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Abstract. We consider the spatially homogeneous Landau equation with Coulomb potential. We
show short time propagation of smallness in LP norms for p > 3/2 and instantaneous regularization
in Sobolev spaces. This yields new short time quantitative a priori estimates that are unconditional
near equilibrium. We combine these estimates with existing literature on global well-posedness for
regular data to extend the well-posedness theory to small LP data with p arbitrarily close to 3/2.
The threshold p = 3/2 agrees with previous work on conditional regularity for the Landau equation in
the far-from-equilibrium regime. In light of the monotonicity of the Fisher information shown in the
recent preprint (arXiv:2311.09420), our primary nonlinear regularization estimate holds even in the
far-from-equilibrium regime. As a consequence, we obtain exponential convergence to equilibrium
for suitably localized solutions in every Sobolev norm.
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1. Introduction. The Landau-Coulomb equation is a fundamental model in
plasma physics, describing the statistical behavior of particles in a collisional plasma.
Despite its widespread use, the mathematical understanding of this equation has been
limited, particularly with regard to the existence of global-in-time smooth solutions.
In this paper, we consider the spatially homogeneous version of the Landau—Coulomb,
written as

(1.1) 0ef(t,v) = Q(f, f)(t.v),  (tv) € (0,00) x R?,

where f:R* x R? = RT is the unknown distribution and Q is the collision operator
given by

(1.2)
v ':i : L(U_U*) - v z) = 29z
o 0=+ ([ L I =

8w |[v — vyl

with the standard notation f = f(v), f« = f(vs). While (1.1) is not as physically
relevant as the full inhomogeneous model, the study of (1.1) already provides several
mathematical challenges, but is more tractable. Indeed, (1.1) may be rewritten as the
following quasi-linear, divergence form parabolic equation with nonlocal coefficients:
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(1.3) O f(t,0) =V - (A[fIVf = Valf]f),
where the coefficients A and a are given by

(1.4) T P G A PR o S B

87|y 47 |v|

Tt is also possible to rewrite (1.3) in nondivergence form as
Ouf (t,v) = A[f]: V2 f + f,

which highlights the main challenge in studying this equation, namely the competition
between the reaction term, which is known to cause blow-up, and the nonlinear,
nonlocal diffusion term.

Complete existence theory for solutions to (1.1) has been established only for
weak solutions. In [25], Villani constructed global-in-time very weak solutions (often
referred to as H-solutions) to (1.1) for a general initial datum. Subsequently, in [9],
Desvillettes used propagation of L!'-moments to clarify that Villani’s solutions satisfy
(1.1) in a standard weak sense. The moment estimates were then improved in [4] and
used to provide quantitative rates of decay to equilibrium in L'. Notably, the question
of uniqueness of these solutions remains open, even for a regular initial datum.

The uniqueness of weak solutions with bounded mass, momentum, energy, and
entropy which further lie in L(0,T; L) was established by Fournier in [11] using
probabilistic methods. On the other hand, the authors of [6] relaxed the boundedness
assumption to L (0,T; LP) for p > 3/2, assuming the initial datum decays sufficiently
fast. However, these results do not necessarily apply to the global solutions construc-
ted by Villani, as it is currently unknown whether general weak solutions belong to
either integrability class.

Few unconditional regularity results exist for general weak solutions of (1.3). The
authors of [14] showed partial regularity in time through the use of a De Giorgi-type
iteration, which takes advantage of the control of entropy to determine a dimensional
bound on the set of singular times. The results were then extended in [15] to provide
a bound on the dimension of the set of singular points in space-time. In a separate
work, [10] demonstrated the existence of a monotone functional that leads to the
eventual smoothness of general weak solutions. If the initial value is close to the
equilibrium in a weighted H' space, the authors were able to show global-in-time
well-posedness. Furthermore, the article [5] discusses a global-in-time existence result
for the inhomogeneous Landau equation, assuming closeness to the equilibrium in a
weighted H!L2-space. The proof in [5] uses spectral methods, which are significantly
more complicated for general LP spaces when p # 2. We would also like to mention
the related result in [21]: there, the authors proved that smooth solutions for the
inhomogeneous Landau—-Coulomb equation exist globally in time for initial data close
to equilibrium in a weighted L°° sense. The method relies upon pointwise estimates
using a De Giorgi iteration to close their estimates.

While unconditional regularity results remain elusive, various conditional results
have been established based on classical elliptic-parabolic iteration methods that high-
light the smoothing effects of the diffusion in (1.3). In [17], the second author and
Guillen used barrier arguments to obtain pointwise bounds for radially symmetric
solutions, conditional to the L>°(0,7; L?) norm with p > 3/2. This is a strong enough
estimate to build global-in-time solutions to a related model, the isotropic Landau
equation introduced in [22] (see also [16]), but not for (1.3). In [24], Silvestre treated
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(1.3) as a nondivergence form parabolic equation and applied arguments inspired by
Krylov and Safanov to deduce a priori pointwise estimates for smooth solutions to
(1.3). This provides unconditional bounds in the case of moderately soft potentials,
but only provides bounds conditional on a weighted L*(0,T’; LP) norm for p > 3/2 of
the solution for Coulomb potential. In a subsequent work [18], the authors used the
theory of A, weights and a Moser-type iteration to obtain pointwise bounds for weak
solutions, provided solutions belong to L*°(0,T’; L?) norm for p > 3/2.

The purpose of this paper is to show unconditional regularization effects and
pointwise bounds when initial data are close to equilibrium in LP with p arbitrarily
close to 3/2. Such unconditional, quantitative estimates are strong enough to prove
existence of global-in-time classical solutions. This provides the first proof of global
well-posedness near equilibrium for initial data in low LP spaces and without small-
ness in weighted norms. Previous results requireed initial data near equilibrium in a
weighted L? space [5], a weighted H' space [10], or a weighted L> space [21]. The
restriction p > 3/2 is essential to our arguments, which hinge upon short time smooth-
ing estimates. Our smoothing estimates hold when the diffusion dominates on short
time scales. This occurs in subcritical norms; the coefficient A[f] in (1.4) is bounded
for f € L'NL? with p > % Moreover, by the Gagliardo—Sobolev—Nirenberg inequality,
the reaction term for g > 0 can be bounded as

2/3 5
REACTION = / @Prdv < ( / g>/? dv) / ‘vgp/ 2‘ dv=||g|| za/2 x “DIFFUSION”.
R3 R3

R3
This shows that the diffusion will control the reaction if ||g||; /> is small. We will
derive an inequality similar to the preceding one for ¢ = f — p with the Landau
diffusion term (which involves weights), and use it to quantitatively track the time
evolution of the LP norm for a short time. An iteration argument inspired by the De
Giorgi method will yield smoothing estimates. Qualitatively, this implies that if the
initial datum is small in some L? spaces (p > 3/2), the corresponding solution will
be regular and small (in all Sobolev norms) after some time passes. Uniqueness will
allow us to piece together the local-in-time solution constructed here with the global-
in-time solution for small smooth data constructed in [10], or alternatively in [5] or
[21]. This yields a single global-in-time solution for small L? data with p arbitrarily
close to 3/2. Let us also stress that we require smallness only for f, not for moments
of f.

Before presenting our main result, we first establish some notation and revisit
some basic properties of (1.1). We use the bracket convention (v) := (1 + [v|*)2 and
define the L2, norm for p € [1,00) and m € R as follows:

191 a3 [ ISP ()" v Sl gy = sup 1) o)™
R3 vER3
We define the weighted Sobolev norm HY (R3) as

2k 3y = o 7 2d .
g = 2 [ 107 (@ E D) aw

la| <k

Next, we recall that (1.3) formally conserves mass, momentum, and energy:

d 1
— v | f(t,v) dv=0.
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Moreover, solutions to (1.3) have decreasing Boltzmann entropy:

d

— 1 dv <0.

i Joo flog(f) dv <
Consequently, the steady states of (1.3) may be characterized explicitly: f € L is a
steady state of (1.3) if and only if f is a Maxwellian distribution, given by

p _lv—ul?
up,u,e(v)zwe o

where p >0 is the mass, u € R? is the mean velocity, and 6 > 0 is the temperature of
the plasma. These parameters are constant for any reasonable solution of (1.3) due
to conservation of mass, momentum, and energy. Further, because (1.3) is translation
invariant and enjoys a two-parameter scaling invariance, we will assume that our
initial datum fjy(v) satisfies the normalization

1 1
(1.5) / v | folv)dv={0],
B2\ |v|? 3

which fixes the corresponding Maxwellian with the same mass, momentum, and energy
as

Jv]?

p(v) = (2m) "2 2.

We now present the main result.

THEOREM 1.1. Fiz p> % and let m be any positive number greater than

I9p—1 —3/2
max (p 7 max (1,2p(p /2) ),55).
2p—3 p?—2p+3/2

For any given M, H, and fi,, € L, N LP(R®) satisfying

il <M and [ folog(fin)| dv< B,
there exists § = 6(p,m, M, H) >0 such that if

/ |flnfﬂ‘p§57
R3

(1.3) admits a unique global classical solution on (0,00) x R® with initial datum fi,.
This solution satisfies, for t >0, the smoothing estimate

(1.6) 1f(t)|lLe < C(p,m, M, H) (1+t—ﬁ>
for some v >0 that only depends on p and m:

AL 036-3)

Theorem 1.1 provides further evidence that all L norms for p > 3/2 are subcritical
in the sense that diffusive effects dominate. Combined with the conditional regularity
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results in [17, 18, 24] mentioned above, this emphasizes the role of the L3/2 norm as
a sort of critical norm for the equation. If one relies on the analogy to semilinear
parabolic problems, one could expect blow-up in LP norms for 1 < p < 3/2, since the
semilinear heat equation is known to cause blow-up in finite time for supercritical
norms (e.g., LP with p < 3/2); see [12]. Finite time blow-up in L? norms for 1 <p <
3/2, however, seems unrealistic for (1.3), since the L! norm is conserved. Theorem 1.1
also clarifies when the analogy of (1.3) to semilinear equations remains valid and
provides useful intuition. On the other hand, we believe that Theorem 1.1 should
be true also for p arbitrarily close to one, but the proof seems at the moment out of
reach.

Since we are in the subcritical regime, heuristically, the solution obtained in The-
orem 1.1 is expected to behave similarly to solutions to the heat equation, with a
correction that takes into account the degeneracy of the diffusion coefficient A[f]
at large velocities. In fact, ignoring the m dependence of the constant C' and letting
m — 0o in the exponent 7, the smoothing estimate in (1.6) approaches the well-known
LP — L™ estimate for the heat equation on R?:

1€ finll ;oo < C)E 3 | finlr-

The nonlinear dependence of the small parameter § from the size of the initial data
in L!, and LlogL should be interpreted as follows: if a sequence of initial data fX
converges to p in LP and remains equibounded in Ll and LlogL, then for suffi-
ciently large k, these initial data will admit global classical solutions according to
Theorem 1.1.

Unlike the results of [10], [21], and [5], Theorem 1.1 does not require smallness
for the moments of the initial data. This distinction is subtle but nontrivial. Our
method uses weighted spaces only to quantify the strength of the diffusion in our
energy estimates, not to bound our energy functional. This is possible thanks to
several weighted Sobolev inequalities combined with moment estimates.

After the completion of this manuscript, a breakthrough result appeared in [19],
where the authors show monotonicity of the Fisher information for smooth solutions
to (1.3) with Gaussian decay at infinity. Since the Fisher information directly controls
the L3 norm, a version of the nonlinear regularization estimate in Theorem 1.1 for
p < 3 applies even in the far-from-equilibrium regime and uniformly in time. Indeed,
combining the p =2 regularization estimate of Proposition 4.1 with the monotonicity
of the Fisher information in [19, Theorem 1.2] and the convergence to equilibrium in
weighted L! norms [4, Theorem 2], we are able to obtain long time asymptotics for a
large class of solutions in strong norms.

COROLLARY 1.2. Let f;, satisfy the conditions of [19, Theorem 1.2]; in particular,
fin € C' has bounded Fisher information and is bounded above by a Mazwellian.
Then, for any m > 9, there is a constant Cy >0 depending only on m and the Fisher
information of the initial data such that for any 1 <t,

9 _
Tm—9

1
L’NL

(1.7) 1) = pll poe < CollF(E) = el

In particular, for some constants Ca, \g > 0 depending only on the initial Fisher
information and initial L* (exp(3 (v}l/z) dv) norm,

117
(1.8) 1f(8) = pll oo < Caexp (—AOW)
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We remark that the uniform bound on the Fisher information of f implies that the
L3 norm of f — p is uniformly bounded in time, but not necessarily small. Therefore,
while the ODE argument used in Lemma 3.1 does not directly apply, our standard
L? energy estimate used frequently below yields

T T
sup fQ(t)dv—l—/ / |V dvdtgc/ f3dv,
T-1<t<T JR3 T—1JR3 T—1 JR3

where the right-hand side is bounded uniformly in time by the Fisher information of
f. Consequently, the same quantity is bounded uniformly in time for h = f — p, which
bounds the functional Fy appearing in the estimate in Proposition 4.1. Therefore,
applying Proposition 4.1 with p=2 and m > 9 on the time interval [T — 1, T]—which
can be done using translation invariance in time—one obtains the long time bound
(1.7), where only moments appear on the right-hand side. Applying the asymptotic
behavior of the L' norm shown in [4, Theorem 2], one deduces (1.8). Using standard
L? estimates and the asymptotic L bound in (1.8), the convergence also holds in
Hfj1 for all k>0 and all m >0, with the same rate (see Lemma 5.1 for the k =1 case,
which is easily generalized). Many variants of Corollary 1.2 are possible by applying
the various convergence to equilibrium results present in the literature (e.g., [5] and
the references therein).

Let us state the precise definition of solution found in Theorem 1.1: the function
f:Rt x R® - R* is a global solution to (1.3) with initial datum f;, in the following
sense:

For each T>0, f€ C(0,T; L' N LP) N L>(0,T;LL) N LY(0,T; L>).

For each 0 <t < T, f € L>®(¢t,T; L N H3).

This f solves (1.3) in the sense of distributions on [0,00) x R3, i.e., for each
p € C([0,00) x R?),

/]R3 finp(0)dv — /000 /}R3 forpdudt

:/OO/ V2p: A[f]f + 2V - Va[f]f dvdt.
0 R3

This f is a classical solution of (1.3) on (0,00) x R3 and satisfies the short
time smoothing estimate (1.6).

The nonlinear nature of (1.3) and the low regularity of the initial data f;;, cause
some minor difficulties in stating precisely what notion of solution holds up to time
0. To illustrate the main ideas of Theorem 1.1 and provide the main step of its proof,
we isolate the result of Theorem 1.1 for Schwartz class initial data in the following
proposition.

ProposITION 1.3. Fiz p, m, H, M, and fi;n, as in Theorem 1.1 and suppose
additionally that fi, € S(R3). Then, there is a 6 = §(p,m,H,M) > 0 such that
| fin — pllze < 0 implies there is a unique global-in-time solution f:RT x R3 — R*
to (1.3) satisfying f € C([0,00);LP). Furthermore, f is regular in the sense that
feC= (R S(R?)).

For h:= f — p a Schwartz class solution, we show that h(¢,v) is small in L after
some time tg, where % is explicitly computed. The method used here is a variation
of an ODE argument introduced by Corrias and Perthame in [7] for the Keller—Segel
model. Higher regularity estimates then imply the smallness of h(t) in a weighted
Sobolev norm for ¢ € (tp,3tp). This quantitative control over higher regularity of h
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enables us to apply a result from [10] (summarized in Theorem 2.2 below) to conclude
that there is a global solution to (1.3) with initial datum f(2¢y). The uniqueness
result of [11] (or [6]) allows us to piece together the local-in-time solution constructed
in the time interval (0,2¢y) with the global solution on (2ty,+00) to obtain a single
global-in-time solution with initial datum f;,. Finally, we remove the Schwartz class
assumption using a compactness argument and obtain Theorem 1.1.

The manuscript is organized as follows. In section 2, we list known results that
are central to our proof. In section 3, we analyze the evolution of f—p in LP and show
that the L? norm remains small for a short time. In section 4, we use the De Giorgi
method to prove short time smoothing estimates. Qualitatively, this implies that if
the initial datum has small L? norm, the solution will have small L° norm after some
time passes. In section 5, we prove Proposition 1.3, which concludes the argument for
Schwartz class initial data. In section 6, we deduce Theorem 1.1 from Proposition 1.3
using a compactness argument to remove the Schwartz class assumption on the initial
data.

2. Preliminaries.

2.1. Preliminary results. We collect here known results that are used without
proof. We begin with a local-in-time well-posedness result of Henderson, Snelson, and
Tarfulea [20]. We present the result in a simplified form, suitable for our purposes.

THEOREM 2.1 ([20, Theorems 1.1 and 1.2]). Suppose fi, € S(R?) is nonnegative.
Then, there is a time 0 < T* < oo and a function f : [0,7%) x R® — R* with
f € C®(0,T*;S(R?)) such that [0,T*) is the mazimal time interval on which f is
the unique classical solution to (1.3) with initial datum f;,. Furthermore, if T* < oo,
then f satisfies

lim
t AT

We continue with a global-in-time existence result for small data, which is a

simplified version of a result shown by Desvillettes, He, and Jiang in [10].

(@)L = +o0.

THEOREM 2.2 ([10, Proposition 1.2]). Suppose || finllziogz + || finllr1, < K and
fin is a nonnegative initial datum. Let p be the corresponding Mazwellian. Then,

there is an €1 =¢1(K) >0 and C=C(K) >0 such that if

10V fin = V) )| o+ i = 1)) |2 <21,
then there is a global solution f:RT x R — R™* to (1.3), satisfying

(V6= 002 o+ 100 = )62 2 < e

We conclude this section by recalling a uniqueness result due to Fournier.

THEOREM 2.3 ([11, Theorem 2]). Suppose f, g:[0,T] x R — R are solutions
to (1.3) in the sense of distributions with the same initial datum f;, € Ly and both
belong to L>°(0,T; L) N LY(0,T;L>°). Then, f(t)=g(t) for all 0 <t <T.

Very frequently in the rest of the manuscript we will use the following weighted
Lebesgue interpolation result, which is a simple consequence of Hélder’s inequality.

LEMMA 2.4. Suppose 6 € (0,1), 1 < q,p1,p2 < 00, and B,a1,as € R satisfy the
relations

1 6 1-9

qg P11 po

and p=~0a;+ (1—-0)as.
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a2’

1) £l <@ £l || @ £ e

The following weighted Sobolev-type inequality will be crucial in the proof of
regularization. The proof is in the appendix.

Then, for any f € LE, NLE2, f € LE and

LEMMA 2.5. Suppose g:R3 — R is Schwartz class and let 1 < s < 6. Then, there
are unversal constants C1(s) and Ca(s) such that

(/RB|g|6<v>—9 dv) <01/ Vo) (0)~% dv+Co </ ol dv)%.

The following lemma collects standard estimates for the coefficients A and Va
defined in (1.4). The following lemma controls the degenerate diffusion associated
to (1.3) and quantifies the parabolic nature associated to the Landau equation when
written in the form (1.3).

LEMMA 2.6 (from [3, Lemma 3.1], [13, Lemma 2.1], [24, Lemma 3.2]). Suppose
f € LY(R3) is nonnegative, satisfies the normalization (1.5), and has finite Boltzmann
entropy, [ flog(f) < H. Then, there is a constant co = co(H) such that A[f] satisfies
the pointwise bound,

Furthermore, if f € LP for 3/2 <p < oo, then

w\w
N\w

ALz~ <CHfII“’ YT and (|Valf ]||L3<C||f|\“ Pl

Moreover, if 3<p<oo and 1 < q< oo, then

<Cllfllza-

IVal )l < CIFIET ”Hfll“p Vo and  [[VRalf]

We will frequently use that (1.3) propagates L!'-moments of any order. More
precisely, L'-moments of any order s > 2 grow at most linearly in time.

LEMMA 2.7 ([10, Lemma 2.1]). Let ¢ > ¥, Fiz a nonnegative initial datum
fin € LN Llog L such that [ findv=1, [ fin [v|* dv=3. Suppose f:R® =R is any

weak solution of (1.3) and let h:= f — p. Then for all 0 € [0,€] and g < ge,p with

20% — 250 + 57 0 0
21 == "  (1--= el
(2.1) 2. 18(¢ —2) ( £> 0’

there exists a constant Cs = C5(0,¢, K), where K is such that ||fm||L1 1 finll Lrog 2 <
K, such that

(2.2) vt >0, ||h(t,~)||Lé < C5(1+1t)9.

3. Local-in-time propagation of L? norms. In this section, we study the
evolution of LP norms for % <p<ooof h=f—pu, where f is a solution to (1.3) and p
is the corresponding Maxwellian. We show that the LP norms of initial datum h;, are
propagated by smooth solutions of (1.3), at least for some short time interval [0, Tp].
Since we work with smooth solutions, the calculations in this section are rigorous
estimates. We note that for p =2 a version of the following estimate has previously
appeared as an a priori bound in [1].
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2
is a monnegative Schwartz class function, satZisfying the normalization (1.5) and the
bounds

LEMMA 3.1. Fiz 2 <p < oo, m > %;’:é, Hc R, and M € Rt. Suppose fin

finlloy, <M and [ fonlog(fin)| do < B,
R

Let f:]0,T*) = R* be the unique Schwartz class solution to (1.3) with initial datum
fin on its mazimal interval of existence [0,T*). Then, there is an eo(m,p, H, M)
sufficiently small such that for any 0 < € < &g, there are § = é(e,m,p, H, M) and
To=To(e,m,p, H, M) € (0,1] such that for h:= f — u, if |hin|}, <0 then

(31) wp (ol + 5 e

0<t<min(Ty,T*

2
dvds) <e,

where c¢o = co(H) is the constant from Lemma 2.6. Moreover, Ty may be chosen such
that

C(m,p,H,M)€17a gTO;
where o= (1 — zl) + 3@7171)) €(0,1).

Remark 3.2. In the proof of Lemma 3.1, we study the evolution of the LP norm
of h via an ODE method. The LP norm satisfies a differential inequality of the form

y <y+y*,  ae(0,1).

For small data, the sublinear evolution dominates and restricts our estimate to a small
time interval (of order e'~%). Lemma 3.1 provides a quantitative estimate on how
(1.3) preserves LP-smallness for a short amount of time. This is the first step toward
a global-in-time existence result for small L? initial data.

Proof. We start by noting that u is a steady state solution to (1.3), so that h
satisfies

(3.2) Oth =V - (A[f]Vh — Va[f]h) + A[h] : V2 + hy.

We estimate the positive and negative parts of h separately. Writing h = h™ — h™,
we first test (3.2) with (h*)P~L. Integrating by parts and using that h* and h~ have
disjoint support to rearrange terms yields

1 d[|pt ()7 N 4(p—1)
P dt p?

_r-l / (W ge+ 21 / (P*)Ppudv + / (h*)P=" (A[h]: V?p) do.
p R3 p R3 R3

/ A[fIV(RH)P/2 .V (R )P/ do
]Rl}

Second, testing (3.2) with (h~)P~! and a similar rearrangement yields

1A=},  4p-—1) —\p/ —\p/

, % LY 4 2 RgA[f]V(h /2. (hT)P/2 do
__p—l —\p+1 2p—1 - o —\p—1 w2
== Rg(h )P do + ” /Rs(h )P udv A3(h )P (A[R] : V) do.
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Using (h*)PT — (h=)PTt =h|h|” and (RT)P + (h™)P = |h|”, we add to obtain
1 d|r@I L,

4(p—1
0 [ A A an
RS

:p—_l/ R k[P dv

L2

P /|h|pudv+/ [(hF)P=1 = (h™)P~1] (A[R] : V2p) do
<u \h|”“d + /|h\p,udv+/ \h[P~H AR : V2| do

b
711+IQ+13.

Beginning with I7, we use Holder and a weighted Sobolev inequality to get

/RS |h\p+1 dv:/Rs (igz//22>2<v>3|h| dv
< (L ()" e ao) h ([ e ao)
3

2 4/3 2/
S [Cl/ V'hlp/Q‘ <'U>73 d'U+CQ< |h‘3p/4 dv) ] (/ |h|3/2 <U>9/2 d'l)) ,
R3 R3 R3

using Lemma 2.5 with s =3/2. Holder’s inequality and that p > 3/2 yield

2/3

—3/2

2/3 3(111*1) p—1 %prfl
P2 ) < P dv Bl (0) 275372 du
I
R3 R3 R3
4/3 ;(7;7:1{)3 3(1)]11)
PPt du) < AP dv h| dv .
|
R3 R3 R3

Summarizing, the term I; is bounded as

Mw

L <G | = Cal Bl ()™ 1.

W2 | IR
The term I5 is bounded via
I <2 |h, ) oo

The term I3 is bound using Holder’s inequality, Lemma 2.6, and conservation of mass,
as

_l =P

Iy < AR = RIS el < il RIS R0 O 4] 30D
1—i4_ 1
cE)nfl ),

In summary, we have shown

d
SO+ [ AT 0P Va7 o

<) ( (L[] o ) = oy 157

+ [AllZe 1B ()™ 1 + IPAL, + 117 723>,
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where o= (1— % + ﬁ) The coercivity estimate from Lemma 2.6 and the moment

estimates from Lemma 2.7 then imply that there are constants M = M (M, m, H) and
¢o = co(H) for which

O < Alf] and s R
< > 0<t<min(T*,1)

1<M

7n

and thus for a fixed constant C'= C(p), we have

d - s 73 et
vy = ([ ) <co—0||h|< i’ )

+ C(M + DAY, +C’||h||
for 0 <t <min(1,7%). Introducing y, G, and N as

v =IO, and 6= ([ [VAPRRG T a)

)

we have shown in (3.3) that y satisfies the differential inequality

p—

Ny)i= ( - Gy

to\c»

=

(34) Y < ~GUN () + OO + 1)y + Oy

We prefer to study (3.4) in integral form: Integrating from 0 to ¢, we find for any
0<t<min(T*,1),

(35 y)<y+C / (O + 1)y(s) + y(s)* ds — / G(s)N(y(s)) ds.

We are now ready to fix our choice of parameters €y, Tp, and J. First, we choose gq
as

3(p—1)
€0 = ((20)3(2_1)]\4%3) , so that N(y) > %0 if and only if y<eg.

Second, for any € € (0,ep), we pick Ty and 0 as
(3.6) Ty = (3C) "' min ((M+ 1)_1 751*‘1) and d<e/3.

The choice of § guarantees yo < € and consequently N (yo) > ¢o/2. Therefore, if yo < 6,
by continuity of y, either y(¢) < e for all 0 < ¢ < min(T*,1) or there is a first time
to € (0,min(7™*,1)) such that y(tg) = . By definition of ¢y, we then have y(t) < e
and consequently N (y(t)) > ¢o/2 for 0 <t < ty. So, for any 0 < ¢ < min(to,Tp), we
combine (3.5) with the choice of Tj in (3.6) and the nonnegativity of G to find

t

(3.7) y(t)<€/3+C(M+1)5t+Ceat—%0/ Gls) di <e.
0

We find tg > T and rearranging (3.7) yields the desired estimate

co min(Ty,T™)
sup y(t) + 7/ G(s) dt<e.
0<t<min(To,T*) 2 0

The explicit choice of Tp in (3.6) yields the claimed asymptotic behavior. O
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4. Quantitative L regularization. In this section, we prove a quantitative
regularization estimate for the L norm of smooth solutions to (1.3). More precisely,
we show that for smooth solutions to (1.3), the L® norm is controlled by the energy
functional that appears in (3.1). Our ultimate goal is to construct solutions to (1.3)
for initial data that are close to equilibrium in LP, even for rough profiles. Hence,
we ensure that the estimate depends only on L'-moments and entropy, making the
estimate independent of the solution’s smoothness. The proof, inspired by [2], is a
modification of the iteration procedure initially introduced by De Giorgi in [8] for
the study of elliptic equations. A similar version of our estimates has already been
obtained by Silvestre in [24]. One could possibly replace the forthcoming estimates
with Silvestre’s estimates to obtain a similar result to Theorem 1.1, where smallness is
instead required in a weighted LP space. We prefer to assume smallness in the strictly
weaker unweighted LP norm and so prove our own regularization estimates.

ProrosITION 4.1. Fiz p > %, m > %;’:% , and H € R. Suppose fi, is a nonneg-

ative Schwartz class function, satisfying the normalization (1.5) and the bound

/R Jinlog(fin)| dv < H.

Let f:[0,T*) — R be the unique Schwartz class solution to (1.3) with initial datum
fin and T* > 0 its mazximal time of existence. Then, for vy, By, 1, and B2, defined in
terms of m and p via

(4.1)
Bo=

1 2 3 3 2p—3 9(p—-1)
—_— = —_-— — — = — d = —_
3(]7*1), ﬂl 62 ) an 0 |:m 2p73 )

3 m’ m 3m
there is a constant C = C(p,m, H) such that for any 0 <t <min(1,T*) there holds
8 B2 £ Ba
10| oo oy < O E" M+ Eg™" M3

Bo+81

f—l B2 2 B2 1371 _ 1 B2
+ BT M 4 By M3 4+ EJT T TR M |,

where M and Ey are given by

Mi= s ()]s
0<t<min(1,7*)
T* 2
Fo:=  sup \|h(t)\|§,,+/ /(v>_3‘V|h\p/2‘ dv d.
0<t<min(1,T*) 0 R3

The rest of this section is devoted to the proof of Proposition 4.1, which consists
of three steps. In Step 1 and Step 2 we derive an energy estimate relating the energy
of different level sets. In Step 3, we iterate this inequality to conclude the proof.

Step 1: Energy estimate for level set functions (differential form). For any fixed
£ e RT, we consider the part of |h| above £, denoted by

he(t,0) = (] (¢,v) — 0)4 = max (|h] (t,) — €,0) = (b — )4 + (b~ = ).

Our first goal is to derive an energy estimate on these level set functions, which is
contained in the following lemma.
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LEMMA 4.2. Suppose m, p, M, H, and h are as in Proposition 4.1. Then, there
is a constant C = C(p,m) such that for any 0<k < /¥

2
% Rdhfgvarco/Rs Vhi| (v) % dv
1 4 1+4 +1+£+E50(t)+€2
(4.2) (0= k)i (0 — k)2+

H )"3Vh?

2 e Y gt U
It ) s |

where co = co(M, H) is the constant from Lemma 2.6 and

q=§p 3p— ), y=q—(p+1), Bo = !

5 5 EO=h0I,

3(p—

Proof of Lemma 4.2. We prove Lemma 4.2 in three steps, Step 1-i to Step 1-iii.
In Step 1-i we derive an energy estimate for every level set function solving (3.2). In
Step 1-ii we combine this energy estimate with a relation between different level set
functions. In Step 3-iii we assemble these estimates and conclude the proof of Lemma
4.3.

Step 1-i: Energy estimate. Because hy = (ht — £); + (b~ — £)4, where ht =
max(h,0) and h~ = max(—h,0), we estimate the positive and negative parts sepa-
rately. First, to bound the positive part, we test the weak formulation of (3.2) with
(ht — 6)?[1. Using that 0,k = Oihx(n>ey and V,h) = Vyhx (>, We rearrange
terms as in the proof of Lemma 3.1 to obtain

e G e e (L (L
(4.3) — [ vt - 1h+va[f]dv+/ ('t — 07 (A[h]: V1) do
R3 R3

+/ At p(ht — )2 do.
R3

For the first term on the right-hand side, we integrate by parts and continue adding
and subtracting to remove the h and f, until we have more terms, each involving only
hzr:
/ V(b — 05 Wt Va[f]dv
R3
-1 _
=P [ Yt -0 Valfldv+£ | V(hT =07 Va[f]dv

p R3 R3

—1
(4.4) =P [t =0t dv+o [ fht— 08 dw

P Jgrs R3

<C(p) /R (=0 o+ C() (1) /R (- 08 dv
L CW) (E+ ) / (h+ — 07~ do,
RS

where in the last line we used the identity

O =00 =B (0 = 0+ plht =05 = (W =02 + (L+ p)(h* — 0.
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Second, to bound the negative part, we test the weak formulation of (3.2) with (b~ —
E)ﬁ__l. Again rearranging terms as in the proof of Lemma 3.1, we obtain

Ld - p 4(p-1) N B .
EE/R?,(h — 3 dv+ 2 RgA[f]V(h 02 .- V(ht—0)2d

+ R
—+ ks

= (h™ — )" h~Va[f]dv —/ (h™ — 08" (A[R]: V) do

R3 R3

+ [ hmuh™ =05 do.
RS

Mimicking the computations for the positive part, we rearrange the first term on the
right-hand side as before to find

(4.5)
/ V(h™ — é)f_flh*Va[f] dv < C’(p)/ (h™ — E)Trl dv+C(p) (£+ 1)/ (h= —0O)F dv
R3 R3 R3
+ C(p) (€+€2)/ (h™ — E){’[l dv.
R3
Summing (4.4) and (4.5) and noting that (At — ¢) and (h~ — £); have disjoint
support, we obtain a bound on hy:

(4.6)

A wavs [ afvn vt dv<cow) [ e+ o) 0+ 1)/ h? dv
dt Jgs R3 R3 R3

# 00 e+ ) [t aus [0 ARV do [
R3 R3 RS
Bounding the remaining (linear) terms on the right-hand side of (4.6), we find
/ hy =t (AlR]: V2p) do +/ || ph? ™t do
R3 3
<olapll~ [ wtavs [ mavre [ wta
R3 R3 R3
< (1—|—CE(t)5o)/ hb—t dv—|—/ Wdv+0 [ hld,
R3 R3 R3

where E(t) = ||h(t)||}, and By = ﬁ come from the upper bound for A in Lemma 2.6
and the constant C' depends only on p as the mass of f is fixed.

Due to the lower bound on A[f] in Lemma 2.6, we conclude for some universal
constant C' depending only on p,

d .
Y AP ‘th
dt ]R:s ¢ U+CO /Rs ¢

=¢ hi’“dHC(lH)/ hi?dv+0(1+EB°+é+£2)/ Wyt do.
R3 R3 RS

’ (v) 73 dv

(4.7)

After obtaining an energy estimate like (4.7), the standard way of applying the De
Giorgi approach to parabolic equations is to first integrate over time and use a Sobolev
embedding in the variable v to obtain control of the norms L°L? and LYLP | where

p* is the Sobolev conjugate of p. Next, one interpolates to gain control of Lg,v for
some ¢ > p. In the case of the heat equation, this results in ¢ = 10/3, providing
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improved integrability. The De Giorgi method then repeats this process iteratively,
ultimately concluding a quantitative Ly, bound. However, the presence of the weight
<v>73 in (4.7) prevents the direct application of a Sobolev inequality, but, similar to
[2], a modified De Giorgi procedure can still be used to gain integrability.

Step 1-ii: Gain of integrability. By passing from a lower level set to a higher lever
set, we observe that for any 0 <k </,
0 < hf < hk7

and if hy = (Jh| — €); >0, then |h| > ¢ > k. In this case, |h| —k=|h| — €+ ({ — k) and

“g‘:kk = %}L—;f + 1> 1. Therefore,

h|—k
Lo <

In particular for any o >0

(1] = k) \*
Lk} = (M '

We deduce
(4.8) he < (0 — k)~ %(ht)**®  for any a > 0.

Inequality (4.8) is crucial for the proof of the next lemma, which explains how to
estimate the terms on the right-hand side of (4.7).

LEMMA 4.3. Let p, m, and h be as in Proposition 4.1. Then, for each 0 <k </
and fori€{0,1,2} there holds

—i C 3 o2
p+1 74< N3 2
/Rshf S U= [(H“ VRE]l,

where

P P(%_%) o
L N S A

Proof of Lemma 4.3. First, let us derive a useful bound on ||g||}., where g : R® — R

is arbitrary. Interpolating, we find

o1 0- 0:
Lo 191125 1Y%l

_3
gl <[y~ %]
provided 61, 02, 03 € (0,1) and the following relations are satisfied:
1 -3
01+92+03:1, 7+*+93:;, ?91+0403:0.

Imposing further that r6; = p, we find

plr—p—2] _ Bp—3r 9(p—1) T€<p+2 5p)

0 == 0 = —— = R
2 p—1 s 3(p—1) @ 5p — 3r
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The weighted Sobolev inequality of Lemma 2.5 with s =2 then implies for a constant
depending only on p, r, and «

5p—3r

a9y ol < (oivit) ;+||g||ip)||g||Lg =) gt 5

Note that the admissible range for r, i.e., (p+2/3,5p/3), is nondegenerate if and only
if p > 1 and, moreover, p + 1 is within this range if and only if p > 3/2. With the
estimate (4.9) in hand for general g and r, let us return to our specific setting. For
simplicity, let us only prove the case when i =0. Let us fix ¢ by setting & =m, or, in
other words, define ¢ via the relation

_9p-1)

_ 5p 3(p—1)
5p — 3q ’

or, equivalently, 4= -
m

With this definition of ¢, we see that ¢ is in the admissible range (p 4+ 2/3,5p/3)
provided m > 9/2. However, since we need to bound the LPT! norm, we see that
q>p+1if and only if

Since by assumption we have enough moments, we set v=¢ — (p + 1) for  positive.
Finally, we combine (4.8) with (4.9) to obtain for 0 <k < ¢,

1
p+1 P14
/Rghe dvg(g_k)v/hk dw
1
<—— [ hid
—w—k)v/ e

2
|l tond
kL

where both ¢ and « have been fixed in terms of m and p. 0

p P 35;01
bl )mug ) il

Step 1-iii: Conclusion of energy estimate on level sets. Lemma 4.3 bounds the
terms on the right-hand side of (4.7) using only the quantities appearing on the
left-hand side, with the exception of L'-moments, which we know stay bounded by
Lemma 2.7. This yields the final differential form of our energy estimate,

d
— hhd
dt /]Rii ¢ ’U-‘rCo‘/RS

cc 1 N 14/ +1+Eﬁ0+€+62
- =k  (L—k)H (0 —k)2ty

(Jor s

and concludes the proof of Lemma 4.2. ]

p |2
Vhi| (v)*dv

5p—3g

q*p*za
P p( - ) 3(p—1)
+ ||k h h

H kHLP || k“LP || || 9
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Step 2: Energy estimate for level set functions (integral form). The energy es-
timate (4.2) gives us control between different level sets; however, we will find this
more useful in integral form. This leads to the definition of our energy functional &
forany £>0and 0<T; <Tp <T* as

Ty . 212
E(T1, Ty):= sup ||hz(t)||zL)g +CO/ H<.>—%Vh; Lo dt,
T 3

te[Ty,T2]
where ¢g is the constant from Lemma 2.6. We will now integrate (4.2) to obtain an

estimate purely in terms of this energy.

LEMMA 4.4. Let m, p, H, M, and h be as in Proposition 4.1. Further, let By, v,
and q be the exponents from Lemma 4.2. Then, there is a constant C' = C(m,p, H)
such that for any 0<T) <Tp <T3 <T* and 0 <k </, there holds

Eo(Ta, T3) < O(Ts — Ty)MP2E (T, T3) T

1 PR B LY 140+ 02 4 EJ°(Th, T3)
(T =T )=k (E=k)  (£—k) (£ —k)* ’
where
2 3 3
ﬁlzg—— and Ba=—.
m m

Proof. Fix 0 < Ty < Ty <T5 <T*. We integrate (4.
the right-hand side of (4.2) by RHS(t), we obtain

to
/ hp t2 d?] + Co/ /
R3 R3

Since RHS(t) is positive, this implies for Ty <1 <Th <ty < T3,

h tg dU+Co/ /
R3 Ty JR3

Next, taking the the supremum over to € [T%, T3] and then averaging over ¢ € [T1, 5],

we find
sup / RY(t) dv + co / /
t€[T,Ts) R3

T2 T3
/ B (1) do dt + / RHS(t) dt.
1 JR3

T,

[\

) over (t1,t2) and denoting

1)
3 dydt < / B (1) do + / RHS(t)dt
3

t1

ta
dvdes [ bt o+ /T RHS(t) dt.

Vh2 Y3 dudt

<
Tg—Tl

The left-hand side is (7%, T5). It remains to relate the right-hand side back to the
energy functional £ (T7,T3). Indeed, we have the obvious estimate

I8 ((Cpecl®

SMP (g + (Ts = Tv)) Ex (T, Ts) +71,

el ) el sl

where

3
Po=—, and M= sup [h(t)|L;

3
)
m m T1<t<Ts

Wl N

pr=

m,
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Also, recalling the definition of E(t), we see

sup  E(1) = sup [[A(t)[[75" < & (Ty, Ts)™.
T <t<Ts T1<t<Ts

Therefore, we see

T3
RHS(t)dt

T
<CMP (gt + (T5 — Th)) Ex(Th, T3) ' HF
y Lo 1l L+ 0+ 02+ E(Ty, Ts)P
(k) " (k) (= k) ’

where the constant C' = C(p,m) is still independent of h, the level sets [ and k, and
the times T7, T5, and T5. Finally, using Lemma 4.3 once more, we obtain

T B2 (1 Ty —T T, To)1 51
1 / / h? do dt S CM (CO + ( 3 1)) glk( 1, 3) )
=T Jr, Jrs (Ty = Th)(€ = k)t

By Lemma 2.7, M grows at most linearly in 73, and thus we conclude

E(To, T3) < C(H,p,m)(T5 — Ty ) MP2E,(Ty, T5) T

. 1 N 1 N 1+¢ +1+12+£2+80(T1,T3)f50
(T —Ty)(—Kk)Y  (L—Fk)y  (0—Fk)t (0 — k)2t ’
as desired. This concludes the proof. ]

Step 3: De Giorgi iteration.

Proof of Proposition 4.1. We now finish the proof of Proposition 4.1 using an iter-
ation procedure. Let 0 <t <T™ be the fixed times in the statement of Proposition 4.1
and take ¢t <T <min(T*,1). We consider for n € N

by=K(1-2""), t,=t(1-27"), and E,=&,(t.,T),

where K > 0 is a parameter to be chosen appropriately. Indeed, our main goal is to
find a value of K for which lim,,_,, F, =0. By the definition of the energy and the
choice of iteration parameters, this would imply h(7,v) < K for almost every t <7 < T
and v € R3.

To this end, we apply Lemma 4.4 with T} =t,, T5 =t,41, and T35 =T and deduce
the following recurrence relation for F,:
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1 1
E,.1<C(T -1, Mﬂ2 Erll+l31 +
i ( ) (tn+1 - tn)(£n+1 - gn)'ﬁl (En—&-l - én)'y
L+l 14 B 4 by + 24
(En—&-l - én)’erl (én+1 - gn)’\{+2
< OMPe 1+ 9(v+1)(n+1) N 9(y+1)(n+1) o 2(7+2)(n+1)(1 _ 2—(n+1))
= " tK+ Ko+t
(4.10) 2('y+2)(n+1)(1 +Eéio)
+ K+2
2(n+1) 4 9+ D(n+1) (1 — 9= (1)) 4 9(r+2) (D) (1 — 2—(n+1))2

K~

gn(r+1)  2n(+2) (1+E§°) on(v+2)  9n(y+2)

tK+1 + K+2 + K+1 + K~

< CMﬁz ELlt+5

Now, because the power ; is positive, F, should decay, even though the coefficients
in the recurrence are geometric (in n). To prove this, we use a trick from [2] to find a
quantitative estimate for K despite differing homogeneity in K. In essence, we expect
FE, to decay exponentially, so we search for a choice of parameters K and @ > 0 such
that the sequence E defined as

E':=FEyQ™ ", neN,
satisfies (4.10) with the reversed inequality and so by induction will remain larger
than E,. Therefore, we want
(4.11)
on(v+1)  2n(1+2) (1 +E€°> gn(1+2)  9n(1+2)

* B *\ 1451
By 2 CMP(E) A K+2 T TR

Using the definition of E¥, (4.11) holds if

Bo
1>CMPEJQ (2+2Q )" l ! ks : ! ]

tKt1 K+2 K+l + K

We now choose ) such that

+2—p3 . (v+2)
27TEQ T L1, or equivalently, Q>2 7
Then, for (4.11) to hold we need
1 14 Ef° 1 1

1>CM*EfQ + +

tKYv L T K2 gl T Ky

Next, choosing K so each of the terms is smaller than a quarter, the recurrence (4.11)
holds. More precisely, we choose K as

(4.12)
Bot+B1

B gy 1671 Ba Qﬁ—l Ba g B2 11371 __a Ba
K =Cmax{ E;” M7 ;E;" M55, Ef" M257 By " M2 Byt T8 M9
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Then, as discussed above, since Ey = Ej it follows by induction that £, < E7 for
n € N. Moreover, since @@ > 1 we deduce

lim £, < lim E; =0.
n—oo n—oo

Therefore, the definition of our energy functional F,, implies

sup ||hw(7)|7p =0, or equivalently, |l oo 2,7y xRE) < K.
t<r<T

Finally, from the choice of K, we have for all v € R? and 7 € (¢,T)

h(r,v) <K
Bo+81 3 B Ba

B1 B b1 8o B1 B 8, 1
<C E’O’Y M= -‘rE‘Ol_'MY/\/lm -i-E‘(JQ-M/\/lm +E0 My -f—l‘_}ol'*"ytim/\/lm .

Taking T = 2t yields the desired estimate. Finally, recalling the definitions of
the exponents By, 1, B2, and v and performing some basic algebraic manipulations
gives the simplified expressions found in (4.1) and completes the proof of
Proposition 4.1. 0

5. Global existence for smooth initial data. In this section, we prove Propo-
sition 1.3 by demonstrating global-in-time existence of solutions for initial data that
are very smooth and rapidly decaying. Let us define the class of initial data considered
in the proposition as

A(p,m,H, M, ) = {hm € S(R?) | fin = hin + p satisfies (1.5), 0< fin,

[ finllr, <M, /R3 finllog(fin)|dv < H, ||hm||1£p§5}.

We now fix p, m, H, M such that p >3/2 and

_3
m>g%max (1 p(p 2)

’p22p+3/2>

and attempt to find a corresponding d so that for each h;, € A(0), there exists a unique
global-in-time Schwartz class solution to (1.3) with initial datum f;,, = hip + p.

By Theorem 2.1, for any hy, € S(R?), there is a time T*(hy,) > 0 and function
h:[0,7%) x R* = R such that f(t) = h(t)+ u is the unique Schwartz class solution to
(1.3) on [0,7*) x R? with initial datum fi, = R, + p with maximal time of existence
T*. Moreover, T* is characterized via the blow-up criterion

5.1 li
(5-1) i

f®) e = o0

Our first goal is to show that T* is uniformly large for all h;, € A(J). By Lemma 3.1,
for any ¢ > 0 sufficiently small, there are Ty(e) < 1 and do(e) > 0 such that for any
hin € A(dp), the following estimate holds:

min(Ty,T™) 5 /2 5
sup A%, + co(H) / / o) [V AP dvdr <.
0<t<min(Ty,T*) 0 RS2

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/09/25 to 128.62.216.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONLINEAR REGULARIZATION ESTIMATES 8057

By Proposition 4.1 and Lemma 2.7, we find for 0 < t < min(7p,7™*), and for ¢ suffi-
ciently small

B1 B1 _B1 Both

. o
(5.2) Ih(@®)|lpe < C(p,m, H, M) (Emm(7’1+“f’2+w’ 5 4 (Eﬁl t_l) 1”) < o0,

where the exponents Sy, 81, and v are defined in Proposition 4.1. Using the charac-
terization of T* in (5.1), we must have T™* > Ty for every h;, € A(do(€)). Moreover,
Lemma 3.1 guarantees Tp(e) > Cel = for a=1— % + s, so that (5.2) implies

3(p—1)
(5.3)
To(e) 3 NE
lim sup sup ||h(t)||Loo+/ / ()~ ‘va/‘ dvdt| =0,
e=0% b, € A(60(c)) | To(e)/A<t<To(e) 0 R3

provided a + 51 > 1. We note that simplifying the expressions for o and f,

. . 9p—1( plp—3)
a+p—1=0 if and only if m:2p—3<p2—2p+3/2 .

Therefore, our constraint on m exactly guarantees that oo+ 81 —1 > 0 and so (5.3)
holds.

We would like to apply the global-in-time existence result Theorem 2.2 to conclude
that there is a § sufficiently small such that for each h;,, € A(9), we have T*(h;,) = .
Consequently, f;, admits a global-in-time Schwartz class solution if f;, is suitably
close to the Maxwellian p in LP. However, to apply Theorem 2.2 to the profile
h(To/2), which is well-defined for h;, € A(do(e)), we must show the condition

(5.4) im  sup  (|IA(To/2)lz + IVA(To/2) 12 ) <21,
e=0% i€ A(S0(e))

where €7 is the fixed smallness parameter in Theorem 2.2. Supposing for the moment
that (5.4) holds, we will show how to deduce Proposition 1.3.
Use (5.4) to pick ¢q sufficiently small so that

sup  (IIA(To/2)l1z + IVA(To/2)l23) <e1.
hin€A(0(c0))

Then, for each h;y, € A(do(e0)), it follows that one may apply Theorem 2.2 to h(Ty/2)
and obtain a solution f = h + p to (1.3) on [Tp/2,00), where f(To)2) = f(Ty/2),
which further satisfies sup,.r, o [|f[lz2 < oo. Note that restricting f to [7o/2,Tp]
yields another solution to (1.3) with the same profile at time Tj/2. Since both f and
f lie within LY(Ty/2,Ty; L*°) by Proposition 4.1, applying Theorem 2.3, we conclude
f and f agree on [To/2,To]. Therefore,

C(f) ift<Ty2,
f@‘{ﬂwiuz%m

defines a global-in-time solution to (1.3) with initial datum f;,,. Finally, since f is
constructed by Theorem 2.2, we obtain the long-time bound

sup  ||h(®)||m < C(p,m,H,M).
To/2<t<o0
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Applying Proposition 4.1 once more yields that |A(¢)| - remains finite, and by (5.1)
we conclude T* = oo. The constructed solution f remains Schwartz class, which
concludes the proof of Proposition 1.3.

Proof of Claim 5.4. We now show condition (5.4). The first term in (5.4) is
easily controlled by using the moment bound from Lemma 2.7 and (5.3). Indeed, for
any hin € A((SO(E))

/| |h(T0/2)|2<U>2dU§< sup |h(t)|Lw>( sup ||h<t>||L;),
R3 0<t<T,

To /4<t<To b

where the right-hand side decays as e — 07.

The second term in (5.4) requires more care. We know by (5.3) the L* norm of
h(Tb/2) is uniformly small for h;, € A(dp(g)). We need to show that this implies the
gradient Vh(Ty/2) is also small (uniformly in h;,). Note that because Ty(g) ~ et~
for a € (0,1), the H! estimates in the forthcoming Lemma 5.1 imply for m > 8,

For h;, € A(dy(¢)), [VA(To/2)||pz < C(H, M)e®,

which concludes the proof of (5.4). Now, let us prove the necessary higher regularity
estimates.

LEMMA 5.1 (uniform H! regularity). Let f be a smooth, rapidly decaying solution
to (1.3) on [0,T] xR? for some 0 <T < 1, satisfying the normalization (1.5) and with
entropy H. Suppose further that h = f — p satisfies ||h|| Lo (o, 1)xrs) <€ < 1. Then,
for any k>0, we have the following weighted H' estimates: For any 0 <t <T,

T
sup /]R?’ <U>k |Vh(s))? dv—|—co/t (v)F =3 ’V2h(s)|2 dv ds

t<s<T
1
<C (k7H7 ||hm||L;+6) € (1+ t> :

Proof. As a first step toward H' regularity, we perform a weighted L? estimate
by testing (3.2) with (v)" h and integrating by parts:

d
t Jgs

<5 [ V@ AnvE s [ 59 w* vl

R3

k2 k .
W)*n +/RS (W)* A[f]Vh-Vh

+ %/RS <U>kva[.ﬂVh2dU+/Rs <U>kh(A[h]V2,u+hu)dv

=L +L+ 13+ 14

Recall, by conservation of mass, |[f|[zecr1 = 1, and since f = h + p, [|fl|lre, <

et+||pllpe < 2. Tt follows from Lemma 2.6 that there is a universal constant such
that

(5.5)  JAlfllle~ <IAZ2N2E < and  |Valf]lle~ < |IFIZ21F122 < C.

Note that the estimates do not depend on the sign of f and therefore analogous
estimates hold for h as well. From (5.5), we immediately bound I as

L] < C (k) /]R B2V (o) dv < (k)< | 1.
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For I5, we integrate by parts and similarly obtain from (5.5),
Bl <O [ 1[9 0" Valfl+ ) 5| do < CR) Al
For I;, we integrate by parts and use (5.5) again to obtain

L=C g V (0)* - [V - (A[f]h?) — Va[f]h?] dv

<o) [ [+ @ nt dv < e al;.
R3
Finally, for I, we use (5.5) for h and find

11 < CWIAR= [ @)F l][F%] dv+0®) [ 12 0} udo
< C(k)e? +C(k)e 1Al -
Summarizing, we have shown using the lower bound on A[f] from Lemma 2.6
% /R (0)* |h(t)]? dv + co(H) /]R (W)*?|Vh[2dv < C(k)s/Rs (0)* |h|dv.

Therefore, integrating in time and using the linear-in-time growth bound on L!-
moments of i from Lemma 2.7, we obtain

T
(5:6)  sup [[h]32 +eo(H) / IVRE)F2 At < CR)ellll e py T+ inll3e
o<t<T 0 B

< C(lhinllry. H)e.
As a second step toward higher regularity, we perform weighted H} estimates by
testing (3.2) with 9y, ((v)*9,,h) for i € {1,2,3} and integrating by parts to obtain
4
dt Jps

<— [ viw)a,n -6U,L.A[f]Vhdv—/A[ﬂ@vihvath@)k

R3

(W)* (9, )2 +/ (W)* A[f]V 0y b - VO, h

R3

k . a v ) v k ) . 2 v
[V om0 (Valfindv+ [ o, (10)*0un) (Al Vu-+ ) d
=i +Jo+J3+J4.

Before we estimate J;,i € {1,...,4}, we observe that Lemma 2.6 gives the following
estimates on the coefficients A[f] and Va[f]:
(5.7)
1/3 2/3 2
IVA[flllze <IN L= <€ and [[Voa[f]lly < |[fllr <C where

1<r<oo.

Since these estimates use only the order of decay of the kernel and do not rely upon
the sign of f, analogous estimates hold for A[h] and Valh|, where the smallness of h
gives an improvement (in powers of ) over the universal constant C. Now, we split
J1 as

Jy :/ W)V, h- 0, Alf]Vhdv+ [ 0y, hV (0)* 0y, A[f]Vh = J11 + J1a.
R3 R3

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/09/25 to 128.62.216.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

8060 W. GOLDING, M. P. GUALDANI, AND A. LOHER

For Ji1, we use Young’s inequality and (5.7) to conclude
[l < /]R (Y5 [V, b2 dv + C(k, H) /R VAP () do.
For Jy2, we simply use (5.7) to obtain
sl < C(F) /R VAP ()" do.
For Jy, we use (5.5) and Young’s inequality to get
p<? /R V0, Bl ()" 2 dv + C(k, H) /R ()3 VR do.
Next, we split J3 as
Js = /R () V. b - By, (Valf]h) dv + /}R Do BV () - B, (Valf]h) dv = Jo1 + Joa.

For J31, we use Young’s inequality, (5.5), Holder’s inequality, and (5.7) with r = Z(kT%)

to obtain
| J31]
<% [ V0L 0 dv CO) [ (0 (VOLal I + Valf) 10, hP)

RS
sc—o/ V8, h
4 Jgs

For J3z, we use Young’s inequality, (5.5), Holder’s inequality, and (5.7) with r =
to obtain

k+3
2 () Ao+ Ok, H) e ||| 55 +C(k,H)/ (W)*3 | V)2 do.
k+6 Rg

k+6
3

[Tl <€) [ (@)~ (Valfllonn

12 K
<O(k) / ()L VAP v+ C(k) / VAP )"+ dv+ O (k) 552 |7
R3 R3

Lk+6

- ‘Vavia[f]Hha’UihD

Last, we split the linear terms in J4 as

Jy = / () Dy h (A[R] : V20 + ph) dv + / B, () Do b (A[R] - V2 i+ hya)
R3 R3

dv = Jy1 + Juo.

For Jy1, we use Young’s inequality, Holder’s inequality, (5.5) for h, and the embedding
L%, < L' so that

[l < / ()" VL hf* v+ Ok, H) / AR @) 9] do
4 C(l@H)/ (0)F 3 |22 do
R3

<[ () *va,h
4 Jgs

2 dv+ C(k, H)e*/3 Hh||2L/;+ +C(k, H)e.
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For Jy2, we use Young’s inequality, (5.5) for h, and L3, < L' to obtain

| Jao| < C(k)/

R3
+C(k)/ W\ 12h? dv
R3

< C(k)/ (o) [VAI* dv+ O (k)2 [R][7 +C(k)*.
R3 3

(W)* 3 VR dv+ O (k) /R3 (w)* | A[R]? | V2] do

To summarize, using the lower bound for A[f] from Lemma 2.6 and absorbing the
highest order terms without a sign, we find

d 2o+ U [ )= o, 0l v
R3

k
il . h
G Lo

k k+3)
k+6’ k46

<Clhtt) [ ) A aus ez (14 [ |h|dv>max(3’
R3

R3

After integrating over (t1,t2) for 0 <t; <t <te <T < 1 and using the linear-in-time
growth bound on L!-moments of h from Lemma 2.7, we have

2 co(H) 2 - 2
/Rg<v>k|Vh(t2)| dv + 04 /t /]R (0)*7*|V2h| dv

ta
g/ (W0)* |V h(t))? dv+C’(k,H)/ / ()5 VA dvderC(k,H,HhHL}c%)s.
R3 t1 R3

Therefore, taking a supremum over to € (t,T'), averaging over t; € (0,¢), and appealing
to (5.6) with k replaced by k + 3, we find

H) [T -
sup / W) |vn|? dv+M/ / (v)* 3|V2h| dvds
R3 4 t R3

t<s<T

1
<0 (kA lmlyy,,)e (1+7).

which is the claimed estimate. 0

6. Global existence for rough initial data: Proof of Theorem 1.1. In this
section, we deduce Theorem 1.1 from Proposition 1.3 via a compactness argument.

Step 1: Construction of approrimating sequence. Let us fix p, m, H, and M
as in the statement of Theorem 1.1. Then, we fix §g = do(p,m, H, M) as defined in
Proposition 1.3. For simplicity, dependence of constants on these fixed parameters
will be suppressed.

Now, we fix our initial datum f;,, : R® — R* as any profile f;,, € L1 NLP satisfying
the normalization (1.5) (recall this fixes the Maxwellian as p) and further satisfying
the bounds

/ (0)™ |fin(v) — p(v)] dv< M and / Fin llog fun < H.
R3 R3

Let us pick a sequence of Schwartz class functions f7 € S(R®) that approximate f;,
and satisfy
e convergence in L1 N LP,

nh_{go I fin = finllr + fin = finll Lo =05
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e normalization (1.5);
e and uniform control of L'-moments, entropy, and LP-distance from equilib-
rium

@™ 0 = n)] do <,

/ follog S < H, and / 7l do< o,
RS

From Proposition 1.3, we obtain a corresponding sequence of global-in-time Schwartz
class solutions to (1.3), namely f,, : [0,00) x R3 — R*.

Step 2: Uniform-in-n estimates. We recall that the ODE argument in Lemma 3.1,
the gain of L>®-regularity in Proposition 4.1, and the H!-regularity estimates in
Lemma 5.1 imply the existence of a short time interval [0,7p] on which we have
the following uniform-in-n control:

1
sup (177 fu®)looes) + 1 (®)ls, + 1Fa (B0 ) <€
(61) o<t <T0
sup || fullm <C, for each s € (0, Tp].
s<t<Ty
Moreover, the long time behavior from Theorem 2.2 combined with the gain of regu-
larity in Proposition 4.1 yields the following estimates: for each Ty < s < 00,
(6.2) sup || fa(t)[[gy <C(s) and  sup || fn(t)][Le < C(s).
To<t<s To<t<s
In order to apply the Aubin-Lions lemma and conclude strong compactness of the
family {f,,}, we note that the above control implies corresponding control on the time
derivative via standard duality arguments. More precisely, for any 0 < s <t < co and
for any ® € L1(s,t, H'),

)0 fr(T)dvdr| < VO - (Alfn]Vfn —Va|fulfn) dvdr

]R3 R3
< ||V(I)HL1(S,25;L2) (HA[fn]”L?"T van”LW(S,t;L?) + Hva[fn]”Lff; ”fn”L”(syt;L?))
§ C(S’t)H(I)”Ll(s,t;Hl)7

where we have used the coefficient bounds in Lemma 2.6. Therefore,
t
(6.4) 10 frllos 5,61y = sup / / O(7)0; fr(m)dvdr < C(s,t).
HCI’HLl(stHl) 1 R3

On the other hand, to find a bound on 9, f,, which holds all the way up to time 0, we
integrate by parts and obtain for any ® € L' (0, Ty; W>?)

/ 0, fn® dv dt // (V20 : Alf)fn) + 2V - Valf,] f, dvdt.
R JR3 R JR3
Therefore, using Holder’s inequality, Alfn] < L>(0,To; L), Valf,] € L>=(0,Ty; L?),
and the Sobolev embedding W (R?) < L3+ (R3) for 1 <r < 3, we find
To
/ 0, 1, ® dv dt
o Jrs
<A nllles, IV2 @Iy o 11l e 2z + 2 V2]
<OV

IValfulllLg L3l full Lge y

L1L2 p— 3/2

LlL"
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By duality, this gives the bound

To
(6.5) 10¢ full Low (0,105 ~20) = sup 1/ O, f, dt < C.
= 0

Hq)HLl(O,TO;W2=P )

Finally, from the short time smoothing estimates in (6.1), we see {f,} is bounded in
LH+=(0,Ty; L>). Therefore, interpolation with the L>(0,Ty; L') bound yields

To
(6.6) / | u()]22 dt < C.

Step 3: Construction of the limit. First, note that the Banach—Alaoglu theorem in

L (RT; HY) and L?(0,Tp; L?) implies the existence of a weak-star limit f: RT xR3 —
R of the sequence {f,}. Now, we use a diagonalization argument to combine the
uniform-in-estimates from (6.1), (6.2), (6.4), (6.5), and (6.6) with the Aubin-Lions
lemma, the Banach—Alaoglu theorem, or Riesz’s theorem to pick a subsequence (still
denoted f,) converging to f in each of the following senses:

e strongly in C(s,t; L?) for each 0 < s <t < oo;
weak-starly in L>(s,t; H}) N Wh(s,t; H!) for each 0 < s <t < oc;
weak-starly in L (0, Tp; LP) N W2 (0, To; W —2P);
strongly in C(0,Tp; W~1P);
weakly in L?([0, Tp] x R3);

e and pointwise almost everywhere in [0,00) x R3.
The pointwise convergence first ensures that f > 0 almost everywhere. Moreover,
combined with Fatou’s lemma, f € L°(0,00; L) N L (0,00; LL ) and f has bounded

loc
entropy. Now, for every time 0 < s <t < 0o, we find
1 1
(6.7) / v | fuls) :/ v | fa(2).
B A\Jvl? B A\Jvl?

Now, recall f,, — f pointwise almost everywhere and for almost every ¢, || fn(¢)(| L1, nz2 <
C(t). So, for almost every t, the fixed time profiles f,,(t) are tight and uniformly inte-

grable and converge pointwise to f(¢). The Vitali convergence theorem implies (6.7)

holds for f as well, i.e., f conserves mass, momentum, and energy. Moreover, the

same argument implies f has decreasing entropy and satisfies the normalization (1.5).

Finally, note that the pointwise convergence implies f satisfies the same short time

smoothing estimates as f,.

Step 4: The limit is instantaneously a strong solution to Landau. We now show
that the limit f satisfies the Landau equation (1.3) in the appropriate sense. Because
we have strong compactness in LfOoC(RJF;LQ), passing to the limit in the nonlinear,
nonlocal terms is simple. Indeed, for any ® € L?(s,t; H'), since f,, solves (1.3), we

find

t t
/ / (I>8tfndvd7':—/ VO - (Alfn]Vfn — Va|fulfrn) dvdr.
s JR3 s JR3
Analyzing the convergence in the top order terms, we have
(6.8)

/ t / Vo - (ALl f — ALIVS) dodr| < / [ 90 Al 19 dvdr
s JR3 s JR3

+

/t V- ALf] (Vo — V) dodr
s JR3

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/09/25 to 128.62.216.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

8064 W. GOLDING, M. P. GUALDANI, AND A. LOHER

For the first term on the right-hand side of (6.8), we find

t
| [ v Alfa = 19 g dvdr| <I90lag IVl 1AL = £z,

< C(S,t)”f - fn”[%oo(syt;Ll)”f - fn”[gloo(s’t;lﬁ)’

which converges to 0 by conservation of mass and strong compactness in L (s, t; L?).
The second term on the right-hand side of (6.8) converges to 0 because f,, — f weakly
in L2(s,t; H') and A[f]V® € L?(s,t; H').

Next, we analyze the lower order terms, namely,

(6.9)
‘/ RSV@ (faValfs] — fVa[f]) dvdr

g/: R3|V<I>~(fn—f)Va[fn}|dvdr—i—/st/RSWfI)-fVa[fn—fHdvdT
< ”(DHL?(S,t;Hl) (an - f||L2(t,S;L2)||va[fn]HLff’z + ||f||Lfl||Va[fn - fHILZ’Cx> )

and the right-hand side converges to 0 as n — oco. Finally, using 0;f, — O:f in
L?(s,t; H71), we find f satisfies Landau in the sense that for any 0 < s <t < oo and
any ® € L?(s,t; HY),

t t
(6.10) //RSCD&gfdvdT:f/ RSV@o(A[f]foVa[f]f)dvdT.

We have shown f is a weak solution to (1.3) on (0,00) x R? in the sense of (6.10). It
remains to show that f € C1(0,00;C?), so that f is a classical solution for positive
times.

However, improving f € Ly, to classical regularity for f is relatively standard
in the literature. For the sake of completeness, we provide a sketch of one possible
argument following [13] and refer the reader to [13, Lemmas 4.2 and 4.3] to fill in the
omitted details. We note that f belongs to L™ (s,t; L) and the weak formulation
(6.10) is sufficiently strong to allow us to use f as a test function. This allows us to
perform weighted H* estimates and obtain for k€ R, /€N, and 0 < s <t < 00,

(6.11)

' L
1
iulthVEin%-F/ Hw+1f\|Li73dT§c(t,H,HfmIILM,||f||Lw(s,t;Lx)) (1+3> ,

The estimates for £ = 0 and ¢ = 1 follow from the proof of Lemma 5.1, while the
estimates for ¢ > 2 are explained thoroughly in [13, Lemma 4.2]. From (6.11) with
¢=2 and k =0 and the Sobolev embedding H? — W16 we find

10wy SC (s, Winlles, ) and 1001w o0y S C (5,8, I finllzy,)

after using a duality argument to bound the time derivative like in (6.5). Real inter-
polation of (vector-valued) Sobolev spaces implies

||f‘lW"vﬁ(s,t;W(l*%)fﬁ) < C(S7t) for any XS (07 1)'
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Picking 1/6 < @ < 1/4, Morrey’s inequality implies f € C%/2(s,t;C%®) for some

€ (0,1). Because f is globally (in velocity) Holder with exponent «, the nonlo-
cal coeflicients A[f] and Val[f] lie in the same Holder space as f. Thus, (1.3) is
now a divergence form parabolic equation with Holder continuous coefficients. Since
the lower bound for A[f] still degenerates like (v)™® for large velocities, perform-
ing classical parabolic Schauder estimates on compact subsets of (s,t) x R3 yields
fechal?(st; Clzog) which implies f is a classical solution to (1.3).

Step 5: Behavior at initial time. It remains only to address the sense in which f
satisfies (1.3) up to time ¢t = 0 and the sense in which the initial datum f;,, is obtained.
For ¢ € C2°([0,00) x R?), we integrate by parts in (1.3) for f, and use V- A= Va to
obtain

(6.12)
e o= [ [ powpdvdi= [ [ (Vi AlLf) + 25 Valf)fudvdt,
R3 R JR3 R JR3

We use f,,(0) — f;n, in LP by construction and f,, — f in L?(0,T; L?) to conclude that
the left-hand side of (6.12) converges to

/ Finp(0) dv — / Forpdudr.
R3 R JR3

On the other hand, say ¢ is supported in the time interval [0,¢]. Then, splitting the
time integral on the right-hand side of (6.12) into [0,s] and [s,t], and using f is a
classical solution to Landau on [s,t], we find that for any s > 0,

Rsfmcp(o)dv—/R/RBfatwdvdt:/s /R (V21 A[f]f) + 2V Va[f]f dvdt
+ lim / /RS (V2@ : Alfnlfn) + 2V Valf,] fndvdt.

n—oo 0

Taking s — 07, it suffices to show that

hr&sup/ / 201 Alf)] fn) +2V¢ - Va[fy] fr dvdt =0.
5—

First, using Lemma 2.6 and f,, — f in L?(0,Tp; L?), we have

/ V231 Alfal fn < 82 V20 100 (0,10522) | Al ll L2 (0, 705150 ||l L2 (0,70 £2)
0
< Cs ||l L 0.10:87),
which evidently converges to 0 as s — 0T, uniformly in n. Second, using Lemma 2.6
and f, — f in L?(0,Tp; L?) again,
[ 196 Valsdfallordt < [ 196l Vel lfallzs dt < O2p] o
0 0

which evidently converges to 0 as s — 07. Thus, by the Lebesgue dominated conver-
gence theorem, f satisfies Landau in the sense that for each ¢ € C°([0,00) x R?),

(6.13)
/fmsa dv—/ Rgf&swdvdt—//m 20 A[f]f) + 2V - Valf] f dvdt.
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It remains only to show that the initial datum is obtained strongly in L' N LP.
First, we note that f € C(0,Ty; W~1P) and so f is certainly continuous in the sense of
distributions. Now, taking test functions in (6.13) of the form 1 (¢)p(v) for ¢ a smooth
approximation of x4 (t) and ¢ € C°(R?), and using the monotone convergence
theorem, we find for any 0 < s and ¢ € C°(R3),

(6.14) /]RS fmc,odv—/]RB f(s)gpdv:/os /R3 (V2¢:A[f]f) + 2V - Valf]f dvdt.

Since the right-hand side of (6.14) converges to 0 as s — 0 for any ¢ € C°, we
conclude that

lim pf(s)dv= / @ fin dv for each p € C°(R?).
R3 R?

s—0t

Because f is continuous in the sense of distributions, f(0) = fin, and the initial
datum is obtained in the sense of distributions. By a density argument using f €
L>°(0,To; LP), the initial datum f;;, is obtained weakly in LP so that by weak lower
semicontinuity of norms, we obtain

| finllLe <liminf || f(s) L0
s—0t

Next, analyzing the evolution of the LP norms of the smooth solutions f,,, we find the
simple estimate,

% / p_ / V2 (ALfa]V fu — Valfal fu) do

<-C) [V AL+ ) [ 77
R3
ARIADS

Integrating in time, for each 0 <t <7y,

(6.15) 1 fn@ONZe <N OTe + 1fnllzr o620 [l foe (0, 7:10) -

Now taking the limit as n — oo in (6.15), we find for each 0 <t < Tp,

IFONEe < finllTe + 1 F o622 1 I oo 0,710
Since f € L1(0,Ty; L), taking t — 0T, we find

limsup || f (&) ||or < || finllLr-

t—0+

Combining f(t) — fin in LP with ||f(¢)||ze — ||finl/Lr implies strong convergence
in LP. Finally, f € C(0,Tp;LP) and f € L>(0,Tp;L},) for m > 2 guarantees f €
C(0,To; LAN LP).

Appendix A. Weighted Sobolev inequalities. In this section, we provide a

brief proof of the Sobolev inequalities claimed in Lemma 2.5. Weighted Sobolev and
Poincaré inequalities of the form

1/q 1/p
([ i) <o [ 17 o)
Q Q

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/09/25 to 128.62.216.52 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONLINEAR REGULARIZATION ESTIMATES 8067

for ¢ > p > 1, and ¢ either compactly supported in @ or with zero average over @,
are guaranteed to hold if certain averages involving w; and ws are bounded over all
cubes contained in a cube slightly larger than @Q. For p=2 and 2<¢g<oo,r>1, a
cube @, and weights wy and ws, we define

1

@ 2"
0g.2.,(Q, w1, wz) == |Q|5—%+§ (][ wy dv> ’ <][ wy " dv) .
Q Q

The precise statement is summarized in the following theorem. For its proof, we refer
to [23, Theorem 1].

THEOREM A.1. Consider two nonnegative weights wy, we, a cube Q, 2 < g < o0,
and r > 1. Then, for any Lipschitz function ¢ which has compact support in Q or is
such that fQ ¢ dv=0, we have

1/q 1/2
(A1) (/Q |p] 9wy dv) <Cq2,r(Q,w1,w2) (/Q V| ws dv) ,

where for some constant C(d,r,q),

Cq,Q,T(vath):: C(daT7Q) sup Uq,Q,T(Q/awlaw2)-
Q'C8Q

We are now prepared to show Lemma 2.5 by combining Theorem A.l with a
covering argument.

Proof of Lemma 2.5. Let Q = Q(vp) be a cube of side length 1, centered at vg.
For any «, m > 0, we compute

1 2" (1 + |vg|)™, wo € B2(0)°,
o [ (L ]u)™ dv <
|Q|/Q

¢, wp € By(0),
and
1 1 Thans: Y0 € B2(0)°,
@l Jy e 2 ¢ w0€By0).
Therefore,

062.1(Q, ()2, (1)) = <]g (o) av) i (f@ (0 av) )

where C is independent on the center of (). Applying Theorem A.1, we find (A.1)
holds for wy = (v) =2 and wy = (v)~3:

(A.2) ( /Q 16— (9)ol* ()~ dv)l/g <c /Q V[ (1)~ du.

Here and below (¢)q denotes the average of ¢ in Q).

Next, we consider a family Q of nonoverlapping cubes of side length 1 which cover
R3. Decomposing the integral over R? using this partition and Young’s inequality, we
have
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[ e dv—Z/ 1916 (o

QEQ
<clz/ |p — |6 (v) dv+CQZ| Q|6‘/ v) "7 dv.
QeEQ QeQ

For each Q € Q, we apply (A.2) and find

> [ @l dvs 3 [ o= ool o) ao

Qea’@ QeQ

The last inequality follows by choice of @,
(A.3)

5c6 (/ Vol (v ) g(/R Vol (v)~° dv) Z/ Vol

QeQ

([ o dv>2 ([ 1w dv).

Additionally, since <v>_9 <1 and |Q| =1, for any 1 < s < 6, Jensen’s inequality
implies

pRIC QI6/ v )y 1(9) Q|6<Z(/|¢|de>6/ss(43|¢|sdv)G/s.

QeEQ QeQ QEQ

The last inequality follows by the same argument as in (A.3). Summarizing, we obtain
for any 1 <s<6,

3 6/s
6 -9 2 -3 s
[ 16 w) dv<01(/st> (v) dv) +Cz(/R3|¢| dv) ,

as claimed.
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