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Abstract— The United States plans to incorporate 30 gigawatts
(GW) of offshore wind (OSW) energy into its power grid by 2030.
However, this expansion poses challenges to the economic and
reliable grid operation due to the large power capacity and
uncertainties in OSW generation as they are located within a close
geographic proximity. Currently, there is a lack of research on
the operating reserve requirements needed to mitigate these
uncertainties for reliable grid operation. To address this gap, this
study examines the operating reserve procurement needs for the
New York power grid, which is expected to have 9 GW of offshore
wind capacity by 2035. By using a dynamic probability of
exceedance (POE) approach, this research aims to strategically
procure the reserve resources to manage the forecasting
uncertainties of the anticipated 9 GW OSW while minimizing the
risk of loss of load in the New York power grid. The simulation
results, based on real measurement data from NYSERDA Buoys,
suggest that the dynamic POE configuration could potentially
reduce operating reserve by nearly 12 percent overall.

Index Terms—Intermittent energy sources, renewable energy
scheduling, operating reserve, quantile regression, wind-energy
scheduling

I INTRODUCTION

The United States is aiming to incorporate thirty gigawatts
(GW) of offshore wind (OSW) resources into the power grid by
Year 2030 [1], [2]. However, this rapid development of OSW
is presenting difficulties for the economic and reliable operation
of the grid. Each OSW project, such as Empire Wind 1 with a
capacity of 800 MW, possesses a substantial amount of power,
and multiple OSW farms may be situated in close geographic
proximity. For instance, in New York State, it is anticipated that
9 GW OSW will be installed by 2035 and the nearby OSW
farms exhibit strong, correlated generation uncertainties. To
address the operational risks associated with these uncertainties
in renewable energy sources, system operators are migrating
from the static reserve procurement based on the largest
generator contingency to the dynamic reserve concept [3].

Regional transmission organizations (RTO)/independent
system operators (ISOs) in the United States have traditionally
relied on static reserve modeling to procure operating reserve
based on the largest generation resource in their service
territory. However, this approach fails to account for real-time
flow conditions of transmission lines that could potentially
provide headroom for operating reserve services from the
neighboring zones/systems, as well as the intermittent operation
of solar and wind farms with large capacities and strong
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correlated uncertainties, which challenge the effectiveness of
static reserve determination. In response to these challenges, the
New York Independent System Operator (NYISO) has
proposed the dynamic reserve concept, which is designed to
procure the operating reserve based on three factors: 1) the
potential loss of the largest generation resource; 2) the potential
loss of transmission lines connected to the load zone of interest;
and 3) the forecasting uncertainties of renewable energy
sources. While the dynamic reserve concept represents a
significant advancement in operating reserve procurement
technology to mitigate the generation uncertainties associated
with solar and wind farms, there are two understudied issues
that need to be addressed. First, the POE of forecasted
renewables should be strategically selected for scheduling
generation resources when determining the operating reserve
quantity to balance the grid operational cost and loss of load
risk. Second, given the changing grid operation conditions and
uncertainties associated with solar and wind farms, dynamically
selecting POE may be more economical via the reduced
quantity of reserved generation resources.

To examine the operating reserve requirement based on
various POE curves, this study initially evaluates the reserve
requirement based on scheduled or predicted intermittent
generation. The probabilistic forecasting for the anticipated 9
GW OSW generation resources is based on the historical data
from buoys deployed by the New York State Energy Research
and Development Authority (NYSERDA) in the New
York/New Jersey bight. The findings reveal that procuring the
operating reserve based on a high confidence POE, such as POE
95, is extremely costly, and its cost can be up to four times that
of the current practice, i.e., based on the largest contingency of
losing the 1.3 GW nuclear power plants in New York [4]. To
address this issue, the study proposes a recursive and
anticipative model that dynamically updates the POE to account
for probabilistic OSW uncertainties in determining operating
reserve quantities. This approach reduces the risk of excessive
unused reserve allotments and balances the system reliability
need and grid operational economics when scheduling
generation resources. By capturing real-time flexibility needs
through dynamically modifying the operating reserve
requirement, the proposed methodology is able to reduce the
operating reserve quantity by up to 12% when compared
against the static POE method and up to 80% when reserving
for total generation during peak generation forecasts. It is worth
noting that the forecasting practice for wind resources in
NYISO’s control room may be different from our study, we



anticipate a similar level of benefit of dynamic POE for reserve
procurement in New York State.

II.  PROBABILISTIC OSW GENERATION FORECASTING

First, based on actual meteorological buoy measurements, a
probabilistic forecast of OSW generation is made in order to
confirm the feasibility of the proposed dynamic POE selection
with dynamic reserve. Based on the recent development of
advanced methodologies, e.g., deep learning [5] and numerical
partial differential equations [6], several approaches have been
proposed for improved OSW forecasting. In this study, the
quantile regression methodology is embraced due to its
prevalent use in the industry for probabilistic forecasting.

A. Offshore Wind Speed Data

The dataset under consideration in this study is derived from
the Floating LiDAR Buoy Data, an initiative by NYSERDA
[7]. The data specifically originates from the New York Bight
region. This dataset encompasses wind speed and various
meteorological factors over the course of years with varying
time resolution measurements. This area is anticipated to be the
site for future offshore wind energy farms, which are projected
to contribute significantly to the power supply of the state of
New York.

Table 1. NYSERDA LiDAR Buoy Variables Being Considered

Variable Units Minimum-Maximum Value
Mean Horizontal Wind Speed m/s 0-50
Mean Wind Direction deg 0-360
Air Pressure hPa 600-1100
Air Temperature °C (-52) - 60
Relative Air Humidity % 0-100

All measurements of wind speed and direction used in this
study were taken at an altitude of 158 meters above sea level.
This was done to emulate the conditions at the hub height of
the prospective wind turbines for the potential OSW farms [8].
Regarding the data from buoys E06 and EQ5, it was found that
over 80 percent of the data was deemed valid. The invalid data
had a negligible effect on the majority of the subsequent
simulations. During the initial data collection phase, several
outliers were identified as a result of the invalid data and were
consequently excluded from this study.

B. Wind Speed Forecast

To forecast future wind velocities, a multivariable quantile
regression technique was employed, utilizing the sklearn
quantile regression package for Python [9]. The predictive
variables incorporated in this model were the historical
average wind speed within the measurement interval,
atmospheric pressure, temperature, and relative humidity,
spanning several days. To find the optimal number of training
days for accurate predictions, the model was assessed using
training periods of 7, 14, 30, and 60 days. This assessment was
conducted over representative days within each month present
in each dataset by comparing the predicted wind speed at the
50th percentile with the actual wind speed represented in the
data. The evaluation metrics used included the mean absolute
error, standard deviation, variation, and correlation for both the
error and the training day sets, as well as the predicted 24-hour
wind speed against its actual measured values.

Table 2. Mean Absolute Error of Wind Forecast Da

Set # 1 2 3 4 5
Training Days 180 90 60 | 30 7
Forecast

MAE (m/s) 205 | 184 | 62 | 14 | 35
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Figure 1. 24-hour Ahead Wind Speed Forecast.

The percentiles in this scenario represent the Probability of
Exceedance (POE), a statistical construct that represents the
probability of a process surpassing a specified value. In this
context, it is defined in relation to wind speed exceeding the
percentile prediction boundary which was determined through
quantile regression that leverages the training data to find each
instantaneous wind speed value and the data trends. For clarity,
the POE 90 value indicates a 90 percent likelihood that power
generation will surpass that set of values at any given time
interval, just as POE 10 has a 10 percent probability that
generation will exceed this value.

Based on the error analysis and the dispersion of prediction
values, a standard training set duration of 30 days is utilized
for each 24-hour forecast. The forecasted wind speed
incorporates percentile trend lines and percent prediction
intervals, which are employed to illustrate the probability of
the realization of the predicted wind speed. The median of the
prediction is identified as the 50th percentile, or POE 50. As
depicted in Fig. 1, a 24-hour ahead-of-time average wind speed
prediction in 10-minute intervals employs a 30-day training
set. It can be observed in Fig. 1 that the actual average 10-
minute horizontal wind speed (denoted by the black trace)
aligns closely with the prediction median, POE 50, yielding a
low mean error of 1.8 percent. In instances where the actual
wind speed exhibits a higher error compared to POE 50, the
correlation remains high, and the actual wind speed continues
to fall within the 10 to 90 percent prediction interval region.

C. Forecaasting and Probability of Exceedane

To convert from wind speed to OSW wind generation, the
industry practice of the NYISO in Fig. 2 is adopted [10], in
which the wind speed is converted to the percentage of
nameplate power from the turbine specifications. Note that the
predicted power generation in percentage of nameplate or in
megawatts considers the wake effects while other factors,
including electrical losses, the availability, and/or other losses



due to turbine performance or environmental factors such as
ice, are not incorporated.

Using the percentage of the nameplate power curve in
conjunction with the forecasted wind speed, a generation
prediction value is determined for each percentile, as
previously discussed in the context of wind speed prediction.
In Fig. 3, the three POE curves represent the predicted average
10-minute wind speed, POE 10, and POE 90 wind speed
respectively which are derived through quantile regression
note this is not using the wind speed from Fig. 1. All displayed
values have been converted using the wind speed to percentage
of nameplate power curve. The probability area for generation
within a 24-hour period is represented by the shaded between
the traces for POE 90, 10, and 50. The NYISO considers
procuring operating reserves based on POE 95 which would
lead to a large operating reserve procurement to support
reliability scheduled in each dispatch interval [3], [10]. Given
that the POE 50 from the wind speed prediction has the
smallest mean average error, the power generation equivalent
of POE 50 is utilized as the predicted scheduled power and is
the currently accepted proposed variable for wind resource
scheduling [10].
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Figure 2. Sample Wind Speed vs. Power Output Curve. [8].
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Figure 3. 24-hour Ahead Power Generation by Percentage of Nameplate
Power Forecast.

D. Power Scheduling and Reserves

The conversion of nameplate percentage into power units
is based on the current objective of the New York State
Climate Leadership and Community Protection Act (CLCPA)
to achieve 9 GW of OSW generation resource by 2035 [11],
and the Empire 1 and Empire 2 projects under development
that aim to install Vestas 138 V236-15SMW OSW turbines with
a cumulative capacity of 2,610 MW [12]. This representation
does not consider the impact of geographical location
differences on wind speed-readings for the expected 9 GW
OSW energy including the Empire 1 and Empire 2 projects. As
observed in Fig. 3, the predicted generation at POE 50 can
attain 100% of the nameplate rating. At a maximum power
output of 2,610 MW, Empire Wind output when reserving for
total generation could require the entirety of the 2.6 GW to be
procured using existing reliability methods [12]. Previously
proposed considerations [13] for scheduling generation and its
reserves include transitioning the scheduled power to a static
POE 95. In Fig. 4, using the same prediction day represented
in Fig. 3, the mean predicted generation for both POE 50, POE
95, and actual wind speed are compared.

Our findings indicate that scheduling generation resources
based on POE 95 of forecasted offshore wind, at its best during
this prediction day, allows for just over 40 percent of
nameplate capacity. This is less than half the capability
presented by POE 50. If an energy schedule were to be based
on the POE 95 forecast, more than half of the capability
presented by the actual wind speed would be curtailed to
maintain the schedule at its maximum point. An alternative
method proposed for reserve procurement for OSW generation
is to schedule at POE 50 and then reserve at either POE 95 (as
shown in Fig. 4) or the lowest generation point of POE 95 (as
depicted in Fig. 4). The average reserve requirement based on
the expected generation at POE 50 is determined by comparing
the difference between the reserve boundary with POE 50 at
each time interval. The average reserve requirement with POE
50 scheduled, compared to the minimum point of generation at
the POE 95 boundary in terms of percentage of nameplate
generation capacity, exceeds 75 percent. The same
measurement for only POE 95 is 63.2 percent. While there are
advantages to having this level of reserves available for
reliability, the scheduled reserves will result in an economic
trade-off as the probability of an event is very low.
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A more cost-effective approach, particularly during high-
cost peak load periods, could ensure power availability using
other POE reserve boundaries. Contrary to static reserves,
which are procured in fixed quantities within each zone,
dynamic reserves are calculated based on the most significant
source contingency within a reserve region. This calculation
considers the available transmission headroom, while also
considering transmission contingencies. As the infrastructure
for intermittent resources, such as OSW generation, continues
to grow, it becomes imperative for optimization techniques for
reserve scheduling to address emerging challenges. The
NYISO proposes a scheduling of wind resources through POE,

30Total 30Total
Respy,;"" = Multpy 2 *

( ZRAai IPPSchedulei - ZRAaiPOEXXForecasti) - RAaResCapab,vmyi (1)

The POE 95 forecast is subtracted from the energy schedule
of the resource to find the “at risk energy”. For example, if the
energy schedule were 100MW and POE 95 forecast were
50MW, then the at-risk energy would be SOMW. This is then
multiplied by a reserve requirement multiplier for
conservatism and then a transmission headroom is subtracted
to find the resultant reserve requirement [13]. The current
NYISO formulation uses a static POE which was covered
previously, where having a high threshold of reliability at the
proposed reserve procurement level of a static POE 95 may not
be economically viable as the implementation of more OSW
generation infrastructure increases, or the generation goal of 9
GW of generation comes to fruition [11]. A methodology for
optimizing OSW generation reserves in terms of both grid
reliability and economic efficiency is needed. This approach
leverages multiple POE values over a 24-hour period to reduce
reserve demand without compromising system reliability. This
is achieved by utilizing the probability of OSW generation
meeting or exceeding a specified distribution limit. Given that
the distance between each POE megawatt value does not
maintain a static distribution throughout the 24-hour period, a
method is introduced that capitalizes on this variability. This
method adjusts the reserve requirement POE threshold in one-
to-three-hour time intervals or in each time interval based on
the percentile distribution, thereby increasing available reserve
resources. This dynamic POE reserve procurement process
utilizes the predicted generation values at POE 50 and potential
generation values at POE 80, POE 85, POE 90, and POE 95 to
determine the expected reserve demand per interval. For
instance, in a predicted 24-hour period, the reserve demand at
each setting can be observed in Fig. 5. In Fig. 5, the 9 GW
OSW generation is used to illustrate the power generation
values that may need to be reserved by Year 2035. Each POE
is associated with its own uncertainty factor, with the POE 80
setting having the highest level of uncertainty among the set of
four values. The impact of the selected POE is contingent upon
the numerical difference between the scheduled and reserved
POE. The difference between POE 50 to POE 90 of Fig. 3
results in a lesser shift in reserve demands compared to a
forecast with a tighter distribution. Employing POE 95 could
supersede the use of POE 80 as the value of reliability found
in an elevated reserve allocation and its economics outweigh
the risk and economic benefit when using POE 80.
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This compares the risk assessed per POE as well as the
economic viability of the necessary reserves. In scenarios
where the POE distribution diverges excessively from the
forecasted generation, resulting in a reserve demand that may
exceed the system’s capabilities despite modifying the POE
boundary, the wind generation can be curtailed to a level that
the system can manage. This adjustment ensures the system’s
behavior remains within manageable limits.

III.  PROJECTED DYNAMIC RESERVE REQUIREMENT

The adjustment of the POE reserve boundary is contingent
upon the probability and its corresponding value, expressed in
either MWs or as a percentage of the nameplate capacity. This
process employs a base POE that modifies its position in
response to the value discrepancy present within the model
from adjacent POE traces. The value discrepancy serves as a set
point, which can be altered based on economic factors and the
associated reliability. This approach allows for dynamic
adjustments to the POE reserve boundary, facilitating optimal
system performance under varying conditions.

A. Changing POE for Reserve Procurement

The difference between the set POE value and the adjacent
POE values is the main deterministic factor that weighs the risk
of changing the reserve procurement boundary as described in
[13], [14]. VD, is a parameter for the value difference between
the set base POE value, POE;{°F, and the p™ adjacent POEs

for the given time interval the POE above and below shown by



{i-1,i+1}. Based on the value distribution in [9], POEShift is a
variable derived on the sum of the distribution looking at a
given set of time intervals ahead, i.e., three intervals in this
study, which must be lower than the set point that is
predetermined. When the value difference across the time
specified is outside of the margin, the Reserve POE is set
greater or lower than its current. If the value difference is still
within the acceptable boundary, then the Reserve POE will
remain unchanged for the coming reserve period. Setpoint,, is
a predetermined threshold parameter that is compared with the
VD,,and its outside the setting this creates the difference
needed to move the reserve boundary. In the example in Fig.
7, the reserve boundary is chosen between POE 90 and POE
85 where it is seen that the boundary changes levels based on
the distribution present in those time intervals.

_ BASE Adjacent
VD, = POESEE — POE, 4T, )
1, Setpointy, = Y3 _111VDpy,
POEShift, = -1, —Setpoint,; < 33 _1+1V Dy, 3)
0, else
RESERVE _ RESERVE
POEp.t - POEp+P0EShiftt,t—1 (4)

In Fig. 7, the variable POE is depicted by the red trace. It
dynamically adjusts its setting based on the difference between
POE 90 and POE 85. This adjustment effectively reduces the
overall reserve requirement throughout the forecasted day, a
process that can be executed in real-time as the accuracy of the
prediction improves. The proposed methodology is versatile
and can be applied to a variety of POEs, contingent upon the
degree of specificity required by the application. The threshold
at which the POE will alter can also be fine-tuned based on the
distribution of the forecasted days and/or factor in the reserve
price or other constraints before shifting. As previously
discussed, if the distribution from the scheduled POES50 to the
lowest acceptable reserve POE (e.g., POE 80) is excessively
large to reserve, then the schedule may be curtailed based on
the distributions beneath it on the given day. This strategy
facilitates the optimization of both schedule and reserve,
predicated on the probability of generation realization. It
encompasses both the method of reserve procurement and the
potential necessity for generation curtailment.

B. POE Based Thresehold Procurement

In the context of power system reliability, a threshold based
on the POE is proposed. This approach emphasizes reliability
by utilizing the minimum forecasted generation within a given
POE reserve period as the procurement basis. As illustrated in
Fig. 8, the reserve base is defined by POE 90, while the
threshold is determined every three hours based on the lowest
forecasted generation. This methodology can be integrated
with a variable POE to mitigate risk at each POE level, thereby
facilitating an adjustment to balance economic considerations.
This approach provides a robust framework for maintaining
system reliability while managing economic trade-offs. The
proposed procurement strategy can function independently by
adopting a POE of 90 or 95, as suggested in the referenced
literature [13]. Alternatively, it can be integrated with the
variable POE approach by selecting the minimum value from
any given POE. This flexibility allows for a more

comprehensive and adaptable procurement process, catering to
varying system requirements and conditions.
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C. Effect of Reserve Procurement

In the context of the Variable POE method and employing
a variation difference set point below 5% of the nameplate
capacity for any given time interval, it was observed that the
reserve requirements were reduced on a month-to-month basis
compared to a static POE setting of 90 or 95. Although this
approach may compromise potential reliability, the test dates
utilizing this model did not exhibit actual nameplate power
generation falling below the determined POE setting, except
for days that included invalid data during the training phase.
The reliability faults could be resolved with the previously
mentioned additional constraints and varying shift boundaries
based on the predicted load profile. Table 3 illustrates the
average savings in terms of percentage of nameplate capacity
from three distinct time periods when using POE 90 as the set
point.

POE Based Thresehold Procurement
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Figure 8. POE Threshold Reserve Procurement Setting.
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Table 3. Mean Reserve Percentage of Nameplate Capacity POE 90 versus
variable POE reserve setting.

Test Mean Reserve % | Mean Reserve % at Reserve Demand
Day at POE 90 Variable POE Reduction in %
1 25.15 19.85 5.35
2 31.62 28.11 3.51
3 20.41 12.73 7.68




The decrease in reserve demand results in a reduction in
economic costs and based on the actual wind speeds observed
on the test periods, it provided equivalent scheduled reliability
without breaching the reserve procurement boundary.
Considering New York’s policy goal of 9GW OSW, under the
assumption of uniform performance irrespective of
geographical location and efficiency differences, a variation as
much as five percent translates to a potential reserve savings
of 450MW. The adoption of this method may incur higher
computational costs, contingent on the current prediction
models in use, compared to the strategies of reserving for total
generation or opting for a static POE. Reserving for total
generation could lead to an exceedingly high reserve demand
and economic cost, which is likely to escalate as the
infrastructure expands. This could necessitate curtailing the
generation based on the reserve limit or economic limit at the
time, inherently forfeiting the full capability of available
offshore wind generation. The advantage of a variable reserve
POE, as opposed to the total generation reserve, is that a
variable POE might be able to better exploit the OSW
generation capability. It is not constrained by a reservation of
total generation because it is predicated on the calculated
probability that there will not be an unexpected total or partial
generation loss within a reserve period. This provides a
confident level of security while being able to supply more
overall power to the grid. The concept of the static POE reserve
is a straightforward method but fails to leverage the available
generation prediction distributions. As can be observed,
fluctuations in distribution across an hour or across 24 hours
may incur a higher cost than that of a variable POE that
accounts for this variability and optimizes based on it. The
implementation of a variable POE introduces certain
complexities, including the determination of the differential
level to modify the POE, the decision-making process for
curtailing, and potential impacts on system reliability that were
not evident in the conducted simulations. However, the
economic advantages of this approach could potentially
surpass the drawbacks, particularly when juxtaposed with the
reserve methodologies currently proposed within the industry.

IV. CONCLUSION

The adjustment of the POE reserve limits, facilitated by
monitoring the fluctuation in POE values over a 24-hour cycle,
presents an opportunity to decrease reserve procurement
requirement to manage OSW generation uncertainties without
significantly compromising the power system’s reliability.
This strategy ensures that the generation probability
consistently satisfies or surpasses the predetermined points,
thereby improving the efficiency of wind energy production.
The setpoints are determined based on the available data. The
optimization of wind generation via its reserves could
potentially enable increased market participation, thereby
contributing to the system’s sustainability and reliability as the
shift away from fossil fuels persists. The outcomes of this
research could have significant implications for the future of
wind energy, providing more efficient and dependable wind
power generation. Future enhancements of this methodology
could encompass the optimization of the energy schedule, also
referred to as POE 50 in preceding sections. The optimization

of both the schedule curve and the reserve requirement could
potentially provide additional economic benefits with
reliability, while responding to the evolving load demands in
both the day-ahead market forecasts and the real-time
optimization horizon.
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