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The slowdown of Moore’s Law and the end of Dennard scaling have driven modern computing

systems to embrace parallelism, both within single chips and across multiple compute devices, in

order to meet the growing computational demands. Efficient data movement, both on-chip and

off-chip, has thus become increasingly critical. However, scaling on- and off-chip interconnects

each presents unique challenges in both methodology and architecture. For on-chip interconnects,

challenges include: (1) the methodology challenge of developing a robust framework to model,

test, and evaluate on-chip network (OCN) designs across a vast design space, and (2) the archi-

tecture challenge of bridging the gap between theoretical advances and practical implementation

of scalable, low-diameter OCN topologies. For off-chip interconnects, challenges include: (1)

the methodology challenge of modeling large-scale distributed systems accurately, and (2) the

architecture challenge of breaking the capacity, latency, and bandwidth trade-offs inherent in cur-

rent off-chip interconnect technologies. This thesis addresses these challenges by developing new

methodologies, proposing architectural solutions, and validating their feasibility through practical

silicon prototypes.

The first part of this thesis focuses on OCNs for manycore architectures. I first present Py-

OCN, a unified Python-based framework for modeling, testing, and evaluating on-chip networks,

which vertically integrates multiple research methodologies and enables productive design space

exploration of OCNs. Next, I propose practical low-diameter OCN topologies that can be effec-

tively implemented with a tiled physical design methodology, bridging the gap between principle

and practice. Finally, the CIFER chip tape-out demonstrates the feasibility and effectiveness of

PyOCN as well as the tiled physical design approach.

The second part of the thesis addresses challenges in scaling off-chip interconnects, particu-

larly for machine learning workloads. I first present LLMCompass-E2E, a comprehensive frame-

work for modeling large-scale distributed LLM training performance. I then explore the po-



tential of emerging co-packaged silicon photonic interconnects by proposing an optically con-

nected multi-stack HBM module which can effectively break the trade-off between memory band-

width and capacity. Lastly, the PIPES chip tape-out demonstrates a practical implementation of

such co-packaged silicon photonic interconnects, highlighting their potential for scalable, high-

performance interconnect solutions in large-scale distributed systems.
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CHAPTER 1
INTRODUCTION

The slowdown of Moore’s Law and the end of Dennard scaling have fundamentally reshaped

the landscape of computing. For decades, these two principles drove consistent improvement in

single-chip performance by enabling more transistors to fit within the same area and improving the

power efficiency per transistor. However, as physical and technical limits have been reached, the

exponential gains in performance from these traditional scaling methods have diminished. This

shift has compelled the industry to explore new strategies for enhancing performance, placing

greater emphasis on parallelism. Modern computing systems, ranging from supercomputers to

edge devices, now require more innovative design solutions to meet the demands of increasingly

complex and data-intensive workloads.

One of the key strategies to address the limitations of traditional scaling is the adoption of

manycore architectures, which integrate a large number of simple, lightweight processing cores on

a single chip. Examples include thread-parallel manycore processors such as Epiphany-V [Olo16]

and Celerity [RZAH+19b], as well as data-parallel manycore processors such as graphics process-

ing units (GPU) [nvi20, nvi23] and tensor processing units (TPUs) [JKL+23]. Manycore systems

can scale to hundreds or even thousands of cores, enabling massive parallelism and significantly

higher throughput for data-intensive workloads. However, the efficiency of manycore architec-

tures hinges on the ability to move data efficiently across the chip, making the design of scalable,

high-performance on-chip networks (OCNs) essential.

While on-chip interconnects are critical for efficient data movement within the compute chip,

off-chip interconnects play an equally important role in connecting these processors to external

components, such as memory, storage, and other compute chips. Off-chip interconnects, including

memory interconnects that connect processing units to external memory and system interconnects

that connect multiple compute chips or systems, enable scalable and distributed compute systems

by facilitating high-bandwidth, low-latency communication between multiple chips. These inter-

connects can range from short-reach connections spanning a few millimeters, such as the die-to-die

interconnects in modern multi-chip modules (MCM), to long-reach connections covering up to a

few kilometers, such as optical links in data center networks. The effectiveness of these distributed

systems depends heavily on the design of scalable, high-performance off-chip interconnects that

can handle the increasing demands of data movement across components.
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Figure 1.1: Trend of Processor Core Count – The figure illustrates the core count of selected processors from
2000 to 2020. The data is partially collected by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond,
C. Batten, and K. Rupp [Rup24].

In this chapter, I provide an overview of the challenges and opportunities in scaling on-chip and

off-chip interconnects, highlighting the importance of efficient data movement in modern comput-

ing systems. Section 1.1 first discusses the trend of on-chip interconnects and then introduces

the methodology and architecture challenges in designing scalable, high-performance on-chip net-

works. Section 1.2 first discusses the trend of off-chip interconnects, including memory intercon-

nects and system interconnects, and then presents the methodology and architecture challenges in

designing scalable, high-performance off-chip interconnects. Section 1.3 provides an overview

of the thesis. Section 1.4 discusses the collaboration, previous publications, and funding sources

related to the work presented in this thesis.

1.1 On-Chip Interconnects

As the computing industry seeks to overcome the limitations of traditional scaling, manycore

architectures have emerged as a prominent solution. Over the past decades, there has been a steady

trend towards increasing the core counts in processors, driven by the need for greater parallelism to

handle the growing computational demands of modern workloads. Compared to general-purpose

multi-cores, the manycore approach can improve throughput and energy efficiency per unit area,

particularly for highly parallel workloads. As is illustrated in Figure 1.1, the core count in pro-
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(a) 16-core MIT RAW
Processor [TKM+03]

(b) 25-core
Piton [MFN+17]

(c) 48-core Intel
Single-Chip Cloud

Computer [HDH+10]
(d) 64-core ICT

Godson-T [TFZ+08]

(e) 64-core Meta
MTIA [FCL+23]

(f) 72-core Intel Knights
Landing [SGC+16]

(g) 80-core Intel Teraflops
Research Chip [HVS+07]

(h) 100-core
TILE-GX100 [Ram11]

(i) 110-core EM2 [LSC+13]
(j) 128-core Ampere Altra

Max [Whe20]
(k) 128-core Sunway
SW26010 [LFF+18]

(l) 132-core NVIDIA
H100 [nvi23]

(m) 256-core Kalray
MPPA-256 [kal24a]

(n) 511-core Celerity
Research Chip [DXT+18]

(o) 1024-core
KiloCore [BSP+17]

(p) 1024-core Adapteva
Epiphany-V [Olo16]

Figure 1.2: Examples of Manycore Processors – Chip plots or die photos of selected manycore processors.
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cessors has scaled dramatically in the past two decades, reaching hundreds and even a thousand in

recent years.

Figure 1.2 shows various examples of manycore processors that have been designed and man-

ufactured over the years. Early thread-parallel manycore research prototypes integrated up to

110 cores within a single die. The MIT RAW processor [TKM+03] integrated 16 simple cores

connected by a 4⇥ 4 mesh OCN. The Intel Teraflops research chip [HVS+07] contained 80 tiles

arranged as a 10⇥ 8 mesh OCN. The Intel Single-Chip Cloud Computer (SCC) [HDH+10] was a

manycore processor with 48 cores connected by a 4⇥ 6 mesh OCN. The 110-core Execution Mi-

gration Machine (EM2) [LSC+13] demonstrated a directory-less shared-memory manycore with

a 10⇥ 11 mesh OCN. Over time, the industry has adopted the manycore approach as well. Ex-

amples include the 64-core Tile64 [BEA+08], the 72-core Knights Landing [SGC+16], the 100-

core Tile GX100 [Ram11], the 128-core Ampere Altra Max [Whe20], and the 128-core Sunway

SW26010 [LFF+18]. Recent research prototypes have scaled core counts to over a thousand cores,

such as the 1000-core KiloCore [BSP+17], the 1024-core Epiphany-V [Olo16], and the 4096-core

Manticore [ZSB21].

Data-parallel manycore processors are also widely adopted by the industry, with GPUs being

the most prominent example. GPUs usually have around a hundred cores (known as stream multi-

processors in NVIDIA GPUs and compute units in AMD GPUs), and they are capable of support-

ing thousands of concurrent hardware threads. In addition to GPUs, there are also custom acceler-

ators designed for specific workloads, such as the Google TPU [JKL+23], Meta MTIA [FCL+23],

Kalray MPPA-256 [kal24a], and Tenstorrent Grayskull [kal24b]. These custom accelerators typi-

cally incorporate multiple processing elements (PEs) arranged into a 2D systolic array.

The effectiveness of manycore systems relies heavily on efficient on-chip data movement, mak-

ing the design of scalable, high-performance OCNs critical. However, achieving scalability and

high-performance in OCN design presents substantial challenges, both in methodology and archi-

tecture.

Methodology Challenge – Developing on-chip interconnects involves overcoming several

methodological challenges, particularly in the design, testing, and evaluation of networks. The

design space for OCNs is vast, encompassing various factors such as topology, routing algorithms,

flow control mechanisms, and physical design considerations. Exploring this design space requires

a unified approach that can model, simulate, and evaluate OCNs across different levels of abstrac-
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tion, from functional models to cycle-accurate simulations and hardware implementations. How-

ever, existing tools often struggle to balance the need for rapid design-space exploration with the

accuracy required for hardware-level evaluation. For example, many widely used on-chip network

simulators use cycle-level modeling for early design-space exploration and verifying cycle-level

behavior [APM+12, AKPJ09, CHB+10, JBM+13, TB12, LSC+10]. However, these simulators do

not support register-transfer-level (RTL) modeling and cannot easily generate synthesizable Ver-

ilog, which is essential for accurate evaluation of area, energy, and timing. OCN generators use

RTL modeling to accurately characterize area, energy, and timing, but they lack the high-level de-

sign abstractions that enable fast design-space exploration [CP04, PH13, KK17]. This gap creates

challenges in assessing trade-offs between performance, area, and energy consumption early in the

design process, making it difficult to iterate and refine OCN designs efficiently. To address these

challenges, this thesis presents a unified framework that seamlessly integrates modeling, testing,

and evaluation to support the development of scalable and robust OCNs.

Architecture Challenge – A notable gap exists a noticeable gap between the theoretical ad-

vancements in OCN design and their practical implementation in manycore processors. While

research literature has proposed numerous innovative solutions to improve OCN performance,

such as novel flow-control schemes [KPKJ07,MWM04,PD01], custom circuits [KS08,CPK+13],

and novel network topologies [BD06, BD06, KBD07, GHKM09, GHKM11], most manycore pro-

cessors still adopt a simple 2D-mesh OCN topology [BEA+08, WGH+07, MFN+17, LSC+13,

BSP+17, Whe20, Hal20, RZAH+19b], even though it is well known that the high diameter of

2D-mesh topologies can significantly increase packet latency and thus reduce system-level per-

formance [DT04]. The key reason is that implementing manycore processors relies on a tiled

physical design methodology, yet these novel solutions are often incompatible with this approach.

To bridge this gap, this thesis explores practical architectures that can reduce the network diameter

while remaining compatible a tiled physical design methodology.

1.2 Off-Chip Interconnects

As the number of cores within a single chip continues to scale, the demand for higher mem-

ory bandwidth has risen sharply to ensure that compute cores receive sufficient data. Additionally,

modern data-intensive workloads, such as large language model (LLM) training, require a substan-
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Figure 1.3: Trend of Per-Device Memory Bandwidth and Capacity – This plot shows how the per-device memory
bandwidth and capacity of different memory technologies scale over time. Data is collected from [tec24b, tec24a]

tial amount of memory capacity. This has driven the need for off-chip memory interconnects that

can provide high bandwidth and are easy to expand memory capacity. Meanwhile, while tremen-

dous efforts have been made to scale up single-chip performance, the physical limitations of chip

design, such as reticle size, mean that further gains are increasingly difficult. Therefore, scalable,

high-performance system interconnects that can enable efficient scale-out of distributed compute

systems has become increasingly critical.

For off-chip memory interconnects, a key tension exists between achieving high bandwidth and

maintaining scalable memory capacity. As illustrated in Figure 1.3(a) and Figure 1.3(b), both the

bandwidth and capacity of off-chip memory have improved significantly over the years across var-

ious technologies, each enabled by different types of interconnects and offering unique trade-offs.

Double data rate (DDR) memory is typically integrated on separate circuit boards known as dual

inline memory modules (DIMMs), which are installed on the motherboard of a compute node.

This setup allows for flexible memory expansion, but the off-chip interconnect between the com-

pute chip and the DIMMs limits bandwidth compared to more integrated memory technologies.

Graphics double data rate (GDDR) memory, on the other hand, is integrated on the same board as

the compute chip and is positioned close to its chip package. This shorter off-chip connection al-

lows for higher bandwidths compared to DDR, making GDDR well-suited for bandwidth-hungry

workloads such as graphics processing. However, expanding the memory capacity of GDDR is
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Figure 1.4: Trend of Off-Chip Interconnect Bandwidth – This plot shows how the bandwidth of selected off-chip
interconnect technologies scales over time. Data is adapted from various online sources [Sha22, inf24, nvl24]

less flexible than DDR. High bandwidth memory (HBM) is a more recent memory technology and

takes integration a step further by being tightly integrated within the same package as the compute

chip. HBM is connected to the compute chip via short-reach high-density chiplet I/Os which en-

ables significantly higher bandwidths compared to DDR and GDDR, making it indispensable for

modern data-intensive applications. Although HBM achieves higher memory density compared to

DDR and GDDR by leveraging advanced technologies such as 3D stacking and through-silicon

vias (TSVs), the number of HBM stacks that can be integrated within a single package is funda-

mentally limited by the perimeter of the compute chip. This limitation makes it challenging to

scale the memory capacity of HBM-based memory systems.

For off-chip system interconnects, a key tension exists between high bandwidth and link reach,

which is closely related to the scalability of the interconnect. As illustrated in Figure 1.4, system

interconnect technologies such as Peripheral Component Interconnect Express (PCIe), InfiniBand,

and NVLink address specific requirements based on different use cases, and they have seen sig-

nificant increase in bandwidth over the years. PCIe is commonly used for connecting different

components, such as CPU, GPU, network cards, and storage devices. While PCIe has seen steady

bandwidth improvements over the years, from a few GB/s in the late 1990s to 128 GB/s in the latest

PCIe 6.0 standard, it is mostly limited to short-reach connections within a server node. InfiniBand

is widely used for interconnecting different compute nodes over a long distance. While its band-

width of InfiniBand has scaled similarly over the years, reaching up to 25 GB/s per port in the lasted
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Figure 1.5: Tension in Off-Chip Interconnect Technologies – Conceptual illustration of the tension in off-chip
interconnect technologies.

XDR version, the bandwidth offered by InfiniBand is still lower than short-reach interconnects like

PCIe. Since the 2010s, the rise of deep learning and AI workloads demanding high throughput has

led to the development of specialized high-bandwidth interconnects like NVLink, offering up to

900 GB/s per GPU. However, the limited link reach of NVLink restricts its scalability, and it is

primarily used for tightly-coupled GPUs within a single node (e.g., DGX H100).

Figure 1.5 conceptually illustrates the tensions in various memory interconnect and system

interconnect technologies. These tensions give rise to challenges in scaling off-chip interconnects,

both in methodology and architecture.

Methodology Challenge – Developing an accurate model for large-scale distributed systems is

challenging primarily due to the complex interactions between interconnected components. Unlike

on-chip networks, where interactions are confined within a single chip, off-chip interconnects must

manage data transfer across multiple devices, including CPUs, GPUs, memory modules, and stor-

age units, often spanning multiple compute nodes. Modeling such a diverse range of interactions

is difficult, as it involves considering multiple layers of communication across various intercon-

nects in the system. Additionally, large-scale distributed systems with multiple compute nodes and

sophisticated interconnects are not readily accessible to most researchers, making it challenging
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to calibrate models against real hardware performance. This thesis focuses on the methodology

challenge of modeling distributed LLM training.

Architecture Challenge – The design of off-chip interconnects involves navigating trade-offs

between many aspects, such as latency, bandwidth, energy efficiency, and scalability. Modern

workloads, however, demand high performance across almost all these metrics. Optimizing one

of these aspects usually often comes at the expense of others. For instance, HBM-based memory

systems, enabled by tightly integrated memory interconnect, offer exceptional bandwidth but suffer

from limited memory capacity. High-bandwidth system interconnects such as NVLink come at the

cost of limited scalability. Emerging technologies, such as tightly integrated silicon photonics,

present opportunities to break some of these trade-offs. This thesis investigates the use of co-

packaged optics to break these traditional trade-offs, advancing interconnect designs to meet the

demands of future large-scale, high-performance workloads.

1.3 Thesis Overview

This thesis explores new methodologies, architectures, and silicon prototypes to address the

challenges of scaling both on-chip and off-chip interconnects in modern computing systems. The

work is divided into two main parts: the first focuses on OCNs for manycore architectures, while

the second addresses off-chip interconnects, particularly for machine learning workloads. By pre-

senting comprehensive frameworks and practical design solutions, this thesis aims to improve the

scalability, performance, and efficiency of interconnects, and demonstrate their feasibility through

silicon prototypes.

Chapter 2 presents PyOCN, a unified Python-based framework for modeling, testing, and eval-

uating OCNs. PyOCN enables rapid design-space exploration of OCNs by providing a library of

highly parametrized router and network components, which can be easily configured and composed

to form complex network topologies with various routing algorithms and flow control mechanisms.

Chapter 3 proposes a tiled physical design methodology for implementing low-diameter OCNs,

which closes the gap between theoretical principle and practical implementation. I, concurrently

with the work by Jung et. al [JDZ+20], propose the ruche channel to fully exploit the VLSI wiring

capability in modern technology nodes. It demonstrates that low-diameter OCNs for manycore pro-

cessors can be realized by adapting mesh/torus topologies with concentration and ruche channels.
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Through analytical modeling and realistic layout-level evaluations, I demonstrate that 2D-mesh

topologies with modest concentration factors and modest length ruche channels can significantly

reduce network diameter at similar area and bisection bandwidth.

Chapter 4 presents the CIFER chip tape-out, in which PyOCN was used for developing OCNs

for different use cases. This chapter discusses the CIFER architecture, the OCN implementations,

as well as the findings and reflections I made during the tape-out process.

Chapter 5 introduces LLMCompass-E2E, a performance evaluation framework for large-scale

distributed training workloads. LLMCompass-E2E is built on top of the existing LLMCompass

framework, which provides kernel-level performance model for inference. By incorporating a

kernel-level compute graph intermediate representation (IR), kernel-level auto-gradient, and a

pipeline scheduler simulator, LLMCompass-E2E effectively supports modeling the end-to-end dis-

tributed training performance on a given compute system.

Chapter 6 proposes optically connected multi-stack HBM modules that leverage co-packaged

silicon photonics interconnect. The proposed design extends the HBM memory system off the

compute interposer, circumventing the chip packaging constraint and allowing more HBM stacks

to be connected to the compute chip while also improving off-chip bandwidth. Evaluations using

LLMCompass-E2E show significant improvements in training and inference efficiency for large-

scale large language models (LLMs).

Chapter 7 presents the PIPES silicon photonic tape-out, which validates the proposed off-chip

interconnect in Chapter 6. This chapter details the PIPES system architecture as well as the design,

implementation, and verification of the electrical interface chiplet (EIC).

Chapter 8 concludes the thesis by summarizing the contributions of this thesis and discussing

future research directions. The primary contributions of this thesis are as follows:

• I develop PyOCN, a unified Python-based framework for modeling, testing, and evaluating

on-chip networks that enables rapid design-space exploration.

• I propose and evaluate practical OCN topologies that reduce the network diameter while

remaining practical to implement using a tiled physical design methodology.

• I demonstrate the benefits of PyOCN through the CIFER chip tape-out, highlighting practical

design trade-offs and optimizations.

10



• I develop LLMCompass-E2E, a performance evaluation framework for large-scale distributed

training workloads.

• I propose and evaluate the use of co-packaged silicon photonic interconnect to scale the

memory capacity and bandwidth of HBM-based memory systems, which are essential for

LLM workloads.

• I demonstrate a practical implementation of the proposed co-packaged silicon photonic in-

terconnect through the PIPES tape-out.

1.4 Collaboration, Previous Publications, and Funding

This thesis would not have been possible without the support and mentorship of my advisor,

Christopher Batten, as well as the collaboration of my colleagues at Cornell University and external

partners. Throughout my Ph.D. journey, Christopher Batten was a constant source of inspiration

and guidance, consistently shaping the direction and depth of my research. His feedback, along

with our countless discussions, played a crucial role in refining my ideas and driving my work
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I was one of the core contributors to the PyMTL3 project, where I collaborated closely with

Shunning Jiang and Peitian Pan to design and implement the PyMTL3 framework from scratch.

Shunning Jiang led the project, spearheading the design and implementation of key components,

including the core DSL, the pass mechanism, the scheduling and simulation passes, and the initial

PyMTL3 standard library. Peitian Pan was responsible for designing and implementing the trans-

lation mechanism, enabling extensible conversion from the PyMTL3 DSL to various backends. I

focused on developing the method-based interfaces, mixed-level modeling, the parameter mech-

anism within the DSL, and contributed to the creation of several IPs using PyMTL3. Shunning

Jiang led the paper we published at IEEE Micro in 2020 [JPOB20].

I co-led the PyH2 (Python Hypothesis for Hardware) project with Shunning Jiang. Zac Hatfield-

Dodds, the creator of the Hypothesis framework, provided valuable feedback and guidance on the

integration of Hypothesis with PyMTL3. I carried out the initial pathfinding of PyH2. I worked

on leveraging Hypothesis to effectively test hardware design generators, with the help of Cheng

Tan. Peitian Pan and Kaishuo Cheng led the work on generating random instruction sequences to
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automatically test processors. Xiaoyu Yan and Eric Tang led a case study on testing a PyMTL3

cache generator with PyH2. Yixiao Zhang contributed to exploring Hypothesis stateful testing

for hardware data structures. Peitian Pan developed a random bug injector for evaluating PyH2.

Shunning Jiang led the paper we published at IEEE Design & Test in 2020 [JOP+20].

I led the PyOCN project. I implemented the initial version of the PyOCN framework from

scratch. Cheng Tan joined the project later and contributed to the development of several router

components and network topologies. Shunning Jiang provided support and guidance on the PyMTL3

integration. Peitian Pan provided support on PyMTL3 translation which was essential for gener-

ating synthesizable Verilog. Christopher Torng and Shady Agwa helped with setting up the ASIC

toolflow for area, energy, and timing analysis. Cheng Tan led the paper we published at ICCD

2019 [TOJ+19].

I led the tiled OCN project. I pushed various router and channel designs through the ASIC flow

and built analytical models showing trade-offs in latency, bandwidth, and area. I designed and

implemented the RTL model for the routers, hard macros, and networks. I conducted post-place-

and-route evaluations for a variety of hard macros and network topologies. Shady Agwa provided

guidance on hierarchical physical design and supported the chip-level results. I led the publication

of our work at NOCS 2020 [OAB20].

I was a key contributor to the CIFER chip tape-out presented in Chapter 4. The CIFER project

was a collaborative effort between Professor David Wentzlaff’s research group at Princeton Uni-

versity and Professor Christopher Batten’s research group at Cornell University. The Princeton

team, including Ting-Jung Chang, Ang Li, Fei Gao, Georgios Tziantzioulis, Jinzheng Tu, Kaifeng

Xu, Paul Jackson, August Ning, Grigory Chirkov, Marcelo Orenes-Vera, and Jonathan Balkind,

led the overall project and was in charge of developing the Ariane tile, developing the embedded

FPGA, top-level integration, physical design, and post-silicon testing. The Cornell team was in

charge of developing the TinyCore cluster and the OCN. Tuan Ta led the TinyCore cluster de-

velopment. He developed the TinyCore RTL model. Xiaoyu Yan, and Eric Tang developed the

software-managed coherent cache in the TinyCore cluster, with help and guidance from Moyang

Wang. Moyang Wang led the development of a task-parallel runtime system for the TinyCore

cluster, with support from Tuan Ta. Shady Agwa and I assisted in setting up gate-level testing

and helped with preliminary timing and area analysis by pushing the TinyCore cluster through an

ASIC flow. I led the development of the tile-level OCN as well as the OCNs within the TinyCore
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cluster. With tremendous help from Jonathan Balkind, I successfully integrated PyOCN into the

OpenPiton framework. Fei Gao and Professor David Wentzlaff provided valuable feedback and

guidance on the OCN design and timing optimization. Ting-Jung Chang and Ang Li led the papers

we published at CICC and SSCL in 2023 [CLG+23, LCG+23].

I was a key contributor to the LLMCompass-E2E framework, which was an extension of the

LLMCompass framework. I worked closely with the first author of LLMCompass, Hengrui Zhang

from Professor David Wentzlaff’s group to extend the original LLMCompass framework to support

end-to-end distributed training performance modeling. Hengrui Zhang provided guidance on the

LLMCompass framework and we had many productive discussions on distributed LLM training.

I refactored the original LLMCompass software model and added a kernel-level compute graph

IR. I implemented kernel-level auto-gradient in LLMCompass. I re-engineered the frontend of the

framework to be more automated. I implemented an event-driven simulator for generating pipeline

schedules which is critical for modeling the pipeline parallelism. I implemented network models

for simulating the communication overhead for data parallelism and pipeline parallelism. I added

support for modeling different activation recomputation strategies.

I led the optically connected HBM project. I had a lot of useful brainstorming sessions with

Austin Rovinski at the beginning of the project. Yuyang Wang and Songli Wang taught me a lot

about silicon photonics. Hengrui Zhang provided support on LLMCompass and we had many

useful discussions on the system design. I implemented the optically connected HBM model in

LLMCompass-E2E and conducted various experiments to explore its benefit in both LLM training

and inference. I led our paper submission to IEEE CAL. Professor David Wentzlaff and Austin

Rovinski provided valuable feedback on the paper.

I was a key contributor to the PIPES silicon photonic tape-out, presented in Chapter 7. PIPES

was led by Intel and was a collaborative effort between Professor Keren Bergman’s research group

at Columbia University, Professor Alyosha Molnar’s research group at Cornell University, and

Professor Christopher Batten’s research group at Cornell University. Kaveh Hosseini and Tim Tri

Hoang from Intel led the overall project and provided valuable feedback and support throughout

the project. The Columbia team led the development of the PIC and the Cornell teams led the

development of the EIC. For Professor Keren Bergman’s group, Songli Wang and Asher Novick led

the development of the modulators in the PIC. Robert Parsons led the development of the ring filters

in the PIC and wafer-level testing. Songli Wang and Yuyang Wang led the development of the
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interleavers and de-interleavers in the PIC. For Professor Alyosha Molnar’s group, Hamilton Lee

and Luke James designed the offset DAC. Daria Sansoterra worked on current mirrors. Christine

Ou, Devesh Khilwani, and Sunwoo Lee led the development of the TRX unit in the EIC. I co-

led the EIC top-level integration and physical design with Austin Rovinski. I implemented the

RTL model of the EIC, including an SPI configuration unit, a configuration network, an AIB

controller, AIB interface units, and TRX interface units. Austin Rovinski implemented the RTL

model of the mesochronous buffer. I led the EIC top-level pre-silicon verification. Ching-Chi

Chang provided guidance on setting up the test bench and helped significantly with debugging the

AIB unit. I worked closely with Christine Ou and Devesh Khilwani to design a digital testing

interface for the TRX unit. I implemented most of the testing infrastructure and the test cases.

Nicholas Cebry also contributed many test cases to pre-silicon verification. I co-led the top-level

AISC flow and physical design of the EIC with Austin Rovinski. I worked closely with Christine

Ou and Devesh Khilwani to create a mixed-signal characterization flow. I implemented the hard

macros for AIB interface units and TRX interface units. Khalid Al-Hawaj helped with initial

ASIC flow pathfinding. The physical design of the EIC could not have been done without Austin

Rovinski’s contribution to power planning, I/O placement, redistribution-layer (RDL) routing, and

design rule violations fixing. Sung-Gun Cho from Intel also helped significantly with the ASIC

flow. Sung-Gun Cho, Sunwoo Lee, and Austin Rovinski made tremendous contributions to fixing

the design rule violations. I led the post-silicon testing of the crossbar unit in the EIC. I developed

all the post-silicon testing infrastructure and test cases. I verified the SPI configuration unit on

an FPGA before the chip was taped out. I conducted unit testing of the crossbar unit. I worked

closely with Christine Ou and Devesh Khilwani to conduct integration testing of the crossbar unit

and TRX unit. I worked closely with Songli Wang and Yuyang Wang to conduct integration testing

of the EIC and PIC.
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PART I
SCALING ON-CHIP INTERCONNECTS

The first part of this thesis focuses on addressing the methodology and architecture challenges in

scaling on-chip interconnects. As the demand for processing power continues to grow, manycore

architectures have emerged as a solution to enhance parallelism and throughput within a single

chip. However, the efficiency of these architectures is heavily dependent on the performance of on-

chip interconnects, which play a critical role in facilitating data movement between cores. Scaling

on-chip interconnects to accommodate increasing core counts while maintaining low latency, high

bandwidth, and energy efficiency poses significant challenges. Part I of the thesis addresses these

challenges by presenting new methodologies and architectures that enhance the scalability and

performance of OCNs. Chapter 2 presents PyOCN, a unified framework for modeling, testing, and

evaluating on-chip interconnects. Chapter 3 proposes practical low-diameter network topologies

along with a tiled physical design methodology to effectively implement them and explores their

trade-offs using PyOCN. Finally, Chapter 4 details the CIFER chip tape-out, a heterogeneous

manycore processor implemented using a tiled physical design methodology and validates the

feasibility of the PyOCN framework.
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CHAPTER 2
METHODOLOGY: A UNIFIED FRAMEWORK FOR

ON-CHIP NETWORKS

There is a growing interest in the open-source hardware movement to amortize non-recurring

engineering costs by using plug-and-play system-on-chip (SoC) designs, where the communication

among different components is provided by an on-chip interconnection network. Unfortunately,

building an on-chip network (OCN) that is suitable for a specific SoC design requires the explo-

ration of a large number of design options and involves diverse research methodologies to evaluate

performance, area, energy, and timing. In this chapter, I present PyOCN, a unified framework that

vertically integrates multiple research methodologies to enable productively exploring the OCN

design space. PyOCN is the first comprehensive framework for modeling (e.g., functional-level,

cycle-level, and register-transfer-level), testing (e.g., unit testing, integration testing, and property-

based random testing), and evaluating (e.g., simulating, generating, and characterizing) on-chip

interconnection networks. We use a case study based on a 64-terminal butterfly network to il-

lustrate the key features of PyOCN and to demonstrate the framework’s potential in productively

modeling, testing, and evaluating OCNs. PyOCN is further used in developing the OCNs in Chap-

ter 3 and Chapter 4.

2.1 Introduction

On-chip networks (OCNs) play a significant role in chip design across many different domains.

Embedded SoCs can include tens of homogeneous or heterogeneous cores to meet performance

and power requirements [Gre11, TKMP18], high-end cloud servers can include tens to hundreds

of cores to enable high-performance computing [Bol12, WKP11], and accelerators can include

hundreds of processing elements for domain-specific computing [KTK+18, CKES16, CDS+14,

KSK18]. At the same time, the costs of chip design and verification are rising. In response, there is

growing interest in open-source hardware design based on plug-and-play SoC frameworks, where

the communication between components is provided by an on-chip interconnection network.

Unfortunately, building an OCN that is suitable for a specific SoC design requires exploring

a large design space (e.g., network size, channel bandwidth, topologies, routing algorithms, flow

control schemes, arbitration techniques, physical floorplanning, and wire routing) using a combina-

17



tion of high- and low-level modeling to accurately estimate performance, area, energy, and timing.

For example, OCN cycle-level simulators are widely used today and provide rich configuration

options for early-stage design-space exploration [APM+12, AKPJ09, CHB+10, JBM+13, TB12].

However, the convenience in using CL models must be balanced against decreased accuracy and

no path to real hardware implementations. There are a number of OCN register-transfer-level

(RTL) generators that produce synthesizable Verilog to drive an evaluation of area, energy, and

timing [cor19,fle19,CP04,PH13,KK17,FFDMS14]. These low-level generators can be difficult to

use and lack support for fast simulation. Some OCN design frameworks combine various research

methodologies together to facilitate design space exploration [BJM+05,PCSV08]. However, area,

energy, and timing characterization in these frameworks is often based on high-level first-order

modeling. There is a growing need for a vertically integrated OCN framework that can effectively

characterize performance, area, energy, and timing across a large design space.

This paper presents PyOCN, a unified framework for modeling, testing, and evaluating on-chip

interconnection networks. The concrete contributions of this work are the following: (1) PyOCN

enables multi-level modeling to facilitate rapid design-space exploration and OCN implementa-

tion; (2) PyOCN provides sophisticated test harnesses for testing OCN designs modeled at different

abstraction levels; (3) PyOCN can simulate OCNs at various abstraction levels, generate synthe-

sizable Verilog, and drive a commercial standard-cell-based toolflow for characterizing OCN area,

energy, and timing.

2.2 Related Work

Table 2.1 summarizes the state-of-the-art OCN research methodologies and compares them to

PyOCN.

2.2.1 Modeling OCNs

Existing state-of-the-art OCN simulators struggle to balance rapid design-space exploration

(requiring high-level design abstractions) and accurate estimation of area, energy, and timing (re-

quiring low-level detailed modeling).
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Framework
Modeling Testing Evaluating Open-

source
Lang. Topology Routing FL CL RTL PL Unit Int. PBT. Sim. RTL

Gen.
ASIC
Char.

Si
m

ul
at

io
n

BookSim2
[JBM+13]

C++
Xbar, Ring, (C)Mesh,
Butterfly, Torus, Tree

DOR,
Customized

Garnet
[AKPJ09]

C++,
Python

Xbar, Mesh,
Customized

DOR,
Customized

Noxim
[CMM+05]

SystemC
Mesh, Butterfly,

Wireless
DOR, Odd-Even,

Dyad routing

G
en

er
at

io
n

FlexNoC
[fle19]

? Application-
specific

n/a ? ? ?

NoCGEN
[CP04]

HDL
Mesh, Customized

topology
DOR routing ? ? ?

Connect
[PH13]

BSV
Customized

topology
Customized

routing
? ? ?

OpenPiton
[BMF+16]

Verilog
Xbar,
Mesh

DOR routing

Netmaker
[net19]

System-
Verilog

Mesh DOR routing

OpenSMART
[KK17]

BSV
Chisel

Mesh, Customized
topology

DOR, Source
routing

OpenSoC Fabric
[FFDMS14]

Chisel
Mesh, Flattened

butterfly
DOR routing,
Concentration

C
ha

ra
ct

.

DSENT
[SCK+12]

C++ n/a n/a

Orion2.0
[KLPS09]

C++ n/a n/a

COSI
[PCSV08]

C++
Application-

specific
n/a

NetChip
[BJM+05]

SystemC
Application-

specific
n/a ? ? ?

PyOCN PyMTL
Xbar, Ring, (C)Mesh,

Butterfly, Torus,
Customized topology

DOR, Source,
Customized

routing

Table 2.1: Comparison with Prior Art – Different state-of-the-art research methodologies for designing OCNs,
which are categorized into three groups (i.e., Simulation, Generation, and Characterization). , , and indicate the
corresponding feature is not supported, partially supported, and fully supported, respectively. For example, OpenSoC
Fabric can generate synthesizable Verilog ( ) but relies on VCS for simulation ( ). In contrast, the simulation in
PyOCN allows the test bench to be written in Python and eliminates any semantic gap. Lang. = language; FL =
functional level; CL = cycle level; RTL = register-transfer level; PL = physical level; Unit = unit testing; Int. =
integration testing; PBT. = property-based random testing; Sim. = simulation; RTL Gen. = RTL generation; ASIC
Char. = ASIC characterization.
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Cycle-Level Modeling – Many widely used on-chip network simulators use CL modeling for

early design-space exploration while verifying functional- and cycle-level behavior [APM+12,

AKPJ09,CHB+10,JBM+13,TB12,LSC+10]. Unfortunately, these simulators do not support RTL

modeling and cannot easily generate synthesizable Verilog, which is essential for accurate eval-

uation of area, energy, and timing. As an exception, Noxim [CMM+05] is a cycle-level OCN

simulator developed in SystemC with some capacity for power estimation. All basic elements of

the OCN in Noxim are also modeled in VHDL and are synthesized with a 65 nm CMOS standard

cell library at 1GHz to provide statistical power analysis.

Register-Transfer-Level Modeling – On the other hand, OCN generators use RTL model-

ing to accurately characterize area, energy, and timing, but they lack the high-level design ab-

stractions that enable fast design-space exploration [CP04, PH13, KK17]. For example, OpenS-

MART [KK17] is an OCN RTL generator for a wide range of different network configurations.

Unfortunately, simulating generated RTL can easily limit rapid design-space exploration over large

parameter space.

Physical-Level Modeling – Finally, OCN frameworks rarely take physical-level (PL) modeling

considerations into account (e.g., macro- and micro-floorplanning), which is critical for effectively

building complex OCNs. One exception is SUNMAP [MM04], which enables PL modeling in

OCN generation and uses a floorplanning algorithm [AM03] to minimize the estimated area and

wire lengths for specific applications.

2.2.2 Testing OCNs

Debugging OCNs can be time-consuming and tedious, as common problems (e.g., deadlock,

fairness) can be hard to trigger and the resulting trace can often contain hundreds of packets. Most

OCN simulation, generation and characterization frameworks lack robust testing infrastructure to

validate model correctness. Most of these frameworks only contain simple tests for a single router

or a specific network instance. Many frameworks lack an automatic and systematic way to verify

outputs.
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2.2.3 Evaluating OCNs

Simulating OCNs – Simulation is provided by most OCN simulators using CL modeling [APM+12,

AKPJ09, CHB+10, JBM+13, TB12, LSC+10]. Some multicore simulators [BBB+11, RLC+12]

also integrate dedicated on-chip network simulators. Conventional OCN generators that generate

synthesizable RTL code do not have the ability to simulate the generated model. They often require

other Verilog or SystemC simulators to drive the simulation.

Generating OCNs – ARM’s CoreLink Interconnect [cor19] and Arteris FlexNoC [fle19] are

two commercial OCN generators that target mobile applications. NoCGEN [CP04] can generate

VHDL code for both 2D and 3D mesh topologies based on a user-defined OCN specification in

XML file format but with very limited configuration options. Connect [PH13] focuses on generat-

ing OCNs optimized for FPGA implementations. All the above OCN generators are closed-source,

leading to limited visibility into the implementation details and the inability to extend the frame-

work. Open-source OCN generators are emerging as part of the open-source hardware movement.

OpenPiton [BMF+16] is an open-source many-core research framework that contains three 2D

mesh OCNs to ensure deadlock-free operation and provide communication between the tiles for

cache coherence, I/O and memory traffic, and inter-core interrupts. Netmaker [net19] is written

in SystemVerilog and passes parameters by including a single parameter file in all modules. It

provides testbenches and simulation for the entire OCN. OpenSMART [KK17] is an open-source

OCN generator implemented in BSV and Chisel. It can generate SMART NoCs [KCKP14] to en-

able single-cycle multi-hop traversals in arbitrary topologies. However, no FL and CL simulation

is provided in these prior works. OpenSoC Fabric [FFDMS14] provides an open-source OCN gen-

erator implemented in Chisel. It can generate both software (C++) and hardware (Verilog) models

but without a native simulator. Users must work in multiple languages when writing testbenches

in C++ or Verilog.

Parameterization is clearly a first-order concern in OCN simulators and generators. Most ex-

isting tools implement parameterization using a declarative OCN specification (e.g., configuration

parameters in XML file format). Developers need to carefully modify the configuration file to

make sure the new parameters can be properly passed down the hierarchy. This significantly in-

creases the development effort especially for designing complex OCNs where different modules

share the same parameter name (namespace collision) or the same modules produce differently

parameterized outputs.
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Figure 2.1: Overview of PyOCN Framework – PyOCN provides a library of OCN components to compose networks.
PyOCN also provides unit test for each building block and integration test for the target OCNs. Property-based random
test (PBRT) is used for stress testing network models. An OCN simulator is implemented for simulating different
OCNs and backend scripts are provided to drive the EDA toolflows for area, energy, and timing characterization.
PyOCN also features a parameterization system facilitating easy OCN configuration. Green components are included
as part of the PyMTL framework. Orange components are added as part of the PyOCN framework.

Characterizing OCNs – Power- and area-models (e.g., Orion [WPM02], Orion2.0 [KLPS09],

DSENT [SCK+12]) are widely used to characterize complete OCNs or OCN components (e.g.,

routers, channels) early in the design cycle. These frameworks can also be integrated into OCN

generator frameworks for high-level optimization. For instance, COSI [PCSV08] is a synthesis

framework for OCNs that embeds the power and area models derived from Orion to facilitate the

OCN optimization. However, COSI targets synthesis without support for higher-level modeling.

Similarly, SUNMAP [MM04] leverages XPipes [BB04] and Orion’s power model to automatically

generate SystemC descriptions of power-optimized network components. NetChip [BJM+05] inte-

grates SUNMAP with the XPipesCompiler [JMBM04] to generate synthesizable Verilog for OCN

designs. HotSniper [PH18] allows interval thermal simulation of many-cores. However, genera-

tion of synthesizable Verilog is not supported. High-level area, energy, and timing models enable

early characterization, however, the lack of a detailed implementation leads to significant inaccu-

racy [KLN12, KLN15] and iterative development (Orion series [WPM02, KLPS09, KLN15]).
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2.3 PyOCN Framework

PyOCN is a unified framework for modeling, testing, and evaluating on-chip interconnection

networks. Figure 2.1 shows an overview of the PyOCN framework and illustrates its tight integra-

tion with PyMTL [LZB14, JIB18].

PyOCN extends the PyMTL framework with additional features suitable for OCN design-space

exploration. Highly parameterized and modularized OCN components, modeled in FL, CL, RTL,

and PL, serve as a standard library for building OCNs (see Section 2.4). In addition, PyOCN pro-

vides a comprehensive testing methodology based on unit testing, integration testing, and property-

based random testing to test the FL, CL and RTL models (see Section 2.5). To evaluate different

OCN designs, PyOCN can generate synthesizable Verilog with the geometry information for floor-

planning based on the RTL and PL models via the generation pass and placement pass (see Sec-

tion 2.6). A parameterization system is implemented to allow developers to flexibly parameterize

any module instance. For characterizing OCN components and networks, PyOCN provides a set of

electronic-design automation (EDA) scripts to drive a commercial standard-cell-based toolflows.

PyMTL is a unified hardware modeling framework. It leverages Python for behavioral specifi-

cation, structural elaboration, and verification, enabling a rapid code-test-debug cycle for hardware

modeling. PyMTL allows a designer to write the design under test (DUT) and test bench com-

pletely in Python for simulation and only transit to the traditional HDL workflow to push the DUT

through an FPGA/ASIC toolflow. The simulation engine written in Python drastically reduces the

iterative development cycle and eliminates any semantic gap.

2.4 PyOCN for Modeling OCNs

PyOCN provides a library of modular basic building blocks to compose OCNs. As shown in

Figure 2.2, a router is composed of input units, route units, switch units, and output units. All

these basic components have standardized latency insensitive interfaces so that each component

can easily be replaced by user-customized components to create new networks. For example, if we

want to implement a ring network with on/off flow control, instead of reimplementing the whole

router, we only need to implement an input unit and an output unit that supports on/off flow control

and swap them into the standard ring network which uses credit-based flow control. The modular
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Figure 2.2: PyOCN Generic Router Architecture

1 def ringnet_fl( src_pkts ):
2 nterminals = len( src_pkts )
3 dst_pkts = [ [] for _ in range( nterminals ) ]
4

5 for packets in src_pkts:
6 for pkt in packets:
7 dst_pkts[ pkt.dst ].append( pkt )
8 return dst_pkts

Figure 2.3: FL Implementation of Ring Network – Simply redistributes an array of packet lists based on the
destination field of each packet.

design approach also makes it easy to unit test the router, since we can test each basic component

in isolation before we integrate them into a router.

By leveraging PyMTL, PyOCN is capable of modeling and generating OCNs at different levels

of abstraction, including FL, CL, and RTL, in a unified environment, which enables a user to

rapidly take an OCN design from concept to implementation. This section describes PyOCN’s

modeling approach spanning FL, CL, and RTL modeling.

Functional-Level Modeling – An FL network is essentially a magic crossbar. Figure 2.3

illustrates the FL implementation of a mesh network. PyOCN provides FL network models to

enable early-stage validation and fast emulation of the model. We can write tests, check them first

against the FL network, and then reuse these tests to verify CL and RTL networks at later design

stages. Developing test cases with validation against FL network improves the credibility of these

test cases. In other words, if the CL or RTL networks fail a test, it is more likely due to an error in

the CL or RTL implementation, rather than an incorrect test case. Furthermore, our FL networks
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1 class SwitchUnitCL( Component ):
2 def construct( s, pkt_t, num_inports ):
3

4 # Local parameters
5 s.num_inports = num_inports
6

7 # Interface
8 s.get = [ \
9 CallerIfc(pkt_t) for _ in range(num_inports) ]

10 s.give = \
11 CalleeIfc(pkt_t, method=s.give_, rdy=s.give_rdy)
12

13 # Components
14 s.priority = list( range(num_inports) )
15

16 for i in range( num_inports ):
17 s.add_constraints( M( s.get[i] ) == M( s.give ) )
18

19 def give_rdy( s ):
20 for i in range( s.num_inports ):
21 if s.get[i].rdy():
22 return True
23 return False
24

25 def give_( s ):
26 for i in s.priority:
27 if s.get[i].rdy():
28 s.priority.append( s.priority.pop(i) )
29 return s.get[i]()

Figure 2.4: CL Implementation of SwitchUnit – It is parametrized by the packet type and the number of inputs. It
uses a list of integers s.priority to model a round-robin arbiter.

can also be composed with lower-level (i.e., CL and RTL) cores, memories, and accelerators to

help develop end-to-end software that runs correctly on an SoC model.

Cycle-Level Modeling – PyOCN provides CL networks to facilitate rapid design-space ex-

ploration of cycle-level performance across a wide range of microarchitectural parameters, such

as topology, routing algorithm, channel latency, type/size of input queues, and type of arbiters.

The CL networks are built with the CL version of basic components. Figure 2.4 illustrates the

implementation of a CL switch unit. Instead of using an arbiter, it simply instantiates a list of

integers to model a round-robin arbiter. Our CL model is almost cycle-accurate (see Table 2.2 for

an example), since most of the CL building blocks are cycle-accurate.

Register-Transfer-Level Modeling – PyOCN also provides RTL implementations of multi-

ple networks for cycle-accurate performance evaluation and ASIC/FPGA synthesis. Similar to CL

networks, the RTL networks are composed using the RTL version of the basic building blocks. Fig-

ure 2.5 shows the implementation of an RTL switch unit in the PyMTL domain-specific language
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1 class SwitchUnitRTL( Component ):
2 def construct( s, pkt_t, num_inports ):
3 # Local Parameters
4 sel_width = clog2( num_inports )
5 sel_t = mk_bits( sel_width )
6 grant_t = mk_bits( num_inports )
7

8 # Interface
9 s.get = [GetIfc(pkt_t) for _ in range(num_inports)]

10 s.send = SendIfc(pkt_t)
11

12 # Components
13 s.arbiter = RoundRobinArbiterEn( num_inports )
14 s.mux = Mux( pkt_t, num_inports )(
15 out = s.send.msg,
16 )
17 s.encoder = Encoder( num_inports, sel_width )(
18 in_ = s.arbiter.grants,
19 out = s.mux.sel,
20 )
21

22 # Connections
23 for i in range( num_inports ):
24 s.connect( s.get[i].rdy, s.arbiter.reqs[i] )
25 s.connect( s.get[i].msg, s.mux.in_[i] )
26

27 @s.update
28 def up_arb_send_en():
29 s.arbiter.en = \
30 ( s.arbiter.grants > grant_t(0) ) & s.send.rdy
31 s.send.en = \
32 ( s.arbiter.grants > grant_t(0) ) & s.send.rdy
33

34 @s.update
35 def up_get_en():
36 for i in range( num_inports ):
37 s.get[i].en = s.get[i].rdy & s.send.rdy & \
38 ( s.mux.sel == sel_t(i) )

Figure 2.5: RTL Implementation of SwitchUnit – The switch unit implementation reuses the RTL arbiter, encoder,
and mux from PyMTL’s standard library.

Injection Rate 0.01 0.1 0.2 0.3 0.4

Performance 17.9 15.5 14.2 13.3 13.0
Accuracy 86% 87% 87% 97% 74%

Table 2.2: PyOCN Multi-Level Simulation – Normalized simulation performance (simulated cycles per second)
and accuracy of average latency measurement modeled in CL with respect to RTL. The accuracy of the CL model is
slightly degraded under very high load. The ideal throughput for the mesh network is 0.5
.

(DSL). PyMTL provides primitives similar to other hardware description languages: port-based

interfaces for module encapsulation, structural connectivity for module composition, and combi-

national and synchronous concurrent blocks for logic description.
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1 class RingNetworkRTL(Component):
2 def construct(s, pkt_t, pos_t, nrouters, chnl_lat=0):
3 ...
4 def elaborate_physical(s):
5 N = s.nrouters
6 chnl_len = s.channels[0].dim.w
7 for i, r in enumerate(s.routers):
8 if i < (N / 2):
9 r.dim.x = i * (r.dim.w + chnl_len)

10 r.dim.y = 0
11 else:
12 r.dim.x = (N - i - 1) * (r.dim.w + chnl_len)
13 r.dim.y = r.dim.h + chnl_len
14 s.dim.w = N/2 * r.dim.w + (N/2 - 1) * chnl_len
15 s.dim.h = 2 * r.dim.h + chnl_len

Figure 2.6: Physical Elaboration – Floorplanning code for parameterizable ring network. Geometry information is
propagated hierarchically from each router and channel instance in the network component.

Physical-Level Modeling – Physical-level modeling (e.g., macro-/micro- floorplanning, cell

tiling) is critical for effectively building complex OCNs. Without this kind of modeling, the

structure in datapaths is destroyed by the automated place-and-route tools producing sub-optimal

quality-of-results. We added a PyMTL placement pass to facilitate the physical-level modeling

of the target network. The placement pass collects the geometry information of each network

component and generates the floorplan script as shown in Figure 2.6.

2.5 PyOCN for Testing OCNs

PyOCN provides extensive test suites to unit test the basic network components as well as

complete network instances. The highly modular design of PyOCN enables rigorous unit testing

for each basic building block.

In addition, our test suites can be easily reused across all modeling levels including FL, CL,

and RTL because the generated networks at different levels all have standardized interfaces. Since

PyMTL is embedded in Python, PyOCN is able to leverage powerful python packages to facilitate

test-driven design of our OCN models. In our framework, we extensively use pytest [pyt14] to

generate and drive test cases and hypothesis [hyp19] to perform property-based random testing.

This section describes PyOCN’s testing strategy spanning unit, integration, and property-based

random testing.
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1 @pytest.mark.parametrize(
2 'pos_x, pos_y',
3 product( [ 0, 1, 2, 3 ], [ 0, 1, 2, 3 ] )
4 )
5 def test_simple_4x4( pos_x, pos_y ):
6 ncols = 4; nrows = 4
7 pkt_t = mk_mesh_pkt( ncols, nrows, nvcs=2 )
8

9 src_pkts = [
10 # src_x y dst_x y opaque vc payload
11 pkt_t( 0, 0, 1, 1, 0, 0, 0xfaceb00c ),
12 pkt_t( 0, 2, 3, 3, 0, 0, 0xdeadface ),
13 ]
14

15 th = TestHarness( pkt_t, src_pkts )
16 # Use the elegant parameter system
17 th.set_param( "top.construct",
18 ncols=ncols, nrows=nrows,
19 pos_x=pos_x, pos_y=pos_y,
20 )
21 run_sim( th )

Figure 2.7: Unit Test for a Router in 4⇥4 Mesh – This simple test case injects two packets into the router. The test
harness instantiates the router, injects the packets, and checks if the packets are ejected from the correct output ports.

Unit Testing – PyOCN provides unit tests not only for all network components such as routers

and channels, but for basic components like input units and switch units. Figure 2.7 shows a simple

example of one unit test for a router in a 4⇥4 mesh network. It simply injects two packets into

the router and checks if they are ejected from the correct output ports. The pytest @parametrize

decorator generates a number of test configurations from a single test definition. In this case, it

generates 16 test cases that test routers with all possible positions in a 4⇥4 network. This test can

be used for testing both CL and RTL routers. It can be reused for testing torus routers as well.

The only change we need to make is to change the type of the design-under-test (DUT) in the test

harness.

Integration Testing – PyOCN provides similar tests that integrate basic components into a

router, compose routers and channels into a network, and then test the network as a whole. Many

test cases are reusable across different topologies as they share the same FL model and have the

same interfaces. RTL networks can reuse test cases for CL networks as PyMTL supports multi-

level composition of CL and RTL interfaces.

Property-based Random Testing – Property-based random testing was first popularized by

the Haskell library QuickCheck [CH11]. It works by using a type-based random data generator for

all inputs and checking if the DUT violates the given specification. Figure 2.8 illustrates a sim-
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1 @hypothesis.given(
2 ncols = st.integers(2, 8),
3 nrows = st.integers(2, 8),
4 pkts = st.data(),
5 )
6 def test_hypothesis( ncols, nrows, pkts ):
7 Pkt = mk_mesh_pkt( ncols, nrows, nvcs=2 )
8

9 pkts_lst = pkts.draw(
10 st.lists( mesh_pkt_strat( ncols, nrows ) ),
11 label= "pkts"
12 )
13

14 src_pkts = mk_src_pkts( ncols, nrows, pkts_lst )
15 dst_pkts = meshnet_fl( ncols, nrows, src_pkts )
16 th = TestHarness( Pkt, ncols, nrows,
17 src_pkts, dst_pkts )
18 run_sim( th )

Figure 2.8: Property-Based Random Testing for Mesh Network Generator – This test shows a simple example of
how PyOCN leverages hypothesis to test network generators. The test function randomly configures a mesh network
and draws a list of packets as input. It verifies the DUT’s output against the FL model which serves as an oracle.

ple example of how PyOCN leverages hypothesis, an open-source property-based random testing

framework for Python. This tests more than a single network instance. Rather, it randomly config-

ures mesh networks with different sizes on the fly and verifies the generated networks against the

golden reference, which in this case is the FL model. Hypothesis produces readable and minimal

counter-examples when encountering a failure. If it finds an example failing the specification, it

takes that example and keeps simplifying it until it finds a minimal example that still triggers the

problem.

2.6 PyOCN for Evaluating OCNs

In addition to modeling and testing OCNs, PyOCN also supports evaluating OCNs using a

combination of simulation (for cycle-level or cycle-accurate performance analysis), generation

(for producing synthesizable RTL), and characterization (for area, energy, and timing analysis).

Simulating OCNs – The simulation in PyOCN is powered by PyMTL’s simulation pass, which

allows the test bench to be written in Python and eliminates any semantic gap. The simulation pass

statically schedules and then calls the @s.update blocks every cycle. The PyOCN simulator can

issue packets into different OCNs with different traffic patterns (e.g., uniform random (urandom),

neighbor, partition by two (partition2), and complement) at different injection rates.
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Figure 2.9: RTL Simulation Results – Average latency at different injection rates across different network topologies
with 64 terminals. Mesh and torus both have eight rows and eight columns. Butterfly is 4-ary 3-fly. All topologies
parameterize the channel latency as a single cycle and the router pipeline as a single cycle. Ring and torus leverage
virtual channels to avoid deadlock.
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Figure 2.10: Router Characterization – Characterization of area and energy for routers with different number of
input and output ports targetting a 500 MHz clock frequency. The channel bandwidth is 32 b/cycle. During the RTL
simulation, we generate hundreds of packets that traverse from each inport to each outport without contention. The
dumped net activity file is passed into the EDA toolflow to drive the energy analysis.

Generating OCNs – PyOCN leverages the translation pass in PyMTL to generate synthesiz-

able Verilog from RTL OCN models. PyOCN’s parameterization system facilitates the configu-

ration process of OCN components. In PyOCN, model implementations are defined as Python

classes. The constructor registers each module in a dictionary based on its name and hierarchi-

cal position. The parameterization system can modify any parameter in any module registered in

the dictionary by tagging a specific hierarchical component name with parameters. So instead of

tediously carrying all the parameters down through the whole hierarchy during construction, devel-

opers are able to parameterize only a set of components or any single component in the middle of

hierarchy after construction but before elaboration. During elaboration time, models are elaborated

based on the updated parameters in each module.
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Characterizing OCNs – PyOCN generates both synthesizable Verilog and a corresponding

floorplan script that can be used to drive a commercial standard-cell-based toolflow for area, en-

ergy, and timing characterization. The PyOCN framework includes scripts for various commercial

tools including Synopsys Design Compiler, Cadence Innovus, and Synopsys PrimeTime PX in or-

der to synthesize, place, route, and estimate energy for the given design. PyOCN leverages open-

source physical IP libraries including the 45 nm NanGate standard-cell library and the FreePDK45

physical design kit.

PyOCN’s integration with a standard-cell-based toolflow enables highly accurate measurement

of area, energy, and timing for the placed-and-routed gate-level netlist. Specifically, area and tim-

ing are both estimated post-place-and-route after meeting timing with Cadence Innovus’s internal

signoff-quality static timing analysis engines. Energy is estimated using Synopsys PrimeTime PX

with the RTL-level switching activity information (provided by PyOCN) and the post-place-and-

route gate-level netlist. The tool statistically propagates annotated switching activity to intermedi-

ate nodes before using gate/interconnect and parasitic RC information to estimate energy.

2.7 Case Study

With the help of PyOCN’s standard library, an OCN can be easily configured and modeled at

various abstraction levels. Currently, PyOCN supports crossbar, ring, mesh, concentrated mesh,

torus, and butterfly topology models with extensive testing infrastructure. In this case study, we

explore an OCN targeting a 64-terminal system.

PyOCN provides an OCN simulator for different topologies modeled at various levels. A de-

veloper can initially simulate the target design in CL to quickly estimate performance. Table 2.2

shows that the simulation speed for a 64-terminal mesh in CL is over 10⇥ faster than an equiva-

lent RTL model. The simulated performance of different topologies modeled in RTL is shown in

Figure 2.9. In this case study, we choose to optimize for a unified random (i.e., Urandom) traf-

fic pattern which might be representative of general memory traffic over an OCN interconnecting

private L1 caches and a tiled, shared L2 cache. Given this context, we chose a butterfly OCN for

further analysis.

PyOCN supports OCN characterization by providing scripts that semi-automatically takes the

generated Verilog and net activity file to drive a standard-cell-based electronic-design-automation
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Figure 2.11: 4-ary 3-fly Butterfly Network – The routers in the same rows can be recognized as a router group. For
simplicity, we use single line with two arrows to indicate bidirectional data delivery.
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Figure 2.12: 4-ary 3-fly Butterfly Network Floorplan – Floorplan proposed in [KBD07].

1 net = BFlyNetworkRTL( pkt_t, k_ary=4, n_fly=3 )
2 critical_paths= [
3 "channels[82]",
4 "channels[114]",
5 ...
6 ]
7 for c in critical_paths:
8 net.set_param( f'top.{c}.construct', hops=2 )
9 net.elaborate()

Figure 2.13: Parameterization System Example – We collect all the critical paths violating the timing constraint
reported by the EDA toolflow, add them into the critical_paths, and use set_param to change the number of
channel queues on these channels.
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Figure 2.14: Post Place-and-Route Layout of 4-ary 3-fly Butterfly – The routers are highlighted. The floorplan is
generated based on PyOCN PL modeling. PyOCN also provides script to semi-automatically drive the EDA toolflow
to generate the final layout. The area is 4.8 mm x 4.6 mm and the operating frequency is 500 MHz @ 45 nm.

(EDA) toolflow for area, energy, and timing analysis. In this case study, we choose to use the

FreePDK45 with the Nangate standard cell library. Figure 2.10 shows the area-energy analysis for

a router with an increasing number of ports. Generally, the higher-radix routers require more area

and energy per packet. We eventually decided to implement a 4-ary 3-fly rather than a 2-ary 6-fly

as the zero load latency of 4-ary 3-fly is half the 2-ary 6-fly.

To place a 4-ary 3-fly butterfly, we group routers in the same row together as a router group

(see Figure 2.11) and place them on the chip as shown in Figure 2.12, which is similar to the

placement of the flattened butterfly topology proposed in [KBD07]. PyOCN’s PL modeling can

provide explicit geometry information for the placement of each router. We reserve 1 mm between

router groups to provide enough space for the terminals. We initially target 500 MHz and set the

channel latency to be one meaning that there is no channel queues between routers.

However, using the EDA toolflow revealed that a 2 ns timing constraint is not possible due to

long channels between some router groups. The corresponding critical path starts from the input

unit of Router28, goes through the channel, and ends at the input unit of Router46, with a negative

slack of 0.13 ns. Although the channel between Router28 and Router47 seems longer according

to the logical layout, the EDA toolflow’s routing algorithm ultimately meant the critical path was
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limited by the channel from Router28 to Router46. One straightforward way to break such critical

paths is to add channel queues to channels that violate the timing constraint.

The parameterization system of PyOCN enables us to easily configure any network components

without touching the source code of the target OCN design. As shown in Figure 2.13, only a

few lines before the elaboration of the target OCN is needed to add channel queues to specific

channels. Figure 2.14 shows the final layout of our target butterfly OCN, where the target frequency

is achieved.

2.8 Conclusion

This paper has introduced PyOCN, a unified framework for simulating, testing, and character-

izing on-chip interconnection networks. PyOCN is the first open-source framework for modeling

(e.g., functional-level, cycle-level, and register-transfer-level), testing (e.g., unit testing, integra-

tion testing, and property-based random testing), and evaluating (e.g., simulating, generating, and

characterizing) on-chip interconnection networks. PyOCN is an open-source framework and is

available online at https://github.com/cornell-brg/pymtl3-net.
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CHAPTER 3
ARCHITECTURE: LOW-DIAMETER ON-CHIP
NETWORKS FOR MANYCORE PROCESSORS

This chapter address the architecture challenges of scaling on-chip interconnects for manycore

processors. Manycore processors are now integrating up to 1000 simple cores into a single die,

yet these processors still rely on high-diameter mesh on-chip networks (OCNs) without complex

flow-control nor custom circuits due to three reasons: (1) manycores require simple, low-area

routers; (2) manycores usually use standard-cell-based design; and (3) manycores use a tiled phys-

ical design methodology. In this chapter, we explore mesh and torus topologies with internal

concentration and/or ruche channels that require low area overhead and can be implemented us-

ing a traditional standard-cell-based tiled physical design methodology. We use a combination of

analytical and RTL modeling along with layout-level results for both hard macros and a 3⇥ 3 mm

256-terminal OCN in a 14-nm technology for twelve topologies. Critically, the networks we study

use a tiled physical design methodology meaning they: (1) tile a homogeneous hard macro across

the chip; (2) implement chip top-level routing between hard macros via short wires to neighboring

macros; and (3) use timing closure for the hard macro to quickly close timing at the chip top-level.

Our results suggest that a concentration factor of four and a ruche factor of two in a 2D-mesh

topology can reduce latency by over 2⇥ at similar area and bisection bandwidth for both small and

large messages compared to a 2D-mesh baseline.

3.1 Introduction

Today’s network, embedded, and server processors already integrate tens of processor cores

on a single chip, and there is growing interest in using a manycore approach to integrate an even

larger number of relatively simple cores within a single die. Early manycore research prototypes in-

cluded 16–110 cores [TLM+04,MFN+17,HDH+10,HVS+07,LSC+13], complemented by many-

core processors in industry with 64–128 cores [BEA+08,WGH+07,SGC+16,Hal20,Whe20]. Re-

cent research prototypes have scaled core counts by an order-of-magnitude including the 496-core

Celerity [RZAH+19b], 1000-core KiloCore [BSP+17], and 1024-core Epiphany-V [Olo16]. The

manycore approach has demonstrated significant improvements in energy efficiency and through-

put per unit area for highly parallel workloads.

36



Almost all manycore processors use a simple 2D-mesh on-chip-network (OCN) topology [BEA+08,

WGH+07,MFN+17,LSC+13,BSP+17,Whe20,Hal20,RZAH+19b] (possibly with limited external

concentration [SGC+16, HVS+07]), scaling from a 4⇥ 4 mesh in the RAW processor [TLM+04]

up to a 32⇥ 32 mesh in the Epiphany-V processor [Olo16]. It is well known that the high diam-

eter of 2D-mesh topologies can significantly increase packet latency and thus reduce system-level

performance [DT04]. Indeed, there is a rich body of literature proposing numerous techniques to

reduce packet latency in on-chip networks. Novel OCN flow-control schemes [KPKJ07,MWM04,

PD01] and/or OCN custom circuits [KS08, CPK+13] can be used to reduce router and channel

latencies. Alternatively, novel OCN topologies can reduce the network diameter including con-

centrated mesh [BD06], fat-tree [BD06], flattened butterfly [KBD07], multi-drop express chan-

nels [GHKM09, GHKM11], Clos [KYAC11], Slim NoC [BHY+18], and asymmetric high-radix

topologies [ADL+13]. However, this raises the question: Why do manycore processor silicon

implementations continue to use simple high-diameter on-chip networks given the potential

benefit reported in the literature for adopting novel on-chip network flow-control schemes,

custom circuits, and/or topologies?

Based on our experiences contributing to the Celerity manycore processor [DXT+18,RZAH+19a,

RZAH+19b] and building an open-source OCN generator [TOJ+19], we argue there are three pri-

mary reasons for this gap between principle and practice.

Manycores Require Simple, Low-Area Routers – Manycore processors by definition use

simple cores leaving modest area for the OCN routers (e.g., 10% of chip area in [RZAH+19b,

Olo16]). Therefore, manycore processors usually use single-stage routers [Olo16,BSP+17,HVS+07,

RZAH+19b], and protocol deadlock is often through multiple physical networks [TLM+04,WGH+07,

MFN+17, LSC+13] as opposed to using virtual channels. These simple single-stage OCN routers

mitigate the need for complex flow-control schemes.

Manycores Use Standard-Cell-Based Design – Manycore processor design teams (and in-

deed chip design in general) have been steadily moving towards highly automated standard-cell-

based design methodologies [MFN+17, LSC+13, Olo16, RZAH+19b]. Unfortunately, this com-

plicates using more advanced circuit techniques in the literature to reduce router and/or channel

latency.

Manycores Use a Tiled Physical Design Methodology – Physical design is a critical chal-

lenge in implementing manycore processors. A tiled physical design methodology is the key to
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overcoming this challenge and has been used in multiple manycore implementations [MFN+17,

LSC+13, Olo16, RZAH+19b]. A tiled physical design methodology adheres to the following con-

straints: (1) the design is based on tiling a homogeneous hard macro across the chip; (2) all chip

top-level routing between hard macros must use short wires to neighboring macros; and (3) timing

closure for the hard macro must imply timing closure at the chip top-level. Unfortunately, a tiled

physical design methodology precludes using many low-diameter, high-radix topologies proposed

in the literature which require long global channels routed at the chip top-level and/or heteroge-

neous hard macros.

In this chapter, we seek to close this gap between principle and practice by exploring tech-

niques for implementing low-diameter on-chip networks for manycore processors based on low-

area routers, standard-cell-based design, and a tiled physical design methodology. Section 3.2

describes how mesh and torus topologies with concentration and/or ruche channels can use a tiled

physical design methodology. Ruche channels1 are a novel technique concurrently proposed in

this work and by Jung et. al in [JDZ+20] which provide dedicated channels for packets to skip

past routers for efficient long distance communication. Ruche channels are better suited to on-chip

networks using a traditional standard-cell-based physical design methodology compared to prior

work on physical and virtual express channels [GHKM09, Dal91, KPKJ07]. Section 3.3 compares

12 topologies using an analytical model based on router and channel RTL implementations and

a standard-cell-based flow. Section 3.4 uses PyOCN (an open-source OCN generator [TOJ+19])

to generate both hard-macro and full-chip layout for each topology suitable for use in a 3⇥ 3 mm

256-core manycore processor implemented in a 14-nm technology. Our results suggest that by

leveraging a concentration factor of four and a ruche factor of one in a 2D-mesh topology, our

approach can reduce latency by over 2⇥ at similar area and bisection bandwidth for both small and

large messages compared to a 2D-mesh baseline.

3.2 Manycore OCN Topologies

Our target system is a manycore with 256 cores arranged in a 16⇥ 16 grid (see Figure 3.1(a)).

Figure 3.1(b–m) illustrates the 12 topologies explored in this work. Figure 3.1(b) illustrates our
1Ruching involves gathering fabric in a repeating pattern to make a pleat or ruffle. The logical topology diagram

for mesh networks with ruche channels (see Figure 3.1(e)) resembles a ruched garment.
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Figure 3.1: Twelve Topologies Implemented Using a Tiled Physical Design Methodology – (a) 16⇥ 16 manycore;
(b–d) mesh with increasing concentration; (e–g) mesh w/ ruche factor of 2, increasing concentration; (h–j) mesh w/
ruche factor of 3, increasing concentration; (k–m) torus w/ increasing concentration; (n) = mesh-c1r0 pin placement
enables short chip top-level routing, unused channels terminated at top level; (o) = mesh-c1r2 tile w/ feed-through
channel, short cross-over chip top-level routing; (p) = mesh-c1r3 tile w/ two feed-through channels, short cross-over
chip top-level routing; (q) = torus-c1r0 tile w/ folded torus, one feed-through channel, short cross-over chip top-level
routing; (r–t) = macro floorplans for increasing concentration.

baseline 2D-mesh topology as implemented in most state-of-the-art manycore processors [BEA+08,

WGH+07, MFN+17, LSC+13, BSP+17, Whe20, Hal20, RZAH+19b]. We use elastic-buffer flow-

control [MBD09] and dimension-ordered routing on all mesh topologies.

We explore internal concentration where multiple cores share a single router [KPK+09]. Fig-

ure 3.1(c–d) illustrates a concentration factor of 4–8. Unlike external concentration, internal con-

centration reduces latency while maintaining per-terminal throughput and homogeneous channel

bandwidths. Concentration reduces the number of routers, increases router radix, decreases the

bisection channel count, and reduces network diameter.
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Figure 3.2: OCN Component-Level Results – (a) router area with different radices and port bitwidths under a 950 ps
clock constraint; (b) minimum cycle time that can be achieved for queues manually placed at various distances with
an auto-routed channel between them.

BB (Kb/cycle) Area (%)

Topology NR r NBC HD Havg 32 64 128 256 32 64 128 256

mesh-c1r0 256 5 32 60 21.3 1 2 4 8 4.4 8.9 15.2 27.6
mesh-c4r0 64 8 16 28 10.5 0.5 1 2 4 2.0 3.9 7.3 13.6
mesh-c8r0 32 12 8 20 7.8 0.3 0.5 1 2 2.0 3.6 6.8 12.8

mesh-c1r2 256 9 96 32 11.6 3 6 12 24 11.6 20.6 36.5 61.2
mesh-c4r2 64 12 48 16 6.3 1.5 3 6 12 5.4 9.8 18.3 32.9
mesh-c8r2 32 16 24 12 4.9 0.8 1.5 3 6 4.6 8.1 15.5 28.1

mesh-c1r3 256 9 128 24 9.7 4 8 16 32 13.8 24.7 43.4 71.5
mesh-c4r3 64 12 64 12 6.0 2 4 8 16 6.7 12.2 22.6 40.5
mesh-c8r3 32 16 32 12 5.7 1 2 4 8 5.2 9.6 18.0 32.8

torus-c1r0 256 5 64 32 16.0 2 4 8 16 6.9 12.9 23.6 42.2
torus-c4r0 256 5 32 16 8.0 1 2 4 8 3.3 6.2 11.7 21.8
torus-c8r0 256 5 16 12 6.0 0.5 1 2 4 2.9 5.4 10.3 19.2

Table 3.1: Analytical Modeling Results – NR = number of routers; r = router radix (i.e., number of ports per router);
NBC = number of bisection channels; HD = diameter of the network; Havg = average hop latency over all source/desti-
nation pairs; BB = bisection bandwidth; Area = OCN area as a percentage of the full chip.

Ruche channels are a novel technique which add dedicated channels to skip past some number

of routers. A ruche factor of two means each ruche channel skips to a router two hops away,

while a ruche factor of three means each ruche channel skips to a router three hops away. A

ruche factor of zero means there are no ruche channels, and a ruche factor of one means the ruche

channel directly connects nearest neighbors. Figure 3.1(e,h) illustrates a ruche factor of two and

three. Ruche channels maintain the number of routers, increase router radix, increase the bisection
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channel count, and reduce network diameter. Ruche channels are related to but distinct from

express channels [GHKM09, Dal91]. Ruche channels do not use separate interchanges and ensure

all routers are homogeneous (i.e., all routers are a source and destination for exactly one ruche

channel, ruche channels overlap). We use oblivious minimal routing on the ruche channels.

Figure 3.1(f–g,i–j) illustrates topologies that combine concentration and ruche channels. Fi-

nally, we explore 2D-torus topologies with similar concentration factors (see Figure 3.1(k–m)).

We use minimal routing, credit-based flow-control, two virtual channels, and a dateline to avoid

deadlock in the torus topologies. These 12 topologies provide a broad range of design points with

different: topology styles (mesh/torus), numbers of routers, router radix, bisection channel count,

channel lengths, and diameter. Figure 3.1 shows the naming convention we will use in the rest

of the paper. For example, mesh-c4r3 refers to a topology with a concentration factor of four and

ruche factor of three. We will also use suffix such as mesh-c4r3-b128 to refer to a topology with a

channel bandwidth of 128 b/cycle.

Figure 3.1(n–q) illustrates how to map these 12 topologies to a tiled physical design method-

ology. Mapping mesh-c1r0 simply requires careful placement of the pins for north, west, south,

and east channels at the macro level to ensure short chip top-level routes (see Figure 3.1(n)). If

l ⇥ l are the dimensions of each macro, then the channels in mesh-c1r0 are approximately l long.

Since all macros must be homogeneous, macros on the edge and corners require a few gates at

the chip top-level to ensure input channels are never enabled and output channels are never ready.

Mapping mesh-c1r2 requires an additional set of north, west, south, and east channels, along with

a set of feed-through channels (see Figure 3.1(o)). Again, careful placement of pins ensure short

routes with a possible cross-over at the chip top-level. Ruche channels are approximately 2l long.

Mapping mesh-c1r3 requires an additional set of feed-through channels (see Figure 3.1(p)). Ruche

channels are now approximately 3l long. Finally, mapping torus-c1r0 requires just one set of north,

west, south, and east channels along with one set of feed-through channels. Most channels are ap-

proximately 2l long, although the channels at the edges may be slightly shorter or longer due to the

chip top-level wrap-around routing. While adding ruche channels to torus topologies is possible,

it can be challenging to map these ruche channels into a tiled design methodology and/or to route

on these topologies. Figures 3.1(r–t) illustrates floorplans which enable using the tiled physical

designs in Figures 3.1(n–q) at higher concentration factors.
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Our approach meets the three constraints of a tiled physical design methodology. First, all

topologies can be implemented using a homogeneous hard macro which can then be tiled across

the chip. Second, all chip top-level routing between hard macros is either short straight routing,

short cross-over routing, or short wrap-around routing. Third, assuming careful consideration of

timing constraints on register-to-output, input-to-register, and input-to-output paths, timing closure

for all hard macros can imply timing closure at the chip top-level.

3.3 Manycore OCN Analytical Modeling

In this section, we explore trade-offs across different topologies using analytical modeling

before presenting more realistic layout-level results in Section 3.4. To choose an appropriate core

area, we implemented a RISC-V RV32IMAF in-order single-issue processor with 4KB instruction

and data caches in RTL using PyMTL3 [JPOB20] and then used a commercial standard-cell-based

toolflow in a 14-nm technology. The resulting area is 37,029 µm2 which roughly corresponds to

a 3⇥ 3 mm chip area for 256 cores. This per-core area is roughly 1.5⇥ larger than the per-core

area in Celerity [RZAH+19b], but this is expected since Celerity does not support floating point

and uses scratchpad memories instead of caches. Our per-core area is roughly 3.3⇥ smaller than

the per-core area in Epiphany-V [Olo16], but again this is expected since Epiphany-V implements

a 64-bit instruction set, supports dual-issue, and includes 64 KB of SRAM per core. Ultimately,

we chose a tile size of 185⇥ 185 µm which is a reasonable target in between prior manycore

implementations. We target a 1 GHz clock frequency which is comparable to the Celerity clock

frequency when running at nominal voltage [RZAH+19b, DXT+18].

We construct an analytical model for area, zero-load latency, and bisection bandwidth based on

the OCN component-level results shown in Figure 3.2. We model the channel latency as a function

of distance between routers. We measured the minimum delay using static-timing analysis that

can be achieved for two queues that are manually placed at various distances with an auto-routed

channel between them. We use this data to estimate the number of channel queues that need to be

inserted in each channel to meet the target 1 GHz clock frequency. We model the area of the OCNs

as a function of router radix and channel bandwidth. We pushed a number of OCN routers from Py-

OCN [TOJ+19] with different radices and port bitwidths through the ASIC toolflow using a 950 ps

timing constraint. We use the post-place-and-route area information as an estimate of the buffering
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Figure 3.3: Latency and Area Trade-Offs – The zero-load latency and area overhead are compared for both 64-bit
message and 256-bit message, with the bisection bandwidth normalized to 2 Kb/cycle and 4 Kb/cycle. Each topology
is labeled with the channel bandwidth that corresponds to the normalized bisection bandwidth. Topologies that cannot
reach the given bisection bandwidth even with channel bandwidth equal to the message size are not shown in the plot.
B = normalized bisection bandwidth in bits per cycle; M = message size in bits.
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Figure 3.4: Latency and Bandwidth Trade-Offs – Zero-load latency and bisection bandwidth are compared for both
64-bit messages and 256-bit messages, with maximum area overhead for the OCN constrained at 10% and 20% of the
total chip area. Each topology is labeled with the corresponding channel bandwidth that either reaches the maximum
overhead or reaches the message size. A = maximum OCN area overhead; M = message size in bits.
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and switching logic in the router. With the pitch and minimum width information of the metal

layers that are used for local routing, we can calculate the linear wire density and estimate the area

that needs to be reserved for channel pins on each edge of the hard macro. Based on the floorplans

shown in Figure 3.1(r–t), we can calculate the area that is used by the OCN (both for the router

and channels). We also interpolate and extrapolate component-level results to estimate the area of

a router with any given radix and bitwidth. We calculate the zero-load latency under uniform ran-

dom traffic and bisection bandwidth as described in [DT04]. In the analytical model, we assume

one-cycle router latency and at least one-cycle channel latency. Topologies with short channels and

low radix can potentially achieve a zero-cycle channel latency (i.e., router buffering/arbitration and

channel traversal can be completed in a single cycle). However, this will also push the ASIC tool

to use larger and faster cells which can increase area. We will explore the impact of zero-cycle

channel latency in Section 3.4. The analytical modeling results are shown in Table 3.1. Figure 3.3

shows the zero-load latency vs. area overhead for a fixed bisection bandwidth. Figure 3.4 shows

the zero-load latency vs. bisection bandwidth for a fixed area overhead. Results are shown for

both small messages (64b) suitable for scratchpad-based manycores with word accesses and large

messages (256b) suitable for cache-based manycores with cacheline accesses.

Impact of Concentration – Concentration reduces the number of routers, increases router radix,

decrease the number of bisection channels, and increases the channel length. The router area model

in Figure 3.2(a) suggests higher-radix single-cycle routers are still very feasible for concentration

factors of 4–8. Similarly, the channel latency model in Figure 3.2(b) also suggests that longer

single-cycle channels are still very feasible for these concentration factors. Thus concentration

reduces network diameter by reducing the number of hops while maintaining router and channel

latency (see Table 3.1). If we focus only on the mesh topology without ruche channels, then across

all scenarios in Figures 3.3 and 3.4, increasing concentration reduces the zero-load latency. Con-

centration also reduces the number of bisection channels. This can reduce the bisection bandwidth

for small messages since increasing the channel bandwidth beyond the message size has no benefit

(see Figure 3.4(a–b)). However, for large messages, concentration can compensate by increasing

the channel bandwidth (see Figure 3.4(c–d)). In terms of reducing latency, a concentration factor

of four is more area efficient than a concentration factor of eight. The benefit from c4 to c8 is less

significant compared to from c1 to c4, which indicates that the area benefit from the reduction in

the number of routers is outweighed by the increase in router area due to increased radix.
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Impact of Ruche Channels – Ruche channels are long physical channels that aggressively by-

pass routers. Ruche channels maintain the number of routers, increase router radix, and increase the

number of bisection channels. As with concentration, the router area and channel latency models

suggest higher-radix single-cycle routers and longer single-cycle channels are still very feasible for

ruche factors of 2–3 (with the possible exception of mesh-c8r3 which requires ruche channels that

are over 2 mm long). Even so, ruche channels do increase router area and each hard macro needs

to reserve additional area to accommodate the feed-through channels. When area is constrained,

adding ruche channels may require narrower channels which increase serialization latency. Com-

pared to concentration, ruche channels are less area efficient in terms of reducing latency, but given

a sufficient area budget, ruche channels can be effective. For example, in Figure 3.4(b), the channel

bandwidth of all topologies are limited by the small message size and the area budget is relatively

large, and thus ruche channels improve both latency and bisection bandwidth.

Combining Concentration and Ruche Channels – Concentration significantly reduces latency

and area but decreases the number of bisection channels, while ruche channels increase the number

of bisection channels but add area overhead. Thus combining concentration and ruche channels

can provide additional benefits. With concentration, a ruche factor of two is a better trade-off; in-

creasing the ruche factor to three adds more area overhead with marginal benefit or even a negative

impact on latency. We consider mesh-c4r2 as a promising design point. It is always on or close

to the Pareto-optimal frontier across all scenarios in Figures 3.3 and 3.4, except for Figure 3.3(b)

where it cannot achieve a bisection bandwidth of 4096 b/cycle because the channel bandwidth is

limited by the small message size.

Torus Topologies – Practical on-chip torus topologies always use a folded torus to ensure all

channels are similar in length. Compared to mesh topologies, torus topologies do not increase the

router radix, but can still take advantage of longer single-cycle channels. In Figure 3.3, torus-c1r0

consumes less area for the same bisection bandwidth compared to mesh-c1r2 and mesh-c1r3. This

trend is less obvious for topologies with concentration because the radix of the router is already

relatively high for these topologies. While torus topologies are certainly competitive, concentrated

mesh topologies with ruche channels provide higher bandwidth on short messages. Perhaps just

as importantly, mesh topologies are simpler than the corresponding torus topologies which require

multiple virtual channels to avoid deadlock and use more complicated routing logic.
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Positive Slack (ps) Area Overhead (%)

Topology HD Havg 32 64 128 256 32 64 128 256

mesh-c1r0 60 21.3 175 66 19 33 5.9 9.6 16.3 35.3
mesh-c1r0q0 30 10.6 0.5 46 – – 7.9 13.8 – –
mesh-c4r0 28 10.5 94 73 51 24 2.7 4.6 10.2 18.2
mesh-c4r2 16 6.3 39 49 18 – 6.4 10.7 22.5 –
torus-c1r0 32 16.0 174 19 139 – 8.6 17.7 37.6 –

Table 3.2: Post-Place-and-Route Macro Results HD = diameter of the network; Havg = average hop latency; Positive
Slack = worst-case positive slack for all constrained paths given 1 ns chip-level target cycle time; Area = OCN area
overhead as a percentage of the full chip. Designs that do not meet timing or have prohibitively high area overhead are
not shown.

Figure 3.5: Bandwidth, Latency, and Area Trade-Offs for Post-Place-and-Route Results – M = message size in
bits; (a) = bandwidth and area trade-offs; (b) = latency and area trade-offs for small messages (64b); (c) = latency and
area trade-offs for large messages (256b).

Summary – Concentration is very effective in reducing area overhead and zero-load latency but

may reduce the bisection bandwidth at high concentration factors and thus limit overall throughput.

Ruche channels, on the other hand, reduce the average hop count and increase the number of bisec-

tion channels but may require narrower channels due to the area overhead that comes from more

feed-through channels and higher radix routers. Combining concentration and ruche channels pro-

vides an elegant hybrid solution. We find that mesh-c4r2 is a promising topology. According to

our analysis, mesh-c4r2 dominates the baseline mesh-c1r0 in zero-load latency, area, and band-

width under different area constraints or bisection bandwidth constraints for both small and large

message sizes.
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Figure 3.6: Example Macro-Level Post-Place-and-Route Layouts – All layouts are to scale and include 1–4 block-
ages, 1–4 dummy cores, and fences to constrain placement of the router and channels. (a–d) layouts for mesh-c1r0 at
four different channel bandwidths; (e) layout for mesh-c1r0q0-b32 (i.e., no channel queues), OCN requires more area
than mesh-c1r0-b32; (f) layout for torus-c1r0-b32, OCN requires comparable area to mesh-c1r0-b32; (g–h) layout for
mesh-c4r0-b128 and mesh-c4r2-b64 both of which require comparable area (smaller OCN router “square” in mesh-
c4r2-b64 is outweighed by longer and wider channel “rectangles”).
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Figure 3.7: Example Chip-Level Post-Place-and-Route Layouts – (a) full-chip layout with 256 instances of the
torus-c1r0-b32 hard macro which is shown in Figure 3.6(f); (b) close-up of required chip top-level routing including
cross-over routing to neighboring hard macro, wrap-around routing, and global clock and reset routing over the hard
macro; (c) full-chip layout for 64 instances of the mesh-c4r2-b64 hard macro which is shown in Figure 3.1(h); (d) =
close-up of the required chip top-level routing including straight-across routing at the middle of each macro side.
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3.4 Manycore OCN Physical Design

Based on the results from analytical modeling, we selected a set of promising topologies with

different channel bandwidths for macro-level physical analysis. We used PyOCN to generate the

hard macro as well as the full-chip layout. PyOCN is a unified Python-based framework for model-

ing, testing, and evaluating on-chip networks [TOJ+19]. We pushed each design through the ASIC

toolflow multiple times and recorded the minimum area that meets all timing constraints. We

also experimented with zero-cycle channel latencies for each topology (i.e., removing the chan-

nel queue so router buffering/arbitration and channel traversal take one cycle). We found that

mesh-c1r0 is the only topology that can achieve zero-cycle channel latency without introducing

substantial area overhead. We will use mesh-c1r0q0 to indicate a mesh-c1r0 topology with zero-

cycle channel latency. We carefully floorplan the macro and place the pins to enable short chip

top-level routing (see Figure 3.1(r–t) and Figure 3.6). We use “dummy cores” to connect to the

injection and ejection ports of the router to queues to prevent the ASIC toolflow from optimizing

away any logic and to accurately model terminal channel latencies. We create a hard fence for

each dummy core so that the router cannot place any cells into the area that is reserved for the

actual processing cores. We also place routing blockages on top of the fences to prevent the router

from using any routing resources that are reserved for use by the processing cores. Our 14-nm

technology has a total of 13 metal layers. We use three metal layers for horizontal routing (M2,

M4, M6) and three for vertical routing (M3, M5, M7). We reserve M8 and M9 for the local power

grid, M10 and M11 for global routing (e.g., clock, reset, chip-level I/O), and M12 and M13 for the

global power grid. The results of our macro-level analysis can be found in Table 3.2.

To ensure that timing closure for the hard macro can imply timing closure at the chip top-

level, we carefully constrain the maximum delay of each register-to-output, input-to-output, and

input-to-register path such that the sum of the path delays which form a register-to-register path

at the chip top-level is less than a clock cycle (Tc). For example, for mesh-c4r2 we constrain the

maximum delay of register-to-output paths that end at the east ruche output port to be 0.4Tc, west

to east feed-through paths to be 0.3Tc, and input-to-register paths that start at the west ruche input

port to be 0.25Tc. Our timing constraints are a sufficient but not necessary condition for meeting

timing at the chip top-level. Ideally, we only need to constrain the sum of the delays for these paths
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rather than constrain each of the three paths separately. Unfortunately, such complex constraints

are not currently supported by the ASIC toolflow.

Figure 3.5(a) illustrates trade-offs between bisection bandwidth and area for several topologies.

As predicted in our analytical analysis, all topologies provide similar bisection bandwidth for a

given area (ignoring message size limitations). By adding ruche channels to mesh-c4r0, mesh-

c4r2 achieves comparable bisection bandwidth at similar area overhead compared to mesh-c1r0.

This supports our hypothesis that ruche channels can complement the reduced bisection channel

count brought by concentration. Figure 3.5(b–c) illustrates trade-offs between zero-load latency

and area for both small (64b) and large (256b) messages. For both cases, mesh-c4r2 achieves the

lowest latency at similar area. Compared to mesh-c4r0, adding ruche channels further reduces the

zero-load latency. Although ruche channels lead to narrower channels at the same area, the benefit

of reduced average hop count still outweighs the increase in serialization latency. For example,

mesh-c4r2-b64 has similar area as mesh-c4r0-b128; it increases serialization latency by two cycles

but reduces average hop latency by four cycles (see Table 3.2).

One key observation is that packets can travel long distances in a single cycle. Thus topologies

with long channels are critical to reducing the diameter of the network. In the baseline mesh-c1r0, a

single-cycle channel is of length 185 µm. In mesh-c4r0, a single-cycle channel is of length 370 µm,

and in mesh-c1r2, a single-cycle ruche channel is also of length 370 µm. Combining concentration

and ruche channels results in even longer single-cycle channels. In mesh-c4r2, a single-cycle ruche

channel is of length 740 µm which starts to approach the single-cycle limit.

We also observed that mesh-c1r0q0 significantly reduces the diameter of the network compared

to mesh-c1r0. However, it brings area overhead as it pushes the ASIC toolflow to use larger and

faster standard cells. It is hard to meet timing with zero-cycle channels when these channels are

wide. In our experiments, mesh-c1r0q0 fails to meet timing at channel bandwidths larger than

64 bits, which limits the maximum bisection bandwidth it can achieve. Overall, even though

mesh-c1r0q0 reduces the average hop latency by 2⇥, a combination of concentration and ruche

channels still achieves lower latency and higher bisection bandwidth at similar area compared to

mesh-c1r0q0.

In this work, we assume all hard macros are implemented internally as a single flat module.

This allows the cores in a hard macro to have different shapes and/or orientations. This may make

a macro with concentration harder to implement as it is now four times or even eight times larger
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compared to a mesh-c1r0 macro. We leave exploring multi-level hierarchical design methodologies

which might compose core macros within a larger concentrated macro for future work.

To verify that our hard macro can indeed meet the 1 ns chip top-level timing constraint, we

pushed full-chip layouts through the ASIC toolflow using each of the hard macros. The mesh-

c1r0-b64 chip has a positive slack of 47.7 ps, mesh-c4r0-b128 chip has a positive slack of 240.1 ps,

mesh-c4r2-b128 chip has a positive slack of 292.6 ps, torus-c1r0-b32 chip has a positive slack of

455.7 ps, and torus-c1r0-b64 has a positive slack of 283.4 ps. The positive slack is significantly

better than the worst case positive slack shown in Table 3.2 because our macro-level timing con-

straints are rather conservative. Figure 3.7 shows the full-chip layout for torus-c1r0 and mesh-

c4r2. By integrating feed-through channels into the macro, we enable short chip top-level routing

for topologies that would otherwise require long and complicated chip top-level routing.

3.5 Conclusions

Practical manycore processor implementations usually avoid novel on-chip network flow-control

schemes, custom circuits, and/or topologies due to various physical design issues. This chapter

makes the case that it is possible to implement low-diameter on-chip networks in manycore pro-

cessors by creatively adapting mesh/torus topologies with concentration and ruche channels for

a tiled physical design methodology. Through a combination of analytical modeling and rigor-

ous layout-level evaluation in a traditional standard-cell-based flow, this chapter demonstrated that

2D-mesh topologies with modest concentration factors (concentration factor of four) and modest

length ruche channels (ruche factor of two) can reduce latency by over 2⇥ at similar area and

bisection bandwidth for both small and large messages compared to a 2D-mesh baseline.
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CHAPTER 4
PROTOTYPE: CIFER CHIP TAPE-OUT

This chapter presents the CIFER1 chip tape-out, a silicon prototype implemented using a tiled

physical design methodology. PyOCN is validated through the CIFER tape-out, where it was used

to design multiple on-chip networks (OCNs) within the chip. Although the OCN of CIFER is too

small to make use of concentration or ruche channels, it reinforces the critical need for a tiled

physical design methodology, which is the key motivation for Chapter 3. CIFER is the world’s

first open-source, many-core, CPU-FPGA system-on-chip (SoC) that offers full cache coherence

across across its heterogeneous components. By Combining Linux-capable processors, tiny-core

clusters, and an embedded FPGA (eFPGA), CIFER is designed to efficiently exploit both paral-

lelism and specialization. A collaborative team of postdocs, graduate students, and undergradu-

ate students from Princeton University and Cornell University completed the design and tape-out

of CIFER within a rapid seven-month period during the COVID-19 pandemic. The design and

tape-out process was made efficient by incorporating five open-source projects, including Open-

Piton [BMF+16], BYOC [BLS+20], Ariane [ZB19], PyOCN [TOJ+19], and PRGA [LW21]. Fab-

ricated on GlobalFoundries’ 12 nm FinFET process, the CIFER chip measures 16 mm2 (4 mm⇥4 mm)

and is packaged in a 208-pin ceramic quad flat pack. Figure 4.1 shows the CIFER package and die

photo.

This chapter begins by presenting the overall architecture of the CIFER SoC which includes

the Ariane tile, the TinyCore Cluster tile, and the eFPGA. Section 4.2 delves into the design of the

CIFER OCN, and discusses trade-offs between logical and physical hierarchy as well as different

data transfer interfaces. Additionally, a timing optimization technique is presented.

4.1 CIFER Architecture

CIFER integrates a scalable architecture composed of multiple heterogeneous processing units,

interconnected through a distributed, fully cache-coherent system. The architecture features a 2⇥4

mesh of tiles, each containing a shard of the coherence system and hosting one of the following

components: an Linux-capable Ariane core, a TinyCore cluster, or an embedded FPGA (eFPGA)

controller. Each tile is equipped with an 8 KB private L2 cache, and a 64 KB last-level cache (LLC)
1CIFER stands for Coherent Interconnect and FPGA Enabling Reuse
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Figure 4.1: CIFER Package and Die Photo – A = Ariane Tile; TC = TinyCore Cluster Tile; eFPGA = Embedded
FPGA. Figure is adapted from [LCG+23]

slice, which is part of the shared 512KB LLC distributed across the chip. Cache coherence between

the L2 caches and the LLC is ensured by a hardware directory-based MESI protocol. Figure 4.2

illustrates the CIFER architecture. In this section, architecture details of the Ariane tile, tiny-core

cluster tile, and eFPGA are discussed.

Ariane Tile – The CIFER chip integrates four Ariane tiles, each equipped with an Ariane

core. The Ariane core is an open-source, Linux-capable, 64-bit RISC-V processor implementing

the RV64GC instruction set with support for double-precision floating point arithmetic [ZB19].

It operates with a six-stage in-order pipeline and includes a 16 KB L1 instruction cache along-

side an 8 KB L1 data cache. Cache coherence between the Ariane core’s private L1 caches and

the shared LLC is managed through adaptation to the BYOC’s transaction response interface

(TRI) [BLS+20], ensuring seamless data synchronization across the chip.

TinyCore Cluster Tile – The CIFER chip integrates three TinyCore cluster tiles to exploit

thread-level parallelism (see Figure 4.2). Each TinyCore cluster tile includes six lightweight in-

order cores arranged into three pairs, resulting in a total of 18 tiny cores. Each tiny core is a

32-bit RISC-V processor implementing the RV32IMAF instruction set. Each tiny operates with

a six-stage scalar pipeline and is equipped with a 4 KB L1 data cache. Each pair of tiny cores

shares a 4 KB L1 instruction cache, a 32-bit integer multiply-division unit (MDU), and a 32-bit
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Figure 4.2: CIFER SoC Architecture – Adapted from [CLG+23]. Components designed with PyOCN are high-
lighted in red, including the OCN routers in each tile as well as the memory crossbar and resource-sharing networks
in the TinyCore cluster tile.

single-precision floating-point unit (FPU). Cache coherence between the L1 data caches and the

L2 cache is handled in software by a task-parallel work-stealing runtime, with explicit cache flush

and invalidation operations.

eFPGA – The eFPGA in CIFER consists of 6720 6-input look-up tables (LUTs) and 18 dual-

port block RAMs (BRAMs), each with a capacity of 24 Kb. This flexible reconfigurable fab-

ric allows for the creation of custom accelerators through an open-source RTL-to-bitstream flow,

which includes Yosys for synthesis [Wol20], VPR for place-and-route [MPZ+20], and PRGA for

bitstream assembly [LW21]. The eFPGA interfaces with the rest of the system via two key con-

nections in the eFPGA controller tile: a control register interface that enables CPU access through

memory-mapped I/O, and a configurable memory interface supporting non-coherent, IO-coherent,
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or fully coherent memory access. Additionally, the eFPGA supports atomic memory operations,

facilitating low-overhead synchronization with other compute units. The eFPGA emphasizes pro-

grammability and cache coherence, making it adaptable to a wide range of computational tasks.

4.2 CIFER On-Chip Networks

The CIFER SoC incorporates a 2⇥4 mesh network that interconnects the heterogeneous pro-

cessing units. The OCN in CIFER provides communication between the tiles for a variety of op-

erations, including cache coherence, I/O, memory accesses, and inter-core interrupts. CIFER uses

three physical OCNs to prevent protocol-level deadlocks. The CIFER OCNs uses dimension-order

wormhole routing to ensure point-to-point ordering between any source- destination pair. The

CIFER OCNs are designed and implemented using the PyOCN framework. This section details

the design choices and implementation details of the CIFER OCN.

4.2.1 Supporting Multi-Flit Packets in PyOCN

The CIFER OCNs use multi-flit packets to enable transferring large data payloads between

the processing units through the 64-bit channels. Since the data payload can be as large as 512

bits, adopting single-flit packet, though simpler, will require a channel width of more than 512

bits. Given that the there are three physical OCNs and that the channels are unidirectional, single-

flit packets would require almost 3K wires in each direction of a tile, which will take significant

amount of wiring resources within the tile and drastically complicates the routing between tiles.

The CIFER OCN packet format is inherited from OpenPiton. A CIFER OCN packet contains

a header flit followed by up to ten payload flits. Figure 4.3 shows the CIFER OCN packet header

format implemented in PyOCN. The chipid field is used for identifying whether the packet should

be sent off-chip. For the router at position (0,0) (upper left corner), if the chipid field is not equal

to the chip ID of the router, the packet will be sent to the off-chip port (northern port). The xpos and

ypos fields are used for identifying the precise location of the destination router. The fbits field

informs the destination router which port the packet should be sent to. The plen field indicates

the length of the payload (excluding the header flit) in flits. The rest of the fields are not used by

the OCNs. The mtype field indicates the message type ID. The mshr field includes the tag or ID
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1 @bitstruct
2 class CiferNoCHeader:
3 chipid : Bits14
4 xpos : Bits8
5 ypos : Bits8
6 fbits : Bits4
7 plen : Bits8
8 mtype : Bits8
9 mshr : Bits8

10 opt1 : Bits6

Figure 4.3: CIFER NoC Header Format – CIFER NoC header implementation in PyOCN.
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Figure 4.4: CIFER Router Architecture – CIFER router implemented with PyOCN. A CIFER router is composed
of default input units, custom CIFER route units, grant-hold switch units, and default output units.

of the miss-status-handling register (MSHR). opt1 field corresponds to the Options 1 field in the

OpenPiton specification [ope16], which is a reserved field that can be used for adding additional

information.
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PyOCN offers a library of router components that can be used to build custom OCN topologies.

However, the default PyOCN router components (route units and switch units) only support single-

flit packets. To support multi-flit packets, I implemented a route unit with an embedded finite state

machine (FSM) that manages the packet state across multiple flits. I also implemented a switch

unit with grant-hold arbitration to hold the arbitration results as the payload flits is going through

the router. The general router architecture remains the same as described in 2.2.

4.2.2 Logical vs. Physical Hierarchy Trade-Offs

PyOCN generates an OCN as a standalone module which contains all the routers and links, with

only the ports to the terminal nodes exposed as the OCN’s input and output ports. This structure

naturally leads to a clean logical hierarchy, as is shown in Figure 4.5. In this hierarchy, the OCN

module is instantiated three times to form the three physical OCNs, with each tile only exposing

one port to the OCN. This approach offers two primary benefits.

Better Testability. The logical hierarchy completely isolates the functionality of the OCN from

the rest of the system, making it easier to verify and debug the OCN as a standalone module. This

decoupling also simplifies the testing of individual tiles, as their interface remains straightforward.

The OCN can be replaced with a simple testbench that generates and receives packets, facilitating

direct testing of different behaviors of the tile.

Better Modularity. The logical hierarchy also allows the OCN module to be easily swapped

for other OCN implementations featuring different topologies, routing algorithms, or flow control

mechanisms, without affecting the rest of the system. The tiles do not need re-testing as long as the

interface between the tiles and the OCN remains consistent. This flexibility is particularly useful

for exploring various OCN designs and optimizing the OCN for different workloads.

However, CIFER, similar to many other multi/many-core SoCs, adopts a tiled physical design

methodology, where each tile is made into a hard macro in the ASIC flow and replicated multiple

times to form the entire chip. This leads to the physical hierarchy shown in Figure 4.6, where the

routers are integrated within the tiles, and the tiles are directly connected to adjacent tiles to form a

mesh network. In this physical hierarchy, the interface of the tile becomes more complex, as each

tile now has four ports to connect to the neighboring tiles, as opposed to just one port to connect

to the OCN. This increased complexity makes unit testing the tile more complicated. Moreover,
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Figure 4.5: CIFER SoC Logical Hierarchy

replacing the OCN with another implementation under this physical hierarchy necessitates re-

testing of the tiles, as the routers are embedded within them.

Despite these drawbacks, the physical hierarchy significantly simplifies the top-level physical

design. Global routing becomes less complex, as it only needs to connect adjacent tiles with

relatively short wires. In contrast, using standalone OCN modules would require more intricate

global routing. Furthermore, as demonstrated by Petrisko et al. [PZD+20], integrating the router

within the tile leads to better area and timing results in the ASIC flow.
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4.2.3 Data Transfer Interface Trade-Offs: Val/Rdy vs. En/Rdy vs. Credit-Based

Data transfer interface refers to the microarchitecture-level protocol that determines how the

sender and receiver of a communication channel coordinate the data transfer. Different data trans-

fer protocols have different trade-offs in terms of timing, area, risk of combinational loop, and
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Figure 4.7: Different Handshake Interfaces – Potential critical paths are highlighted in red. Assuming input-
registered design.

reusability. Three data transfer protocols are considered when implementing the CIFER OCNs:

Val/Rdy, En/Rdy, and credit-based. Figure 4.7 shows how data is transferred from the sender’s

input queue to the receiver’s input queue using these three data transfer interfaces.

Figure 4.7(a) shows the widely used Val/Rdy interface. The sender asserts the val (valid)

signal to indicate that the current message is valid and can be taken. The receiver asserts the rdy

(ready) signal to indicate that it is ready to receive the data. The message is transferred when both

the val and rdy signals are asserted.

The val and rdy can be efficient in terms of timing, particularly when the val and rdy signals

are independent of one another. However, the Val/Rdy protocol does allow dependencies between

the val and rdy signals, which can sometimes lead to combinational loops. For example, if the

sender’s rdy signal is generated by its val signal, and the receiver’s val signal is generated by its

rdy signal, a combinational loop is formed. Therefore, reusing a design with Val/Rdy inference

may not always be safe. The designer must understand the implementation details of the sender
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and receiver or follow a strict guideline (such as only allowing one signal to depend on the other)

to avoid introducing combinational loops.

Figure 4.7(b) shows the En/Rdy interface, which was initially used in the PyOCN implemen-

tation. The En/Rdy protocol is inspired by the guarded method-based interface in Bluespec Sys-

temVerilog (BSV) language [Nik04]. With this interface, the en (enable) signal is an input and

the rdy (ready) signal is an output for both the sender and receiver. The sender asserts the rdy

signal when the message is ready to be transmitted, and the receiver asserts the rdy signal when

it is ready to receive the message. The en signals on both side can only be asserted when both

rdy signals are asserted. The rdy signals on both sides need to be AND-ed to generate the en

signals. This compulsory dependency eliminates the risk of combinational loop. It can potentially

achieve comparable timing performance as the Val/Rdy protocol if the AND gate used to generate

the en signals is placed optimally (i.e. right in the middle of the critical path). However, this is

often not feasible in practice due to (1) the optimal position for the AND gate may be inside a hard

macro, which the ASIC tool cannot modify; and (2) the interface signals are often generated by

some combinational logic and the AND gate must be placed after the long combinational logic,

making the critical path impossible to balance. Therefore, the En/Rdy interface is more suitable

for short-reach data transfer within a module where logic gates can be placed in close proximity.

For long-distance data transfers, the En/Rdy interface may introduce additional delay due to sub-

optimal placement of the AND gate, making it less efficient for inter-module communication in

large design.

Figure 4.7(c) shows the credit-based interface, where a val (valid) signal indicates whether

the current message is valid, and a yum (yummy) signal is used for sending back a credit from

the receiver. The sender maintains a credit counter to keep track of how many messages it is

allowed to send. The credit counter is initialized to be the number of entries in the receiver’s

input queue. It is decremented when a message is sent and incremented when a credit is received

(i.e., when the yum signal is asserted). No handshake is required during data transfer, since by

design the sender ensures that there is always sufficient space in the receiver’s input queue as long

as the sender has credit. The receiver asserts the yum signal when a message is consumed (i.e.

dequeued from its input queue). The credit-based interface offers good timing performance with

little risk of combinational loop, since the val and yum signals are fully decoupled. In a single-hop

router design, the critical path is often the yum signal (see Figure 4.7(c)), which is derived from the
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Interface Timing Area Overhead

Risk of
Combi-
national
Loop

Reusability

Val/Rdy Good N/A Yes May introduce com-
binational loop

En/Rdy Not suitable for
long distance Extra AND gates No Safe to reuse

Credit-Based Best if yum sig-
nal is registered

Credit counter and poten-
tially larger queue size No Safe to reuse

Table 4.1: Comparison of Data Transfer Interfaces

deq_val and deq_rdy signals, the latter of which is generated by some arbitration logic depending

on the deq_val signal and the receiver’s credit counter. To optimize timing, the yum signal can

be registered on the receiver’s side, since the val and yum signals do not need to be asserted in

the same cycle. However, this optimization increases the round-trip latency of the credit, meaning

that the input queue size must be enlarged to maintain full throughput. While this optimization

improves the timing performance, it introduces additional area overhead.

Table 4.1 summarizes the trade-offs of the Val/Rdy, En/Rdy, and credit-based interfaces. In the

CIFER chip tape-out, we eventually decided to use the Val/Rdy interface for the OCNs since it

introduces no area overhead and achieves reasonably good timing.

4.2.4 Timing Optimization: Speculative Switch Allocation

The CIFER OCNs employ a single-hop router design, where each router consists of five stages:

input, routing computation, switch allocation, switch traversal, and output (see Figure 4.8(a)).

In the input stage, incoming packets are stored in an input queue. In the routing computation

stage, the output port for the packet is determined based on its destination. Next, in the switch

allocation stage, the router arbitrates which input port gains access to which output port, resolving

any contention between multiple packets contending for the same output. In the switch traversal

stage, the packet is forwarded through the switch fabric. Finally, in the output stage, the packet

is sent to the next router. The routing computation, switch allocation, and switch traversal stages

involve a lot of combinational logic and often end up being the critical path of a chip.
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The CIFER OCNs employ standard dimension-order routing, where packets first traverse the

X dimension and then the Y dimension. Such a routing algorithm ensures that packets turn at most

once, either at the boundary between dimensions or not at all if they are traveling straight. When

implementing the CIFER OCNs, I exploit such behavior and explore speculative switch allocation

to optimize the critical path. The high-level idea is that the packet takes one cycle for the straight

route and two cycles for the turning route.

Figure 4.8(b) illustrates how speculative switch allocation works. In this approach, the router

stores a speculative source in a register for each output port. For example, the north output can have

a speculative source of the south input, which corresponds to the straight route. After the routing

computation stage, if the speculation is not correct, the packet will just go through the normal

switch allocation stage. A pipeline buffer is inserted after the switch traversal stage to break the

critical path. If the speculation is correct, the packet will bypass the switch allocation and directly
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Figure 4.9: TinyCore Cluster Architecture – Xbar = Resource-Sharing Crossbar.

be forwarded to the output port. If multiple packets are contending for the same output port, the

speculative route will not be used to enforce fairness. By doing this, the switch allocation stage

is effectively taken out from the critical path. The switch traversal stage in the critical path also

reduces from going through a 5-to-1 MUX to a 2-to-1 MUX. The zero-load latency of the OCN

only increases by one cycle, and the throughput of the OCN remains the same.

I evaluate the speculative switch allocation optimization using the CIFER ASIC flow. The

results show that the speculative switch allocation can shorten the critical path of the router by

around 20% (from 650ps to 520ps). Eventually, the speculative switch allocation is not adopted

in the actual tape-out as there are other paths longer than the router critical path. However, the

speculative switch allocation optimization can be useful for other designs or future tape-outs where

the router is the critical path.

4.2.5 TinyCluster Resource-Sharing Crossbar and Memory Crossbar Design

The TinyCore cluster in the CIFER SoC consists of six TinyCores, organized into three pairs.

Each pair of TinyCores shares key resources: an FPU, an MDU, and an L1 instruction cache.

To facilitate efficient sharing of these resources, the cluster utilizes a resource-sharing crossbar

designed and implemented using PyOCN. Additionally, the cluster employs a memory crossbar,

also designed with PyOCN, to manage connections between the L1 caches and the L2 cache.
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The resource-sharing crossbar, illustrated in Figure 4.10, is a generic request/response network

that allows M responders (such as FPUs or MDUs) to be shared among N requesters (TinyCores).

The design includes two distinct networks: a request network (an N-to-M crossbar) and a re-

sponse network (an M-to-N crossbar). Each requester sends requests to shared resources via the

request network, while the response network ensures that responses are routed back to the correct

requesters.

A key feature of this crossbar is that the requesters and responders are unaware of the network

and do not need to be modified to enable the resource sharing. Requesters simply send their re-

quests, and responders generate corresponding responses, without handling any network-specific

details. The crossbar manages all necessary routing by leveraging the opaque field in the request

messages. Each request port is equipped with a Reorder Buffer (ROB) to manage these interac-

tions. Upon receiving a request, the ROB allocates an entry, storing the original opaque field, and

replaces it with an index corresponding to the ROB entry and the source ID of the requester. This

opaque field is preserved throughout processing by the responder. When a response is generated,
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the crossbar uses the source ID in the opaque field to determine the destination for the response.

Before finally sending back the response, the crossbar restores the original opaque field by deallo-

cating the ROB entry using the ROB index in the opaque field, ensuring that the requester receives

the response with the same opaque field it initially sent. This mechanism allows the system to han-

dle out-of-order responses effectively, ensuring accurate delivery without requiring the requesters

or functional units to handle additional network-specific details.

The TinyCore cluster also includes a memory crossbar that connects nine caches (six data

caches from the TinyCores and three shared instruction caches) to the L2. The memory crossbar

design, shown in Figure 4.11, consists of a request network (a nine-to-one multi-flit crossbar) and

a response network (a one-to-nine multi-flit crossbar). Unlike the resource-sharing crossbar, the

memory crossbar does not require a Reorder Buffer (ROB) because responses from the L2 trans-

ducer are guaranteed to be in order. Given that the memory requests and responses are relatively

wide messages (176-bit and 146-bit respectively), the memory crossbar uses a multi-flit design

to optimize area and timing. The requests are serialized into 64-bit flits before being transmitted

across the crossbar. The serialized flits are then deserialized at the output, reconstructing the full

memory request for the L2 transducer. Similarly, responses from the L2 transducer are serialized

into 64-bit flits for transmission across the response network and deserialized back into complete

memory responses before being sent back to caches. This multi-flit approach enables the memory

crossbar to efficiently handle wide data transfers while improving timing and reducing wiring and

area usage.

The integration of resource-sharing and memory crossbars within the TinyCore cluster provides

a scalable and efficient on-chip communication infrastructure. Both networks are productively

developed with the PyOCN framework, which streamlines the design and implementation process.

4.3 Conclusion

This chapter presents the architecture of the CIFER SoC, and explores the design of the CIFER

NoCs both between the tiles and within the TinyCore cluster. It examines the trade-offs between

logical and physical hierarchies and various data transfer interfaces, including Val/Rdy, En/Rdy,

and credit-based protocols. Additionally, a speculative switch allocation technique is introduced

as a timing optimization strategy. These design choices contribute to the overall efficiency and
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scalability of the CIFER NoCs, providing a robust network solution for the CIFER SoC. The

insights gained from this work can inform future SoC designs, particularly in balancing modularity,

testability, and performance in large-scale NoCs.
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PART II
SCALING OFF-CHIP INTERCONNECTS

The second part of this thesis shifts focus to off-chip interconnects, which are equally important

for enabling scalable, high-performance computing in distributed systems. Chapter 5 presents

LLMCompass-E2E, a performance modeling framework designed to capture the complexities of

distributed LLM training. Following this, this part explores the potential of co-packaged optics

in both memory interconnect and system interconnect. Chapter 6 proposes an optically connected

multi-stack HBM module that leverages co-packaged optics for memory interconnect, breaking the

traditional bandwidth and capacity trade-off. Chapter 7 presents the PIPES chip tape-out, demon-

strating a practical implementation of a system interconnect based on co-packaged optics. Both

the optically connected multi-stack HBM module and the PIPES chip tape-out use LLMCompass-

E2E to evaluate the system-level performance for LLM training. These chapters address the key

tensions in off-chip interconnects, offering robust methodologies and architectural innovations for

the next generation of distributed computing systems.
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CHAPTER 5
METHODOLOGY: A PERFORMANCE MODELING
FRAMEWORK FOR END-TO-END LLM TRAINING

This chapter presents LLMCompass-E2E, a comprehensive framework developed to tackle the

complexities of simulating large-scale LLM training and inference. Building on top of the orig-

inal LLMCompass foundation, LLMCompass-E2E integrates a front-end capable of generating

computational graphs for both the forward and backward passes, as well as a system-level per-

formance model that supports system-level configurations involving multiple compute nodes and

various parallelism techniques such as data, tensor, and pipeline parallelism. These additions allow

LLMCompass-E2E to accurately represent the intricate interplay between compute units, memory

systems, and interconnects in distributed environments, offering an in-depth analysis of hardware

performance across diverse architectural and system configurations. This chapter aligns with the

broader goals of the thesis by providing researchers with an advanced tool to assess the efficiency

and scalability of hardware architectures designed for LLMs. LLMCompass-E2E is further used

in subsequent chapters to evaluate the performance of co-packaged silicon photonic interconnects

for both memory and system interconnects for LLM workloads.

5.1 Introduction

In recent years, the scale of large language models has grown significantly, driven by advances

in hardware capabilities and the demand for more accurate and sophisticated models. This trend,

exemplified by models such Open AI ChatGPT [BMR+20] and Google Gemini [GLB+24], aligns

with the scaling law for language models [KMH+20], which suggests that increasing model size,

dataset size, and compute resources yields predictable improvements in model performance across

a variety of tasks. Recent models have surged into trillions of parameters [FZS22], pushing the

boundaries of LLM capabilities.

However, the unprecedented scale of these models poses challenges to their training, which is

extremely resource-intensive and requires large-scale computing systems and highly specialized

hardware. For example, a recent report from Meta indicates that it takes 24K NVIDIA H100

GPUs to train the Llama 3 model with 405 billion parameters [met24]. As the scale of LLMs

and the dataset sizes continue to grow, it will only require even more computing resources to
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train these models. Access to such extensive computing resources is often limited to industry

or specialized research institutions. For the majority of researchers, limited access to large-scale

computing systems hinders the ability to evaluate and understand the impact of different system-

or architecture-level design choices, thereby impeding the exploration of innovative approaches for

LLM workloads. As LLM workloads continue to grow in scale and complexity, there is a pressing

need for a new class of modeling tools to support effective design decisions in the early stages of

architecture exploration for LLM workloads.

This growing gap highlights the pressing need for new modeling tools that enable researchers

to evaluate and optimize hardware architectures for LLMs without requiring access to large-scale

infrastructure. To be effective for LLM workloads, such tools must meet the following key cri-

teria. (1) Balance between simulation speed and accuracy. Given the massive scale of LLM

workloads, these tools need to deliver results quickly without sacrificing precision to capture criti-

cal performance insights. (2) Capability of system-level evaluation. Such tools need to have the

ability to model not only single devices but also interconnected systems involving thousands of

compute devices, as both LLM training and inference often rely on large-scale distributed systems.

Existing tools fall short of these requirements. Fast analytical methods like Roofline model [WWP09]

are useful for general insights but lack accuracy and do not capture the impact of architectural de-

tails such as memory hierarchy and interconnects. Cycle-level simulators, such as MGPUSim [SBM+19],

provide precision but are too slow and impractical for modeling end-to-end LLM workloads on

complex, distributed systems. Existing system-level simulators for distributed learning, such as

ASTRA-sim [RSSK20], has a greater focus on simulating the data movement over system inter-

connects but does not offer a compute simulator to explore the impact of different architectural

design choices. To effectively evaluate and explore innovative hardware designs for large-scale

LLM workloads, a unified hardware system modeling tool that can accurately model both compute

and communication is needed.

This chapter presents LLMCompass-E2E, an end-to-end hardware system modeling framework

for LLM training and inference. LLMCompass-E2E is an extension to LLMCompass1, a hardware

modeling framework for LLM inference [ZNPW24]. LLMCompass provides fast and accurate per-

formance estimation for LLM inference and is architecturally descriptive, which meets the criteria

(1) listed above. Section 5.2.1 introduces background on LLM training and inference. Section 5.2.2
1LLMCompass stands for Large Language Model Computation Performance and Area Synthesis
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Tensor Shape
Xmha, Ymha, Xffn,Yffn, H1 (b,s,d)
Q, K, V (b,s,dh)
Aprob (b,s,s)
H0 (b,s,4d)

Table 5.1: Shape of intermediate Tensors in Transformer Layer – b = batch size, s = sequence length, d = model
embedding size, dh = head size.

introduces the original LLMCompass framework. Section 5.3 describes how LLMCompass-E2E

extends LLMCompass to model LLM training.

5.2 Background

Large language models are based on the Transformer architecture [VSP+17] and contain a large

number of parameters pre-trained on large datasets. This chapter focuses on decoder-only Trans-

former models, which are widely adopted in LLMs such as GPT [BMR+20], Llama [TLI+23],

PaLM [CND+24]. The fundamental building block of these LLMs is the Transformer layer. Fig-

ure 5.1 shows the architecture of a decoder-only Transformer layer. which consists of a multi-head

attention block, a feed-forward neural network, two layer normalization operators, and two resid-

ual connections. The multi-head attention block, the most compute-intensive component of the

Transformer layer, consists of h attention heads and each attention head includes multiple batched

matrix multiplication operations. The outputs of these attention heads are concatenated to produce

the final output of the multi-head attention block. In practice, to optimize hardware utilization, the

operations in attention heads are usually processed in a batched manner as opposed to computing

each attention head individually.

This section provides background on LLM training (Section 5.2.1). It also introduces LLM-

Compass (Section 5.2.2), a high-level hardware evaluation tool designed specifically for LLM

inference. LLMCompass establishes a solid foundation for the LLMCompass-E2E framework,

which is presented later in this chapter.
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weight matrix. Q, K, V, A, H, X, and Y denote intermediate tensors. h = number of attention heads. Table 5.1
summarizes the shape of intermediate tensors.

5.2.1 LLM Training

Training LLMs shares the same core principles as training other deep learning models. The

training process involves three main steps: forward pass, backward pass, and parameter update.

During the forward pass, the model processes input data through its layers, generating predictions

based on its current parameters. The output is then compared to the target output. A loss function is

used to measure the model’s prediction error. Next, in the backward pass, the gradients of the loss

function with respect to the model parameters are computed using the back-propagation, which

is based on the chain rule of calculus. The optimizer then updates the model parameters using

the gradients to minimize the loss. Optimizers such as Adam [KB15] also maintain additional

optimizer state (e.g. momentum vectors) to adaptively adjust the learning rate for each parameter.
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The optimizer state is also updated after each iteration to refine the training process. This cycle

of forward pass, backward pass, and parameter update is referred to as an iteration. The training

dataset is divided into multiple batches, each containing multiple input and target output pairs.

Each iteration processes one batch, and the process is repeated over many iterations, gradually

improving the model’s accuracy.

Due to the enormous scale of LLMs, the training process is highly challenging. The size

of LLMs far exceeds the memory capacity of even the largest GPUs (e.g. NVIDIA H100 with

80 GB of memory). Even if we manage to fit the model in a single GPU by frequently swapping

data between the GPU memory and the host memory [RRA+21], the vast amount of compute

operations required can result in unrealistically long training times. This calls for parallelism.

There are data parallelism and model parallelism. Model parallelism includes tensor parallelism

and pipeline parallelism.

Training LLMs presents substantial challenges due to their enormous scale. The size of LLMs

far exceeds the memory capacity of even the largest GPUs (e.g. NVIDIA H100 with 80 GB of

memory). While it is possible to fit an LLM on a single GPU by frequently offloading data be-

tween GPU memory and host memory [RRA+21], the sheer volume of computations required

would result in prohibitively long training times. To address this, various forms of parallelism

are employed, including data parallelism, which distributes different training data across multiple

compute nodes, and model parallelism, which partitions the model across multiple compute nodes.

Mainstream model parallelism techniques include tensor parallelism and pipeline parallelism.

Data Parallelism – In data parallelism, each compute node stores a copy of the model and

processes a different subset of the training data (a batch). The gradients are computed indepen-

dently on each node and then aggregated across all nodes through an all-reduce operation to update

the model parameters. Data parallelism is an effective Data parallelism is an effective technique

for scaling out deep learning training to multiple compute nodes. However, it suffers from two

key limitations. First, as the level of data parallelism increases, the per-node batch size becomes

smaller which leads to reduced hardware utilization and increased communication overhead. Ad-

ditionally, the maximum number of compute nodes that can be used for training is limited by the

batch size, as the smallest batch size is one. This limits the scalability of data parallelism.

Tensor Parallelism – Tensor parallelism, or intra-layer model parallelism, divides matrix mul-

tiplications within each Transformer layer across multiple compute devices [SPP+19]. Tensor
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parallelism requires frequent all-reduce operations (two all-reduce operations per layer) and re-

lies on high-bandwidth interconnects to achieve high performance. Recent work demonstrates

that tensor parallelism can effectively support models up to 20 billion parameters within a multi-

GPU sever like the NVIDIA DGX A100, which includes eight GPUs interconnected via high-

bandwidth NVLink [SCP+18, SPP+19]. However, for models exceeding this scale, tensor par-

allelism faces challenges. To accommodate larger models, layers must be split across multiple

multi-GPU servers, introducing two significant issues. First, the all-reduce communication re-

quired for tensor parallelism now involves inter-server links, the bandwidth of which are much

smaller than NVLink thus creating communication bottlenecks. Second, a high degree of model

parallelism produces smaller matrix multiplications, which can reduce hardware utilization. These

limitations highlight the scalability challenges of tensor parallelism as models grow beyond tens

of billions of parameters.

Pipeline Parallelism – Pipeline parallelism distributes different layers of a model across mul-

tiple compute devices to form a pipeline [HCB+19, NHP+19, NPS+21]. A batch is divided into

smaller microbatches and fed into the pipeline. The peer-to-peer communication between differ-

ent pipeline stages introduces communication overhead. Furthermore, at the end of an iteration,

a pipeline flush is required to synchronize the optimizer state and model parameters, which leads

to bubble inefficiency, where stages of the pipeline are underutilized. Consequently, a larger batch

size is required to reduce the ratio of pipeline bubbles and achieve high hardware utilization, which

may limit the use of data parallelism.

In conclusion, LLM training is a highly complex multi-dimensional optimization problem

that requires carefully balancing the trade-offs between data parallelism, tensor parallelism, and

pipeline parallelism. Effective LLM training also demands careful coordination between diverse

hardware components, including compute devices, memory systems, and interconnects, each of

which impacts performance, scalability, and efficiency. Given the intricate interactions and depen-

dencies in LLM training, a holistic modeling tool is needed to capture these complexities. Such a

tool can enable researchers to explore and evaluate architecture- and system-level design choices

when designing hardware for LLM workloads, facilitating the development of innovative hardware

tailored for the demands of LLM workloads.
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Figure 5.2: LLMCompass Overview – An example hardware system in LLMCompass. Figure adapted
from [ZNPW24].

5.2.2 The LLMCompass Framework

The LLMCompass framework is a Python-based high-level hardware evaluation tool designed

specifically to model and optimize hardware for LLM inference. Traditional approaches to hard-

ware evaluation, such as Roofline models, cycle-level simulators, and FPGA emulation, are either

not accurate, too slow, or requires too much engineering effort, making them impractical for rapid

iteration and design exploration in the context of LLM inference. LLMCompass addresses these

limitations by providing a fast, accurate, and flexible evaluation platform that enables hardware de-

signers to explore a variety of architectural configurations before committing to RTL-level design

and implementation.

Figure 5.2 shows an overview of the LLMCompass framework, which requires two inputs:

an LLM model description and a hardware description. The Performance Model of LLM-

Compass takes both inputs and generates a performance report. The Area and Cost Model of

LLMCompass generates area report based on the hardware description.

LLM Model Description – The LLM model description is a high-level representation of key

operators and data flow in the LLM model. It is composed of key computational operators such as

matrix multiplication, softmax, layer normalization, and activation functions like GeLU. Figure 5.4

shows a software model of a multi-head attention operator in a transformer layer. The parameters

and the operators of the multi-head attention operator are defined in the MultiHeadAttention
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Figure 5.3: LLMCompass Hardware Description Template – Adapted from [ZNPW24].

class. The operator can be called with an input with any valid shape. The operators within the

multi-head attention operator automatically deduce the intermediate shapes and stored these infor-

mation to be used by the performance model.

Hardware Description – Figure 5.3 shows the hardware description template of LLMCom-

pass. The hardware description template describes a hardware component as follows:

• A system (e.g., a DGX node) contains multiple compute devices interconnected through an

inter-device network, such as NVLink.

• A device (e.g., a GPU) contains multiple compute cores, a shared global buffer, and off-chip

main memory. The global buffer is essentially a shared last-level cache accessible by all

cores.

• A core (e.g. a streaming multiprocessor in NVIDIA GPUs) contains multiple lanes and a

local buffer. The local buffer is essentially a shared L1 cache accessible by all lanes.

• A lane contains the basic compute resources such as a vector unit and a systolic array.

The hardware description template is flexible enough to describe a wide range of existing com-

puting platforms such as NVIDIA GPUs, AMD GPUs, and Google TPUs.

Performance Model – The performance model of LLMCompass contains a mapper and an

architecture simulator. The mapper partitions the computation of an operator into smaller sub-

tasks that can fit into the global buffer of a device. The sub-tasks are further partitioned into

smaller operations that can fit in each core’s local buffer. The mapper then provides a scheduling

scheme and invokes the architecture simulator to get the execution time for this mapping. The

mapper will search through different configurations to find the optimal mapping and scheduling

that minimizes the execution time of the operator to fully demonstrate the hardware capability.
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1 from LLMCompass.software_model.operators import Operator, Reshape, Concat, Transpose
2 from LLMCompass.software_model.matmul import Matmul, BatchedMatmul
3 ...
4

5 class MultiHeadAttention(Operator):
6 def __init__(self, d_model, n_heads, data_type):
7 super().__init__(0, 0, 0, 0, data_type)
8 self.d_model = d = d_model
9 self.n_heads = n_heads

10 # parameters
11 self.Wq = Tensor([d, d], data_type)
12 self.Wk = Tensor([d, d], data_type)
13 self.Wv = Tensor([d, d], data_type)
14 self.W0 = Tensor([d, d], data_type)
15 self.W1 = Tensor([d, 4 * d], data_type)
16 self.W2 = Tensor([4 * d, d], data_type)
17 # operators
18 self.Q_proj = Matmul(data_type)
19 self.K_proj = Matmul(data_type)
20 self.V_proj = Matmul(data_type)
21 self.Q_reshape = Reshape(data_type)
22 self.K_reshape = Reshape(data_type)
23 self.V_reshape = Reshape(data_type)
24 self.Q_transpose = Transpose(data_type)
25 self.K_transpose = Transpose(data_type)
26 self.V_transpose = Transpose(data_type)
27 self.Q_mul_K = BatchedMatmul(data_type)
28 self.A_softmax = Softmax(data_type)
29 self.A_mul_V = BatchedMatmul(data_type)
30 self.H_transpose = Transpose(data_type)
31 self.H_reshape = Reshape(data_type)
32 self.H_matmul = Matmul(data_type)
33

34 def __call__(self, X: Tensor) -> Tensor:
35 # b: batch size, s: sequence length, d: hidden dimension, d_h: dimension per head
36 b, s, d = X.shape
37 h = self.n_heads
38 d_h = d // h
39

40 # multi-head attention
41 Q = self.Q_proj(X, self.Wq) # [b, s, d ]
42 K = self.K_proj(X, self.Wk) # [b, s, d ]
43 V = self.V_proj(X, self.Wv) # [b, s, d ]
44 Q = self.Q_reshape(Q, [b, s, h, d_h])
45 K = self.K_reshape(K, [b, s, h, d_h])
46 V = self.V_reshape(V, [b, s, h, d_h])
47 Q_T = self.Q_transpose(Q, [0, 2, 1, 3]) # [b, h, s, d_h]
48 K_T = self.K_transpose(K, [0, 2, 3, 1]) # [b, h, d_h, s]
49 V_T = self.V_transpose(V, [0, 2, 1, 3]) # [b, h, s, d_h]
50 A = self.Q_mul_K(Q_T, K_T) # [b, h, s, s]
51 A_prob = self.A_softmax(A)
52 H = self.A_mul_V(A_prob, V_T) # [b, h, s, d_h]
53 H = self.H_transpose(H, [0, 2, 1, 3]) # [b, s, h, d_h]
54 H = self.H_reshape(H, [b, s, d])
55 return self.H_matmul(H, self.W0) # [b, s, d]

Figure 5.4: LLM Model Description in LLMCompass– Software model of a multi-head attention operator in
LLMCompass.

78



Figure 5.5: Matrix Multiplication Performance Modeling in LLMCompass – Adapted from [ZNPW24].

Figure 5.5 shows an example of modeling a matrix multiplication operation in LLMCompass. The

performance model of LLMCompass is validated against real-world hardware platforms such as a

4-GPU node with NVIDIA A100 GPUs, a Google Cloud TPU node with 8 TPUv3 cores, and an

AMD MI210 GPU. Compared to the actual hardware performance, the estimated performance by

LLMCompass achieves an average error rate of 4.1% for LLM inference.

Area and Cost Model – LLMCompass uses parameters from existing designs, such as tran-

sistor counts and memory buffer area in open-source tape-outs and PHY area in publicly available

die-photos, to empirically estimate the chip area. LLMCompass also integrates a supply chain

model [NTW23] to estimate the wafer costs and per-die costs.

LLMCompass offers a fast, accurate, and flexible hardware evaluation platform specifically

for LLM inference. However, it has several limitations that make it less suitable for modeling

LLM training. First, LLMCompass primarily models the forward pass, requiring users to manu-

ally specify the backward pass, a process that can be complex and prone to errors. Additionally,

It only models computation within a single compute node and only supports modeling symmetric

collective communications such as all-reduce. It lacks capability to model data and pipeline par-

allelism across multiple nodes, which are essential for LLM training. These limitations motivate
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the need for an extended framework that can support the unique requirements of LLM training

workloads at a larger scale.

5.3 LLMCompass-E2E

To address the methodology challenges in modeling large-scale LLM training and inference,

we introduce LLMCompass-E2E, a comprehensive modeling framework that enables end-to-end

modeling of LLM workloads. LLMCompass-E2E builds upon the original LLMCompass frame-

work, extending its capabilities with a frontend (Section 5.3.1) and a system-level performance

model (Section 5.3.2), as is illustrated in Figure 5.6.

The Front End processes the input LLM model description into a computational graph inter-

mediate representation (IR) and performs auto-differentiation to generate the backward pass com-

putational graph. These forward and backward computational graphs, along with the hardware

description, are then fed into the kernel-level performance model to simulate the performance of

individual computational kernels within each layer. Following this, the kernel-level performance

results, hardware description, and an additional system configuration are used by the system-level
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1 from LLMCompassE2E.software_model.modules import MultiHeadAttention
2 from LLMCompassE2E.software_model.operators import Lossfunction
3 from LLMCompassE2E.hardware_model import nvidia_a100
4 from LLMCompassE2E.simulation.utils import simulate_graph
5

6 b, s, d = 8, 2048, 12288
7 num_heads, head_size = 96, 128
8 mha = MultiHeadAttention(num_heads, head_size, d, fp16)
9

10 x = Tensor([b, s, d], fp16, label='x')
11 y = mha(x)
12

13 loss = LossFunction.apply(y)
14 loss.backward()
15

16 fwd_perf_report = simulate_graph(loss.forward_graph(), nvidia_a100)
17 bwd_perf_report = simulate_graph(loss.backward_graph(), nvidia_a100)

Figure 5.7: LLMCompass-E2E Code Example – The code shows how to simulate the forward and backward passes
of a multi-head attention block on an NVIDIA A100 model using LLMCompass-E2E.

performance model to simulate the entire training or inference process, producing end-to-end per-

formance results. The system configuration specifies the number of compute nodes, the inter-

node and intra-node interconnects, and the parallelization strategy (i.e., degree of data, tensor,

and pipeline parallelism). Through these enhancements, LLMCompass-E2E is capable of model-

ing the entire LLM training and inference process across complex, distributed hardware systems,

providing a detailed, holistic view of performance across diverse configurations.

These additions allow LLMCompass-E2E to simulate the entire training and inference process

across complex, distributed hardware systems.

5.3.1 Frontend

The LLMCompass-E2E frontend serves as the initial processing stage. This stage processes the

LLM model description, creating a computational graph IR that captures the model’s computa-

tion and communication operations in a format suitable for performance modeling. An important

feature of the Front End is the kernel-level auto-gradient module, which automatically gener-

ates the computational graph for the backward pass, eliminating the need for manual specification.

Figure 5.7 shows an example of the frontend code. Below, we delve into the details of the key

components of the frontend: an improved LLM model description, a computational graph IR, and

the kernel-level auto-gradient.
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1 from LLMCompassE2E.software_model import Tensor, Operator
2

3 class Mul(Operator):
4 def forward(self, input1: Tensor, input2: Tensor) -> Tensor:
5 # Forward pass of an element-wise multiplication operator generates a new tensor
6 # with the same shape and data type as the input tensors.
7 assert input1.shape == input2.shape and input1.dtype == input2.dtype
8 return Tensor(input1.shape, input1.dtype)
9

10 def backward(self, local_grad: Tensor) -> Tuple[Tensor, Tensor]:
11 input1, input2 = self.input_tensors
12 # Apply chain rule for multiplication, where y = x1 * x2; dy/dx1 = x2; dy/dx2 = x1
13 return input2 * local_grad, input1 * local_grad

Figure 5.8: LLMCompass-E2E Operator Example – The code shows how to define a new elementwise multipli-
cation operator in LLMCompass-E2E. The forward method computes the shape and data type of the output tensor,
while the backward method specifies how to compute the gradients of the input tensors given a local gradient.

LLM Model Description – LLMCompass-E2E provides a natural way of describing LLM

models that is very similar to PyTorch, as is demonstrated in Figure 5.9, which shows an example

code snippet that describes a multi-head attention block in LLMCompass-E2E. Instead of manually

registering each operator in the model like in LLMCompass, LLMCompass-E2E implicitly keeps

track of the operators that are called in the forward method and builds the computational graph

for the forward pass.

Computational Graph IR – Figure 5.10(a) shows the computational graph generated by the

frontend for the forward pass of the multi-head attention block in Figure 5.9. In the computational

graph, each node stores a tensor and the operator that produces the tensor. Each edge represents

the data dependency between the tensors. Unlike LLMCompass, where the user needs to manually

invoke the simulator on each operator, LLMCompass-E2E automatically processes each operator

in the computational graph in topological order. The computational graph IR also potentially makes

LLMCompass-E2E more flexible, as it can also be instrumented before sending to the kernel-

level performance model. For example, the frontend can fuse the operators in the computational

graph to reduce the number of kernel invocations. This can be useful for exploring compiler-level

optimizations for LLM workloads.

Kernel-Level Auto-Gradient – The backward pass is typically more complex and contains

more operators than the forward pass. For example, the backward operation of an element-wise

multiplication involves two element-wise multiplications. The backward operation of a batched

matrix multiplication involves two batched-matrix multiplications with a number of broadcast and

reduction operations. This makes it challenging and less straightforward to manually specify the
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operations in the backward pass. To address this, LLMCompass-E2E provides an auto-gradient

module that can automatically generate the computational graph for the backward pass based on the

forward pass computational graph. Figure 5.8 shows an example of how to define a new operator

in LLMCompass-E2E. An operator needs to be defined with a forward method that computes the

shape and data type of the output tensor, and a backward method that specifies how to compute the

gradients of the input tensors given a local gradient. The auto-gradient starts from the final output

of the forward pass (e.g., the output of the loss function), iteratively calls the backward method of

operators, and builds up the computational graph for the backward pass in a breadth-first search

manner. Figure 5.10(b) shows the generated computational graph generated for the backward pass

of the multi-head attention block in Figure 5.9.

5.3.2 System-Level Performance Model

LLMCompass-E2E also extends the original LLMCompass with a system-level performance

model that simulates the entire training or inference process across a number of compute nodes.

The core component of the system-level performance model is a scheduler simulator, an event-

driven simulator that takes in the system configuration and kernel-level performance results. It is

able to generate a pipeline schedule based on hardware constraints such as memory capacity per

GPU. This is essential for modeling pipeline parallelism.

The scheduler simulator is capable of generating different pipeline parallelism schedules, such

as Gpipe [HCB+19] and PipeDream [NHP+19, NPS+21], to allow exploration of trade-offs in

these different schedules. In pipeline parallelism, each compute node (i.e. pipeline stage) holds a

subset of layers of the LLM, which reduces the memory capacity requirement for each compute

device. However, pipeline parallelism can also introduce additional memory footprint in order to

achieve full throughput in the steady state. For each pipeline stage, after computing the forward

pass of a microbatch, the activations (i.e. the intermediate results) need to be stored in memory

for the corresponding backward pass. For a N-stage pipeline, activations of N microbatches need

to be stored in memory in order to achieve full throughput. If the compute device does not have

enough memory to store all the activations, we can either (1) stop issuing the microbatches into the

pipeline until the backward pass is completed, or (2) adopt activation recomputation to reduce the

memory footprint [KCL+23]. The first option can lead to a suboptimal utilization of the pipeline,

while the second option can introduce additional computation overhead. The scheduler simulator
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supports simulating both options. The scheduler simulator also supports modeling various opti-

mization techniques, such as overlapping the gradient computation of the input with the gradient

computation of the model parameters across different microbatches, overlapping the backward

pass computation with data parallelism communication, and scatter-reduce optimization to reduce

the communication overhead between pipeline stages [NSC+21]. The scheduler simulator can also

be used for modeling LLM inference with pipeline and tensor parallelism.

To model the communication overhead between pipeline stages, LLMCompass-E2E assumes a

fat tree topology for the inter-node interconnect, which is widely adopted in today’s supercomput-

ers. It is possible to implement more detailed network models for other interconnect topologies in

LLMCompass-E2E or integrate with existing network simulators such as ASTRA-SIM [RSSK20].

In practice, the peer-to-peer communication between pipeline stages can be slightly misaligned.

For example, the sender node may send the data slightly earlier than the receiver node is ready

to receive the data, due to the fluctuations in clock frequency, network latency, bandwidth, etc.

LLMCompass-E2E supports adding a randomized delay to the peer-to-peer communications to

model such synchronization overhead.

5.4 Evaluation

I evaluate the LLMCompass-E2E framework by comparing its simulation results against the

reported end-to-end training results of the Megatron-LM models [NSC+21]. I created a detailed

model of an 8-GPU A100 node, along with an InfiniBand interconnect model, to replicate the hard-

ware environment used in the Megatron-LM experiments. Using these models, I conduct end-to-

end simulations with the same training configurations, including model size, degree of parallelism,

batch size, and sequence length, to closely mirror the actual system setup.

Table 5.2 presents a comparison between the reported Megatron-LM results on real hardware

and the simulated results from LLMCompass-E2E. The table covers a range of LLMs, from smaller

models with 1.7 billion parameters to extremely large models with up to a trillion parameters.

Two sets of simulation results are presented: one without synchronization overhead and one with

a randomized synchronization overhead (with an average delay of 5ms) added to peer-to-peer

communications. As shown in Table 5.2, the simulated hardware utilization with synchronization

overhead aligns more closely with the reported Megatron-LM results, especially for larger models
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1 from LLMCompassE2E.software_model import Tensor, Module
2 from LLMCompassE2E.software_model.operators import Softmax, MegatronF, MegatronG
3

4 class MultiHeadAttention(Module):
5 def __init__(self, num_heads: int, head_size: int, embed_size: int, dtype: DataType,
6 tensor_parallelism: int = 1):
7 super().__init__()
8 self.embed_size = embed_size
9 self.head_size = head_size

10 self.num_heads = num_heads
11 self.tensor_parallelism = t = tensor_parallelism
12

13 self.key = Linear(embed_size, embed_size // t, dtype)
14 self.query = Linear(embed_size, embed_size // t, dtype)
15 self.value = Linear(embed_size, embed_size // t, dtype)
16 self.proj = Linear(embed_size // t, embed_size, dtype)
17

18 def forward(self, x: Tensor) -> Tensor:
19 # b - batch size, s - sequence length, d - embed size (hidden size)
20 # h - num_heads, d_h - head size
21 # input shape: [b, s, d]
22 b, s, d = x.shape
23 h = self.num_heads
24 d_h = self.head_size
25 t = self.tensor_parallelism
26

27 # Apply tensor parallelism
28 d = d // t
29 h = h // t
30

31 # If tensor parallelism is used, apply the �f� operator as is described
32 # in the Megatron paper.
33 if t > 1:
34 x = MegatronF.apply(x)
35

36 q = self.query(x) # [b, s, d]
37 k = self.key(x) # [b, s, d]
38 q = q.reshape([b, s, h, d_h]) # [b, s, h, d_h]
39 k = k.reshape([b, s, h, d_h]) # [b, s, h, d_h]
40 q_t = q.transpose([0, 2, 1, 3]) # [b, h, s, d_h]
41 k_t = k.transpose([0, 2, 3, 1]) # [b, h, d_h, s]
42 a = q_t @ k_t # [b, h, s, s]
43 a_prob = Softmax.apply(a) # [b, h, s, s]
44

45 # Attention over values
46 v = self.value(x) # [b, s, d]
47 v = v.reshape([b, s, h, d_h]) # [b, s, h, d_h]
48 v_t = v.transpose([0, 2, 1, 3]) # [b, h, s, d_h]
49 heads = a_prob @ v_t # [b, h, s, d_h]
50 heads = heads.transpose([0, 2, 1, 3]) # [b, s, h, d_h]
51 heads = heads.reshape([b, s, d]) # [b, s, d]
52 out = self.proj(heads) # [b, s, d]
53

54 # If tensor parallelism is used, apply the �g� operator as is described
55 # in the Megatron paper.
56 if t > 1:
57 out = MegatronG.apply(out)
58 return out

Figure 5.9: LLM Model Description in LLMCompassE2E – Software model of a multi-head attention block with
support for tensor parallelism in LLMCompassE2E.
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Figure 5.10: Computational Graphs of A Multi-Head Attention Block – Computational graphs generated by the
frontend for the forward and backward passes of a multi-head attention block.
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#Param.
(Billion)

Attention
Heads

Hidden
Size #Layers TP PP DP #GPUs

Batch
Size

Reported
HW Util. in
[NSC+21]

Sim.
HW
Util.

Sim. HW
Util. with

Sync.
Overhead

Sim.
Time
(Min)

1.7 24 2304 24 1 1 32 32 512 44% 44.5% 44.5% 11.3
3.6 32 3072 30 2 1 32 64 512 44% 42.8% 42.8% 14.1
7.5 32 4096 36 4 1 32 128 512 44% 41.3% 41.3% 7.48

18.4 48 6144 40 8 1 32 256 1024 43% 38.5% 38.5% 12.1
39.1 64 8192 48 8 2 32 512 1536 44% 48.3% 46.3% 9.9
76.1 80 10240 60 8 4 32 1024 1792 45% 50.3% 47.5% 13.8
145.6 96 12288 80 8 8 24 1536 2304 47% 54.9% 50.9% 13.0
310.1 128 16384 96 8 16 15 1920 2160 50% 61.1% 53.4% 13.5
529.6 128 20480 105 8 35 9 2520 2520 52% 62.0% 53.9% 17.7
1008 160 25600 128 8 64 6 3072 3072 52% 65.0% 54.8% 25.8

Table 5.2: Comparison Against Real Hardware Results – This table shows comparison between the reported end-
to-end training results in [NSC+21] and the LLMCompass-E2E simulation results. TP = degree of tensor parallelism;
PP = degree of pipeline parallelism; DP = degree of data parallelism. The simulated hardware utilization with syn-
chronization overhead adds a randomized synchronization overhead (5ms on average) to peer-to-peer communications.
All experiments are run with a sequence length of 2048.

that rely on extensive pipeline parallelism. Without this adjustment, the simulated results assume

perfectly aligned computations across all GPUs at all times, leading to an overoptimistic estimation

of the end-to-end performance.

Table 5.2 also shows the simulation time for each experiment. The majority of the simulation

time is spent on the kernel-level performance model. For most of the models, the end-to-end

simulation time is less than 15 minutes, demonstrating the efficiency of the LLMCompass-E2E

framework in providing quick feedback on the performance of LLM training workloads.

5.5 Conclusion

This chapter introduces LLMCompass-E2E, a comprehensive framework for end-to-end per-

formance estimation of large-scale distributed training of LLMs. Building upon the capabilities of

the original LLMCompass framework, LLMCompass-E2E incorporates essential extensions such

as the front end for generating computational graphs of forward and backward passes, as well as a

system-level performance model that considers multi-node configurations, inter-node communica-

tion, and various parallelism strategies. Through validation against real-world results from large-

scale systems, LLMCompass-E2E demonstrates high accuracy in performance modeling. This

framework addresses the unique challenges of modeling the full training and inference pipeline
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of LLMs, allowing researchers to evaluate architectural decisions in the context of complex, dis-

tributed hardware systems.
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CHAPTER 6
ARCHITECTURE: OPTICALLY CONNECTED

MULTI-STACK HBM MODULE

This chapter explores the potential of co-packaged optics in memory interconnects. Large lan-

guage models (LLMs) have grown exponentially in size, presenting significant challenges to tra-

ditional memory architectures. Current high bandwidth memory (HBM) systems are constrained

by chiplet I/O bandwidth and the limited number of HBM stacks that can be integrated due to

packaging constraints. In this chapter, we propose a novel memory system architecture that lever-

ages silicon photonic interconnects to increase memory capacity and bandwidth for compute de-

vices. By introducing optically connected multi-stack HBM modules, we extend the HBM memory

system off the compute chip, significantly increasing the number of HBM stacks. Our evalua-

tions through LLMCompass-E2E show that this architecture can improve training efficiency for

a trillion-parameter model by 1.4⇥ compared to a modeled A100 baseline, while also enhancing

inference performance by 4.2⇥ if the L2 is modified to provide sufficient bandwidth.

6.1 Introduction

In recent years, modern high-performance compute devices such as GPUs and TPUs have

largely shifted to using high bandwidth memory (HBM) due to its superior memory bandwidth

compared to DDR and GDDR. For instance, in 2017, NVIDIA’s Tesla V100 GPU introduced

HBM2 with 900 GB/s bandwidth and 16 GB capacity. More recently, HBM3e has further pushed

these limits, offering 8 TB/s bandwidth and 192 GB capacity in the NVIDIA GB200 GPU. Fig. 6.1

shows the trend of HBM capacity per device over time. While the capacity per HBM stack has

grown from 4 GB to 24 GB over the past seven years, the aggregated HBM capacity remains fun-

damentally limited by the number of stacks per compute chip. The HBM stacks are connected

to the compute chip via high-density short-reach chiplet I/Os, and the number of HBM stacks is

ultimately limited by the perimeter of the compute chip. Other memory expansion solutions, such

as CXL memory modules [PKS+24, LBH+24], come at the cost of reduced memory bandwidth.

Meanwhile, large language models (LLMs) have demonstrated remarkable capabilities across

a broad range of applications [BMR+20,DCLT19]. Driven by the need for higher accuracy and the

ability to perform more sophisticated tasks, the size of LLMs continues to increase and has recently
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Figure 6.1: Memory Requirement for Training LLMs and HBM Capacity Per Device Over Time – We assume
16-bit precision for LLM parameters and gradients and 32-bit precision for optimizer state. HBM capacity data is
adapted from [tec24b].

surged into trillions of parameters [FZS22] (see Fig. 6.1). This poses significant challenges for the

memory capacity of compute devices. For instance, training the GPT-3 model with 175 billion

parameters [BMR+20], requires approximately 3 TB of memory for storing the model parameters,

gradients, and optimizer state. Today’s larger models, like Switch Transformer [FZS22], can have

1–2 trillion parameters and require up to 32 TB of memory to train.

Early LLMs fit within a single compute device, enabling efficient scaling of training through

data parallelism. However, today’s largest models far exceed single device memory capacity,

and thus require the use of model parallelism, including tensor parallelism [SPP+19] and pipeline

parallelism [NHP+19, NPS+21]. Tensor parallelism splits the computation of each layer across

multiple devices, while pipeline parallelism segments the model into different stages processed

sequentially. However, these parallelism strategies introduce new complications. With tensor par-

allelism, the frequent all-reduce communication between devices can reduce overall efficiency.

Similarly, pipeline parallelism suffers from bubble inefficiencies where stages of the pipeline are

underutilized, particularly during the ramp-up and ramp-down phases of the pipeline. This leads to

the key observation that motivates this work: Efficiently exploiting model parallelism for LLM

training is largely limited by per-device memory capacity.
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In this chapter, we propose a novel memory architecture using silicon photonic interconnects to

expand the memory capacity and bandwidth of compute devices. We introduce optically connected

multi-stack HBM modules, a separate chip package with multiple HBM stacks and connected to

the compute chip via co-packaged optics. With co-packaged optics, we extend the HBM mem-

ory system off the compute interposer, circumventing the chip packaging constraint and allowing

more HBM stacks to be connected to the compute chip. In an augmented A100 system, we achieve

576 GB of memory capacity and 12 TB/s of bandwidth using the same HBM technology. Our sys-

tem improves model FLOPs utilization (MFU) by up to 1.4⇥ for trillion-parameter LLM training.

In addition, the increased bandwidth of our system can also benefit LLM inference, improving

decoding performance by up to 4.2⇥ with sufficient L2 bandwidth.

6.2 Background

Silicon photonics is an emerging technology that enables the integration of optical components,

such as ring resonators, photodetectors, and microdisk modulators onto silicon-based substrates us-

ing CMOS-compatible fabrication processes. While optics offer several advantages over electrical

interconnects, including higher bandwidth density, higher energy efficiency, lower loss, and re-

duced latency over a long distance, integrating optics with electronics presents challenges. This

section introduces three integration approaches for silicon photonics and discusses their advantages

and challenges.

Optical interconnects up to date have mainly taken the form of pluggable optical transceivers,

where standardized, removable optical modules can be plugged into a system board or a switch

chassis, as is shown in Figure 6.2(a). Each pluggable optical transceiver is a separate board that

houses an optical chip and an electrical transceiver chip. This approach offers flexibility and cost-

effectiveness compared to more integrated approaches, as these pluggable transceivers can be in-

dependently replaced or upgraded without altering the system board. However, the separation

between the compute chip and the optical module introduces critical drawbacks. Data going to the

compute chip must traverse many steps of electrical traces, such as connectors, PCB traces, PCB

vias, and package traces, which contributes to signal loss and limits the achievable bandwidth and

energy efficiency. The final electrical pathways ultimately constrain the overall performance of a

pluggable optical transceiver.
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Figure 6.2: Silicon Photonics Integration Technologies

Monolithic integration, illustrated in Figure 6.2(c), refers to the fabrication of both electri-

cal and optical components directly on the same silicon substrate. This approach provides the

closest possible integration of electrical and optical components, potentially offering the high-

est bandwidth density and lowest power consumption by eliminating the interconnect losses be-

tween the electrical and optical domains. Early work explored the potential of this approach

[BJO+09, OMS+12, SWL+15, BZL+12, RGP+13], but it has yet to see widespread adoption. The

major challenge of monolithic integration is that the fabrication process for advanced electrical

and optical components is inherently incompatible. The optimal process node for electronics is

typically not applicable for optics, and vice versa. While modern compute chips require highly

aggressive process nodes (e.g., 7nm or 5nm), optical components work more reliably with older,

less dense nodes. This mismatch limits the use of cutting-edge electronics and optics in monolithic

integration, which can lead to suboptimal performance and yield.
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Co-packaged integration, illustrated in Figure 6.2(b), has emerged as a promising technology

for silicon photonics integration since the chiplet-based packaging has become increasingly pop-

ular in the semiconductor industry [CKT+15, CSY+23, DLK+23, DRA+21, DRL+23, KLO+24,

RDN+23a]. This approach involves integrating multiple chiplets, such as an electrical interface

chiplet (EIC) and an optical interface chiplet (PIC) within the same chip package as the compute

chiplet. The chiplets are connected using high-density microbumps and/or through-silicon vias

(TSVs) which offer comparable bandwidth and energy efficiency to on-chip wires. Moreover, this

approach also enables fabricating the compute chiplet, EIC and PIC using their respective opti-

mal process nodes, which can lead to higher yield and better performance for all components.

Co-packaged integration strikes a balance between the pluggable optical transceivers and mono-

lithic integration. It eliminates the long electrical traces between the compute chip and the optical

module, while also overcoming the process node mismatch by decoupling the fabrication of the

electrical and optical components. This approach has the potential to unleash the full benefits of

silicon photonics to satisfy the communication demand of modern highly distributed workloads.

6.3 System Architecture

Fig. 6.3 depicts an example system architecture with optically connected multi-stack HBM

modules. The proposed system consists of a compute multi-chiplet module (MCM) and multiple

multi-stack HBM modules. The compute MCM incorporates six electrical interface chiplets (EICs)

and six photonic interface chiplets (PICs), which are co-packaged using 3D integration. The multi-

stack HBM module includes an EIC-PIC pair and is connected to the compute MCM directly via

optical fibers. The system design is based on an A100-sized compute chip. Key design parameters,

such as chip dimensions, optical fiber pitch, and optical bandwidth are adapted or derived from

recent works on opto-electronic transceivers and MCMs [KLO+24, WWP+24, WNP+23]. Given

that the width of the EIC-PIC pair is close to that of an HBM stack, the six HBM stacks in the

A100 GPU chip can be replaced with six EIC-PIC pairs. Each EIC-PIC pair has a total of 48

optical fibers with a pitch of 127 µm, constituting 16 optical channels. Each optical channel is

comprised of three fibers: one for unmodulated comb lines, one for transmitter (TX) signals and

one for receiver (RX) signals. Each signal fiber carries 64 wavelengths modulated at 16 Gb/s,

resulting in a total unidirectional bandwidth of 1 Tb/s. In total, our design provides 12 TB/s of
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Figure 6.3: Example System Architecture

bandwidth and 576 GB of capacity using the same HBM2e technology. The system shown in

Fig. 6.3 is just one conceptual example, and the proposed architecture can also be adapted to other

packaging strategies such as embedded PIC [WNP+23], EIC on top of PIC [DRL+23, DLK+23],

and monolithic EIC-PIC [SJZ+20, HKS+21, HKS+22].

Fig. 6.4 shows the detailed structure of the optical datapath highlighted in Fig. 6.3. The TX

array is driven by a comb source that generates hundreds of low-noise frequency channels (comb

lines) from a continuous-wave (CW) laser. The comb lines are subdivided by two stages of de-

interleavers into four buses, each containing 16 wavelengths. Each wavelength is modulated by a

microdisk modulator in the TX array. The modulated wavelengths are combined by two stages of
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Figure 6.5: EIC and PIC Architecture – Mixed-signal transceivers in the EIC is based on [KLO+24]. PIC design is
adapted from [WNP+23, WNP+23].

interleavers and transmitted via a single fiber. At the RX side, the modulated wavelengths are de-

interleaved into four buses and sent to arrays of cascaded ring resonators that drop each wavelength

onto a photodetector to generate electrical signals.

Fig. 6.5(a) shows the EIC structure. The EIC is connected to the compute or I/O chiplet via

Universal Chiplet Interconnect express (UCIe) PHYs. We derive the design parameters from the

16 GT/s UCIe PHY from the UCIe 1.0 specification [uci24]. Each UCIe PHY contains four

128 GB/s UCIe modules. The EIC includes four UCIe PHYs to provide a total bandwidth of

2 TB/s, matching the optical bandwidth. The EIC also includes mixed-signal transceiver arrays
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to communicate with the PIC via high density microbumps and through-silicon vias (TSVs).

Fig. 6.5(b) illustrates the PIC structure, adapted from [WNP+23]. It includes an edge coupler

array, de-interleavers and interleavers, and transceiver arrays. The edge coupler array is used for

attaching optical fibers. Each TX array contains 256 microdisk modulators and each RX array

contains 256 ring resonators, corresponding to four optical channels.

Our design addresses two key constraints limiting the capacity and bandwidth of current HBM-

based memory systems.

Constraint #1: The number of HBM stacks is restricted by the perimeter of the compute

chiplet. The number of HBM stacks is limited by the perimeter of the compute chiplet, which is

ultimately constrained by the reticle size limit in lithography. Our proposed design overcomes this

by extending the HBM stacks into separate chip packages using co-packaged optics, with slight

overhead in latency and energy. Instead of direct microbump connections to HBM, the compute

chiplet connects optically to multiple I/O chiplets, and each I/O chiplet is connected to multiple

HBM stacks. As a result, without increasing the chip perimeter, significantly more HBM stacks

can be connected to the compute chiplet.

Constraint #2: The HBM interface operates below the maximum possible data rate of

chiplet I/O. Current compute chiplets use HBM PHYs to communicate with the HBM stacks at

up to 9.6 Gb/s per microbump (HBM3e). However, state-of-the-art chiplet interconnects like UCIe

can reach 16 Gb/s or even 32 Gb/s under similar bump pitch. The bandwidth of HBM PHYs are

constrained by the DRAM speed rather than the data rate of microbumps. By replacing the HBM

stacks with EIC-PIC pairs, our design leverages faster UCIe PHYs to achieve a higher bandwidth.

In the multi-stack HBM module, multiple HBM stacks can be accessed in parallel to match the

optical bandwidth.

6.4 Evaluation

We evaluate our proposed system using the LLMCompass-E2E framework presented in Chap-

ter 5 for both training and inference. We model an 8-GPU A100 compute node with LLMCompass-

E2E as the baseline system. We create a model of our proposed memory system in LLMCompass-

E2E and integrate it into the A100 model. The memory system, as is detailed in Section 6.3, offers

12 TB/s of memory bandwidth and 576 GB of memory capacity.
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Fig 6.6 shows the evaluation results for modeling training of a 175-billion and a 1-trillion pa-

rameter LLM. We use the kernel-level performance model to simulate the execution time of the

forward and backward pass. We generate different pipeline schedules based on the memory capac-

ity constraints and create an InfiniBand network model in LLMCompass to simulate the commu-

nication time for data parallelism. We compare the achieved MFU of three different systems: the

baseline A100 model, the A100 model with only the bandwidth enhancement of our design, and

the A100 model with optically connected multi-stack HBM modules. We sweep the number of

GPUs from 1 to 4096, and each point in the plot represents a possible mapping with certain degree

of tensor, pipeline, and data parallelism. We can see that the improvements in MFU mainly benefit

from the capacity enhancement as opposed to bandwidth. This is because the main operations in

the training process, matrix-matrix multiplications, are compute-bound. Our design particularly

benefited the training of the 1-trillion parameter LLM by offering higher memory capacity. At

4096 GPUs, the best mapping with our design achieves a 1.4⇥ improvement in MFU. The base-

line system, constrained by the memory capacity, has to use more model parallelism to partition the

model parameters, gradients, and optimizer state. It also requires activation recomputation during

the backward pass since it does not have sufficient memory to hold the activations, which leads to

reduced MFU.

We compare the per-layer latency of the prefill and decode stages for the 175-billion and 1-

trillion parameter LLM. Since our design exhibits bandwidth inversion, offering 12 TB/s band-

width which is well above the 7 TB/s L2 bandwidth of the baseline A100, we also evaluate a sys-

tem with an aggressive 24 TB/s L2 bandwidth to fully utilize the optical bandwidth. As is shown in

Fig. 6.7, for prefill, our design with aggressive L2 bandwidth achieves an average 1.14⇥ speedup

across different sequence lengths for both the 175B and 1T model. For decoding, our design with

aggressive L2 achieves 3.17⇥ speedup for the 175B model and 4.23⇥ speedup for the 1T model

on average across different context lengths. Without the L2 modification, the speedup is 1.53⇥

and 1.67⇥ respectively, indicating that our design requires rethinking the memory hierarchy de-

sign to fully utilize the massive memory bandwidth offered by the optically connected multi-stack

HBM modules. The capacity enhancement of our design can also potentially benefit the latency

and throughput of LLM inference by allowing larger sequence length, batch size, KV cache size,

as well as enabling more optimal parallelization strategies. Future work will evaluate the impact

of our design on end-to-end LLM inference systems.
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Figure 6.6: Evaluation Results for Training – Each dot represents a valid training configuration for a given number
of GPUs. Optimal configuration at 4096 GPUs are highlighted. Elec Cap = 80 GB capacity, Elec BW = 2 TB/s
bandwidth, Optic Cap = 576 GB capacity, Optic BW = 12 TB/s bandwidth. 175B = 96 layers, 96 attention heads,
and an embedding size of 12288, 1T = 128 layers, 160 attention heads, and an embedding size of 25600. TP = tensor
parallelism, PP = pipeline parallelism, DP = data parallelism, act. recomp. = activation recomputation. All experiments
are performed using a sequence length of 2048 and a batch size of 4096.
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6.5 Related Work

Beamer et al. propose PIDRAM, a photonically interconnected DRAM architecture that uses

monolithically integrated silicon photonics to address the bandwidth and power limitations of elec-

trical DDR-based memory systems [BSK+10]. Our work is distinct from PIDRAM in that we use

3D integrated silicon photonics to augment the HBM-based memory system.

Khani et al. introduce SiP-ML, which uses silicon photonics to create a flat network topology

for inter-GPU communication [KGA+21]. Wu et al. propose SiPAC, co-designing a inter-GPU

silicon photonic interconnect and a collective communication algorithm to accelerate distributed

deep learning. Our work is complementary to SiP-ML and SiPAC in that our work explores optical

interconnects between the compute chip and the HBM-based main memory.

Gonzalez et al. propose an optically connected memory architecture for disaggregated data

centers, using silicon photonics to create high-bandwidth, low-latency optical links between dif-

ferent resource pools [GGH+22]. The GPU memory system is not modified. In contrast, our work

leverages co-packaged optics to augment the HBM-based memory for compute devices.

6.6 Conclusions

We propose optically connected multi-stack HBM modules to enhance the capacity and band-

width of HBM-based memory systems. Utilizing co-packaged optics, our design connects com-

pute devices to multiple off-chip HBM stacks. Our evaluations show significant improvements in

memory capacity and bandwidth, enhancing the training and inference efficiency for large-scale

LLMs. The results also suggest that current memory hierarchy designs need to be reconsidered to

fully exploit the advantages of optical interconnects. Future work will explore memory hierarchy

designs optimized for optical interconnects and assess the impact of our proposed architecture on

end-to-end inference systems.
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CHAPTER 7
PROTOTYPE: PIPES CHIP TAPE-OUT

While the previous chapter discusses the potential of co-packaged optics for memory inter-

connects, this chapter explores its application for system interconnects by presenting the PIPES1

tape-out. The PIPES tape-out is a silicon prototype that demonstrates the potential of co-packaged

optical interconnects in meeting future demands for scalable, high-performance, and energy effi-

cient interconnects. This chapter describes the PIPES multi-chip module (MCM), a novel system

which uses hybrid 2.5D/3D integration to compose a state-of-the-art FPGA compute chiplet, three

electrical interface chiplets, and three photonic interface chiplets. We use register-transfer-, gate-

, transistor-, and device-level simulations to demonstrate the potential for this system to achieve

96 Tb/s of bi-directional bandwidth, and we experimentally demonstrate key components includ-

ing a complete opto-electrical channel. Our results provide a strong case for hybrid 2.5D/3D

integration as the key enabler for scaling co-packaged optical interconnects. Evaluation through

LLMCompass-E2E shows that the PIPES system can potentially improve the This chapter thus

contributes to the thesis’s exploration of advanced interconnect architectures, providing a practi-

cal demonstration of how photonic interconnects can break existing trade-offs in bandwidth and

scalability for high-performance systems.

7.1 Introduction

Modern data-center and high-performance computing workloads are increasingly limited by

inter-node communication overheads. This has motivated the use of inter-node optical intercon-

nects to enable longer reach, higher bandwidth, and lower energy compared to equivalent electri-

cal interconnects [CBG+18]. State-of-the-art systems use fiber-optic cables that are connected to

compute boards through pluggable optical transceiver modules, which are then connected to the

compute package through board-level electrical interconnects. Unfortunately, this final step of the

electrical interconnect is a significant bandwidth and energy bottleneck. Tightly integrated optical

interconnects promise to overcome this bottleneck by directly attaching fiber-optic cables to the

compute package itself.
1PIPES stands for Photonic in Package for Extreme Scalability.
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Figure 7.1: Approaches to Tightly Integrated Optical Interconnect

Early work proposed monolithic integration where optical devices are directly integrated into

the compute die [BJO+09, OMS+12, SWL+15, BZL+12, RGP+13] (see Figure 7.1(a)). However,

this approach has yet to see widespread adoption as the optimal process for electronics is often

sub-optimal for optics and vice-versa. An alternative approach uses 2.5D integration where an

electrical compute chiplet and opto-electrical chiplet (with electrical transceivers and optical de-

vices) are co-packaged on an interposer or with an embedded silicon bridge [HKS+21, HKS+22]

(see Figure 7.1(b)). This approach allows the electrical compute chiplet to be fabricated in an

advanced technology node, but designers again face a difficult trade-off in optimizing the opto-

electrical chiplet. 3D integration involves an electrical compute chiplet (with compute logic and

electrical transceivers) and an optical device chiplet directly integrated into a 3D stack [CKT+15,

CSY+23, DLK+23, DRA+21, DRL+23, KLO+24, RDN+23a] (see Figure 7.1(c)). This approach

not only requires more sophisticated packaging, but also requires fixing the integration of compute

logic and transceivers at design time. Hybrid 2.5D/3D integration offers a compelling compromise:

3D integration stacks an optimized optical device chiplet with an optimized electrical transceiver

chiplet and then 2.5D integration packages this 3D stack with an optimized electrical compute

chiplet (see Figure 7.1(d)). While prior work has proposed hybrid 2.5D/3D integration for co-

packaged optics [CKT+15, CSY+23], no prior work has experimentally demonstrated a complete

system combining a state-of-the-art electrical compute chiplet, electrical transceiver chiplet, and

optical device chiplet using hybrid 2.5D/3D integration.

This chapter describes a novel system which uses hybrid 2.5D/3D integration to compose an

Intel Stratix 10 FPGA chiplet fabricated on an advanced technology node, three electrical inter-
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face chiplets (EIC) fabricated on Intel 16 nm, and three photonic interface chiplets (PIC) fabricated

through AIM Photonics (see Figure 7.1). An EIC and PIC are stacked using 3D integration based

on 55 µm-pitch µbumps, and each EIC/PIC stack is integrated with the FPGA chiplet using us-

ing 2.5D integration based on 45 µm-pitch µbumps and Intel’s Embedded Multi-Die Interconnect

Bridge (EMIB) technology. Unlike Figure 7.1(d), the system presented in this paper positions the

EIC on top of the PIC. The underlying design philosophy is scaling to many more channels at

modest data rates will be particularly advantageous for achieving both high aggregate bandwidth

and high energy efficiency [TPN+24, Ton24]. Given this motivation, each EIC/PIC stack imple-

ments 1,024 optical channels in each direction with 64 channels wavelength-division multiplexed

(WDM) onto a single fiber. The channels are designed to potentially operate at up to 16 Gb/s lead-

ing to a peak bi-directional optical bandwidth of 32 Tb/s per EIC/PIC stack and 96 Tb/s aggregated

across the system. We have conducted a rigorous simulation-based study using register-transfer-,

gate-, transistor-, and device-level models, and we have conducted a functional demonstration of

the system in the lab including validating a complete opto-electrical channel from the EIC through

the PIC.

Our main contributions are: (1) a detailed description of a novel FPGA/EIC/PIC system which

uses hybrid 2.5D/3D integration including discussion of key techniques for overcoming scaling

challenges in both the EIC and PIC; (2) simulation-based evaluation demonstrating the potential

for this system to achieve 96 Tb/s of bi-directional optical bandwidth; and (3) experimental demon-

stration of the key components of this system including a complete opto-electrical channel.

7.2 PIPES System Architecture

Figure 7.2 illustrates the three types of chiplets in the system. We use an Intel Stratix 10 FPGA

chiplet with 1.3M logic elements, 2.5K digital signal processing (DSP) blocks, and 114 Mb on-

chip memory. The FPGA chiplet connects to three separate EICs through Intel’s EMIB and an

Advanced Interface Bus (AIB) interface. Each EIC is 8×8 mm with 1.4K C4 bumps and 13K

µbumps. Each EIC is flip-chip bonded to a PIC. Each PIC is 8.6×8.1 mm with 10K µbumps and is

directly attached to an optical fiber array.
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7.2.1 EIC Architecture

Figure 7.3 shows the EIC die photo, and Figure 7.4 illustrates the three major EIC blocks: AIB,

crossbar, and transceivers (TRX).

1) AIB: The AIB is a commercially available physical-layer IP that implements the AIB pro-

tocol [int]. The AIB connects 24 channels to a crossbar which operates at 500 MHz. Each AIB

channel can potentially support up to 40 Gb/s in AIB 1.0 mode or 160 Gb/s in AIB 2.0 mode, al-

though only AIB 1.0 mode is enabled in this system for a total potential AIB bandwidth of 960 Gb/s

per EIC. The AIB is configured through an Avalon Memory Mapped (AVMM) interface, which is

an address-based read/write interface.

2) Crossbar: The crossbar routes the AIB channels to the TRX channels and hosts a majority of

the control and test infrastructure for the EIC. The crossbar integrates 48 AIB interface units, 1024

TRX interface units, and 48 32-bit channels at 500 MHz which connect the AIB interface macros

to 48 of the TRX interface units. Each interface macro is equipped with programmable scan chains,

pseudorandom binary sequence (PRBS) generators and verifiers, and fixed pattern generators and

verifiers. Both AIB and TRX interface units can be configured to either pass through or loop back

the received data.

3) TRX: The TRX is designed for high-density 3D integration with the PIC and is similar

to the architecture from Khilwani et al. [KLO+24]. The TRX comprises four TRX groups, each

containing 256 TRX cells. Each TRX cell includes a transmitter (TX) path that transmits data from

the crossbar to the PIC, and a receiver (RX) path that receives data from the PIC and forwards it

to the crossbar. Both paths are designed to provide 16 Gb/s bandwidth per channel, resulting in an

aggregate TRX bandwidth of 16 Tb/s in each direction.

The TX path consists of a 128-bit buffer, serializer, and level-shifting driver. Similarly, the

RX path includes an offset DAC, analog front end (AFE), deserializer, and 128-bit buffer. The

128-bit buffers form a mesochronous interface for synchronization between the TRX and crossbar.

The TRX/crossbar interface supports 32 bits per channel at 500 MHz and two test modes. The

TX test mode provides a scan chain interface to the 128-bit buffer, and the RX test mode enables

alternating 32-bit patterns in place of streaming data from the PIC.

Unlike prior work [KLO+24], our architecture: (1) uses a heater DAC with linear power output

to enable simplified tuning; and (2) integrates active TX/RX re-calibration circuitry for long-term

operation. By measuring the amplitude of the AFE signal, we create a control feedback loop to
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the heater DACs which keeps the modulators and filters at the appropriate resonance. In the case

of the RX, the calibration also adjusts the offset DAC which keeps the received signal centered at

mid-rail.

7.2.2 EIC Scaling Challenges

Although prior EIC implementations have demonstrated up to 100 optical channels [DLK+23,

DRA+21, DRL+23, KLO+24, HKS+21, HKS+22, CKT+15, CSY+23], scaling to 1024 optical

channels raises new physical design challenges with respect to routing and clocking.

1) Routing distance: Routing to the crossbar from 16 TRX cells in each TRX row was par-

ticularly challenging. The TRX is ⇡4 mm wide resulting in the latency from the rightmost TRX

cells exceeding the 2 ns clock period of the crossbar. Although only some cells violated timing, we

inserted pipeline registers on all signals eight cells away from the signal’s originating cell.

2) Routing congestion: Each TRX cell interface consists of 64 data bits and 7 control bits,

resulting in 1,136 wires at the left edge of each 16-cell TRX row. This caused near-100% horizontal

routing track usage and limited scalability of the row size. We used a “swizzle” layout with one

signal buffered at a time and then shifted down one position in the bus. This style allowed for

regular buffering of a small number of signals at a time due to limited space for downward vias,

and it also allowed for a modular layout pattern. The crossbar then effectively needed to mux over

tens of thousands of signals from the TRX to thousands of pins on the AIB. Given the large number
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of signals, we used hierarchical design with AIB interface and TRX interface macros. Routing by

abutment was used to simplify top-level routing and timing closure.

3) Clock distribution: Although the crossbar and the TRX digital interface could operate on

the same clock, the TRX layout was too dense to allow for clock tree balancing across the array.

We instead used mesochronous buffers at the TRX-crossbar interface [KPND20]. No handshake

mechanism was needed because both sides operate at the same frequency and there is no back-

pressure in the physical-level interface.

7.2.3 PIC Architecture

The PIC is co-designed with the EIC for flip-chip bonding. Each TRX cell modulates (TX) and

detects (RX) a single wavelength; 64 wavelengths are wavelength-division multiplexed (WDM)

onto a single optical link resulting in a total of 16 TX links and 16 RX links arranged into four

groups on the PIC (see Figure 7.3). Figure 7.5 shows the link architecture based on [WNP+23,

WWP+24]. At the TX side, we use ring-assisted Mach-Zehnder interferometer RAMZI-based

interleavers to subdivide the incoming wavelength channels onto separate buses [WWM+24]. Data

is modulated onto each wavelength by separate banks of cascaded microdisk modulators, driven

by the EIC through the µbumps. The 64 modulated channels are then recombined into a single

fiber output. At the RX side, a similar interleaving structure sends the wavelengths onto four

buses of cascaded microdisk filters for sensing. The optical devices are designed to support each

wavelength operating at 16 Gb/s, achieving an aggregate bandwidth of 1 Tb/s per fiber, and thus

16 Tb/s per PIC with a 2 Tb/s/mm shoreline bandwidth density.

7.2.4 PIC Scaling Challenges

Just as for the EIC, scaling to 1024 optical channels raises new PIC design challenges, including

managing optical bandwidth, optical losses, process variations, and thermal control.

1) Optical bandwidth: Conventional single-bus link architectures struggle to accommodate

massive WDM due to the limited free spectral range (FSR) of the microresonators. We adopt a

multi-bus link architecture that de-interleaves WDM channels onto multiple buses, as proposed

in [RDN+23a, JNR+23]. Since each stage of de-interleaving doubles the channel spacing, un-

wanted resonances are placed between channels with minimal crosstalk. This enables 64 WDM
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Figure 7.5: Photonic Link Architecture – Measured link budgets satisfying simulated RX sensitivity.

channels spaced at 100 GHz (spanning > 50 nm in C-band) with modulators and filters of a mod-

erate 25.69 nm FSR.

2) Optical losses: Massive WDM scaling also reduces the optical power budget per channel.

Silicon nonlinearities limit the total optical power per waveguide, and optical losses must be min-

imized to meet the target receiver sensitivity. We carefully optimize the number of interleaver

stages to balance interleaver insertion loss vs. accumulated modulator/filter passing losses. We

also adopt custom vertical-junction (VJ) microdisk modulators similar to [NWR+24]. The im-

proved depletion response of VJ modulators compared to lateral-junction modulators allows using

< 0.8 V CMOS-compatible voltage swings, while still achieving high extinction ratios and thus

low power penalties [NJD+23]. Chip-fiber coupling loss can also be reduced to < 1 dB per facet

by using optimized edge coupler designs, such as [DRL+23].

3) Process variations and thermal management: Thermal control is challenging in so many

optical channels. On-chip thermal control is desirable, but faces limited area due to dense pack-

aging requirements. Off-chip thermal control has more area available, but suffers from limited

I/O count and bandwidth to the many devices requiring tuning. We adopt a fabrication-robust

platform where wide waveguides are used in certain sections to reduce the sensitivity to process

variations [RDN+23b], while maintaining single-mode operation with specially designed bend ge-
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Figure 7.6: Crossbar Block Diagram

ometries. We also explore the use of substrate undercut around thermally tuned devices, as shown

in Figure 7.3, which can improve thermal tuning efficiency by at least 5× [RDvN+23].

7.3 EIC Design, Implementation, and Verification

The EIC is a key component of the PIPES system, responsible for bridging the compute chiplet

and the photonic interface chiplet. This section details the design, implementation, and verification

of the EIC.

7.3.1 Crossbar Design

As is described in Section 7.2.1, the EIC is composed of three main components, AIB, crossbar,

and TRX. The AIB is a commercial PHY IP. The TRX is designed by a group of students at Cornell

using a mixed-signal design flow. I designed the crossbar and conducted the top-level integration

of the three components. In addition to transferring data from AIB to TRX, the crossbar also hosts
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a number of control, configuration, and testing infrastructures. Figure 7.6 illustrates the crossbar

design, which consists of an SPI unit, a configuration network, 48 AIB interface units, and 1024

TRX interface units, including 48 primary and 976 secondary TRX interface units.

SPI Unit – The EIC interfaces with the outside world through an SPI interface. I designed the

SPI unit and implemented a custom protocol to handle SPI transactions. The SPI unit (minion) is

driven by an external SPI driver (master). The SPI driver initiates a transaction by setting the chip

select signal (CS) to 0 and ends it by setting it back to 1. During each transaction, the external SPI

driver sends a request packet through the serial input (MOSI), synchronized with the positive edge

of a clock signal(SCLK). In the meantime, the SPI driver samples the serial output (MISO) signal

at the negative edge of SCLK to read the response packet from the SPI unit. Both the request and

response packet shares the same format, including a valid bit to indicate if the current packet is

valid, a stall bit to instruct the receiver to pause sending a valid packet for the next transaction,

and a 54-bit payload that contains the configuration packet to or from the configuration network.

The SPI unit is structured as a stack of components (see Figure 7.7), including an SPI minion,

a val/rdy adapter, a loopback unit, and a configuration router. The SPI minion interfaces with

the external SPI driver. Instead of treating the SCLK signal as a conventional clock signal, which
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would require managing clock domain crossing, the SPI minion treats all input signals (CS, SCLK,

and MOSI) as data signals. Each of the input signals passes through a synchronizer which consists

of three back-to-back flip-flops (see Figure 7.8), which effectively down-sampling them with the

crossbar clock and detects rising and falling edges. The SPI minion then deserializes the input

data and sends it to the val/rdy adapter. The val/rdy adapter converts the push/pull interface of the

SPI minion into a val/rdy interface. It is also responsible for setting the valid and stall bit of the

response packet based on the previous request packet and its remaining buffer space. The request

packet is then passed to the loopback unit, which, when enabled by an external signal, loops the

request packet back to the SPI minion. This is useful for testing if the SPI interface is operating

correctly. Finally, the request packet arrives at the configuration router, which forwards the request

packet to the appropriate destination based on its address. Possible destinations include the debug

unit, the AVMM adapter, the AIB controller, the AIB interface unit configuration network, or the

TRX interface unit configuration network based on the address of the request packet.

Configuration Network – The AIB interface units and TRX interface units are both connected

to a configuration network. The configuration network is responsible for distributing configuration

packets to the appropriate interface units based on the address of the packet. The configuration

network also collects responses from these interface units and forwards them back to the SPI

unit. The configuration network is implemented as a chain of configuration routers designed with

PyOCN.

AIB Interface Unit – Figure 7.9 shows the datapath of the AIB interface unit. By default,

the AIB Interface Unit forwards data directly from the AIB to the TRX. It includes several key
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components to support testing and verification, such as a 128-bit fixed pattern generator, a PRBS

pattern generator, a 128-bit fixed pattern generator, a PRBS pattern verifier, and a 128-bit pattern

capture unit to enable multiple test paths. The fixed pattern generator can be configured to produce

any 128-bit pattern, while the PRBS generator can generate various pseudo-random patterns based

on configurable seed values. The pattern verifiers compare incoming data against the expected

patterns, with the results available for readout through the configuration network. The pattern

capture unit captures received data, which can also be accessed via the configuration network. The

AIB Interface Unit supports two loopback paths for testing purposes: one from the AIB input to

the AIB output, and another from the TRX input to the TRX output. Channel registers on these

loopback paths are accessible for readout, allowing for further verification and debugging.

TRX Interface Unit – There are four types of TRX interface units, including TX primary, TX

secondary, RX primary, and RX secondary interface units. The 48 TX primary interface units and

48 RX primary interface units are connected to both the AIB interface units and the TRX, while

the secondary interface units are only connected to the TRX. Figure 7.10 illustrates the datapath

of these interface units. The TX primary interface unit includes a 64-bit fixed pattern generator

and an interface test unit, which drives the testing interface of the TX and can shift out the 128-bit

data in the TX buffer. The TX primary interface unit also includes a loopback path that goes to

the RX primary interface unit. The RX primary interface unit includes a mesochronous buffer

that synchronizes the incoming data with the local clock domain. It also includes a 64-bit pattern

capture unit that can be accessed through the configuration network. The TX secondary units
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include a 64-bit fixed pattern generator, a PRBS pattern generator, and an interface test unit, while

the RX secondary units include a mesochronous buffer, a 64-bit fixed pattern verifier, and a PRBS

pattern verifier.

7.3.2 EIC Implementation

Figure 7.11 shows the ASIC flow of the PIPES tape-out. The AIB is a commercial IP that

comes with both timing and physical models, allowing it to be integrated into the ASIC flow using

standard steps. The TRX, however, is a mixed-signal block and it does not come with a timing

model required by the synthesis tool, i.e., it only has a physical (layout) view but lacks a timing

view. To overcome this, we co-designed the TRX with a standard-cell-based digital interface and I

implemented a mixed-signal characterization flow to extract the timing model of the TRX macro.

This process involved using custom scripts to process the TRX netlist and DEF file to remove the

non-standard-cell components. The post-processed DEF file along with the TRX LEF file was then

used in a parasitic extraction step to generate parasitic data (SPEF file) of the interface. Finally,

The post-processed netlist and the SPEF file were then used to perform extracted timing model

(ETM) to produce the timing model of the TRX digital interface, allowing it to integrate smoothly

with the rest of the ASIC flow.
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I implemented the RTL of the crossbar in PyMTL and integrated the generated Verilog code into

the Verilog code of the EIC top-level module. I took a hierarchical design approach to implement

the crossbar in the ASIC flow. The 48 AIB interface units, along with their configuration routers,

were grouped into 24 AIB interface macro, each corresponding to an AIB channel. The 1024

TX and 1024 RX interface units are grouped into four TRX interface macros. Two types of TRX

interface macro were created, one for group 0, 2, and 3 with just secondary interface units and one

for group 1 with both primary and secondary interface units Figure 7.12(a) shows the EIC floorplan

with these macros, while Figure 7.12(b) displays the final layout.

The EIC incorporates three types of bumps, including the AIB µbump, C4 bump, and TRX

µbump. Since the AIB and TRX macros already include their respective bumps, I just needed

to precisely overlap the top-level bumps with the AIB and TRX bumps to prevent the tool from

attempting to perform any routing. The C4 bumps were mainly for power and crossbar I/Os and
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required RDL routing. Figure 7.13 shows the bump placement of the EIC and an actual photo of

the EIC bumps.

7.3.3 Pre-Silicon Verification

The pre-silicon testbench for the EIC included an RTL model of the FPGA AIB, an RTL model

of the EMIB, and the EIC top-level module, which integrated RTL models of the AIB and crossbar

along with a gate-level model of the TRX. Interaction with the EIC model was achieved through

direct toggling of I/O signals, sending requests over the SPI interface, or sending data from the

FPGA AIB. Various test suites, including unit tests and integration tests, were implemented to

verify different data paths and functionalities within the EIC. These tests are detailed as follows.

• Crossbar Bring-Up Tests – This test suite verified the most basic functionality of the cross-

bar, ensuring correct clock injection, proper operation of the SPI interface, and successful

read/write access to all configuration registers.

• AIB Bring-Up Tests – This test suite verified if the AIB can be properly configured and

started up by the AVMM adapter and the AIB controller in the crossbar.
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Figure 7.13: EIC Bumps – The photo of EIC is taken at Cornell NanoScale Facility.

• Crossbar AIB Interface Unit Tests – This test suite tested the AIB interface units in iso-

lation by configuring each unit to send data from its pattern generator to its own pattern

verifier.

• Crossbar TRX Primary Interface Unit Tests – This test suite verified the TX and RX pri-

mary interface units by enabling the loopback path, sending data from the pattern generator,

and checking the channel registers and pattern capture unit.

• Crossbar AIB Interface to TRX Interface Integration Tests – This test suite verified the

data paths between the AIB interface units and the TRX interface units. It included sending

data from an AIB interface unit to a TX primary interface unit, and vice versa, with data

looping back to a RX primary interface unit.

• Crossbar TRX Interface Integration Tests – This test suite verified the integration of the

TRX interface units and the TRX digital interface. For the TX path, data was sent into the

TRX using pattern generators and then shifted out through the interface test unit. For the RX

path, RX test mode was enabled, and data capture was verified through the pattern capture

unit of the RX interface unit.
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• AIB Crossbar Integration Tests – This test suite verified the integration of the AIB and the

crossbar by testing fixed and PRBS patterns sent from the FPGA AIB to the EIC, checking

the pattern verifier in the AIB interface unit, and testing data transfers from the AIB interface

to the FPGA AIB. Loopback tests were also included, where data was either looped back in

the AIB interface unit or on the FPGA AIB side.

• FPGA to TRX Interface Integration Tests – This test suite verified data paths between the

FPGA and TRX interfaces in both directions. For the TX path, data was sent from the FPGA

AIB to the TRX and shifted out through the interface test unit. For the RX path, RX test

mode was enabled, and the pattern was checked at the FPGA AIB.

• Crossbar TRX Integration tests – This test suite further verified the integration of the

crossbar with the TRX by configuring the TRX for digital or analog loopback, sending data

from the crossbar to the TRX, and checking that the crossbar received the expected pattern.

• Full System Tests – This test suite verified the end-to-end datapath of the EIC by sending

data from the FPGA AIB and checking the TRX output, or sending data from the FPGA AIB,

looping back the TRX output, and checking if the same pattern was received by the FPGA

AIB.

Many of these test cases involved sending SPI requests to the crossbar to configure certain

functionalities or to read out the status of the interface units. The testbench supported dumping out

the trace of the SPI transactions, which could be reused to replay the test cases in the post-silicon

verification stage. The EIC passed all the pre-silicon test suites before tape-out.

7.3.4 Post-Silicon Verification

For post-silicon verification of the EIC, I used a commercial SPI driver to drive the SPI inter-

face of the EIC. To facilitate testing, I developed a frontend program capable of reading the SPI

transaction trace from pre-silicon verification and replaying these transactions on the post-silicon

EIC. This frontend also included a library of utility functions for reading and writing configura-

tion registers within the crossbar, enabling direct development of new test cases specifically for

post-silicon verification.

Apart from unit testing the crossbar, I worked with the TRX team to conduct integration tests.

Data patterns generated by the crossbar were observed at the TX test point, confirming correct data
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flow. Additionally, I worked with the PIC team to conduct integration tests between the EIC and

PIC, where data patterns generated by the crossbar were successfully observed on the PIC side.

7.4 Link-Level Evaluation

We evaluate the opto-electrical links using simulation-based and experimental results to demon-

strate the potential for hybrid 2.5D/3D integration to enable co-packaged optical interconnects.

7.4.1 Simulation-Based Evaluation

We use bare-die measurement of photonic devices to characterize the optical link losses, par-

asitic resistance/capacitance of the optical modulator and photodetector, drive voltage of the pho-

todetector, and thermal characteristics of the heaters. We build compact models of the PIC devices

and use transistor-level modeling of the TRX on the EIC to characterize the EIC to PIC bandwidth,

latency, and energy. We build register-transfer-level (RTL) behaviorial models of the TRX and use

RTL modeling of the AIB and crossbar along with a target FPGA design to characterize the FPGA

to EIC bandwidth, latency, and energy.

Our end-to-end simulations, from the FPGA to the TRX microbumps, validate that the FPGA

can sustain 768 Gb/s over the AIB, crossbar, TRX, and PIC by using 48 of the optical channels each

operating at 16 Gb/s. This is below the peak AIB 1.0 bandwidth since two 32-bit EIC channels are

mapped to each 80-bit AIB channel. Our simulations also validate that the EIC can sustain 32 Gb/s

bi-directional bandwidth over the crossbar, TRX, and PIC by generating PRBS traffic on-chip

for every TRX channel. Finally, our device-level characterization validates that we can meet the

optical power limits and receiver sensitivity target (-22 dBm for 1E-12 bit error rate at 16 Gb/s).

Our simulations show an end-to-end latency of 39 ns from the FPGA to PIC. Our simulation-based

energy analysis suggests it should be possible to achieve sub-1 pJ/b including the TRX and PIC

with another 1 pJ/b for the AIB and crossbar.

7.4.2 Experimental Evaluation

Figure 7.14 illustrates our experimental setup. The optical path has a tunable laser source

followed by a thulium-doped fiber amplifier (TDFA) and a polarization controller (PC) before en-
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tering the PIC. The modulated optical carrier from the PIC is converted to an electrical signal

by a Thorlabs photodetector and inspected by a Keysight oscilloscope. The EIC is configured

through an SPI controller to generate a 128-bit repeating fixed pattern or pseudo-random pattern.

The 128-bit pattern is sent from the crossbar through the TRX to the PIC for modulation. We

successfully demonstrated the FPGA functioning in isolation and demonstrated multiple complete

opto-electrical channels from the EIC through the PIC each running at 1 Gb/s (see Figure 7.15).

However, several implementation oversights prevented demonstrating the system’s full capabili-

ties. While each optical channel is functional, we were unable to include delay-locked loops in the

EIC meaning the RX clock to data skew is unknown. A timing analysis bug prevented the crossbar

from running at the target 500 MHz, and insufficient power routing led to unreliable operation of

several AIB interface units.

7.5 System-Level Evaluation

To evaluate the system-level performance benefits of PIPES optical links for LLM training,

I used the LLMCompass-E2E framework to model and simulate various training configurations.

Specifically, I incorporated a model of the PIPES optical links, based on the link-level evaluation

results in 7.4.1, and compared it to baseline electrical interconnects. This evaluation was conducted

using the same A100 model as in Chapter 6, with two LLM sizes: a 175-billion-parameter model

and a 1-trillion-parameter model. For each model, I simulated all possible training configurations

across 4096 GPUs, sweeping through different degrees of tensor, pipeline, and data parallelism.

Figure 7.16 shows the execution time breakdown of the optimal LLM training mappings for various

A100 systems with different interconnects and memory systems at 4096 GPUs. The configurations

are denoted as either using the baseline electrically connected HBM memory (E-Mem) or the

optically connected HBM memory (O-Mem) with either baseline electrical NVLink (E-Link) or

PIPES optical link (O-Link). When simulating with the PIPES optical links, I assume more GPUs

can be interconnected within a node (up to 64) due to its superior link reach, meaning that it can

support a larger degree of tensor parallelism. For each setup, the normalized execution time is

broken down into forward pass computation, backward pass computation, and the overheads from

tensor parallelism, pipeline parallelism, and data parallelism.
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For the 175-billion-parameter model, adopting the PIPES optical link alone can improve the

overall training performance by 1.09×. The benefit partially comes from reduced TP overhead,

as PIPES optical link offers higher bandwidth compared to NVLink (2 TB/s vs. 300 GB/s). The

PIPES optical link also enables a different mapping from the baseline with smaller pipeline paral-

lelism, which reduces the pipeline parallelism overhead. Combining the PIPES optical link with

the optically connected HBM memory system further improves the performance by 1.47×. The

combination leads to a completely different mapping, with no pipeline parallelism and a larger

microbatch size of 8. The larger batch size makes the computation of the forward and backward

passes more efficient as it enables more reuse of the model parameters. Additionally, the extended

processing time for each microbatch enables better overlap between data parallelism communica-
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tion and backward pass computation. As a result, only the all-reduce operation for the last layer

remains exposed, effectively minimizing data parallelism overhead.

For the 1-trillion parameter model, adopting the PIPES optical link alone can improve the

overall training performance by 1.07×. The benefit mainly comes from reduced tensor parallelism

overhead and reduced pipeline parallelism overhead due to a shorter pipeline. Combining the

PIPES optical link with the optically connected HBM memory system further improves the perfor-

mance by 1.43×. This improvement is mainly driven by reduced model parallelism overhead and

the ability to avoid activation recomputation, which significantly shortens the execution time of the

backward pass.

While adopting the PIPES optical link alone significantly reduces the all-reduce latency for

tensor parallelism, the overall performance gain is largely limited by the overheads from pipeline

parallelism and activation recomputation. Although I allow the system with PIPES optical link

to use a larger degree of tensor parallelism, the optimal mapping tends not to use a large degree

of tensor parallelism. This is because a large degree of tensor parallelism can lead to suboptimal

partitioning of the matrix-matrix multiplication, reducing the compute efficiency. The enhanced

scalability of the PIPES optical link, however, could be particularly advantageous for training

mixture-of-experts (MoE) models, which require frequent all-reduce communication across dif-

ferent tensor-parallel groups. PIPES optical links can allow multiple tensor-parallel groups to fit

in a single node and offer high bandwidth all-to-all communication between them. Future work

will explore the performance of MoE models with PIPES optical links to further demonstrate the

potential of co-packaged optical interconnect in the scaling LLM training.

7.6 Conclusion

In this chapter, we presented a novel system that uses hybrid 2.5D/3D integration to compose a

state-of-the-art FGPA compute chiplet, three electrical interface chiplets, and three photonic inter-

face chiplets. Our simulation-based evaluation demonstrates the potential for this system to achieve

96 Tb/s of bi-directional optical bandwidth, and our experimental demonstration functionally val-

idates key components including a complete opto-electrical channel. While implementation over-

sights prevented our experimental system from demonstrating the target system-level bandwidth,
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this work still shows the potential of hybrid 2.5D/3D integration and serves as an important next

step towards scaling co-packaged optical interconnects for system-level communication.
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CHAPTER 8
CONCLUSION

Focusing on scaling on-chip interconnects for manycore architecture and scaling off-chip in-

terconnects for distributed LLM workloads, this thesis presents modeling frameworks, proposes

innovative architectures, and validates these solutions through silicon prototypes. In this chapter, I

summarize my thesis contributions and discuss possible future research directions.

8.1 Thesis Summary and Contributions

This thesis begins by presenting the methodology challenges and architecture challenges in

scaling on- and off-chip interconnects. Since the looming end of Moore’s Law and the end of

Dennard scaling, modern computing systems must embrace parallelism, both within a single chip

and across interconnected devices, to meet the growing computational requirements. The need

for efficient data movement, both on-chip and off-chip, form the foundation of the two parts of

this thesis. Scaling on-chip interconnects and scaling off-chip interconnects each presents unique

challenges in both methodology and architecture.

Part I of this thesis focuses on scaling on-chip interconnects to support the growing parallelism

in manycore architectures. First, it introduces PyOCN, a unified framework for modeling, testing,

and evaluating on-chip networks. PyOCN enables rapid design-space exploration by providing

a flexible, Python-based platform that supports multiple levels of abstraction. Next, I propose

practical low-diameter OCN topologies that can be effectively implemented with a tiled physical

design methodology, bridging the gap between theoretical advances and practical implementation.

Finally, the CIFER chip tape-out demonstrates the real-world application of PyOCN.

Part II of this thesis shifts focus to off-chip interconnects, including memory interconnects

that connect compute chip with external memory, and system interconnects that connect multi-

ple compute devices. I first present LLMCompass-E2E, a comprehensive performance evaluation

framework for distributed LLM training that captures the complex interactions between different

hardware components as well as parallelization strategies. I then leverage LLMCompass-E2E to

explore the potential of co-packaged silicon photonic interconnects in both memory and system in-

terconnects. For memory interconnect, I propose an optically connected multi-stack HBM module

to expand the memory capacity and bandwidth of state-of-the-art HBM-based memory systems.
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For system interconnect, I present the PIPES silicon photonic tape-out, a practical demonstration

of co-packaged optical interconnects that connects different compute devices. Through evalua-

tion with LLMCompass-E2E, I show that the co-packaged optical interconnects can significantly

improve the overall performance and efficiency of large-scale LLM training.

To reiterate the major contributions of this thesis:

• I developed PyOCN, a unified Python-based framework for modeling, testing, and evaluating

on-chip networks that enables rapid design-space exploration.

• I proposed and evaluated practical OCN topologies that reduce the network diameter while

remaining practical to implement using a tiled physical design methodology.

• I demonstrated the benefits of PyOCN through the CIFER chip tape-out, highlighting practi-

cal design trade-offs and optimizations.

• I developed LLMCompass-E2E, a performance evaluation framework for large-scale dis-

tributed training workloads.

• I proposed and evaluated the use of co-packaged silicon photonic interconnect to scale the

memory capacity and bandwidth of HBM-based memory systems, which are essential for

LLM workloads.

• I demonstrated a practical implementation of the proposed co-packaged silicon photonic in-

terconnect through the PIPES tape-out.

8.2 Future Work

This thesis addresses key challenges in scaling on-chip and off-chip interconnects, but several

open directions remain for future exploration. In this section, I outline several potential future

research directions inspired by the work presented in this thesis.

8.2.1 Testing Methodology for On-Chip Networks

OCNs typically contain a massive number of stateful components, such as input and output

buffers, virtual channels, arbiters, credit counters, etc. The stateful nature of these components
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makes it challenging to thoroughly test the networks and trigger corner-case bugs, such as dead-

locks and livelocks. While Chapter 2 demonstrates successful integration of PyOCN with Hy-

pothesis, a property-based testing framework, the testing approach is based on generating random

input packets and traffic patterns. Triggering bugs like deadlocks may require a combination of a

very specific sequence of packets and back pressure pattern, which may not be easily generated by

random testing. One possible approach to address this challenge is to develop a testing methodol-

ogy tailored specifically for OCNs. Instead of generating random input packets and back pressure

patterns, the testing methodology can directly generate a valid architecture state of the network,

and then apply a sequence of operations to trigger corner-case bugs. For example, it can generate

a state where all buffers are full and then apply a sequence of packets. This may be more likely

to trigger deep stateful bugs like deadlocks. The testing methodology can also be integrated with

Hypothesis to enable automated test case reduction, so that when a bug is detected, the testing

methodology can automatically reduce the test case to a minimal set of operations with a simpler

state that triggers the bug. Such a testing methodology for OCNs can be more effective in verifying

OCN designs and reduce the time spent on debugging and verification.

8.2.2 LLMCompass-E2E

In Chapter 5, I present LLMCompass-E2E, a performance evaluation framework for distributed

LLM training workloads. This section outlines several potential future research directions to fur-

ther improve the framework.

Developing or Combining Detailed Network Simulator – The current LLMCompass-E2E

framework uses simplified first-order network models calibrated with empirical hardware results

and to estimate the communication overheads in distributed LLM training. It also makes assump-

tions about the network topologies. To make the framework more flexible and accurate, a more

detailed network simulator can help better model the network latency, congestion, and other net-

work dynamics across various configurations and topologies. One can leverage the event-driven

scheduler simulator in LLMCompass-E2E to develop a detailed network simulator from scratch

or combine it with existing network simulators like ASTRA-sim [RSSK20]. A detailed network

simulator could more accurately capture the communication overhead in LLM training and enable

the exploration of custom network topologies.
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Seamless PyTorch Integration for LLMCompass-E2E – While LLMCompass-E2E provides

a PyTorch-like interface for defining LLMs, users still need to convert their actual model to the

LLMCompass model. To make LLMCompass-E2E more user-friendly, a seamless PyTorch in-

tegration can be developed. Instead of using our own computational graph intermediate repre-

sentation, we can directly leverage the computational graph in PyTorch so that LLMCompass-

E2E can just take a real LLM and estimate its performance. This may require re-engineering the

kernel-level performance model to directly interface with PyTorch’s computational graph to ex-

tract the necessary information for performance modeling. Furthermore, we can even interface

the PyTorch Distributed library (torch.distributed) with our simulator to directly simulate the

distributed training of LLMs in LLMCompass-E2E. Such seamless PyTorch integration will help

LLMCompass-E2E keep up with the evolving model architectures and optimization techniques in

the LLM domain.

8.2.3 Co-Packaged Optics for Memory and System Interconnects

In Chapter 6, I propose the optically connected multi-stack HBM module, which leverages

co-packaged optics for memory interconnect, as a potential solution to close the memory capacity

gap. In Chapter 7, I explore leveraging co-packaged optics for system interconnects to improve

communication efficiency in distributed training. This section outlines several potential future

research directions to further explore the potential of co-packaged optics for memory and system

interconnects.

Accelerators in EIC – In Chapter 6 and Chapter 7, the EIC only contains communication

components such as the UCIe PHY and the electrical transceiver arrays. However, our tape-out

experience in Chapter 7 suggests that there are still plenty of area to use in the EIC, and that the

EIC can be further extended to include accelerators that can offload computation from the host

compute chip. For example, the EIC can include a reduction engine that can be used to accelerate

all-reduce operations in distributed training. This can further increase the effective bandwidth of

the optical links.

Alternative Optically Connected Multi-Stack HBM Module Design – In the proposed opti-

cally connected multi-stack HBM module, an I/O chiplet is used to interface the HBM module with

the host compute chip. The memory requests would come into the I/O chiplet through the EIC, and

the I/O chiplet would need to route the requests electrically to the appropriate HBM PHY. For an
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aggressive I/O chiplet connecting many HBM stacks, this may require a large crossbar connecting

the UCIe PHYs to the HBM PHYs and results in the I/O chiplet becoming a bandwidth and energy

bottleneck. One potential future work is to explore scalable and energy-efficient designs for the

I/O chiplet. Alternatively, we can explore directly integrating HBM stacks with PIC by changing

the logic layer in the HBM stack to incorporate electrical transceivers. This would eliminate the

need for the I/O chiplet but would require an optical bus and a more convoluted PIC design.

HBM Memory Pool – In the memory system proposed in Chapter 6, each compute chip has

its own HBM stacks. Communicating with other compute chips would require going through the

system interconnect. One potential future work is to explore a shared HBM memory pool that is

connected to many compute chips. Such a shared memory architecture could enable more flexi-

ble and efficient memory utilization across different compute chips. Key research challenges in-

clude designing a low-latency, high-bandwidth interconnect to connect the shared HBM pool with

compute chips. Novel opto-electrical devices can be explored, such as the bi-modal wavelength-

selective switch that can enable either one-to-one or all-to-all communication patterns, which can

be a great fit for LLM workloads.

Evaluating Co-Packaged Optical Interconnect for Mixture of Experts LLMs – Mixture

of Experts (MoE) architectures have become increasingly popular in the domain of LLMs due

to its ability to efficiently handle an enormous number of parameters. MoE models adopt a se-

lective routing mechanism that activates only a subset of specialized feed-forward networks, i.e.

”experts”, for each input. However, the use of MoE introduces additional communication over-

heads in both training and inference. Distributed MoE models require efficient interconnects to

handle frequent data exchanges between experts located on separate devices or nodes. This makes

scalable, high-performance interconnect solutions, such as the PIPES optical links presented in

Chapter 7, especially relevant for future MoE-based LLMs, as they provide the necessary scala-

bility and communication efficiency. Future work could evaluate the performance of MoE models

with co-packaged optical system interconnects to further demonstrate how optical interconnects

can improve the training and inference efficiency of MoE models. By offering a more scalable and

efficient communication infrastructure, co-packaged optical interconnects could make the training

of large-scale MoE models more efficient. LLMcompass-E2E could be leveraged to simulate the

training of various MoE configurations across hardware systems with different memory systems

and interconnects. Such evaluations could show the potential of co-packaged optical intercon-
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nects as a cornerstone technology for MoE architectures, paving the way for more scalable and

resource-efficient AI systems.

New Deep Learning Model Architecture – Another potential research direction is to explore

new deep learning model architectures that can be enabled by proposed high-bandwidth and high-

capacity memory systems. Traditional model architectures are often constrained by the limitations

of current memory technologies, such as limited bandwidth, capacity, or scalability. By addressing

these bottlenecks, the proposed memory systems open the door to designing models with larger

parameter sizes, deeper layers, or more intricate interconnections, pushing the boundaries of what

is computationally feasible.
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