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A DIV-CURL INEQUALITY
FOR ORTHONORMAL FUNCTIONS

RUPERT L. FRANK

Dedicated to Fritz Gesztesy on the occasion of his 70th birthday

Abstract. We prove a bound on the sum of the product of curl-free and divergence-
free vector fields. Under appropriate orthonormality conditions our bound scales
sublinearly in the number of terms, similar in spirit to Lieb–Thirring inequalities.

1. Introduction and main result

We are interested in pairs of vector fields E and B on Rd with d ≥ 2 that satisfy
E,B ∈ L2(Rd,Rd). Clearly their pointwise product E · B belongs to L1(Rd). A
deep observation in the area of compensated compactness is that this trivial fact
can be improved under additional constraints on the curl of E and the divergence
of B, specifically under the assumptions

(1.1) ∇∧ E = 0 and ∇ ·B = 0 .

These equations are understood in the weak sense, that is,
∫

Rd
((∂ju)Ek − (∂ku)Ej) dx = 0 for all 1 ≤ j, k ≤ d ,

and
d∑

j=1

∫

Rd
(∂ju)Bj dx = 0

for all u ∈ C1
c (Rd).

A theorem of Coifman, Lions, Meyer and Semmes [5] states that under the as-
sumptions (1.1) the product E · B belongs to the Hardy space H1(Rd). An earlier
compactness result in a related spirit, called the div-curl lemma, goes back to Murat
and Tartar.

The difference between L1 and H1 is small, but of crucial importance in several
applications in geometric analysis, nonlinear elasticity, homogenization, conserva-
tion laws and other fields. The definition of the Hardy space can be found, for
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instance, in [18, Section 2.1]. Since it is not relevant for what follows, we omit it.
Instead we are interested here in the weaker assertion that, still under (1.1),

(1.2) E ·B ∈ Ẇ−1, d
d−1 (Rd) .

The space on the right side is the dual of the homogeneous Sobolev space Ẇ 1,d(Rd),
the latter being the space of equivalence classes modulo constants of elements
in L1

loc(Rd) that are weakly differentiable with gradient in Ld(Rd,Rd). By the
Poincaré inequality and density of smooth functions [22, Theorem 11.43], we have
Ẇ 1,d(Rd) ⊂ VMO(Rd), the space of functions (modulo constants) of vanishing
mean oscillations; see [18, Section 3.1]. By duality [18, Section 3.2], this implies

H1(Rd) ⊂ Ẇ−1, d
d−1 (Rd), so (1.2) follows from the Coifman–Lions–Meyer–Semmes

theorem. In the case d = 2 the bound (1.2) appears in work of Wente [32] on
surfaces with prescribed mean curvature; see also [4, Appendix].

In recent years there has been some interest in extending inequalities from clas-
sical and harmonic analysis to the setting of orthonormal functions. The origin
of these investigations lies in the Lieb–Thirring inequality, an extension of a cer-
tain Sobolev interpolation inequality to the setting of orthonormal functions, which
was a crucial ingredient in the proof of stability of matter by Lieb and Thirring
[25, 26]. This inequality, and its generalizations, have found many applications
ever since, and we refer to [10, 13, 11] for references. Among the inequalities that
have been generalized to the setting of orthonormal functions are the Sobolev and
Hardy–Littlewood–Sobolev inequality [24], the Strichartz inequality [14, 15, 1, 2],
the Stein-Tomas inequality [15] and Sogge’s spectral clusters inequality [16].

Our goal in this paper is to present a ‘Lieb–Thirring’ version of the above div-
curl inequality. While many of the before-mentioned extensions were motivated by
some specific applications, at the moment we do not know of any such application
of this new result and consider it as an interesting task to find such. Instead, our
motivation comes from trying to understand features of inequalities for orthonormal
functions and, as will be pointed out later, the new inequality contains features that
sharply distinguish it from existing ones.

To set the stage, we notice that if (En), (Bn) ⊂ L2(Rd,Rd) are normalized and
satisfy

(1.3) ∇∧ En = 0 and ∇ ·Bn = 0 for all n ,

then

(1.4) ∥
N∑

n=1

En ·Bn∥H1 ! N .

This simply follows by the triangle inequality in H1 and the bound for a single pair
of vector fields. In (1.4) and below we use the notation ! to denote an inequality
with an implicit constant that depends only on the dimension d. In the present
paper we are not concerned with the values of these constants.

Our main result is that, if the (En) are not only normalized, but also orthogonal,

and similarly for the (Bn), and if the H1-norm is replaced by the Ẇ−1, d
d−1 -norm,
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then the linear growth in N in (1.4) can be replaced by a sublinear growth N1− 1
d .

The precise formulation is as follows.

Theorem 1.1. Let d ≥ 2. Then, if (En), (Bn) are orthonormal systems in L2(Rd,Rd)
satisfying (1.3), one has

(1.5) ∥
N∑

n=1

En ·Bn∥
Ẇ

−1, d
d−1

! N1− 1
d .

If d ≥ 3, the same is valid either without the orthogonality assumption on the (En)
or without the orthogonality assumption on the (Bn).

Remarks 1.2. (a) The following two features distinguish the above inequality from
other known inequalities for orthonormal functions. First, the quantity that is
bounded is bilinear rather than a sum of squares, as, for instance, in Corollary 3.2
below. Second, this quantity is not controlled in an Lp norm, but rather in a norm
involving (negative) smoothness.
(b) The inequality (1.5) easily generalizes to an inequality for possibly infinite or-
thonormal systems, namely, for sequences λ = (λn) from the Lorentz sequence space

ℓ
d

d−1 ,1 one has, under the previous assumptions on (En), (Bn),

∥
∑

n

λnEn ·Bn∥
Ẇ

−1, d
d−1

! ∥λ∥
ℓ

d
d−1 ,1 .

Indeed, by multiplying, say, En by a unimodular constant, we may assume that
λn ≥ 0. Then

∑
n λnEn ·Bn =

∫∞
0

∑
n (λn > τ)En ·Bn dτ and, so by the triangle

inequality and (1.5),

∥
∑

n

λnEn ·Bn∥
Ẇ

−1, d
d−1

≤
∫ ∞

0
∥
∑

n

(λn > τ)En ·Bn∥
Ẇ

−1, d
d−1

dτ

!
∫ ∞

0
(#{n : λn > τ})1−

1
d dτ = ∥λ∥

ℓ
d

d−1 ,1 .

(c) Theorem 1.1 raises several questions: Is the growth N1− 1
d optimal and is it

connected to a semiclassical limit? Is the passage from H1 to Ẇ−1, d
d−1 necessary

for an N1− 1
d growth? Is the orthogonality of both (En) and (Bn) necessary in

dimension d = 2?

The author warmly thanks Julien Sabin and Jean-Claude Cuenin for many dis-
cussions about inequalities for orthonormal systems and possible bilinear variants.

It is a pleasure to dedicate this paper to Fritz Gesztesy on the occasion of his
70th birthday, in fond memory of our editorial collaborations.

2. Proof of Theorem 1.1

In this section we give a proof of the first part of Theorem 1.1, namely in the case
where both (En) and (Bn) satisfy the orthonormality condition. The advantage of
this proof is that it works also in dimension d = 2. The main ingredient is an
endpoint Schatten class bound for commutators, which we recall first.
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A Schatten class bound for commutators. The Riesz transform is the vector
valued operator defined by

R = (−i∇)(−∆)−
1
2 .

We are interested in mapping properties of the commutator

[R, u] = Ru− uR ,

where we identify the function u with the operator of multiplication with this func-
tion. A famous result of Coifman, Rochberg and Weiss [6] states that [R, u] is
bounded (from L2(Rd) to L2(Rd,Rd)) if and only if u ∈ BMO(Rd). A correspond-
ing result in Schatten classes Sp with p > d is due to Jansson and Wolff [21]. A
characterization in the endpoint case p = d was obtained by Connes, Semmes, Sul-
livan and Teleman [7, Appendix], based on earlier work of Rochberg and Semmes
[29]. For recent alternative and direct proofs see [28, 17]; for a variation of the proof
in [7] see [12].

To state this result, we recall that given Hilbert spaces H and K and an exponent
0 < p < ∞, the weak Schatten class Sp

weak consists of all compact operators K :
H → K whose singular values (sn(K)) belong to the weak sequence space ℓpweak.
The Sp

weak-(quasi)norm of an operator is the ℓpweak-(quasi)norm of the squences of
singular values, that is,

∥K∥Sp
weak

= sup
n

n
1
p sn(K) .

Theorem 2.1. Let d ≥ 2. Then, if u ∈ Ẇ 1,d(Rd), one has [R, u] ∈ Sd
weak with

∥[R, u]∥Sd
weak

! ∥∇u∥Ld .

Proof. As mentioned before, this result follows by combining [29, Corollary 2.8]
with [7, Theorem in the appendix]. Let us show alternatively how this theorem
can be deduce from the result in [17], which concerns the operator [γ ·R, u], where

γ1, . . . , γd are complex Hermitian N ×N matrices, N := 2[
d
2 ], satisfying

γjγk + γkγj = 2δjk for all 1 ≤ j, k ≤ d .

Moreover, we use the notation γ · R =
∑d

j=1 γjRj . The operator [γ · R, u] acts in

L2(Rd,CN ) and we emphasize that the function u is assumed to be scalar, that is,
real- or complex-valued, and to act trivially on the factor CN . By [17, Theorem
1.1],

∥[γ ·R, u]∥Sd
weak

! ∥∇u∥Ld .

Since, by the anticommutation relations of the γ-matrices,

[Rj , u] =
1

2
([γ ·R, u]γj + γj [γ ·R, u]) ,

this implies the corresponding bound for [Rj , u], as claimed. "
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Proof of Theorem 1.1. The facts that En ∈ L2(Rd,Rd) and ∇ ∧ En = 0 imply
that there is an fn ∈ L2(Rd) such that

(2.1) En = Rfn ,

where R is the Riesz transform defined before. One way to justify this is to apply
the Fourier transform, so that the assertion is a consequence of the elementary linear
algebra fact that for vectors ξ, a ∈ Rd with ξ ̸= 0 such that ξjak = ξkaj for all j, k
there is a c ∈ R with a = cξ. In fact, c = |a|/|ξ|. We apply this fact with ξ equal to
the Fourier variable and with a equal to the real and imaginary part of Ên(ξ).

Let u ∈ Ẇ 1,d(Rd). We assume initially, in addition, that u ∈ L∞(Rd). We use
the assumption ∇ ·Bn = 0 to deduce that

(2.2)

∫

Rd
R(ufn) ·Bn dx = 0 .

Indeed, arguing similarly as before there is a gn ∈ Ẇ 1,2(Rd) with R(ufn) = ∇gn.
Approximating gn by functions in C1

c (Rd) and using the assumption on Bn we obtain
the claimed identity.

Combining (2.1) and (2.2) we find
∫

Rd
uEn ·Bn dx =

∫

Rd
(uRfn ·Bn −R(ufn) ·Bn) dx = −⟨[R, u]fn, Bn⟩ .

Here we write ⟨·, ·⟩ for the inner produce in L2(Rd,Rd). We now use the simple fact
from Hilbert space theory that, if K is a compact operator from H to K and if (xn)
and (yn) are orthonormal systems in H and K, respectively, then

N∑

n=1

|⟨xn,Kyn⟩| ≤
N∑

n=1

sn(K) .

(This inequality appears in [3, Theorem 11.5.6] in case H = K. The general case
follows by composing with an isometry H → K when, without loss of generality,
dimH ≤ dimK.)

For any p > 1 and any N ∈ N, we have

N∑

n=1

sn(K) ≤
(
sup
n

n
1
p sn(K)

) N∑

n=1

n− 1
p ≤ p

p− 1
∥K∥Sp

weak
N1− 1

p .

The last inequality here follows by comparing the sum with an integral.
Combining the previous three relations and noting that the orthonormality of

(En) implies that of (fn), we arrive at
∣∣∣∣∣

N∑

n=1

∫

Rd
uEn ·Bn dx

∣∣∣∣∣ ≤
N∑

n=1

|⟨[R, u]fn, Bn⟩| ≤
d

d− 1
∥[R, u]∥Sd

weak
N1− 1

d .

According to Theorem 2.1 we have ∥[R, u]∥Sd
weak

! ∥∇u∥Ld . Thus, we have shown

that ∣∣∣∣∣

N∑

n=1

∫

Rd
uEn ·Bn dx

∣∣∣∣∣ ! ∥∇u∥LdN1− 1
d
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for all u ∈ Ẇ 1,d(Rd)∩L∞(Rd). Since Ẇ 1,d(Rd)∩L∞(Rd) is dense in Ẇ 1,d(Rd) (see,

e.g., [22, Theorem 11.43]), we can use duality between Ẇ 1,d and Ẇ−1, d
d−1 to deduce

the assertion of Theorem 1.1. "

The above proof of Theorem 1.1 is modelled after one of the Coifman–Lions–
Meyer–Semmes proofs of E · B ∈ H1, namely where this fact is deduced from the
boundedness of [R, u] for u ∈ BMO.

Remark 2.2. If instead of Theorem 2.1 one applies the Janson–Wolff result [21]
saying that ∥[R, u]∥Sp !p ∥u∥

Ẇ
d
p ,p for d < p < ∞ (here Sp denotes the (strong)

Schatten class, defined in terms of the (strong) sequence space ℓp, and Ẇ
d
p ,p denotes

a homogeneous fractional Sobolev space [22, Section 6.1]), then the same method
of proof yields

(2.3) ∥
∑

n

λnEn ·Bn∥
Ẇ

− d
q′ ,q

!q ∥λ∥ℓq for all 1 < q <
d

d− 1
, q′ =

q

q − 1
.

The bound (2.3) is somewhat intermediate between (1.4) and (1.5), in the sense
that for λn ∈ {0, 1} the growth in N := #{n : λn = 1} interpolates between N and

N1− 1
d .

3. Alternative proof of Theorem 1.1 for d ≥ 3

In this section we give a proof of the second part of Theorem 1.1, namely that
in dimension d ≥ 3 only one of the orthogonality assumptions on (En) and (Bn) is
necessary. The main ingredient is the well-known Cwikel–Lieb–Rozenblum (CLR)
inequality, which we recall first.

The CLR inequality and its consequences. Cwikel [8] proved Schatten class
bounds for products of multiplication operators in position and in momentum space.
We only need the following particular case, which, by the Birman–Schwinger prin-
ciple, is equivalent to bounds of Lieb [23] and Rozenblum [30] on the number of
negative eigenvalues of Schrödinger operators. We refer to [13, Chapter 4] for de-
tails and further references.

Theorem 3.1. Let d ≥ 3. Then, if u ∈ Ld(Rd), one has u(−∆)−
1
2 ∈ Sd

weak with

∥u(−∆)−
1
2 ∥Sd

weak
! ∥u∥Ld .

Lieb [24] observed that as a consequence of this theorem on obtains a Sobolev
inequality for orthonormal functions. For a general statement of the underlying
duality principle see [15]; for a direct proof of the Sobolev inequality for orthonormal
functions see [31, 9]. Next, we recall Lieb’s proof for the sake of completeness and
to underline the similarities and differences to the first proof of Theorem 1.1. Also,
Lieb only considers functions taking values in C, while we will need the case of
functions taking values in CM . (Here it is slightly more natural to consider complex
rather than real values.)



A DIV-CURL INEQUALITY FOR ORTHONORMAL FUNCTIONS 1087

Corollary 3.2. Let d ≥ 3. Then, if M ∈ N and (ψn) is an orthonormal system in
Ẇ 1,2(Rd,CM ), one has

∥
N∑

n=1

|ψn|2∥
L

d
d−2

! M
2
dN1− 2

d .

Proof. If we set fn := (−∆)
1
2ψn, then (fn) is an orthonormal system in L2(Rd,CM ).

For u ∈ Ld(Rd,R) we have, similarly as in the first proof of Theorem 1.1,

N∑

n=1

∫

Rd
u2|ψn|2 dx =

N∑

n=1

∥u(−∆)−
1
2 fn∥2L2 ≤

N∑

n=1

sn(K)2 ,

where K := u(−∆)−
1
2 ⊗ CM , considered as an operator in L2(Rd,CM ) = L2(Rd)⊗

CM . For p > 2 we can bound, similarly as before,

N∑

n=1

sn(K)2 ≤
(
sup
n

n
1
p sn(K)

)2 N∑

n=1

n− 2
p ≤ p

p− 2
∥K∥2Sp

weak
N1− 2

p .

By Theorem 3.1, we have

∥K∥Sd
weak

≤ M
1
d ∥u(−∆)−

1
2 ∥Sd

weak
! M

1
d ∥u∥Ld .

By duality between L
d
2 and L

d
d−2 (applied to u2 ∈ L

d
2 ), this implies the assertion of

the corollary. "

Alternative proof of Theorem 1.1 for d ≥ 3. We now show that for inequality
(1.5) the orthogonality of only one of the systems (En) and (Bn) is necessary,
provided d ≥ 3. We emphasize that both systems are assumed to be normalized.

First case. We begin by assuming the orthogonality of the (En). The facts that
En ∈ L2(Rd,Rd) and ∇∧ En = 0 imply that there is a ϕn ∈ Ẇ 1,2(Rd) such that

En = ∇ϕn .

(For a justification of this, see the first proof of Theorem 1.1.) The divergence
assumption on Bn implies that

En ·Bn = ∇ϕn ·Bn = ∇ · (ϕnBn) .

Thus, ∫

Rd
uEn ·Bn dx = −

∫

Rd
∇u · (ϕnBn) dx .

It follows from Hölder’s inequality that
∣∣∣∣∣

N∑

n=1

∫

Rd
uEn ·Bn dx

∣∣∣∣∣ ≤ ∥∇u∥Ld∥
N∑

n=1

ϕnBn∥
L

d
d−1

.

By the pointwise Schwarz inequality
∣∣∣∣∣

N∑

n=1

ϕnBn

∣∣∣∣∣ ≤
(

N∑

n=1

ϕ2
n

) 1
2
(

N∑

n=1

|Bn|2
) 1

2
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and the Hölder inequality (noting 2(d−1)
d = d−2

d + 1
1), we obtain

∥
N∑

n=1

ϕnBn∥
L

d
d−1

≤ ∥
N∑

n=1

ϕ2
n∥

1
2

L
d

d−2
∥

N∑

n=1

|Bn|2∥
1
2
L1 .

By the normalization of (Bn), we have

∥
N∑

n=1

|Bn|2∥L1 = N .

Meanwhile, by Corollary 3.2, observing that the (ϕn) are orthonormal in Ẇ 1,2(Rd)
(which is equivalent to the assumed orthonormality of the En in L2(Rd,Rd)),

∥
N∑

n=1

ϕ2
n∥

L
d

d−2
! N1− 2

d .

We emphasize that the assumption d ≥ 3 is needed for the latter inequality. Combin-
ing the previous bounds and using duality, we obtain the assertion of the theorem.

Second case. Now assume the orthogonality of the (Bn). For pedagogical reasons,
we first give the proof in dimension d = 3, where, given a vector field F , we identify
the skew-symmetric 3× 3-matrix field ∇∧ F in the usual way with a vector field.

The facts that Bn ∈ L2(R3,R3) and ∇ · Bn = 0 imply that there is an An ∈
Ẇ 1,2(R3,R3) such that

Bn = ∇∧An and ∇ ·An = 0 .

One way to justify this is to apply the Fourier transform, so that the assertion is
a consequence of the elementary linear algebra fact that for vectors ξ, b ∈ R3 with
ξ · b = 0 there is a vector a ∈ R3 such that ξ · a = 0 and b = ξ ∧ a. We apply this
fact with ξ equal to the Fourier variable and with b equal to the real and imaginary
part of B̂n(ξ).

Integrating by parts and using the curl assumption on En we find
∫

R3
uEn ·Bn dx =

∫

R3
uEn · (∇∧An) dx =

∫

R3
(∇∧ (uEn)) ·An dx

=

∫

R3
((∇u) ∧ En) ·An dx =

∫

R3
(∇u) · (En ∧An) dx .

It follows from Hölder’s inequality that
∣∣∣∣∣

N∑

n=1

∫

R3
uEn ·Bn dx

∣∣∣∣∣ ≤ ∥∇u∥L3∥
N∑

n=1

En ∧An∥
L

3
2
.

By the pointwise Schwarz inequality

∣∣∣∣∣

N∑

n=1

En ∧An

∣∣∣∣∣ ≤
(

N∑

n=1

|En|2
) 1

2
(

N∑

n=1

|An|2
) 1

2
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and the Hölder inequality (noting 4
3 = 1

1 + 1
3), we obtain

∥
N∑

n=1

En ∧An∥
L

3
2
≤ ∥

N∑

n=1

|En|2∥
1
2
L1∥

N∑

n=1

|An|2∥
1
2
L3 .

By the normalization of (En), we have

(3.1) ∥
N∑

n=1

|En|2∥L1 = N .

Meanwhile, by Corollary 3.2 (with M = 3), observing that the (An) are orthonormal
in Ẇ 1,2(R3), states that

(3.2) ∥
N∑

n=1

|An|2∥L3 ! N1− 2
3 .

The orthonormality of the An follows by polarization from the identity

∥∇F∥2L2 = ∥∇ ∧ F∥2L2 + ∥∇ · F∥2L2 ,

valid for any F ∈ Ẇ 1,2(R3,R3).
Combining the previous bounds and using duality, we obtain the assertion of the

theorem in dimension d = 3.

In general dimension d ≥ 3 the proof is most naturally carried out in the lan-
guage of differential forms (although a direct construction of αn below is essentially
contained in [27, Subsection 2.5]). For the relevant definitions and theorems we
refer, for instance, to [19, 20]. We identify a vector field F on Rd with the 1-form

ωF = F1 dx1 + · · ·+ Fd dxd .

The fact that Bn is divergence-free translates into the equation

d∗ωBn = 0 ,

where d∗ is the Hodge codifferential, that is, the formal adjoint of the exterior
derivative d. (It should be clear from the context whether the letter d denotes the
dimension or the exterior derivative.) By the Hodge decomposition, there is an
αn ∈ Ẇ 1,2(Rd,Λ2) such that

d∗αn = ωBn and dαn = 0 .

In terms of the Hodge star operator we can write the first equation as

∗ωBn = d ∗ αn .

This implies the following identity of d-forms,

En ·Bn dx = ωEn · ωBn dx = ωEn ∧ (∗ωBn) = ωEn ∧ d ∗ αn

= −d(ωEn ∧ ∗αn) .

In the last equality we used the fact that En is curl-free, which translates into
dωEn = 0. Multiplying by u ∈ Ẇ 1,d(Rd) and integrating by parts yields

∫

Rd
uEn ·Bn dx = −

∫

Rd
du ∧ ωEn ∧ ∗αn .
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With this identity at hand, we can argue similarly as before. By Hölder’s inequality
and the pointwise isometry of the Hodge star operator, we have

∣∣∣∣∣

N∑

n=1

∫

Rd
uEn ·Bn dx

∣∣∣∣∣ ≤ ∥∇u∥Ld∥
N∑

n=1

|En|2∥
1
2
L2∥

N∑

n=1

|αn|2∥
1
2

L
d

d−2
.

The normalization of (En) gives (3.1). Moreover, we claim that we have the analogue

of (3.2) with An, L3 and 2
3 replaced by αn, L

d
d−2 and 2

d , respectively. Indeed, each
αn can be written as

αn =
∑

j<k

α(j,k)
n dxj ∧ dxk

with α(j,k)
n ∈ Ẇ 1,2(Rd) and

∥Bn∥2L2 = ∥ωBn∥2L2 = ∥dαn∥2L2 + ∥d∗αn∥2L2 =
∑

j<k

∥∇α(j,k)
n ∥2L2 .

(The last equality is essentially that below [19, Eq. (3.3)].) Moreover,

|αn|2 =
∑

j<k

|α(j,k)
n |2 .

Thus, we can consider αn as an element of Ẇ 1,2(Rd,R
d(d−1)

2 ). Polarizing the above
identity for the derivatives of αn, we deduce from the orthonormality of the (Bn) in

L2(Rd,Rd) that of (αn) in Ẇ 1,2(Rd,R
d(d−1)

2 ). Thus, the claimed analogue of (3.2) is

a consequence of Corollary 3.2 (with M = d(d−1)
2 ). This completes the alternative

proof of Theorem 1.1 without the orthogonality of (En). "
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