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Abstract—Artificial intelligence (AI) supported network traffic
classification (NTC) has been developed lately for network
measurement and quality-of-service (QoS) purposes. More re-
cently, federated learning (FL) approach has been promoted
for distributed NTC development due to its nature of unshared
dataset for better privacy and confidentiality in raw networking
data collection and sharing. However, network measurement still
require invasive probes and constant traffic monitoring. In this
paper, we propose a non-invasive network traffic estimation and
user profiling mechanism by leveraging label inference of FL-
based NTC. In specific, the proposed scheme only monitors
weight differences in FL model updates from a targeting user and
recovers its network application (APP) labels as well as a rough
estimate on the traffic pattern. Assuming a slotted FL update
mechanism, the proposed scheme further maps inferred labels
from multiple slots to different profiling classes that depend on,
e.g., QoS and APP categorization. Without loss of generality,
user profiles are determined based on normalized productivity,
entertainment, and casual usage scores derived from an existing
commercial router and its backend server. A slot extension
mechanism is further developed for more accurate profiling
beyond raw traffic measurement. Evaluations conducted on seven
popular APPs across three user profiles demonstrate that our
approach can achieve accurate networking user profiling without
invasive physical probes nor constant traffic monitoring.

Index Terms—User profiling, federated learning, label infer-
ence, network traffic classification

I. INTRODUCTION

The plethora of networking devices and data-hungry appli-
cations (interchangeable with APPs in the rest of the paper)
have led to a huge increase in network traffic. Due to the
diversity of user demands, it is imperative to provide accurate
network traffic measurement on the user level to personalize
the optimal network quality of service (QoS). Traditional QoS
mechanisms, such as port or payload filtering are ineffective
as more APPs adopt dynamic port assignment as well as
end-to-end encryption. To address these challenges, artificial
intelligence (AI) based network traffic classification (NTC)
solutions have been developed [1], offering high accuracy and
adaptability across a wide variety of network traffic types.
Albeit providing high accuracy, centralized NTC classifiers
require users to share raw packet traces with a central server,
raising privacy concerns and causing substantial bandwidth
costs [2]. Federated Learning (FL) has emerged as a paradigm
to decentralize model training, enabling multiple clients to
collaboratively learn a shared classifier without exchanging
raw data. In the context of NTC, FL-based approaches allow

network domains to jointly train a global traffic classifier while
preserving data locality and user privacy [3–5]. However,
FL is not immune to privacy leakage due. Attacks such as
membership inference [6], data reconstruction [7], and label
inference [8, 9] exploit shared model updated parameters to
recover private information, including clients’ raw datasets.

Rather than exploiting user privacy, this work leverages
inference on FL-based NTC for benign purposes. In specific,
we propose a non-invasive network traffic estimation and
user QoS profiling scheme such that APP-level QoS can be
estimated and personalized for each en user, e.g., on a Wi-
Fi router. The existing commercial solutions rely on adaptive
QoS to personalize traffic management, such as ASUS Work
Home [10] and Huawei Adaptive QoS Configuration [11].
These systems require users to manually select or define ser-
vice profiles (e.g., “Gaming,” “Streaming,” “Websurfing”) and
often depend on third-party deep-packet inspection services
to analyze traffic characteristics. Such approaches not only
burden users with profile configuration, but also raise privacy
and scalability concerns. Our proposed non-invasive profiling
approach estimates network traffic by inferring users’ applica-
tion usage tendencies directly from the parameters exchanged
during FL-NTC updates (defined as slots), without accessing
nor constant monitoring raw traffic data. Focusing on the
weight differences between FL-NTC updates, the proposed in-
ference approach can recover APP appearances in each update
interval for a targeting user client. These appearances are then
optimized through a slot-extension mechanism, which adjusts
the difference between the raw traffic pattern and the real APP
usage. After that, behavior weight vectors developed based on
existing commercial solutions are assigned to each APP. The
final results provide a user profile towards multiple directions,
including productivity, entertainment, and casual. Simulations
are conducted on seven popular APPs across three distinct user
profiles. The evaluation results demonstrate that the proposed
non-invasive network user profiling scheme can successfully
estimate the APP traffic pattern and provide accurate QoS
profiles for each user. To summarize, our contributions in this
paper are threefold:

• A non-invasive network traffic estimation and user QoS
profiling scheme is proposed by leveraging label infer-
ence on FL-based NTC. The proposed method does not
require physical probes nor constant traffic monitoring, as



opposed to the traditional QoS management mechanisms.
• A slot extension and behavior weight assignment mech-

anism is developed to optimize the estimation of APP
usage against raw traffic patterns for better user QoS
profiling.

• Extensive simulations are conducted using seven popular
APPs across three distinct user profiles according to a
commercial adaptive QoS solution. The results demon-
strate that the user QoS profiles inferred from the pro-
posed approach can match the ground truth well.

The remainder of this paper is organized as follows. Sec-
tion II reviews related work in FL-NTC and inference attacks.
Section III presents our system model and preliminaries. Sec-
tion IV describes the label inference and profiling algorithms.
Section V details our experimental setup and results. Finally,
Section VI concludes the paper and outlines future work.

II. RELATED WORK

A. FL-based NTC

NTC aims to assign packets or flows to application or
service level categories, enabling Internet service providers
and network operators to enforce policies, optimize network
QoS, and detect anomalies. However, early approaches that
rely on port- or payload-based rules are less effective due to
the use of dynamic ports and encryption. AI-based NTC has
been promoted as a viable solution, achieving high accuracy
and adaptability across diverse traffic types [2, 12]. Recently,
FL-based NTC has attracted attention as a way to train
global traffic classifiers collaboratively without exchanging
raw packet traces, thereby preserving user privacy and re-
ducing central bandwidth requirements. For example, FLIC
was one of the first to adapt FedAvg specifically for Internet
traffic classification, showing that a federated protocol can
match the accuracy of centralized deep models even under
non-i.i.d. traffic distributions across clients, while classifying
previously unseen applications on the fly [3]. Subsequent
work has diversified both the application scenarios and the FL
techniques used in NTC. For instance, the authors of [4] pro-
posed FedETC, which adapts federated learning for encrypted
traffic classification by training directly on TLS flows without
decryption, achieving accuracy on par with centralized models
while preserving end-to-end privacy. Meanwhile, cross-model
FL-based NTC lets each client use its own local architecture
and then fuses updates in a modality-aware way at the server,
boosting classification robustness under highly non-IID traffic
distributions [5].

B. Inference Attack on ML and FL

Machine learning and AI models have been shown vul-
nerable to a variety of inference attacks in centralized en-
vironments. For example, the authors of [13] introduced the
model inversion attack, demonstrating how an adversary can
reconstruct sensitive input features by exploiting confidence
scores returned by a target model. The authors of [14] pro-
posed property inference attacks, where an attacker infers

aggregate properties of the training data that the model de-
signer did not intend to disclose. The authors of [6] proposed
membership inference in which an adversary trains shadow
models to mimic the target and then learns to distinguish
whether a given example was used in training based solely on
the model’s confidence scores. This approach demonstrated
high accuracy even in black-box settings. While FL retains
the raw dataset by only exchanging parameters for model
updates, it does not eliminate the risk from inference attacks.
For example, FL can still be vulnerable to inference attacks
such as data inference, including membership inference, data
reconstruction, and label inference attacks. In particular, the
authors of [15] extended the membership inference attack
in FL. The authors of [7] introduced deep leakage from
gradients, showing that by optimizing dummy inputs to match
a single observed gradient, one can reconstruct the original
training data. More recently, the authors of [9] exposed user-
level label leakage by analyzing gradient updates over multiple
rounds. This attack can recover the distribution of labels held
by individual clients. These findings underscore that federated
learning, while preserving raw-data locality, may still be
exploited to reveal useful information. In this paper, instead of
attacking FL-based NTC, we leverage such inference attacks
as a benign approach to achieve non-invasive network traffic
monitoring for user profiling, which can be further used for
QoS management.

C. QoS and Network User Profiling

Traditional QoS management relies heavily on static rules,
such as port-based and manual configuration of priority levels
on routers or user devices [16]. While such approaches can
allocate bandwidth according to coarse service classes (e.g.,
VoIP, video, bulk transfer), they often fail to adapt to dy-
namic user behavior or encrypted traffic. By integrating real-
time and more accurate APP-level NTC, QoS can be made
more responsive and personalized for end users. For example,
machine-learning classifiers operating on flow metadata or
lightweight packet features enable fine-grained identification
of applications and services, allowing routers to prioritize
latency-sensitive flows (e.g., video conferencing) over bulk
transfers in real time [17]. However, NTC alone is not a
perfect solution. Accurate classification often requires either
probe-based deep-packet inspection or large caches of flow
statistics, imposing significant storage and compute overhead
on edge devices [18]. Moreover, unless it is a probe installed
on the user device, encrypted traffic and evolving application
protocols can degrade classifier accuracy on a router. Offload-
ing NTC to a backend server can mitigate resource constraints
but introduces privacy concerns, as raw or semi-processed user
traffic must be transmitted and stored externally.

To address these issues, modern home routers such as
those from ASUS adopt a hybrid user profiling model.
ASUS’s Adaptive QoS embeds NTC capabilities directly in
the firmware, yet relies on a third-party cloud service to
perform deep-packet inspection and behavioral analysis [10].
In the web interface, users select from predefined profiles from



“Gaming”, “Streaming”, “Websurfing”, “Study at home” or
“Work at home”, or create custom service rules by assigning
priority levels to applications and devices. Only after a profile
is chosen does the router apply real-time flow monitoring
and dynamic bandwidth allocation according to the selected
settings. It is a complicated and sub-optimal process for a user
to define their own policies. Since the service also requires
continuous data collection by a cloud service, it raises further
privacy concerns. The proposed non-invasive user profiling
scheme in this paper is to address these challenges by provid-
ing network traffic estimation and user QoS profiling without
manual configuration, third-party data collection, nor a probe
on the user device. autonomous

III. SYSTEM MODEL AND PRELIMINARIES

A. Studied System Model and FL-based NTC Implementation

The studied system model in this work is depicted in Fig. 1,
assuming N clients participate in the FL process. In this
framework, each client performs a communication and training
cycle at a fixed time slot, e.g., every ten seconds. Specifically,
at the beginning of each update interval, each client uploads
its local model parameters to the server and simultaneously
downloads the latest global model parameters. Upon receiving
the global model, the client uses the newly collected data from
the current update interval to perform local training, e.g., for L
epochs. After completing the local updates, the client uploads
its updated model parameters to the server again to participate
in the next round of global aggregation. The FL process adopts
a simple averaging strategy rather than the standard weighted
averaging used in FedAvg. The global model parameters are
updated at the server after each round as follows,

PG =
1

N

N∑
k=1

PLk
,

where PLk
denotes the parameters of the local model from

client k.
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Fig. 1: Overview of the studied FL-based NTC system model.

The chosen NTC architecture consists of three linear layers:
the first layer maps 500-dimensional input features to a 256-
dimensional hidden representation, followed by batch normal-
ization, LeakyReLU activation (slope 0.01), and dropout with

rate 0.5. The second hidden layer reduces the dimensionality
to 32, also followed by batch normalization, LeakyReLU
activation, and dropout. The final output layer maps to the cor-
responding traffic classes. For better demonstration, the chosen
NTC is kept lightweight, while still being capable of handling
the chosen network applications in this work. Advanced NTC
that handles more complicated network applications can be
implemented into the framework straightforwardly. Moreover,
we argue that the lightweight NTC with moderate performance
can better demonstrate the efficacy of the proposed non-
invasive network measurement and user profiling in practical
scenarios where an NTC is not well-trained or during an FL
update process.

B. Gradients Attack and Label Leakage

The Label Leakage from Gradients (LLG) attack, first
introduced in [8, 9], exploits the gradients shared during the
federated learning process to infer private label information
about clients’ local data. The core insight behind LLG is that
the gradients of a neural network, particularly those computed
during the first few training steps, are highly informative
about the class labels used to generate them. This is because
gradients encode how the model’s predictions differ from the
true labels. In our FL-based NTC setup, N edge routers
(clients) each collect a few batches of packets and participate
in periodic model update exchanges with a central server.
In each round, clients download the current global model,
perform local training on their freshly collected traffic data,
and upload only the resulting parameter updates. Leveraging
the concept of LLG attack, we assume the central server is
honest-but-curious (i.e. it will correctly perform aggregation
but may inspect or manipulate received gradients) and can
therefore act as an adversary to infer sensitive information
about clients’ local traffic labels. Note that the central server is
indeed a benign and trusted user. It only matches technically
its role to an adversary of LLG attack. Moreover, although
LLG was first described in terms of raw gradient vectors, we
propose to operate on the weight deltas instead during local
training. This approach enables high-accuracy label recovery
without any deep-packet inspection.

IV. NON-INVASIVE NETWORK USER PROFILING

A. Overview of the Network User Profiling Scheme

The overall network user profiling scheme follows a two-
stage process, as illustrated in Fig. 2. In the first stage, label
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Fig. 2: Overview of the user profiling mechanism.



inference is performed to recover the label appearance list for
each time slot. This step can be carried out either by the central
server or by a curious client, and it requires access to both the
global model parameters and the target client’s local model
parameters. In the second stage, the recovered label appearance
list is used to conduct network profiling. App usage profiles
are computed by combining the app profile weights table and
the slot extension rules, which compensate for caching effects
by extending app appearances across adjacent slots. Based on
the aggregated app usage, normalized tendency scores across
different usage types are calculated to generate the user’s
final profile. For better illustration, each time slot is set to
10 seconds. Each client uploads its locally updated model
parameters to the server at the end of each slot.

B. Label Inference and Traffic Estimation

Compared to the existing LLG, our method does not attempt
to recover the full set of labels or the precise occurrence
counts within a batch. Rather, we focus solely on identifying
which labels are present in a given client update and approx-
imating their proportions. Furthermore, unlike LLG, where
the federated aggregation is performed over shared gradients,
our setting aggregates model parameters obtained after local
training. Correspondingly, our label inference is conducted on
the weight differences between the latest local client updates
and the previous global parameters, rather than directly on
the gradients. Specifically, for a target client x, the weight
difference is defined as follows,

∆Wx = PLx − P last
G , (1)

where PLx denotes the locally trained model parameters from
client x and P last

G denotes the global model parameters from
the previous round. We further observe that positive entries
in ∆Wx are indicative of label appearances, opposite to LLG,
where negative gradients reveal present labels. The actual label
inference is processed in four stages.

1) For each class c, the aggregate score is computed as
follows,

gc =
d∑

i=1

∆Wc,i. (2)

All classes with gc > 0 are collected into the candidate
set H1.

2) The average per-sample impact of each positive class is
estimated as follows,

impact =
1

L

(
1

B

∑
c∈H1

gc

)(
1 + 1

C

)
, (3)

where B is the batch size, C the number of classes, and
L the number of local iterations.

3) One sample of each class in H1 is assigned by subtract-
ing impact from its gc. These samples are collected into
the provisional multiset P .

4) While |P| < B, we repeatedly select class c∗ with the
largest remaining gc, add one more sample of c∗ to P ,

and decrement its gc∗ by impact. The resulting predicted
distribution is then

p̂c =
#{ p ∈ P : p = c}

B
× 100%. (4)

After defining the unique measures for inference, the re-
mainder of the scheme mostly align with LLG. The concise
step-by-step summary is given in Alg. 1.

Algorithm 1 Label distribution inference.

Input: Weight difference ∆Wx, batch size B, number of
classes C, local iterations L;

Output: Predicted label distribution {p̂c}Cc=1;
1: Compute aggregate scores gc ←

∑
i ∆Wc,i for all c;

2: Form candidate set H1 = {c : gc > 0};
3: Compute per-sample impact as described in Eq. (3);
4: Initialize multiset P ← ∅;
5: for each c ∈ H1 do
6: Add one sample of c into P and decrement gc by

impact;
7: end for
8: while |P| < B do
9: c∗ = argmaxc gc;

10: Add one sample of c∗ into P and decrement gc∗ by
impact;

11: end while
12: Compute p̂c as described in Eq. (4);

C. Non-Invasive User Profiling

Participants can be profiled once the application appear-
ance list per slot for each client is obtained. However, to
derive meaningful behavioral profiles, additional information
is required, including the APP-type weights that quantify each
application’s contribution to different behavior types (e.g.,
productive, entertaining, casual), and the APP slot extension
rules that account for temporal effects such as caching, which
may cause certain applications to influence multiple adjacent
time slots beyond their initial appearance.

The APP-type weights define how representative an APP is
in different profiles, e.g., productive, entertaining, and casual.
This work assumes that each APP is associated with a set
of values corresponding to these three properties. The major
property, which best characterizes the APP’s typical usage, is
assigned the highest value, indicating that when a user engages
with this application, their behavior is most aligned with
this profile type. The remaining two properties are assigned
lower values, where the lowest value reflects the profile
type that is least represented when the application is used.
For example, popular entertainment apps such as YouTube,
Spotify, and Twitch are assigned entertainment as the major
property. Since they have little relation to productivity, they
receive the lowest score on the productive profile. APPs such
as Outlook and Zoom are tagged as productive by default,
earning their minimum weight in the entertaining dimension.
In the casual dimension, all of these applications are given a



moderate weight, reflecting that users may engage with them
in an informal or background capacity regardless of their
primary purpose. Note that the weights and profiles can be
adjusted based on user preference and QoS needs. For better
illustration, the scoring mechanism of these three properties in
this work is derived from the application categories available
in official app stores [19, 20], and is further refined by
referencing the classification schemes used in ASUS Adaptive
QoS [10, 21]. This ensures that the assigned profile tendencies
are grounded in widely accepted categorizations of application
usage behaviors.

The APP slot extension is a mechanism developed to
better estimate the APP usage by compensating missing traffic
measurement due to caching. This mechanism extends the
influence of an application’s activity across multiple adjacent
time slots, accounting for sustained network activity caused
by background buffering. The rule of slot extension is derived
from the observed traffic slot patterns of each application
and its behavioral properties. To better illustrate the APP
slot extension mechanism, the network traffic patterns of an
example of one user with three APPs are shown in Fig. 3. In
particular, Fig. 3(a) plots the ground-truth APP usage timeline;
Fig. 3(b) plots the raw network traffic pattern from constant
monitoring; and Fig. 3(c) plots the APP usage estimation after
applying slot extension. Note that App 2 exhibits continuous
real usage across many slots, yet the raw traffic measurement
only marks two isolated slots as active, showing a strong
evidence of background buffering behavior. By extending
each detected slot of App 2 into its subsequent neighboring
slots according to its observed buffering pattern, the adjusted
timeline in Fig. 3(c) closely matches the true usage in Fig. 3(a).

10 60 110 160 210 260 310 360 410 460 510 560
Slot

App1
App2
App3

User Real Usage Time

(a) Ground-truth of user APP usage timeline.

10 60 110 160 210 260 310 360 410 460 510 560
Slot

App1
App2
App3

User Usage Time Extracted from Network Traffic

(b) Raw network traffic pattern inferred APP usage timeline.

10 60 110 160 210 260 310 360 410 460 510 560
Slot

App1
App2
App3

User Usage Extracted from Network Traffic with Slot Extension

(c) APP usage timeline estimation with slot extension mechanism.

Fig. 3: Example of application usage, raw traffic pattern, and
APP slot extension mechanism.

After defining the APP-type weights and the APP slot
extension, the profiling mechanism computes the tendency
toward each behavior type by aggregating the contributions
of all APPs used for each client. Specifically, each APP class
c has a recorded active time timex(c), determined by counting
the number of time slots in which it appears (after applying slot
extension) and multiplying by the slot duration (10 seconds
in this work). Each application class c is associated with a
vector of weights {w(prod)

c , w
(ent)
c , w

(cas)
c }, corresponding to its

behavioral alignment with the productive, entertaining, and
casual profiles. These weights reflect the degree to which
the use of application c contributes to each behavior type.
To quantify a client’s behavioral tendency, we compute the
following score for each profile type t ∈ {prod, ent, cas}:

tendencyx(t) =
∑
c

(
timex(c) · w(t)

c

)
,

where timex(c) is the total active time of application class c

for client x, and w
(t)
c is the corresponding weight for type t.

The raw tendency scores are then normalized by the client’s
total active time total timex, defined as follows,

total timex = 10× |Sx|,

where Sx is the set of all unique time slots where any
application was active for client x. This yields the normalized
tendency as follows,

tendency normx(t) =
tendencyx(t)
total timex

.

Finally, a profile vector can be computed as a percentage
distribution across behavior types as follows,

norm scorex(t) =
tendency normx(t)∑

t′∈{prod,ent,cas} tendency normx(t
′)
×100.

These normalized scores represent the estimated behavioral
profile of each client as a proportion of productive, entertain-
ing, and casual usage tendencies.
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Fig. 4: An example of the user profile radar chart.

Note that the proposed user profiling scheme does not
categorize a user into a specific profile. Rather, it scores a



user in all of the possible profiles. For better illustration, each
user profile is depicted using a radar chart, as illustrated in
Fig. 4. The weight assignments designed in Sec.V-B constrain
each category score to lie between 20 and 50, the three axes
form a triangle inscribed within the outer circle. The three
category scores always sum to 100. A score of 50 in any one
dimension indicates a purely single-profile user, whereas if
any category score exceeds 40, it signals that the user leans
strongly toward that usage type. Furthermore, roughly equal
scores across all three dimensions imply that the user does not
fit a single profile and exhibits a mixed usage pattern. Note
that the actual scores can be normalized straightforwardly if
needed. The overall profiling scheme is summarized in Alg. 2.

Algorithm 2 Client profiling with APP slot extensions.

Input: Labels per slot for clients, app weights, extension
mechanism

Output: Client profiles
1: for each client x do
2: Initialize: slotsx(c) = 0 for all classes, Sx = ∅
3: for each slot s with classes c do
4: Increment slotsx(c) for each class in s;
5: Add s to Sx;
6: end for
7: for each class c with extension mechanism do
8: Extend appearances to allowed gaps;
9: Update slotsx(c) and Sx accordingly;

10: end for
11: timex(c) = 10× slotsx(c), total timex = 10× |Sx|;
12: for each type t do
13: tendencyx(t) =

∑
c timex(c)× w

(t)
c ;

14: tendency normx(t) = tendencyx(t)/total timex;
15: end for
16: norm scorex(t) =

tendency normx(t)∑
t′ ;tendency normx(t

′) × 100;
17: end for

V. EVALUATION RESULTS

A. Chosen Dataset and User Profile Setup

Three distinct types of APP usage behaviors are simulated
across seven applications and are assigned to three clients
participating in the federated learning process. The resulting
network traffic generated under each simulated behavior is
used as the dataset for each corresponding client. Seven APPs,
i.e., YouTube, Outlook, Spotify, Zoom, Twitch, Discord, and
GitHub, are included in the simulation.

• Client A uses Outlook, Zoom, and GitHub, simulating a
productive-oriented profile;

• Client B uses Discord, YouTube, and Twitch, simulating
an entertaining-oriented profile; and

• Client C uses YouTube, Outlook, and Spotify without a
clear tendency toward a specific profile.

Client A’s captured data spans 621 seconds, resulting in 63
slots; Client B’s data spans 647 seconds, corresponding to 65
slots; and Client C’s data covers 569 seconds, resulting in 57
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GitHub
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(a) A productive-oriented profile for client A.
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(b) An entertaining-oriented for client B.
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(c) No obvious profile for client C.

Fig. 5: Real applications usage timeline of three simulated
clients with different network profiles.

slots. The detailed application usage timeline for each client
is shown in Fig. 5. Each slot is 10 seconds in duration. During
each slot, the collected network traffic is used to train the local
model, and the updated model parameters are subsequently
uploaded to the server at the end of the slot as part of
the federated learning process. The network traffic data was
collected on a smartphone using PCAPdroid [22], which is an
open-source tool for capturing device-level traffic. Following
a typical NTC implementation [2], the 20-byte packet header
was stripped and each packet payload was truncated to 500
bytes, with the remaining data discarded.

B. Experiment Settings

To model user behavior patterns from application usage,
user intents are categorized into three types: productive, en-
tertaining, and casual. Each application is evaluated for its
relevance to these behavior types based on publicly avail-
able app descriptions from the application store (Apple APP
store [20] and Google Play Store [19]) and the application
type classifications from QoS categorization lists used in
commercial routers (ASUS Adaptive QoS [10]). For each
application, three behavior-type attributes are selected and
assigned scores of 5, 3, and 2, corresponding to the major,
secondary, and minor usage intents, respectively. These scores
are then used to form a behavior contribution weight vector
wa = [wp, we, wc] such that the total contribution sums to
10. The major property of Outlook, GitHub, and Zoom is
productive, and the remaining applications are classified as
entertaining; no app is categorized as casual in this experi-
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(a) YouTube slotted traffic pattern.

0 50 100 150 200 250 300
End Time of Slot (seconds)

0

1000

2000

3000

4000

Pa
ck

et
s i

n 
Sl

ot

Outlook Packet Count Per Slot (10s Intervals, End Time on X-axis)

(b) Outlook slotted traffic pattern.
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(c) Spotify online listening slotted traffic pattern.
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(d) Spotify downloaded listening slot traffic pattern
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(e) Zoom slotted traffic pattern.
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(f) Twitch slotted traffic pattern.
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(g) Discord slotted traffic pattern.
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(h) GitHub slotted traffic pattern.

Fig. 6: Slotted network traffic patterns for different APPs.

ment. The final weights for the seven applications are shown
in Table I.

TABLE I: Behavior contribution weights for each application.

APP Casual (wc) Entertaining (we) Productive (wp)

YouTube 3 5 2
Outlook 3 2 5
Spotify 3 5 2
Zoom 3 2 5
Twitch 3 5 2
Discord 3 5 2
GitHub 3 2 5

The compensations in the proposed APP slot extension
mechanism are extracted from five-minute traffic monitoring
of each APP separately. In particular, the traffic patterns were
visualized by plotting the number of packets over time, where
time was discretized into 10-second slots to align with the
profiling mechanism, as shown in Fig 6. Based on these
measurements, three APPs, i.e., Spotify, Discord, and GitHub,
would benefit from the slot extension mechanism. The network
pattern plots (Fig. 6(c) and Fig. 6(d)) demonstrate that Spotify
tends to generate a burst of packets at the beginning of
each track, while the remaining duration of the song ex-
hibits minimal or no packet transmission. Even when playing

downloaded music, the phone generates network traffic if it
is connected to the internet. According to the 2024 Music
Report by Chartmetric [23], the majority of tracks on Spotify
have durations ranging from 2:51 to 3:09 minutes. Taking the
average duration within this range, we estimate the playback
time to be approximately 3 minutes, which corresponds to
18 slots under the 10-second slot granularity. As a result,
the slot extension for Spotify is set to 17. In addition, both
Discord (Fig. 6(g)) and GitHub (Fig. 6(h)) generate little
network traffic during typical messaging and browsing. Most
of the traffic occurs during the initial loading phase. According
to [24], the average response time for users actively engaging
with instant messaging APPs is approximately 30 seconds,
which corresponds to 2-3 slots. Therefore, the extension length
for Discord is set to 2. For GitHub, user behavior analysis
shows that the average time spent on a page is approximately
54 seconds [25], leading to an extension of 5 slots. These
extension mechanisms are applied during the inferred timeline
construction to ensure alignment with realistic APP behavior.

C. Evaluation Results

Fig. 7, Fig. 8, and Fig. 9 demonstrate three views of our
simulated clients’ activities, including the APP usage timelines
extracted from raw traffic data, the usage timeline inferred by



pure label inference approach, and the label inference approach
with slot-extension mechanism. Comparison with actual usage
(Figure 5) reveals that some apps generate network traffic The
chosen lightweight FL-NTC achieves over 90% classification
accuracy after convergence, though it typically requires several
update rounds to adapt when users switch APPs, causing
a period of precision reduction. The weight-based inference
method typically neglects APPs contributing less than 10% of
packet volume, an inaccuracy that is allowed to filter back-
ground traffic and transient usage. The final inferred timeline,
particularly after implementing the slot-extension mechanism,
corresponds more accurately with actual user behavior, suc-
cessfully capturing dominant APP usage while suppressing
insignificant traffic and idle-period communications.
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Fig. 7: APP timelines of client A from different approaches.
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Fig. 8: APP timelines of client B from different approaches.

Fig. 10, Fig. 11, and Fig. 12 present radar charts for each
of the three clients, generated from (1) ground truth, (2) raw
traffic monitoring, and (3) the proposed method. Since each
APP’s behavior contribution weight allocates five points to
major intents and two points to minor intents across ten time
slots, the maximum attainable score for any profile dimension
is fifty and the minimum is twenty. As the results show, both
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Fig. 9: APP timelines of client C from different approaches.

clients A and B exhibit a single dominant profile with the three
respective radar charts being nearly identical. Meanwhile, the
inferred flows for client C after slot-extension (productive 29.5,
entertainment 40.5, and casual 30) align more closely with the
ground truth (productive 30, entertainment 40, and casual 30),
demonstrating the precision of our slot-extension mechanism.
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Fig. 10: Profiling results of user A from different approaches.
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Fig. 11: Profiling results of user B from different approaches.

D. More Discussions

The proposed framework is a coarse profiling based on
the user’s network behavior. While the NTC accuracy in the
framework may be low, it nonetheless proves effective in
profiling. Importantly, our profiling process does not require
access to raw packet payloads or detailed flow-level statistics;
instead, it relies on the updates transmitted during federated
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Fig. 12: Profiling results of user C from different approaches.

training. By operating solely on these model-update metadata,
the framework limits exposure to sensitive user data, miti-
gating the privacy risks associated with traditional adaptive
QoS systems that depend on deep packet inspection and
flow monitoring. Therefore, the proposed approach preserves
user anonymity and confidentiality. However, only a limited
set of profile categories and applications were tested, which
constrains its generalizability.

VI. CONCLUSION AND FUTURE WORKS

In this work, we proposed a non-invasive networking user
profiling scheme by exploiting the updated model parameters
uploaded by each client in an FL-based NTC framework. With-
out accessing raw packet payloads, our method extracts coarse
network traffic patterns and assigns behavioral profiles, such
as productivity-oriented, entertainment-oriented, and casual
usage patterns directly from the parameter updates contributed
during federated training. Evaluation results demonstrated the
efficacy of the proposed method in network user profiling,
even with a lightweight and moderately-accurate AI-NTC.
In future work, we will refine the granularity of behavior
categories. Moreover, we aim to validate and scale our solution
in real-world network environments, to assess its operational
performance, scalability, and impact on personalized QoS
management.
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