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Abstract— The United States plans to incorporate 30 gigawatts 

(GW) of offshore wind (OSW) energy into its power grid by 2030. 

However, this expansion poses challenges to the economic and 

reliable grid operation due to the large power capacity and 

uncertainties in OSW generation as they are located within a close 

geographic proximity. Currently, there is a lack of research on 

the operating reserve requirements needed to mitigate these 

uncertainties for reliable grid operation. To address this gap, this 

study examines the operating reserve procurement needs for the 

New York power grid, which is expected to have 9 GW of offshore 

wind capacity by 2035. By using a dynamic probability of 

exceedance (POE) approach, this research aims to strategically 

procure the reserve resources to manage the forecasting 

uncertainties of the anticipated 9 GW OSW while minimizing the 

risk of loss of load in the New York power grid. The simulation 

results, based on real measurement data from NYSERDA Buoys, 

suggest that the dynamic POE configuration could potentially 

reduce operating reserve by nearly 12 percent overall. 

Index Terms—Intermittent energy sources, renewable energy 

scheduling, operating reserve, quantile regression, wind-energy 

scheduling 

I. INTRODUCTION 

The United States is aiming to incorporate thirty gigawatts 
(GW) of offshore wind (OSW) resources into the power grid by 
Year 2030 [1], [2]. However, this rapid development of OSW 
is presenting difficulties for the economic and reliable operation 
of the grid. Each OSW project, such as Empire Wind 1 with a 
capacity of 800 MW, possesses a substantial amount of power, 
and multiple OSW farms may be situated in close geographic 
proximity. For instance, in New York State, it is anticipated that 
9 GW OSW will be installed by 2035 and the nearby OSW 
farms exhibit strong, correlated generation uncertainties. To 
address the operational risks associated with these uncertainties 
in renewable energy sources, system operators are migrating 
from the static reserve procurement based on the largest 
generator contingency to the dynamic reserve concept [3]. 

Regional transmission organizations (RTO)/independent 
system operators (ISOs) in the United States have traditionally 
relied on static reserve modeling to procure operating reserve 
based on the largest generation resource in their service 
territory. However, this approach fails to account for real-time 
flow conditions of transmission lines that could potentially 
provide headroom for operating reserve services from the 
neighboring zones/systems, as well as the intermittent operation 
of solar and wind farms with large capacities and strong 

correlated uncertainties, which challenge the effectiveness of 
static reserve determination. In response to these challenges, the 
New York Independent System Operator (NYISO) has 
proposed the dynamic reserve concept, which is designed to 
procure the operating reserve based on three factors: 1) the 
potential loss of the largest generation resource; 2) the potential 
loss of transmission lines connected to the load zone of interest; 
and 3) the forecasting uncertainties of renewable energy 
sources. While the dynamic reserve concept represents a 
significant advancement in operating reserve procurement 
technology to mitigate the generation uncertainties associated 
with solar and wind farms, there are two understudied issues 
that need to be addressed. First, the POE of forecasted 
renewables should be strategically selected for scheduling 
generation resources when determining the operating reserve 
quantity to balance the grid operational cost and loss of load 
risk. Second, given the changing grid operation conditions and 
uncertainties associated with solar and wind farms, dynamically 
selecting POE may be more economical via the reduced 
quantity of reserved generation resources. 

To examine the operating reserve requirement based on 
various POE curves, this study initially evaluates the reserve 
requirement based on scheduled or predicted intermittent 
generation. The probabilistic forecasting for the anticipated 9 
GW OSW generation resources is based on the historical data 
from buoys deployed by the New York State Energy Research 
and Development Authority (NYSERDA) in the New 
York/New Jersey bight. The findings reveal that procuring the 
operating reserve based on a high confidence POE, such as POE 
95, is extremely costly, and its cost can be up to four times that 
of the current practice, i.e., based on the largest contingency of 
losing the 1.3 GW nuclear power plants in New York [4]. To 
address this issue, the study proposes a recursive and 
anticipative model that dynamically updates the POE to account 
for probabilistic OSW uncertainties in determining operating 
reserve quantities. This approach reduces the risk of excessive 
unused reserve allotments and balances the system reliability 
need and grid operational economics when scheduling 
generation resources. By capturing real-time flexibility needs 
through dynamically modifying the operating reserve 
requirement, the proposed methodology is able to reduce the 
operating reserve quantity by up to 12% when compared 
against the static POE method and up to 80% when reserving 
for total generation during peak generation forecasts. It is worth 
noting that the forecasting practice for wind resources in 
NYISO’s control room may be different from our study, we 



 

anticipate a similar level of benefit of dynamic POE for reserve 
procurement in New York State. 

II. PROBABILISTIC OSW GENERATION FORECASTING 

First, based on actual meteorological buoy measurements, a 
probabilistic forecast of OSW generation is made in order to 
confirm the feasibility of the proposed dynamic POE selection 
with dynamic reserve. Based on the recent development of 
advanced methodologies, e.g., deep learning [5] and numerical 
partial differential equations [6], several approaches have been 
proposed for improved OSW forecasting. In this study, the 
quantile regression methodology is embraced due to its 
prevalent use in the industry for probabilistic forecasting.  

A. Offshore Wind Speed Data 

The dataset under consideration in this study is derived from 
the Floating LiDAR Buoy Data, an initiative by NYSERDA 
[7]. The data specifically originates from the New York Bight 
region. This dataset encompasses wind speed and various 
meteorological factors over the course of years with varying 
time resolution measurements. This area is anticipated to be the 
site for future offshore wind energy farms, which are projected 
to contribute significantly to the power supply of the state of 
New York.  

Table 1. NYSERDA LiDAR Buoy Variables Being Considered 

Variable Units Minimum-Maximum Value 

Mean Horizontal Wind Speed m/s 0-50 

Mean Wind Direction deg 0-360 

Air Pressure hPa 600-1100 

Air Temperature ºC (-52) - 60 

Relative Air Humidity % 0-100 
 

All measurements of wind speed and direction used in this 
study were taken at an altitude of 158 meters above sea level. 
This was done to emulate the conditions at the hub height of 
the prospective wind turbines for the potential OSW farms [8]. 
Regarding the data from buoys E06 and E05, it was found that 
over 80 percent of the data was deemed valid. The invalid data 
had a negligible effect on the majority of the subsequent 
simulations. During the initial data collection phase, several 
outliers were identified as a result of the invalid data and were 
consequently excluded from this study. 

B. Wind Speed Forecast 

To forecast future wind velocities, a multivariable quantile 
regression technique was employed, utilizing the sklearn 
quantile regression package for Python [9]. The predictive 
variables incorporated in this model were the historical 
average wind speed within the measurement interval, 
atmospheric pressure, temperature, and relative humidity, 
spanning several days. To find the optimal number of training 
days for accurate predictions, the model was assessed using 
training periods of 7, 14, 30, and 60 days. This assessment was 
conducted over representative days within each month present 
in each dataset by comparing the predicted wind speed at the 
50th percentile with the actual wind speed represented in the 
data. The evaluation metrics used included the mean absolute 
error, standard deviation, variation, and correlation for both the 
error and the training day sets, as well as the predicted 24-hour 
wind speed against its actual measured values. 

Table 2. Mean Absolute Error of Wind Forecast Day 
Set # 1 2 3 4 5 

Training Days 180 90 60 30 7 

Forecast 

MAE (m/s) 
20.5 18.4 6.2 1.4 3.5 

 

 
 

Figure 1. 24-hour Ahead Wind Speed Forecast. 

The percentiles in this scenario represent the Probability of 
Exceedance (POE), a statistical construct that represents the 
probability of a process surpassing a specified value. In this 
context, it is defined in relation to wind speed exceeding the 
percentile prediction boundary which was determined through 
quantile regression that leverages the training data to find each 
instantaneous wind speed value and the data trends. For clarity, 
the POE 90 value indicates a 90 percent likelihood that power 
generation will surpass that set of values at any given time 
interval, just as POE 10 has a 10 percent probability that 
generation will exceed this value. 

Based on the error analysis and the dispersion of prediction 
values, a standard training set duration of 30 days is utilized 
for each 24-hour forecast. The forecasted wind speed 
incorporates percentile trend lines and percent prediction 
intervals, which are employed to illustrate the probability of 
the realization of the predicted wind speed. The median of the 
prediction is identified as the 50th percentile, or POE 50. As 
depicted in Fig. 1, a 24-hour ahead-of-time average wind speed 
prediction in 10-minute intervals employs a 30-day training 
set. It can be observed in Fig. 1 that the actual average 10-
minute horizontal wind speed (denoted by the black trace) 
aligns closely with the prediction median, POE 50, yielding a 
low mean error of 1.8 percent. In instances where the actual 
wind speed exhibits a higher error compared to POE 50, the 
correlation remains high, and the actual wind speed continues 
to fall within the 10 to 90 percent prediction interval region. 

C. Forecaasting and Probability of Exceedane 

To convert from wind speed to OSW wind generation, the 
industry practice of the NYISO in Fig. 2 is adopted [10], in 
which the wind speed is converted to the percentage of 
nameplate power from the turbine specifications. Note that the 
predicted power generation in percentage of nameplate or in 
megawatts considers the wake effects while other factors, 
including electrical losses, the availability, and/or other losses 



 

due to turbine performance or environmental factors such as 
ice, are not incorporated. 

Using the percentage of the nameplate power curve in 
conjunction with the forecasted wind speed, a generation 
prediction value is determined for each percentile, as 
previously discussed in the context of wind speed prediction. 
In Fig. 3, the three POE curves represent the predicted average 
10-minute wind speed, POE 10, and POE 90 wind speed 
respectively which are derived through quantile regression 
note this is not using the wind speed from Fig. 1. All displayed 
values have been converted using the wind speed to percentage 
of nameplate power curve. The probability area for generation 
within a 24-hour period is represented by the shaded between 
the traces for POE 90, 10, and 50. The NYISO considers 
procuring operating reserves based on POE 95 which would 
lead to a large operating reserve procurement to support 
reliability scheduled in each dispatch interval [3], [10]. Given 
that the POE 50 from the wind speed prediction has the 
smallest mean average error, the power generation equivalent 
of POE 50 is utilized as the predicted scheduled power and is 
the currently accepted proposed variable for wind resource 
scheduling [10].  

 
Figure 2. Sample Wind Speed vs. Power Output Curve. [8]. 

 
Figure 3. 24-hour Ahead Power Generation by Percentage of Nameplate 

Power Forecast. 

D. Power Scheduling and Reserves 

The conversion of nameplate percentage into power units 
is based on the current objective of the New York State 
Climate Leadership and Community Protection Act (CLCPA) 
to achieve 9 GW of OSW generation resource by 2035 [11], 
and the Empire 1 and Empire 2 projects under development 
that aim to install Vestas 138 V236-15MW OSW turbines with 
a cumulative capacity of 2,610 MW [12]. This representation 
does not consider the impact of geographical location 
differences on wind speed-readings for the expected 9 GW 
OSW energy including the Empire 1 and Empire 2 projects. As 
observed in Fig. 3, the predicted generation at POE 50 can 
attain 100% of the nameplate rating. At a maximum power 
output of 2,610 MW, Empire Wind output when reserving for 
total generation could require the entirety of the 2.6 GW to be 
procured using existing reliability methods [12]. Previously 
proposed considerations [13] for scheduling generation and its 
reserves include transitioning the scheduled power to a static 
POE 95. In Fig. 4, using the same prediction day represented 
in Fig. 3, the mean predicted generation for both POE 50, POE 
95, and actual wind speed are compared.  

Our findings indicate that scheduling generation resources 
based on POE 95 of forecasted offshore wind, at its best during 
this prediction day, allows for just over 40 percent of 
nameplate capacity. This is less than half the capability 
presented by POE 50. If an energy schedule were to be based 
on the POE 95 forecast, more than half of the capability 
presented by the actual wind speed would be curtailed to 
maintain the schedule at its maximum point. An alternative 
method proposed for reserve procurement for OSW generation 
is to schedule at POE 50 and then reserve at either POE 95 (as 
shown in Fig. 4) or the lowest generation point of POE 95 (as 
depicted in Fig. 4). The average reserve requirement based on 
the expected generation at POE 50 is determined by comparing 
the difference between the reserve boundary with POE 50 at 
each time interval. The average reserve requirement with POE 
50 scheduled, compared to the minimum point of generation at 
the POE 95 boundary in terms of percentage of nameplate 
generation capacity, exceeds 75 percent. The same 
measurement for only POE 95 is 63.2 percent. While there are 
advantages to having this level of reserves available for 
reliability, the scheduled reserves will result in an economic 
trade-off as the probability of an event is very low. 

 
Figure 4. 24-hour Ahead Power Generation by Percentage of Nameplate 

Power Forecast P50, POE95, Actual, Max POE 95. 



 

A more cost-effective approach, particularly during high-
cost peak load periods, could ensure power availability using 
other POE reserve boundaries. Contrary to static reserves, 
which are procured in fixed quantities within each zone, 
dynamic reserves are calculated based on the most significant 
source contingency within a reserve region. This calculation 
considers the available transmission headroom, while also 
considering transmission contingencies. As the infrastructure 
for intermittent resources, such as OSW generation, continues 
to grow, it becomes imperative for optimization techniques for 
reserve scheduling to address emerging challenges. The 
NYISO proposes a scheduling of wind resources through POE, 

 ýÿýýýÿ�30ÿĀā�� g �ÿ�þýýÿ�30ÿĀā�� ∗ ( ∑ �ĀĀþý/ÿþĂ�ÿ� −     ∑ ĀÿĀ��þĀÿÿý�Āā�) − ý��ýÿĀ�ÿþÿĀ������ýýÿ�ýýÿ�  (1). 

 
The POE 95 forecast is subtracted from the energy schedule 

of the resource to find the <at risk energy=. For example, if the 
energy schedule were 100MW and POE 95 forecast were 
50MW, then the at-risk energy would be 50MW. This is then 
multiplied by a reserve requirement multiplier for 
conservatism and then a transmission headroom is subtracted 
to find the resultant reserve requirement [13]. The current 
NYISO formulation uses a static POE which was covered 
previously, where having a high threshold of reliability at the 
proposed reserve procurement level of a static POE 95 may not 
be economically viable as the implementation of more OSW 
generation infrastructure increases, or the generation goal of 9 
GW of generation comes to fruition [11]. A methodology for 
optimizing OSW generation reserves in terms of both grid 
reliability and economic efficiency is needed. This approach 
leverages multiple POE values over a 24-hour period to reduce 
reserve demand without compromising system reliability. This 
is achieved by utilizing the probability of OSW generation 
meeting or exceeding a specified distribution limit. Given that 
the distance between each POE megawatt value does not 
maintain a static distribution throughout the 24-hour period, a 
method is introduced that capitalizes on this variability. This 
method adjusts the reserve requirement POE threshold in one-
to-three-hour time intervals or in each time interval based on 
the percentile distribution, thereby increasing available reserve 
resources. This dynamic POE reserve procurement process 
utilizes the predicted generation values at POE 50 and potential 
generation values at POE 80, POE 85, POE 90, and POE 95 to 
determine the expected reserve demand per interval. For 
instance, in a predicted 24-hour period, the reserve demand at 
each setting can be observed in Fig. 5. In Fig. 5, the 9 GW 
OSW generation is used to illustrate the power generation 
values that may need to be reserved by Year 2035. Each POE 
is associated with its own uncertainty factor, with the POE 80 
setting having the highest level of uncertainty among the set of 
four values. The impact of the selected POE is contingent upon 
the numerical difference between the scheduled and reserved 
POE. The difference between POE 50 to POE 90 of Fig. 3 
results in a lesser shift in reserve demands compared to a 
forecast with a tighter distribution. Employing POE 95 could 
supersede the use of POE 80 as the value of reliability found 
in an elevated reserve allocation and its economics outweigh 
the risk and economic benefit when using POE 80.  

 
Figure 5. Boxplot of Predicted Reserve Requirements for 9 Gigawatts of 

offshore wind by POE with Schedule at POE 50. 
 

 
Figure 6. Power Generation Forecast of Single Vestas 138 V236-15MW. 

 

This compares the risk assessed per POE as well as the 
economic viability of the necessary reserves. In scenarios 
where the POE distribution diverges excessively from the 
forecasted generation, resulting in a reserve demand that may 
exceed the system’s capabilities despite modifying the POE 
boundary, the wind generation can be curtailed to a level that 
the system can manage. This adjustment ensures the system’s 
behavior remains within manageable limits. 

III. PROJECTED DYNAMIC RESERVE REQUIREMENT 

The adjustment of the POE reserve boundary is contingent 
upon the probability and its corresponding value, expressed in 
either MWs or as a percentage of the nameplate capacity. This 
process employs a base POE that modifies its position in 
response to the value discrepancy present within the model 
from adjacent POE traces. The value discrepancy serves as a set 
point, which can be altered based on economic factors and the 
associated reliability. This approach allows for dynamic 
adjustments to the POE reserve boundary, facilitating optimal 
system performance under varying conditions. 

A. Changing POE for Reserve Procurement 

The difference between the set POE value and the adjacent 
POE values is the main deterministic factor that weighs the risk 
of changing the reserve procurement boundary as described in 
[13], [14]. VDp,t is a parameter for the value difference between 

the set base POE value, ĀÿĀā,āþýþý , and the pth adjacent POEs 

for the given time interval the POE above and below shown by 



 

{i-1,i+1}. Based on the value distribution in [9], POEShift is a 
variable derived on the sum of the distribution looking at a 
given set of time intervals ahead, i.e., three intervals in this 
study, which must be lower than the set point that is 
predetermined. When the value difference across the time 
specified is outside of the margin, the Reserve POE is set 
greater or lower than its current. If the value difference is still 
within the acceptable boundary, then the Reserve POE will 
remain unchanged for the coming reserve period. þÿþāĀÿÿþā,ā is 

a predetermined threshold parameter that is compared with the 
VDp,t,and its outside the setting this creates the difference 
needed to move the reserve boundary. In the example in Fig. 
7, the reserve boundary is chosen between POE 90 and POE 
85 where it is seen that the boundary changes levels based on 
the distribution present in those time intervals. 

 �ÿā,ā =  ĀÿĀā,āþýþý − ĀÿĀā�{ÿ+1,ÿ21},āýþĀ�ýÿÿā  øòù

ĀÿĀþ/ÿĀþā = { 1, þÿþāĀÿÿþā,ā g ∑ �ÿā,āý3āý=ā+1−1, −þÿþāĀÿÿþā,ā f ∑ �ÿā,āý3āý=ā+10, ÿ�ýÿ                    øóù
 ĀÿĀā,āýýþýý�ý =  ĀÿĀā+ĀÿĀþ/ÿĀþþ,ā21ýýþýý�ý  øôù 

In Fig. 7, the variable POE is depicted by the red trace. It 
dynamically adjusts its setting based on the difference between 
POE 90 and POE 85. This adjustment effectively reduces the 
overall reserve requirement throughout the forecasted day, a 
process that can be executed in real-time as the accuracy of the 
prediction improves. The proposed methodology is versatile 
and can be applied to a variety of POEs, contingent upon the 
degree of specificity required by the application. The threshold 
at which the POE will alter can also be fine-tuned based on the 
distribution of the forecasted days and/or factor in the reserve 
price or other constraints before shifting. As previously 
discussed, if the distribution from the scheduled POE50 to the 
lowest acceptable reserve POE (e.g., POE 80) is excessively 
large to reserve, then the schedule may be curtailed based on 
the distributions beneath it on the given day. This strategy 
facilitates the optimization of both schedule and reserve, 
predicated on the probability of generation realization. It 
encompasses both the method of reserve procurement and the 
potential necessity for generation curtailment. 

B. POE Based Thresehold Procurement 

In the context of power system reliability, a threshold based 
on the POE is proposed. This approach emphasizes reliability 
by utilizing the minimum forecasted generation within a given 
POE reserve period as the procurement basis. As illustrated in 
Fig. 8, the reserve base is defined by POE 90, while the 
threshold is determined every three hours based on the lowest 
forecasted generation. This methodology can be integrated 
with a variable POE to mitigate risk at each POE level, thereby 
facilitating an adjustment to balance economic considerations. 
This approach provides a robust framework for maintaining 
system reliability while managing economic trade-offs. The 
proposed procurement strategy can function independently by 
adopting a POE of 90 or 95, as suggested in the referenced 
literature [13]. Alternatively, it can be integrated with the 
variable POE approach by selecting the minimum value from 
any given POE. This flexibility allows for a more 

comprehensive and adaptable procurement process, catering to 
varying system requirements and conditions. 

 
Figure 7. Variable POE Reserve Procurement Setting. 

C. Effect of Reserve Procurement 

In the context of the Variable POE method and employing 
a variation difference set point below 5% of the nameplate 
capacity for any given time interval, it was observed that the 
reserve requirements were reduced on a month-to-month basis 
compared to a static POE setting of 90 or 95. Although this 
approach may compromise potential reliability, the test dates 
utilizing this model did not exhibit actual nameplate power 
generation falling below the determined POE setting, except 
for days that included invalid data during the training phase. 
The reliability faults could be resolved with the previously 
mentioned additional constraints and varying shift boundaries 
based on the predicted load profile. Table 3 illustrates the 
average savings in terms of percentage of nameplate capacity 
from three distinct time periods when using POE 90 as the set 
point. 

 
Figure 8. POE Threshold Reserve Procurement Setting. 

Table 3. Mean Reserve Percentage of Nameplate Capacity POE 90 versus 

variable POE reserve setting. 

Test 

Day 

Mean Reserve % 

at POE 90 

Mean Reserve % at 

Variable POE 

Reserve Demand 

Reduction in % 

1 25.15 19.85 5.35 

2 31.62 28.11 3.51 

3 20.41 12.73 7.68 

 



 

The decrease in reserve demand results in a reduction in 
economic costs and based on the actual wind speeds observed 
on the test periods, it provided equivalent scheduled reliability 
without breaching the reserve procurement boundary. 
Considering New York’s policy goal of 9GW OSW, under the 
assumption of uniform performance irrespective of 
geographical location and efficiency differences, a variation as 
much as five percent translates to a potential reserve savings 
of 450MW. The adoption of this method may incur higher 
computational costs, contingent on the current prediction 
models in use, compared to the strategies of reserving for total 
generation or opting for a static POE. Reserving for total 
generation could lead to an exceedingly high reserve demand 
and economic cost, which is likely to escalate as the 
infrastructure expands. This could necessitate curtailing the 
generation based on the reserve limit or economic limit at the 
time, inherently forfeiting the full capability of available 
offshore wind generation. The advantage of a variable reserve 
POE, as opposed to the total generation reserve, is that a 
variable POE might be able to better exploit the OSW 
generation capability. It is not constrained by a reservation of 
total generation because it is predicated on the calculated 
probability that there will not be an unexpected total or partial 
generation loss within a reserve period. This provides a 
confident level of security while being able to supply more 
overall power to the grid. The concept of the static POE reserve 
is a straightforward method but fails to leverage the available 
generation prediction distributions. As can be observed, 
fluctuations in distribution across an hour or across 24 hours 
may incur a higher cost than that of a variable POE that 
accounts for this variability and optimizes based on it. The 
implementation of a variable POE introduces certain 
complexities, including the determination of the differential 
level to modify the POE, the decision-making process for 
curtailing, and potential impacts on system reliability that were 
not evident in the conducted simulations. However, the 
economic advantages of this approach could potentially 
surpass the drawbacks, particularly when juxtaposed with the 
reserve methodologies currently proposed within the industry. 

IV. CONCLUSION 

The adjustment of the POE reserve limits, facilitated by 

monitoring the fluctuation in POE values over a 24-hour cycle, 

presents an opportunity to decrease reserve procurement 

requirement to manage OSW generation uncertainties without 

significantly compromising the power system’s reliability. 
This strategy ensures that the generation probability 

consistently satisfies or surpasses the predetermined points, 

thereby improving the efficiency of wind energy production. 

The setpoints are determined based on the available data. The 

optimization of wind generation via its reserves could 

potentially enable increased market participation, thereby 

contributing to the system’s sustainability and reliability as the 
shift away from fossil fuels persists. The outcomes of this 

research could have significant implications for the future of 

wind energy, providing more efficient and dependable wind 

power generation. Future enhancements of this methodology 

could encompass the optimization of the energy schedule, also 

referred to as POE 50 in preceding sections. The optimization 

of both the schedule curve and the reserve requirement could 

potentially provide additional economic benefits with 

reliability, while responding to the evolving load demands in 

both the day-ahead market forecasts and the real-time 

optimization horizon. 
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