫
∂M

Cλ
x,zdz (7.97)

to be the fluctuation of Cλ, more or less (or equivalently, the ds-integrand in (7.96)).

Note that FlucCλ
x,· is in the image of L , since it vanishes under integration over

qε
s ∈ ∂M with respect to the invariant measure dz of L ; see Lemma B.1. (We

emphasize that we are integrating with respect to a measure that, in principle, can
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have nothing to do with the law of qε
s . Also, this is true for all x ∈ ∂M.) So, we can

rigorously (not just formally) hit FlucCλ
x,qε

s
by L L −1 and rewrite (7.96) as follows,

where all operators act on the qε
s -variable:

[Mε,0,2]t,x − HomMt,x =
∫ t

0 ε−1
L [(ε−1

L )−1FlucCλ
x,qε

s
]ds (7.98)

=
∫ t

0 L
ε,Iε

s

DtN [(ε−1
L )−1FlucCλ

x,qε
s
]ds (7.99)

+
∫ t

0 [ε−1
L − L

ε,Iε
s

DtN ][(ε−1
L )−1FlucCλ

x,qε
s
]ds. (7.100)

Let us first control the C 0
τ C k-norm of (7.100). Again, by triangle inequality, we

have

‖(7.100)‖C 0
τ C k � sup

0�s�τ

‖[ε−1
L − L

ε,Iε
s

DtN ][(ε−1
L )−1FlucCλ

x,qε
s
]‖C k . (7.101)

We now give the heuristic for controlling the RHS of (7.101) (that can be made

precise by the same Sobolev embedding argument given throughout this section).

Note that FlucCλ
x,· is in the image of L as noted after (7.97), and thus it is orthogonal

to its null-space. Thus, when we apply the inverse of L to FlucCλ
x,·, we can use a

spectral gap estimate (see Lemma B.3). This means that the difference of Dirichlet-

to-Neumann maps hits something of order ε . (Indeed, FlucCλ has derivatives of

O(1). This is by (7.97) and that Cλ has derivatives of O(1). For this last fact, recall

Cλ as the ds-integrand in (7.45)–(7.46), and use the estimate (5.35) with � = 0

and Iε
s,· replaced by 0. Indeed, this estimate shows that all resolvents acting on

Flucnoise,ε-terms in (7.45)–(7.46) are � ε1/2; all of these factors are then cancelled

by ε−1-factors hitting L -operators in (7.45)–(7.46).) Next, by (7.52), the difference

of Dirichlet-to-Neumann maps on the RHS of (7.101) is � ε−3/4−ν . So, the RHS

of (7.101) is � ε1/4−ν for ν > 0 fixed but arbitrarily small, and thus

‖(7.100)‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

ε
1
4 −ν . (7.102)

(The dependence on Yε can be tracked from (7.52); all other estimates used to get

(7.102) do not depend onYε .) We now move to (7.99). This is now where randomness

comes in; so far, our estimates in this section have all been deterministic, whereas

our estimate for (7.99) will be with high probability. Note that we can add L
ε,qε

s

flow

to L
ε,Iε

s

DtN in (7.99), because the term in square brackets in (7.99) does not depend

on Iε
s . We then end up with the full generator of (Iε, qε), and the Itô formula can

be applied. (There is no issue of domain for the generator of Iε because, again, the

square bracket in (7.99) does not depend on Iε.) So,

(7.99) = Mt,x + (ε−1
L )−1FlucCλ

x,qε
t
− (ε−1

L )−1FlucCλ
x,qε

0
, (7.103)

where M is a martingale with predictable bracket given by

Bt,x :=
∫ t

0 L
ε,Iε

s

DtN [|(ε−1
L )−1FlucCλ

x,qε
s
|2]ds (7.104)

− 2
∫ t

0 (ε−1
L )−1FlucCλ

x,qε
s
× L

ε,Iε
s

DtN [(ε−1
L )−1FlucCλ

x,qε
s
]ds. (7.105)
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As we explained in the paragraph after (7.101), the last two terms on the RHS of

(7.103) are deterministically controlled as follows:

sup
0�s�τ

‖(ε−1
L )−1FlucCλ

·,qε
s
‖C k �k ε. (7.106)

It remains to treat the first term on the RHS of (7.103). To this end, we use Doob’s

maximal inequality (and that |M|2 − B is a martingale) to get the following (for

τ ∈ [0, 1] a stopping time):

E

{
sup

0�s�τ

|Mt,x |2
}

� E|Bτ,x |2. (7.107)

We now estimate (7.104)–(7.105) with the following heuristic (which is, again,

immediately rigorous once we use Sobolev norms, embeddings, and multiplication).

As explained in the paragraph after (7.101), the (ε−1L )−1FlucCλ-terms in (7.104)–

(7.105) are� ε . TheL
ε,Iε

s

DtN have scaling of� ε−1. Thus, we deduce that even without

expectations, the RHS of (7.107) is � ε , so that

E

{
sup

0�s�τ

|Mt,x |2
}

�‖Yε‖
C 0

τ C 2
ε. (7.108)

The Yε-dependence comes from the fact that the metric defining L
ε,Iε

s

DtN depends

on the first derivative of the metric g[∇Iε
s ] at most; see the paragraph after (7.20).

(7.108) gives a pointwise-in-x estimate with high probability. To upgrade this into

a uniform-in-x estimate with high probability, it suffices to show that

‖M‖C 0
τ C n �n 1 (7.109)

with high probability for sufficiently large n. (Indeed, by (7.108) and union bound,

we can bound M uniformly in time until τ and uniformly over a discretization of

∂M of size ε−1+β for β > 0 uniformly positive, on one high probability event. We

can then use (7.109) to show that M cannot change by more than εκ between points

in said discretization of ∂M for some κ > 0 uniformly positive.) To show (7.109), it

suffices to control every other term in (7.103). For the last two terms in (7.109), use

(7.106). For the LHS of (7.109), see (7.99); the L
ε,Iε

s

DtN has scaling � ε−1, and the

square-bracketed term in (7.99) has scaling � ε (see the paragraph after (7.101)).

So, the LHS of (7.109) is � 1 in C 0
τ C n-norm for any n. We arrive at (7.109). (The

point is that we only need an O(1) bound in (7.109).) As explained before (7.109),

combining (7.108) and (7.109) shows

‖M‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ (7.110)

with high probability, where β > 0 is uniformly positive. Combining this with

(7.103) and (7.106) gives

‖(7.99)‖C 0
τ C k �k,‖Yε‖

C 0
τ C 2

εβ . (7.111)

Now combine (7.98)–(7.100) with (7.102) and (7.111). This gives the desired bound

(7.49). ��
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8. Proof of Theorem 1.6

We make precise the content of Section 3.4.2. Many of the results and analysis in

this section are standard in the singular spde literature; we only detail parts that are,

for example, special to the Dirichlet-to-Neumann operator and L2-based Sobolev

spaces. (Our analysis below is likely to hold in C α-Hölder spaces after some more

work; the use of L2-based Sobolev spaces lets us more readily use symbol calculus

for L .)

8.1. The Da Prato-Debussche Schematic

We first give a decomposition of the spde (1.11) of interest. For the reader’s

convenience, we recall hη,lin from (3.16). Consider the projection

�̃η,⊥ : L2(∂M) →
N⊕

i=1

�η−1�⊕

k=1

Vλi,k
, (8.1)

where we recall the notation from (1.10). We now recall the spde (3.16) as follows:

∂th
η,lin
t,x = 	h

η,lin
t,x + �̃η,⊥(−	)−

1
4 ξt,x . (8.2)

We will give (8.2) a stationary initial condition. To specify this precisely, we make

preliminary observations. Since ∂M is a finite union of circles, the space Vλi,k
is two-

dimensional, and any smooth function on ∂M admits a Fourier series representation.

In these Fourier coordinates, we specify the initial data

h
η,lin
0,x =

∑

i=1,...,N

1x∈Ti

η−1∑

k=1

{
zi,k,1ψi,k,1(x) + zi,k,2ψi,k,2(x)

}
. (8.3)

Up to an isometry that maps Ti to a circle, the ψi,k,1 have the form |Ti |−1/2
√

2 ·
cos(2π |k|x/|Ti |), and the ψi,k,2 have the form |Ti |−1/2

√
2 · sin(2π |k|x/|Ti |), all

for x ∈ [0, |Ti |). The {zi,k, j }i,k, j are independent Gaussian random variables with

zi,k, j ∼ N (0, |λi,k |−3) (where λi,k is the eigenvalue of (−	Ti
)−1/2 corresponding

to ψi,k,1, ψi,k,2). Since the noise in (8.2) projects away from 0-eigenspaces of 	, in

Fourier coordinates, the equation (8.2) can be written as

h
η,lin
t,x =

∑

i=1,...,N

1x∈Ti

η−1∑

k=1

{
zi,k,1,tψi,k,1(x) + zi,k,2,tψi,k,2(x)

}
, (8.4)

where zi,k, j,t are solutions to the following sdes (driven by independent standard

Brownian motions bi,k, j,t ):

dzi,k, j,t = − 1
2
λ2

i,kzi,k, j,t dt + λ
− 1

2

i,k dbi,k, j,t . (8.5)
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By construction, the solutions to (8.5) are (statistically) stationary. We now move to

the next piece of (1.11). Let hη,reg,1 solve the following with zero initial data (which

turns out to be convenient):

∂th
η,reg,1
t,x = 	h

η,reg,1
t,x + (�η,⊥ − �̃η,⊥)(−L )−

1
2 ξt,x

+ �̃η,⊥
{
(−L )−

1
2 − (−	)−

1
4

}
ξt,x . (8.6)

(We use the reg superscript because we will ultimately be able to use regularity

arguments to make sense of (8.6).) Keeping track of what is left, the final piece of

(1.11) is given by the following pde:

∂th
η,reg,2
t,x = 	h

η,reg,2
t,x + �η

(
|∇h

η,lin
t,x + ∇h

η,reg,1
t,x |2

)
− Cη (8.7)

+ 2�η
{
(∇h

η,lin
t,x + ∇h

η,reg,2
t,x )∇h

η,reg,2
t,x

}
+ �η|∇h

η,reg,2
t,x |2. (8.8)

The initial data h
η,reg,2
0,x = hinitial

x − h
η,lin
0,x to (8.7) is specified by the initial data to

(8.2), (8.6), and (1.11). As before, we call (8.7)–(8.8) a “regular piece” because

we can solve it classically, it turns out, once we provide a stochastic estimate for

the squared gradient of hη,lin. Note that (8.7)–(8.8) is nonlinear in its solution, so

local-in-time solutions are all we guarantee for now.

We now record the following; it will be convenient to reference but follows

essentially by construction.

Lemma 8.1. There is a stopping time τ > 0 with respect to the filtration generated

by ξ so that (8.2), (8.6), and (8.7)–(8.8) are well-posed in C ∞
τ C ∞. Moreover, for

t � τ , we have the identity

h
η
t,x = h

η,lin
t,x + h

η,reg,1
t,x + h

η,reg,2
t,x . (8.9)

8.2. Estimates for hη,lin

The goal of this subsection is to record the key properties of hη,lin. Before we

state the following result, recall the spaces C 0
t Hα from Section 2.

Lemma 8.2. Fix any deterministic t � 0 and δ > 0 and p � 1. The sequence hη,lin

converges in C 0
t H1−δ for any δ > 0 as η → 0.

Proof. We note that (−	)1/4hη,lin solves (8.2) with (statistically) stationary initial

data, but after we replace (−	)−1/4ξ by ξ therein. In particular, because ∂M is a

finite union of circles, we are left with the additive-noise she (with the zero Fourier

mode projected away) on each such circle. The additive she is well-posed in H1/2−δ

for any δ > 0. It now suffices to use that (−	)−1/4 maps Hα to Hα+1/2 after

projecting to the orthogonal complement of the null-space of 	, and the fact that

hη,lin lives in said orthogonal complement by construction (see (8.4)). Therefore,

well-posedness of the additive she in C 0
t H1/2−δ implies well-posedness of (8.2) in

C 0
t H1−δ , which completes the proof. ��
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We now present a result for the renormalized square of ∇hη,lin which appears in

(8.7)–(8.8). In a nutshell, the result below follows because ∇hη,lin lives in C −δ for

any δ > 0 (see (8.5), for example). Thus, its Wick square also lives in C −δ for any

δ > 0. Then, we use smoothing properties of the heat semigroup. We sketch this

argument in more detail below.

Lemma 8.3. Fix any deterministic t � 0. Recall Cη ∈ R from (1.12). The following

function of (t, x) ∈ [0, t]×∂M converges in C 0
t H1+γ in probability for some γ > 0

uniformly positive:

�
η
t,x :=

∫ t

0

∫
∂M

�t−s,x,z[�
η|∇hη,lin

s,z |2 − Cη}]dzds. (8.10)

Proof. Recall that �η denotes projection onto (1.10). Note also that 1z∈Ti
belongs

to Vλi,0
in (1.10), since it is an element in L2(Ti ) that vanishes under 	Ti

. Therefore,

1z∈Ti
= �η1z∈Ti

, which implies

�
η
t,x =

∑

i=1,...,N

∫ t

0

∫

Ti

�t−s,x,z�
η
{
|∇hη,lin

s,z |2 − Cη

}
dzds

= �η
( ∑

i=1,...,N

∫ t

0

∫

Ti

�t−s,x,z

{
|∇hη,lin

s,z |2 − Cη

}
dzds

)
, (8.11)

where in the last line, the projection acts on the x-variable in �. (The last line follows

because �η and the 	-semigroup commute.) Because �η converges strongly to the

identity as an operator from H1+γ to itself, it suffices to show that the function inside

the �η operator converges in C 0
t H1+γ . By (8.5), we have

|∇hη,lin
s,z |2 − Cη =

⎛
¿

η−1∑

k=1

{
zi,k,1,s∇ψi,k,1(z) + zi,k,2,s∇ψi,k,2(z)

}
À
⎠

2

− Cη,

for z ∈ Ti .

Recall that Ti is isometric to a circle (of length |Ti |); we will assume for the rest of

the argument that Ti is indeed such a circle. In this case, recall from the paragraph

after (8.3) that

ψi,k,1(z) =
√

2
√

|Ti |
cos(2π |k||Ti |−1z) and ψi,k,2(z) =

√
2

√
|Ti |

sin(2π |k||Ti |−1z)

Using this, we can compute

zi,k,1,s∇ψi,k,1(z) + zi,k,2,s∇ψi,k,2(z) = −
2π |k|zi,k,1,s

|Ti |
ψi,k,2(z)

+
2π |k|zi,k,2,s

|Ti |
ψi,k,1(z).

We note that ψi,k, j form an orthonormal basis for L2(Ti ). Moreover, recall zi,k, j,s ∼
N (0, |λi,k |−3). Using these inputs, the previous two displays, and the formula
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(1.12) for renormalization constants, we deduce that |∇h
η,lin
s,z |2 − Cη is the Wick-

renormalized square of ∇hη,lin. We also deduce from the same calculations that

∇h
η,lin
s,z itself belongs to C −δ(Ti ) as a function of z for any δ > 0, and thus so does

its Wick square. (See Lemma 3.2 in [6], for example.) The heat semigroup in (8.11)

is smoothing by 2 derivatives (see Proposition 2.4 in [27]), so we get convergence

of the following in C 0
t C 2−δ(Ti ) for any i and δ > 0:

∫ t

0

∫

Ti

�t−s,x,z

{
|∇hη,lin

s,z |2 − Cη

}
dzds.

Since C α(Ti )-norms control Hα(Ti )-norms for any non-integer α � 0 (see, for

example, the Littlewood–Paley representation of C α(Ti )-norms in [27]), we deduce

that the term in parentheses in (8.11) converges in C 0
t H2−δ for any δ > 0. This

finishes the proof. ��

8.3. Estimates for hη,reg,1

We will now use properties of L and 	 to control (8.6) as η → 0.

Lemma 8.4. Fix any deterministic t � 0 and δ > 0 and p � 1. The sequence

hη,reg,1 converges in C 0
t H3−δ .

Proof. By the Duhamel formula (see Lemma A.1), we have

h
η,reg,1
t,x =

∫ t

0

∫

∂M

�t−s,x,z(�
η,⊥ − �̃η,⊥)(−L )−

1
2 ξs,zdzds (8.12)

+
∫ t

0

∫

∂M

�t−s,x,z�̃
η,⊥

{
(−L )−

1
2 − (−	)−

1
4

}
ξs,zdzds. (8.13)

We note that the operators hitting the noise terms in (8.12)–(8.13) are compositions

of self-adjoint operators with respect to Euclidean surface measure on ∂M (see

Lemma B.1). Thus, we have

h
η,reg,1
t,x =

∫ t

0

∫

∂M

T1,η�t−s,x,zξs,zdzds

+
∫ t

0

∫

∂M

T2,η�t−s,x,zξs,zdzds, (8.14)

where T1,η,T2,η are the following operators acting on � through the z-variable:

T1,η := (−L )−
1
2 (�η,⊥ − �̃η,⊥), (8.15)

T2,η :=
{
(−L )−

1
2 − (−	)−

1
4

}
�̃η,⊥. (8.16)

Wefirst studyT2,η; theoperatorT1,η is simpler toanalyze.Weusestandard resolvent

identities to rewrite

T2,η = (−L )−
1
2

{
(−	)

1
4 − (−L )

1
2

}
(−	)−

1
4 �̃η,⊥.
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We now use the theory of pseudo-differential operators and their symbols in Chapter

7 of [32]. Specifically, we use the spaces Sm
1,0 consisting of symbols that, as functions

of ξ ∈ R, behave like degree m polynomials as |ξ | → ∞. As explained in Chapter

7.10 in [32], this theory extends readily to Riemannian manifolds, and by Proposition

5.5 of Chapter 7 of [32], operators with symbols in Sm
1,0 map Hα+m → Hα for any

α ∈ R.

Lemma B.2 gives −L = (−	)1/2 + O , where O is a pseudo-differential

operator of order −1. Since the symbol of (−	)1/2 is |ξ |, by Taylor expansion,

the principal symbol of (−	)1/4 − (−L )1/2 is 1
2
|ξ |−1/2sO (ξ), where sO (ξ) is the

principal symbol of O; see Proposition 3.3 in Chapter 7 of [32] for the computation

of the symbol of the operator square-root. Thus, the map (−	)1/4 − (−L )1/2 :
Hα → Hα+3/2 is bounded.

Recall that �̃η,⊥ projects away from the null-space of 	 (see (8.1)), and on this

orthogonal complement, the operator (−	)−1/4 maps Hα to Hα+1/2. Also, on the

image of (−	)1/4−(−L )1/2, which is orthogonal to the space of constant functions

on ∂M, the operator (−L )−1/2 maps Hα to Hα+1/2. Thus, T2,η : Hα → Hα+5/2

is a bounded map. Moreover, this argument shows that this operator converges in

the strong topology to T2 := {(−L )−1/2 − (−	)−1/4}�̃⊥, where �̃⊥ denotes

the projection onto the orthogonal complement of functions that are constant on

Ti -components. Thus, by a standard Galerkin-type approximation, in order to show

convergence for the last term in (8.14), it suffices to show that the function

(t, x) �→
∫ t

0

∫

∂M

T2�t−s,x,zξs,zdzds (8.17)

is in C 0
t H3−δ for any δ > 0 with probability 1, where T2 acts on the z-variable. This

follows by boundedness of T2 : Hα → Hα+5/2 and well-posedness of the additive

she in C 0
t H1/2−δ as in the proof of Lemma 8.2.

It remains to show convergence of the first term on the rhs of (8.14). We make

a few observations about the projections therein. First, �η,⊥ − �̃η,⊥ is a projection

onto the space of continuous, piecewise constant functions on ∂M = T1 ∪ · · · ∪TN

modulo the space of constant functions on ∂M. Note that this image of �η,⊥ −�̃η,⊥

is a finite-dimensional space of smooth functions that are orthogonal to constant

functions on ∂M which is independent of η. Moreover, (−L )−1/2 maps smooth

functions that are orthogonal to constant functions on∂M to smooth functions. Thus,

T1,η : Hα → Hβ is independent of η > 0 and bounded for any α, β, so the argument

showing convergence of the last term in (8.14) also gives the desired convergence

of the first term on the rhs of (8.14). This completes the proof. ��

8.4. Estimates for hη,reg,2

Instead of considering hη,reg,2, it will be more convenient to study the following

(for ω > 0 small):

h
η,reg,2,ω
t,x := tωh

η,reg,2
t,x . (8.18)

The reason why (8.18) is “better” is because to analyze (8.7)–(8.8), we will need

estimates for its solution in H1+γ -norms. However, the initial data for hη,reg,2 is in
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H1−δ for any δ > 0 (see after (8.7)–(8.8) and Lemma 8.2). Of course, integrating

this initial data against � regularizes a little (see Lemma A.2), but at the cost of a

factor which is cancelled out by tω. (In any case, because ω > 0 is small and we

ask for convergence in Theorem 1.6 to be analytically weak, this extra factor tω is

harmless after integration in time.)

We now state the main result for hη,reg,2,ω. It states that the blow-up time for

hη,reg,2,ω in an appropriate Sobolev space remains positive almost surely as η → 0.

It also gives convergence of hη,reg,2,ω as η → 0 in said Sobolev space upon stopping

it strictly before the aforementioned blow-up time.

Lemma 8.5. Fix any (small) constant ω > 0. There exists a constant γ = γ (ω) > 0

such that

τBU := inf
{

s � 0 : lim sup
η→0

‖hη,reg,2,ω‖C 0
s H1+γ = ∞

}
> 0.

with probability 1. Moreover, for any possibly random τstop ∈ (0, τBU), the sequence

of functions (t, x) �→ h
η,reg,2,ω
t,x converges in probability in C 0

τstop
H1+γ as η → 0.

Remark 8.6. The limit of hη,reg,2 is the solution of the pde obtained from formally

taking η → 0 for every term in (8.7)–(8.8) (with the renormalized square of ∇hη,lin

handled by Lemma 8.3, and with all other terms in (8.7)–(8.8) handled by Lemmas

8.2 and 8.4.) We do not record this spde as it does not serve any immediate purpose

for us as far as we can tell, and it is a little complicated to write down. We note,

however, that proving this remark amounts to following the proof of Lemma 8.5.

Proof. By (8.7)–(8.8) and the Duhamel formula, we have

h
η,reg,2,ω
t,x = tω

∫
∂M

�t,x,zh
η,reg,2
0,z dz (8.19)

+ tω
∫ t

0

∫
∂M

�t−s,x,z · �η
(
|∇hη,lin

s,z + ∇h
η,reg,1
s,z |2 − Cη

)
dzds (8.20)

+ 2tω
∫ t

0 s−ω
∫
∂M

�t−s,x,z

· �η
{
(∇hη,lin

s,z + ∇h
η,reg,1
s,z )∇h

η,reg,2,ω
s,z

}
dzds (8.21)

+ tω
∫ t

0 s−2ω
∫
∂M

�t−s,x,z · �η(|∇h
η,reg,2,ω
s,z |2)dzds. (8.22)

We will now show that there exists ν > 0 such that if we choose ω > 0 and γ > 0

small enough, then

‖(8.19)‖
C 0

t H1+γ �γ,ω 1 (8.23)

‖(8.20)‖
C 0

t H1+γ �γ,ω,t 1 (8.24)

‖(8.21)‖
C 0

t H1+γ �γ,ω tν‖hη,reg,2,ω‖
C 0

t H1+γ (8.25)

‖(8.22)‖
C 0

t H1+γ �γ,ω tν‖hη,reg,2,ω‖2

C 0
t H1+γ . (8.26)

(The implied constants are possibly random but tight as random variables as η → 0.)

From this, we get

‖hη,reg,2,ω‖
C 0

t H1+γ �γ,ω 1
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if t is sufficiently small but almost surely positive (and possibly random). Moreover,

we will also show that for any t � 0, the rhs of (8.19) and (8.20) converge in

probability as η → 0 in C 0
t H1+γ , and that (8.21)–(8.22) are continuous with respect

to hη,lin in the C 0
t H1−δ-norm, with respect to hη,reg,1 in the C 0

t H3−δ-norm, and with

respect to hη,reg,2,ω in the C 0
t H1+γ norm, where γ, δ > 0 are small. Combining

all of this with the fact that �η → Id in the strong operator topology (as maps

Hα → Hα for any α) ultimately finishes the proof of Lemma 8.5 (e.g. by a standard

Picard iteration and Galerkin approximation argument).

We will now treat each of (8.19)–(8.22) as follows.

• The first estimate (8.23) (and convergence of the rhs of (8.19) in C 0
t H1+γ )

follows by the convergence of h
η,reg,2
0,· in H1−δ for any δ > 0 (see Lemmas

8.2 and 8.3) and the boundedness of tω exp(t	) : H1−δ → H1+γ with norm

Oγ,ω(1) (assuming that γ, δ are small and ω � γ + δ); see Lemma A.2.

• We first expand the square in (8.20) to get the following (in which we recall

(8.10)):

(8.20) = tω�
η
t,x + 2tω

∫ t

0

∫

∂M

�t−s,x,z · �η(∇hη,lin
s,z ∇h

η,reg,1
s,z )dzds (8.27)

+ tω
∫ t

0

∫

∂M

�t−s,x,z · �η(|∇h
η,reg,1
s,z |2)dzds. (8.28)

Lemma 8.4 implies that tω�η converges as η → 0 in C 0
t H1+γ , and that

‖�η‖
C 0

t H1+γ �γ 1. Next, we use Lemma C.2 to show that if γ � δ, then

‖∇h
η,lin
s,· ∇h

η,reg,1
s,· ‖H−1/2−δ � ‖∇h

η,lin
s,· ‖H−δ‖∇h

η,reg,1
s,· ‖Hγ (in particular, point

(1) in Lemma C.2). (We always take δ > 0 small and γ > 0 depending on δ.)

Now, we use Lemmas 8.2 and 8.3 to deduce ‖∇h
η,lin
s,· ∇h

η,reg,1
s,· ‖H−1/2−δ �δ 1. Thus,

by Lemma A.2, we can use the heat semigroup to gain 3/2+γ +δ-many derivatives;

more precisely, we get the estimate below for δ, ν > 0 small enough and for all t � t:
∫ t

0

∥∥∥
∫

∂M

�t−s,·,z�
η(∇hη,lin

s,z ∇h
η,reg,1
s,z )dz

∥∥∥
H1+γ

ds �

∫ t

0

|t − s|−
3
4 − 1

2 γ− 1
2 δds �γ,δ tν .

The same argument also shows that the second term in (8.27) is continuous in

hη,lin, hη,reg,1 with respect to the C 0
t H1−δ and C 0

t H1+γ topologies, respectively, if

we restrict (8.27) to t � t. Finally, everything we proved about the second term in

(8.27) also applies to (8.28), since hη,reg,1 is more regular than hη,lin (see Lemmas

8.2 and 8.3). Ultimately, since hη,lin, hη,reg,1 converge in the C 0
t H1−δ and C 0

t H1+γ

topologies (see Lemmas 8.2 and 8.3), we deduce (8.24), as well as convergence of

(8.20) in C 0
t H1+γ .

• The previous bullet point only requires convergence of hη,lin in C 0
t H1−δ and con-

vergence of hη,reg,1 in C 0
t H1+γ . Since hη,lin +hη,reg,1 converges in C 0

t H1−δ , we can

use the same argument from the previous bullet point, namely our analysis of the

second term in (8.27) but with hη,lin replaced by hη,lin + hη,reg,1 and with hη,reg,1

replaced by hη,reg,2. Doing so shows (8.25), and that (8.21) is continuous in hη,reg,2

with respect to the C 0
t H1+γ topology. By the same token, our analysis of (8.28) (but

with hη,reg,1 replaced by hη,reg,2) also gives (8.26) and that (8.22) is continuous in

hη,reg,2 with respect to the C 0
t H1+γ topology.
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Therefore, as we explained after (8.23)–(8.26), the proof is complete. ��

8.5. Proof of Theorem 1.6

By Lemma 8.1, we have the following for any τstop ∈ (0, τBU), as in Lemma

8.5:

∫
[0,τstop)

∫
∂M

Ft,xh
η
t,x dxdt =

∫
[0,τstop)

∫
∂M

Ft,xh
η,lin
t,x dxdt

+
∫
[0,τstop)

∫
∂M

Ft,xh
η,reg,1
t,x dxdt (8.29)

+
∫
[0,τstop)

∫
∂M

Ft,xh
η,reg,2
t,x dxdt. (8.30)

The RHS of the first line converges in probability as η → 0 by Lemmas 8.2, 8.4

since τstop is finite almost surely. For the second line, we first use (8.18) to get that

∫
[0,τstop)

∫
∂M

Ft,xh
η,reg,2
t,x dxdt =

∫
[0,τstop)

∫
∂M

t−ω
Ft,xh

η,reg,2,ω
t,x dxdt. (8.31)

As ω > 0 is small, t−ω is integrable near 0. Since τstop is finite almost surely, the

above quantity converges in probability as η → 0 by Lemma 8.5. This completes

the proof. ��
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Appendix A. Deterministic Results About the Heat Kernel � on ∂M

Lemma A.1. (Duhamel formula) Suppose F ∈ C 0
t C ∞

x solves ∂t Ft,x = 	Ft,x +
Gt,x for t � 0 and x ∈ ∂M, where G ∈ L∞(R�0 × ∂M). For all t � 0 and

x ∈ ∂M, we have

Ft,x =
∫
∂M

�t,x,yF0,ydy

+
∫ t

0

∫
∂M

�t−s,x,yGs,ydyds. (A.1)
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Proof. By the Leibniz rule, the pde for F, and the pde for � , for 0 � s < t , we have

∂s

∫
∂M

�t−s,x,yFs,ydy

= −
∫
∂M

	�t−s,x,yFs,ydy +
∫
∂M

�t−s,x,y	Fs,ydy +
∫
∂M

�t−s,x,yGs,ydy.

Since � is the kernel for the 	-semigroup, integrating against it commutes with 	.

So, we can move 	 onto F in the first term on the RHS, and the first two terms above

cancel. Now, by calculus,

lim
r→t

∫
∂M

�t−r,x,yFr,ydy =
∫

∂M

�t,x,yF0,ydy + lim
r→t

∫ r

0

∫
∂M

�t−s,x,yGs,ydyds.

(A.2)

The last limit above is computed by plugging r = t ; the ds-integral is certainly

continuous in t . Moreover, by definition of the heat kernel, the LHS converges to a

delta function at x = y integrating against F. We can plug in r = t for F on the LHS

because F ∈ C 0
t C ∞

x . Thus, the LHS of the previous display is Ft,x . ��

Lemma A.2. Fix any τ > 0 and α1 � α2. The operator exp[τ	] : Hα1 → Hα2 is

bounded with norm � (Cτ)−[α2−α1]/2 for a constant C > 0 depending only onM.

Proof. See (1.15) in Chapter 15 of [33]. (Roughly, one derivative is worth τ−1/2.)

��

Appendix B. Deterministic Estimates for the Dirichlet-to-Neumann Map

Lemma B.1. We have the following properties of L .

• For any α, the map L : Hα+1 → Hα is bounded with norm � 1. So, the

map C ∞ → C ∞ is continuous in the Fréchet topology on C ∞. Also, it is self-

adjoint with respect to the surface measure on ∂M, and it vanishes on constant

functions on ∂M.

Hence, the invariant measure of L is the surface measure on ∂M. (By invariant

measure, we mean the measure μ, up to a constant factor, such that
∫
∂M

L ϕdμ = 0

for all ϕ ∈ C ∞.

Proof. See Section 1.1 of [12]. (The vanishing on constants is clear by definition

of L , since the harmonic extension of any constant function is constant; see after

(1.5)–(1.6).) ��

We now compute the difference −L − [−	]1/2 in terms of pseudo-differential

operators. In particular, in what follows, we use the theory of pseudo-differential

operators from Chapter 7 of [32] as noted earlier in the proof of Lemma 8.4.

Lemma B.2. Suppose d = 1. In this case, we have −L = [−	]1/2 +O , where O

is a pseudo-differential operator of order −1. Thus, the principal symbol of −L

is |ξ |. Moreover, 	 + L 2 is a zeroth-order pseudo-differential operator, that is a

bounded map Hα → Hα .
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Proof. For the first claim, see Proposition C.1 in Chapter 12 of [32]. (Here, it is

shown that −L = [−	]1/2 + O , where O is zeroth-order, and the zeroth-order

term in O has a coefficient given by the second fundamental form of ∂Mminus its

trace. But in d = 1, these vanish, and we are left with an order −1 operator.) For the

second claim, we note that

	 + L
2 = [−	]

1
2 O + O[−	]

1
2 + O

2. (B.1)

The [−	]1/2 has order 1, and O has order −1, so their product is zeroth-order, and

O2 is order −2. ��

Lemma B.3. We have the following.

• (Spectral gap) The null-space of −L is one-dimensional. So, it has a spectral

gap, that is its first eigenvalue λ1 is strictly positive.

• (Resolvent estimates) Take anyλ > 0 andα ∈ R. The resolvent map (λ−L )−1 :
Hα → Hα is bounded with norm � λ−1 for all α.

• (Regularity in metric) Let g be a smooth Riemannian metric on ∂M, which

extends to a Riemannian metric onM in the same way as in Construction 1.1.

Let Lg be the Dirichlet-to-Neumann map with respect to g (defined in the same

way as after (1.5)–(1.6) but the harmonic extension is with respect to g). We

have the operator norm estimate below for any α � 0, where g[0] is surface

metric on ∂M and where αd, nα,d depend only on α, d:

‖Lg − L ‖Hα+αd →Hα �α,‖g‖
C

nα,d
‖g − g[0]‖C

nα,d . (B.2)

(The C n-norm of a metric means said norm of its entries under any fixed choice

of local coordinates.)

Proof. For the spectral gap, see the beginning of [13] and Lemma B.1. For the

resolvent estimate, we use

(λ − L )−1 =
∫ ∞

0 e−τ(λ−L )dτ (B.3)

and contractivity of the L -semigroup on Hα (which holds since L � 0). Finally,

we are left with (B.2). By definition, for any ϕ ∈ C ∞, we have

Lgϕ − L ϕ = ∇N[U g,ϕ − U
ϕ], (B.4)

where N is the inward unit normal vector field (and ∇N is gradient in this direction),

and U g,ϕ,U ϕ are harmonic extensions of ϕ with respect to g and surface metric

on ∂M, respectively. In particular, we have

	g,MU
g,ϕ,	MU

ϕ = 0 and U
g,ϕ,U ϕ |∂M = ϕ, (B.5)

where 	g,M is the Laplacian on M with respect to the metric g, and 	M is the

Laplacian onM with its standard Euclidean metric. The previous pde implies the

following for V := U g,ϕ − U ϕ :

	MV = [	M − 	M,g]U ϕ + [	M − 	g,M]V and V |∂M = 0. (B.6)
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We now use a usual elliptic regularity argument for Sobolev spaces. First, by con-

struction, we have Lgϕ − L ϕ = ∇NV , and therefore, for any k � 0, we have

‖Lgϕ − L ϕ‖C k � ‖V ‖C k+1(M). (B.7)

By elliptic regularity, we can control the RHS of the previous display by C m-data

of the RHS of the pde for V (for m depending appropriately on k). In particular,

by Theorem 2.35 of [11] (with � there given byM ⊆ R
d+1 here), we deduce the

estimate

‖V ‖C k+1(M) � ‖[	M − 	g,M]U ϕ‖C k−1(M)

+ ‖[	M − 	g,M]V ‖C k−1(M). (B.8)

The implied constant depends only onM (since it is based on elliptic regularity for

	M).

Now, for the rest of this argument, let nk � 1 be a positive integer depending only

on k. If the C nk (M)-norm of g − g[0] is small enough, then even with the implied

constant, the last term on the RHS of the previous display is strictly less than half

of the LHS. Indeed, in local coordinates, it is easy to see that 	M − 	g,M is a

second-order operator whose coefficients are smooth functions of g − g[0] and its

first-derivatives. So, if these quantities are sufficiently small, then the operator norm

of 	M − 	g,M : Hα+1 → Hα−1 is strictly less than 1/2. By the same token, under

the same assumption on g−g[0], we bound the first term on the RHS of the previous

display as follows:

‖[	M − 	g,M]U ϕ‖C k−1(M) �k,‖g‖
C

nk
‖g − g[0]‖C nk ‖U ϕ‖C k+1(M). (B.9)

(The implied constant should depend on ‖g[0]‖C nk as well, but this depends only

onM.)

Elliptic regularity (e.g. Theorem 2.35 in [11]) lets us replace the C k+1(M)-norm of

U ϕ with ‖ϕ‖C k+1 itself. So, by the previous two displays and the paragraph between

them, we deduce

‖V ‖C k+1(M) � Ok,‖g‖
C

nk
(‖g − g[0]‖C nk ‖ϕ‖C k+1) + 1

2
‖V ‖C k+1(M). (B.10)

By changing the implied constant in the big-Oh term above, we can drop the last

term in (B.10) (by moving it to the LHS and multiply by 2). Combining this with

(B.7), we deduce (B.2) except with C m-norms instead of Hα-norms. To conclude,

we trade C m-norms for Hα-norms by the trivial embedding C m ↪→ Hm and, again,

the Sobolev embedding Hα → C m (for α large). This gives (B.2), assuming the

C nk -norm of g − g[0] is less than a fixed, positive threshold depending only onM.

In the case where this is not met, the RHS of (B.2) is � 1, while the LHS of (B.2) is

� 1 by the boundedness of L ,Lg, so (B.2) follows immediately in this case. (To

see that Lg : Hα+αd → Hα has norm depending only on ‖g‖C nk for appropriate nk

depending on α, use Lemma B.1.) ��
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Appendix C. Auxiliary Estimates

Appendix C.1. A Priori Bounds for Iε and Yε

The following bounds higher derivatives of Iε by only two derivatives of Yε. In a

nutshell, this is because the RHS of (1.1) is smoothing, and because at the level of

gradients, Iε is much smaller than Yε (see (1.3)). (For a reality check, note that the

following result (C.1) is obvious just from (1.3) if we take k = 2 and υ = 0. It is even

sub-optimal in this case by a factor of ε−1/4. The following result says that on the

LHS of (C.1), we can trade this additional factor that we gain for k = 2 and υ = 0 for

more derivatives on the LHS of (C.1). It essentially follows by interpolation theory.)

Lemma C.1. Fix any t � 0 and k � 0 and υ ∈ [0, 1). We have the estimate

‖∇Iε‖
C 0

t C k,υ �t,k,υ 1 + ‖Yε‖
C 0

t C 2 . (C.1)

Proof. It suffices to assume υ �= 0; the claim for υ = 0 follows because the norms

on the LHS of (C.1) are non-decreasing in υ. As explained above, by (1.3), we

trivially have the inequality

‖∇Iε‖
C 0

t C 1,υ � ‖∇Iε‖
C 0

t C 2 � ε
1
4 ‖Yε‖

C 0
t C 2 . (C.2)

Now, by Duhamel (Lemma A.1) and (1.1), for any t � t, we have

Iε
t,x = exp[t	]

{
Iε

0,·
}

x
+

∫ t

0 exp[(t − s)	]
{
ε− 1

4 VolIε
s
K·,qε

s

}
x

ds. (C.3)

(Here, the terms inside the curly braces are the functions on ∂M that the semigroup

acts on, and the subscript x means evaluate the image of this function under the

semigroup at x .) By Taylor expanding to get (1+a2)1/2 = 1+O(a) in the definition

of VolI from Construction 1.1, we have

VolIε
s,· = 1 + O(‖∇Iε‖

C 0
t C 0). (C.4)

The heat semigroup operator is bounded on Sobolev spaces by Lemma A.2. Thus,

by smoothness of K and (C.3), we deduce the following for any α � 0:

‖∇Iε‖
C 0

t Hα �t,α ε− 1
4 (1 + ‖∇Iε‖

C 0
t C 0) � ε− 1

4 + ‖Yε‖
C 0

t C 2 . (C.5)

(The second bound follows by (C.2).) Now, for any fixed n, υ, we can take α � 0

big enough so that the Hα-norm on the far LHS of (C.5) controls the C n,υ -norm.

This is by Sobolev embedding. Thus,

‖∇Iε‖
C 0

t C n,υ �t,n,υ ε− 1
4 + ‖Yε‖

C 0
t C 2 . (C.6)

Recall the fixed choices of k, υ from the statement of this lemma. If we take n big

enough depending only on k, υ, then we have the following interpolation bound of

norms by Theorem 3.2 in [2] (which needs υ �= 0):

‖‖
C 0

t C k,υ � ‖‖1/2

C 0
t C n,υ

‖‖1/2

C 0
t C 1,υ

. (C.7)



   50 Page 68 of 70 Arch. Rational Mech. Anal.          (2025) 249:50 

Applying this to ∇Iε and using (C.2) and (C.6) shows that

‖∇Iε‖
C 0

t C k,υ �t,k,υ

(
ε− 1

8 + ‖Yε‖
1
2

C 0
t C 2

)
ε

1
8 ‖Yε‖

1
2

C 0
t C 2

� 1 + ‖Yε‖
C 0

t C 2 .

(C.8)

(For the last bound in this display, we also used a1/2 � 1 + a for any a � 0.) This

gives (C.1). ��

Appendix C.2. Sobolev Multiplication

When we say a multiplication map is bounded, we mean that multiplication of

smooth functions extends continuously in the topology of interest.

Lemma C.2. We have the following multiplication estimates in Sobolev spaces.

(1) Suppose α1, α2, α ∈ R satisfy the following conditions.

• We have α1, α2 � α, and α1 ∧ α2 < 0 (that is at least one is negative).

Suppose that α1 + α2 � 0.

• Suppose that α1 + α2 > d
2

+ α. (In words, we lose d/2-many derivatives in

multiplication.)

Then the multiplication map Hα1 ×Hα2 → Hα is bounded with norm �α1,α2,α 1.

(2) Suppose α1, α2, α ∈ R satisfy the following conditions.

• We have α1, α2 � α � 0 and α1 + α2 > d
2

+ α.

Then the multiplication map Hα1 ×Hα2 → Hα is bounded with norm �α1,α2,α 1.

Thus, if α > d/2, then Hα is a Hilbert algebra.

Proof. For the point (1), see Theorem 8.1 of [2]. For the second bullet point, see

Theorem 5.1 of [2]. ��
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