
LLMs Can Reason Faster Only If We Let Them

Bilgehan Sel 1 Lifu Huang 2 Naren Ramakrishnan 1 Ruoxi Jia 1 Ming Jin 1

Abstract

Large language models (LLMs) are making in-

roads into classical AI problems such as au-

tomated planning, yet key shortcomings con-

tinue to hamper their integration. Chain-of-

Thought (CoT) struggles in complex multi-step

reasoning, and Tree-of-Thoughts requires mul-

tiple queries that increase computational over-

head. Recently, Algorithm-of-Thoughts (AoT)

have shown promise using in-context examples, at

the cost of significantly longer solutions compared

to CoT. Aimed at bridging the solution length

gap between CoT and AoT, this paper introduces

AoT-O3, which combines supervised finetuning

on AoT-style plans with a reinforcement learn-

ing (RL) framework designed to reduce solution

length. The RL component uses a reward model

that favors concise, valid solutions while main-

taining planning accuracy. Empirical evaluations

indicate that AoT-O3 shortens solution length by

up to 80% compared to baseline AoT while main-

taining or surpassing prior performance. These

findings suggest a promising pathway for more

efficient, scalable LLM-based planning.

1. Introduction

Developments in large language models (LLMs) (Vaswani,

2017; Radford, 2018; Radford et al., 2019; Brown et al.,

2020; Chowdhery et al., 2023; Zhao et al., 2023, inter alia)

have led to remarkable advancements in artificial intelli-

gence, particularly in natural language processing. These

models, pre-trained on vast corpora of data, have demon-

strated impressive capabilities across diverse domains, suc-

cessfully transferring their knowledge to downstream tasks

including code generation (Chen et al., 2021; Li et al., 2022;

Jiang et al., 2024), language understanding (Yuan et al.,

2022; Katz et al., 2024), instruction following (Ouyang

1Virginia Tech, Blacksburg, USA. 2University of California,
Davis, USA. Correspondence to: Bilgehan Sel <bsel@vt.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al., 2022; Bai et al., 2022; Rafailov et al., 2024), optimiza-

tion (Jin et al., 2024), and general problem-solving (Brown

et al., 2020; Nye et al., 2021; Wei et al., 2022; Huang &

Chang, 2022). Despite these successes, their performance

in complex tasks requiring diverse thought processes, par-

ticularly in planning domains (Kambhampati et al., 2024a;

Valmeekam et al., 2024), has remained notably limited. This

limitation becomes particularly evident in scenarios requir-

ing long-horizon reasoning, where the models must main-

tain coherence and logical consistency across multiple steps

while exploring various solution paths.

The introduction of methods such as Chain-of-Thought

(CoT) (Wei et al., 2022), Least-to-Most prompting (L2M)

(Zhou et al., 2022), Self-Consistency CoT (CoT-SC) (Wang

et al., 2022), and Self-Refine (Madaan et al., 2024) has

failed to significantly improve planning capabilities, even

with state-of-the-art LLMs. These approaches, while effec-

tive in simpler reasoning tasks, struggle with the complexity

inherent in planning problems where a single misstep can

lead to an unrecoverable state. This limitation has sparked

the development of various approaches aimed at diversify-

ing reasoning paths (Long, 2023; Yao et al., 2024; Lei et al.,

2023; Yao et al., 2023; Besta et al., 2024). These methods

have demonstrated considerable improvements in accuracy

compared to CoT by allowing models to explore multiple

solution paths simultaneously. However, they face signifi-

cant challenges: computational expense due to the need for

multiple model queries, implementation complexity when

applying to new problems, and performance that still falls

short of human benchmarks (Sel et al., 2024b; Kambham-

pati et al., 2024b). The gap between model performance

and human capability remains particularly pronounced in

domains requiring strategic thinking and adaptive reasoning.

Recent innovations, notably the LLM-Modulo framework

(Valmeekam et al., 2024) and Algorithm of Thoughts (AoT)

(Sel et al., 2024b; 2025), have shown promising results in

approaching human-level performance. LLM-Modulo ad-

dresses the limitations of self-feedback by incorporating

external verifiers to provide fine-grained feedback to LLMs,

effectively creating a closed loop system that can identify

and correct errors in real-time. This approach has demon-

strated remarkable success in improving model accuracy,

but the reliance on external verification tools introduces

additional complexity and computational overhead. In con-

1



LLMs Can Reason Faster Only If We Let Them

Input

Output

Input

Output

CoT AoT

Input

Output

AoT-O3

Figure 1. Illustration showing three reasoning strategies with LLMs: Chain of Thought (CoT), Algorithm of Thoughts (AoT), and

AoT-O3. Each box represents a thought step, with green indicating promising paths and red showing less promising alternatives. AoT-O3

demonstrates a more streamlined structure while maintaining the key benefits of branching exploration.

trast, AoT presents a pure LLM solution that eliminates the

need for external tools or additional prompting mechanisms.

It achieves self-correction by incorporating in-context exam-

ples that mirror human thought processes, either expanding

upon search nodes or transitioning to more promising nodes

that appear likely to reach the goal. This approach lever-

ages the model’s inherent ability to learn from examples

while maintaining the efficiency of single-query solutions.

Subsequent research has revealed that these example search

processes need not explicitly contain human intuitions; sim-

ply augmenting correct CoT-like solutions with random

step-by-step solutions enables models to achieve compara-

ble performance (Sel et al., 2025). This finding suggests

that the key to improved performance lies not in mimick-

ing human reasoning patterns specifically, but in providing

structured examples of successful problem-solving strate-

gies.

While AoT represents a significant advancement in perfor-

mance requiring only a single query per problem solution,

the inclusion of multiple reasoning paths substantially in-

creases the total solution length compared to CoT. This

expansion introduces proportional increases in computa-

tional requirements and solution time per problem, raising

concerns about scalability and efficiency. Excessively long

solutions also raise environmental concerns due to increased

token usage (Earth.Org, 2024)1. Critical questions emerge

regarding the necessity and effectiveness of these additional

steps: What proportion of these additional steps represents

intentional exploration by the model versus mere imitation

1Recent projections suggest AI-related power demand could
grow substantially in coming years (Agency, 2024). See Ap-
pendix A for an estimate of the potential impact.

of training examples? How much of the extended solution

length contributes meaningfully to problem-solving versus

serving as stylistic overhead? If unnecessary search paths ex-

ist primarily to match the style of training examples, can we

enable more efficient problem-solving by removing this con-

straint while maintaining the benefits of diverse reasoning

paths? Understanding these aspects is crucial for developing

more efficient approaches that maintain the advantages of

AoT while reducing computational overhead.

These solution strategies can be analyzed through the lens

of human cognitive systems, providing insights into their op-

erational mechanisms and potential improvements. While

CoT and L2M align with the analytical System 2 think-

ing (Kahneman, 2011), contrasting with reflexive System

1 decision-making, recent work (Sel et al., 2025) suggests

that AoT activates System 3 thinking (Webb, 2021). This

third system, characterized by deliberate contemplation and

strategic decision-making in the face of uncertainty, rep-

resents a more sophisticated level of cognitive processing.

Although we acknowledge this perspective, we propose that

current AoT implementations may be imitating rather than

truly engaging in System 3 thinking, pointing to the potential

for more efficient and deliberate reasoning path exploration.

This distinction between imitation and genuine engagement

with different cognitive systems has important implications

for the development of more effective problem-solving ap-

proaches.

This paper introduces AoT-O3, named after the highest op-

timization level in C++ programming language compilers,

which aims to bridge the solution length gap between CoT

and AoT while maintaining or improving performance. Our

approach represents a fundamental shift in how LLMs can

2



LLMs Can Reason Faster Only If We Let Them

be guided to solve complex problems more efficiently. We

employ reinforcement learning (RL) with carefully designed

objective reward models to encourage more concise AoT

responses without sacrificing solution quality. The reward

models are specifically crafted to balance the competing

objectives of solution efficiency and accuracy, ensuring that

shorter solutions do not come at the cost of reduced perfor-

mance. Notably, we pioneer the use of non-LLM reward

models that extend beyond simple accuracy metrics, making

the fine-tuning process more efficient and memory-friendly.

This innovation addresses one of the key limitations of ex-

isting approaches that rely heavily on LLM-based reward

models, which can introduce significant computational over-

head and potential biases as illustrated in Figure 1.

We demonstrate our method’s effectiveness across a wide

range of open-source LLMs and diverse benchmarks, pro-

viding comprehensive evidence of its generalizability and

robustness. Our evaluation encompasses various planning

domains, from simple sequential tasks to complex strategic

problems requiring multiple levels of reasoning. Results

show that AoT-O3 achieves an 80% reduction in solution

length while improving accuracy, an advantage that becomes

even more critical under tight token constraints. This re-

markable improvement in efficiency does not come at the

cost of solution quality; in fact, we observe consistent im-

provements in accuracy across most benchmarks. The suc-

cess of AoT-O3 in maintaining or enhancing performance

while dramatically reducing computational requirements

represents a significant step toward more practical and scal-

able applications of LLMs in complex problem-solving do-

mains.

2. Related Work

Evolution of LLM Reasoning Approaches. The emer-

gence of large language models has revolutionized ap-

proaches to complex problem-solving tasks. Initial work

demonstrated that these models, trained on diverse textual

data, could tackle various challenges through direct prompt-

ing (Brown et al., 2020; Chowdhery et al., 2023). This capa-

bility was significantly enhanced through the development

of step-by-step reasoning methods that reframe problems as

sequential decision processes. Chain-of-Thought prompting

(Wei et al., 2022; Kojima et al., 2022) and its variants (Zhang

et al., 2022; Nye et al., 2021) marked a crucial advancement

in structured reasoning. However, these approaches revealed

limitations in inherently sequential domains, particularly

planning problems (Long, 2023). Subsequent research intro-

duced more sophisticated frameworks like Tree of Thoughts

(Yao et al., 2024), which spawned numerous extensions (Lei

et al., 2023; Besta et al., 2024). While these methods im-

proved accuracy by leveraging LLMs as heuristic generators

within external search frameworks, they introduced signif-

icant computational overhead through multiple API calls.

The Algorithm of Thoughts framework (Sel et al., 2024b)

addressed these efficiency concerns by demonstrating that

carefully crafted in-context examples incorporating search

trajectories could achieve comparable or superior perfor-

mance with a single query. AoT+ (Sel et al., 2025) further

improved the ease of use and performance of AoT, although

in this paper we will use AoT as the naming for both.

Self-Improvement and Verification in LLMs. The con-

cept of autonomous improvement through self-verification

has been extensively explored in LLM research. Initial ef-

forts focused on constitutional training (Bai et al., 2022)

and ethical decision-making (Ma et al., 2023; Sel et al.,

2024a), demonstrating that models could be guided to eval-

uate and refine their outputs. This approach has shown

promise in specific domains such as code generation (Zelik-

man et al., 2023; Kim et al., 2024) and question-answering

(Madaan et al., 2024; Paul et al., 2023). Recent work has ex-

panded these concepts through recursive self-improvement

(Zelikman et al., 2023; 2024). However, significant chal-

lenges remain in symbolic reasoning tasks (Valmeekam

et al., 2023; Kamoi et al., 2024), where self-verification

often fails to identify critical errors. These limitations have

sparked debate about the fundamental capabilities of LLMs

in autonomous error correction (Kambhampati et al., 2024a),

particularly in domains requiring precise logical reasoning.

Reinforcement Learning for LLM Alignment. Rein-

forcement learning has emerged as a powerful approach

for aligning language models with human preferences and

improving their capabilities across various tasks. The foun-

dation was laid by InstructGPT (Ouyang et al., 2022), which

demonstrated that RL from Human Feedback (RLHF) could

effectively tune models to better follow instructions. This

was further developed by Constitutional AI (Bai et al., 2022),

which showed how recursive reward modeling could instill

specific behavioral constraints. Recent work has explored

alternative reward mechanisms, with Direct Preference Op-

timization (DPO) (Rafailov et al., 2024) providing a more

computationally efficient alternative to traditional RLHF.

The application of RL to improve reasoning capabilities

has been particularly noteworthy, with ReAct (Yao et al.,

2022) showing how reward signals could encourage more

structured exploration of solution spaces.

3. Effect of In-Context Examples in Planning

Before we decide which type of examples to choose for

supervised and RL finetuning for our method, we proceed

with exploring how the style of in-context demonstrations

affect the LLMs when they are prompted with a test problem.

Here, we are interested in the differences between prompt-

ing and supervised finetuning. First, let’s define planning

3



LLMs Can Reason Faster Only If We Let Them

problems of interest.

Classical Planning Problems. (Russell & Norvig, 1995)

A classical planning problem can be defined as finding

a sequence of actions that transitions the system from an

initial state I to a goal state G, given:

• A set of possible states S,

• A set of actions A, where each action has:

– Preconditions that must hold true for the action to

be applied,

– Effects that describe how the action changes the

state.

The goal is to compute a plan π = [a1, a2, . . . , an] such

that applying these actions in sequence achieves G starting

from I .

3.1. Effect of Random Demonstrations in Finetuning

The role of demonstrations in chain-of-thought prompting

was fundamentally reexamined by Min et al. (2022), show-

ing that randomly generated reasoning paths could achieve

comparable performance to carefully crafted demonstra-

tions. Their study revealed that the presence of step-by-step

reasoning patterns, rather than their actual correctness or op-

timality, was the key factor in enabling successful problem-

solving behavior in language models. This finding sug-

gested that demonstrations primarily serve to elicit a partic-

ular problem-solving format from the model, rather than to

transmit specific solution strategies. Their work challenged

the prevailing assumption that high-quality demonstrations

were necessary for effective CoT prompting, indicating that

the structural aspects of reasoning demonstrations might be

more important than their content.

Method
Accuracy (%)

CoT AoT

Prompting 8 64

Finetuning 3 5

Table 1. Random demonstrations performance of Llama-3.3-70B

with greedy-decoding on Game of 24 when prompted in 8-shot

setting and finetuned with 900 training and 100 test examples from

Yao et al. (2024); Sel et al. (2024b).

This insight has been recently extended to AoT. It’s been

demonstrated that augmenting correct AoT solutions with

random search trajectories achieved performance compa-

rable to carefully designed examples incorporating human

intuition (Sel et al., 2025). This shows that the benefits

of diverse reasoning paths in AoT persist even when some

of the demonstrated search trajectories are suboptimal or

irrelevant to the solution. This finding suggests that the

key advantage of AoT may lie not in its ability to mimic

human-like strategic thinking, but rather in its provision of a

structured framework for exploring multiple solution paths,

regardless of their individual quality.

However, while random demonstrations may be effective

for in-context prompting, their utility appears to diminish

significantly in model fine-tuning scenarios. As shown in

Table 1, when testing on the Game of 24 benchmark using

the Llama 3.3 70B model (Dubey et al., 2024), prompting

with random examples maintains comparable performance

to gold-standard demonstrations in both CoT and AoT set-

tings. In stark contrast, fine-tuning on random examples

leads to a dramatic deterioration in model performance,

with accuracy dropping below pre-finetuning levels. This

disparity suggests that while models can effectively filter

and utilize random demonstrations during inference, incor-

porating such noise during training may interfere with the

model’s ability to learn robust reasoning strategies.

3.2. Effect of Solution Length in AoT

To investigate the relationship between demonstration solu-

tion length and model performance, we conducted experi-

ments using the OpenAI GPT-4 model (Achiam et al., 2023)

on the Game of 24 benchmark (Yao et al., 2024; Sel et al.,

2024b). We examined this relationship in both in-context

learning (ICL) and fine-tuning scenarios, with particular

attention to how different solution length distributions affect

model accuracy and efficiency. For our ICL experiments,

we constructed three sets of 10-shot demonstrations (per

each test example, we select a new 10-shot examples), each

following a Gaussian distribution centered around differ-

ent mean solution lengths: short (10 steps), medium (30

steps), and long (60 steps) with std of 5.0 with a clip at 3.0
since the minimum number of steps in this game is three.

These demonstrations maintained consistent solution strate-

gies and reasoning patterns while varying in their degree of

elaboration and search path exploration.

As seen in Figure 2, our results indicate a strong positive

correlation between solution length and model performance,

with longer demonstrations leading to longer solutions pro-

duced by GPT-4 with higher accuracy rates, 15%, 31% and

61% with temperature of 0.5. These findings indicate that so-

lution length serves as more than just stylistic variation—it

appears to be fundamentally connected to the model’s ability

to reason effectively about complex problems. The superior

performance of longer solutions may be attributed to their

more comprehensive exploration of the solution space, al-

lowing the model to better understand and replicate success-

ful problem-solving strategies. These results have important

implications for both prompting and fine-tuning strategies,

suggesting that artificially constraining solution length may

inadvertently limit model performance.

4



LLMs Can Reason Faster Only If We Let Them

0 20 40 60 80 100 1200

1

2

3

4
AoT-Short

0 20 40 60 80 100 1200

1

2

3

4
AoT-Medium

0 20 40 60 80 100 120
Steps

0

1

2

3

4
AoT-Long

Figure 2. Effect of varying steps for demonstrations to generated

solutions in AoT

4. AoT-O3

In a typical RLHF pipeline, we have SFT stage, reward

model training stage and finally RL training stage. In our

framework, we will incentivize models to generate solutions

with less total number of steps while still generating valid

solutions. Since both of these objectives are objective, we

do not necessarily need the second stage which is the reward

model training stage, however, we will talk about the reward

model in its own subsection nevertheless.

4.1. SFT Stage

The supervised finetuning (SFT) stage aims to train the

model to follow AoT-style planning while maintaining so-

lution quality. Similar to how AoT uses carefully crafted

in-context examples to guide LLMs’ planning process, we

create a training dataset that demonstrates effective planning

strategies. However, instead of relying on human-authored

intuitions in the search trajectories, we utilize random search

paths that lead to valid solutions.

For each problem in our training set, we first obtain a valid

solution that successfully reaches the goal state. This solu-

tion can be obtained through various means, including tra-

ditional planning algorithms or even using an LLM. While

using an LLM might initially yield a lower percentage of cor-

rect solutions compared to curated datasets, this approach

offers greater flexibility and scalability. The efficiency trade-

off becomes a design choice based on specific requirements

and available resources.

Our training examples are structured around the concept

of state transitions guided by explicit thinking steps. Each

transition follows the format:

State: [Current state description]

Thinking/Transition: [Selection of an

action and considering its effects]

Next state: [New state description]

The thinking component serves as a crucial bridge between

states, providing the model with explicit reasoning that jus-

tifies the transition. This structured format helps the model

learn the relationship between states, actions, and their con-

sequences. Importantly, any given state in the sequence can

serve as a starting point for the next transition, allowing for

both forward progression and backtracking when necessary.

An example output from the model could be

represented as y = {(s0
a0−→ s00), (s0

a1−→

s01), (s00
a01−−→ s000), · · · , (s23424

a23424−−−−→ sgoal)} or

y = {T1, T2, · · · , Tfinal}. As seen from this representation,

at each step, the model has a choice to start from a previous

state and an action to perform on that state. This leads to

partial expansion, which is especially effective for memory

usage when the number of branches are very large in

classical planning problems with programs. In our case, we

are limited by the context in two ways: firstly, LLMs have a

maximum context window limit that they are pre-trained

for, and secondly, it is observed in the literature that LLMs

may fail to attend to some parts of the context in large

context sizes, especially the middle (Liu et al., 2024). There

exists works showing possible heuristics and algorithms

that are complete (like A*) such as Partial-Expansion A*

(Yoshizumi et al., 2000; Felner et al., 2012).

We generate random but valid exploration paths by starting

from either the initial state or intermediate states. At each

state, the model considers possible actions and their conse-

quences through the thinking step before transitioning to the

next state. This process creates a diverse set of trajectories

that may include both promising paths toward the goal and

dead-ends that require backtracking.

These exploration trajectories are then combined with seg-

ments of successful solution paths. The resulting training

examples demonstrate both the exploration of the search

5



LLMs Can Reason Faster Only If We Let Them

space and eventual convergence to valid solutions. This

combination teaches the model to balance exploration with

goal-directed behavior.

The SFT objective follows standard language model finetun-

ing approaches, using teacher forcing with a cross-entropy

loss:

L(θ) = −
∑

log pθ(yt|x, y<t) (1)

where x = (sstart, sgoal) is the input problem specification

and y is the target sequence containing the state-thinking-

transition triplets.

The training process develops several key capabilities in

the model. It learns to systematically explore the search

space while maintaining accurate state tracking. The ex-

plicit thinking steps help the model develop robust reason-

ing about state transitions and their consequences. The

model also learns to recognize promising solution paths and

successfully navigate toward goal states.

This supervised learning phase establishes the foundation

for the subsequent RL optimization stage. While the SFT

stage focuses on teaching the model the basic structure of

planning with thinking steps, the RL stage will introduce

rewards to encourage more efficient solutions while main-

taining these core planning capabilities.

4.2. Reward Model

While traditional reward models in language model align-

ment often rely on human feedback or complex learned

reward functions, our objective is more straightforward: we

with the model to generate solutions that are both correct

and efficient. To this end, we develop a simple but effective

reward function that balances solution validity with length

efficiency. In this section, we will use V for our reward

models due to them actually being value models used in RL

frameworks. This difference stem from the fact that most

RLHF frameworks consider the whole solution as a single

action, therefore framing the problem as a single-step RL, in

which reward and value models are the same. In our frame-

work, we consider each transition step as an action, leading

to our following feedback models being value models. If

they were to be thought of as actual reward models, due to

their definitions, the language model would try to hack the

reward by being close to the solution but prolonging the

solution to receive more total reward, conflicting with our

intention of shorter solutions.

The base reward structure assigns +1 for correct solutions

and -1 for incorrect ones, providing a clear signal for solu-

tion validity. However, this alone would not encourage the

model to find more concise solutions. To address this, we

introduce a step count penalty term for correct solutions:

V (Ti, y) =

{

max(1− nα, β) + κ1Ti∈y∗ if y is correct

−1 if y is incorrect

(2)

where n is the number of steps in the solution, α is the step

penalty factor, β is the cut-off to protect long solutions being

given less reward then incorrect solutions, e.g., β = −0.5,

κ controls the incentive if the transition was in the path

of the correct solution, and y∗ is the correct CoT solution

that can be extracted from a correct solution y. In cases

where it might be difficult to extract correct solution trace,

we can simply set κ = 0. We show in our experiments that

κ term is not crucial, though helps with faster adaptation

and slightly higher performance. This formulation creates a

clear trade-off: while the model is primarily incentivized to

find correct solutions, it receives higher rewards for doing

so with fewer steps.

The choice of α is crucial and depends on both the problem

domain and the context window constraints. For a given

problem type and context window size w, we aim to set α

such that:

1− wα ≳ β (3)

This ensures that a correct solution using the maximum

available context length receives a reward slightly higher

than an incorrect solution. Such calibration helps to have

more fine-grained levels of brevity to rewarded correctly.

Our reward model notably differs from traditional ap-

proaches in RLHF by eschewing learned reward models

in favor of this objective metric. This design choice offers

several advantages: it eliminates the need for reward model

training, reduces computational overhead during RL train-

ing stage and provides clear, interpretable feedback to the

model. Most importantly, it creates a direct optimization

pressure for finding shorter valid solutions while maintain-

ing the priority of solution correctness.

Reward model alternatives. The problems we focus on,

i.e., planning problems, typically have the trait of verifying

the solutions are much easier than producing solutions to

them. This assumption also affects the reward function

we propose in (2). In cases where we have more compute

available but the number of examples are more limited, it is

possible to have even finer grained feedback to the model

still with the assumption of no human-feedback. Consider

the following reward model,

Vπθ
(T ; sgoal) = Ey∼πθ(·|x=(T ′,sgoal)1(solution y is correct),

(4)

where T ′ refers to the ending state in transition T and x =
(T ′, sgoal) is the new problem where we prompt the model.

Here, we would like to attract attention to binary reward is

coming from not the solution of the model for the starting

6



LLMs Can Reason Faster Only If We Let Them

problem, but the newly constructed problem at each state.

This enables the model to learn per each transitions whether

the whole solution was correct or not and whether Ti is in

the path that lead to the correct solution. In reward function

(2), we either gave negative feedback for all transitions in

case of an incorrect solution, or gave a positive reward for

all transitions when the solution was correct. However, the

reward function in (2), also makes the distinction whether

a transition was indeed important for the solution of the

problem by the κ term.

4.3. RL Training Stage

The reinforcement learning stage builds upon the supervised

finetuning by optimizing the model for solution efficiency

while maintaining correctness. The core objective is to

maximize the expected reward under the policy distribution:

LRL(θ) = Ex∼D

[

Ey∼πθ(·|x) [ETi∈yV (Ti, y)]
]

(5)

where D is the dataset of problems, πθ represents the lan-

guage model being trained, x represents the input planning

problem, and R(·, ·) is our length-aware reward function

that balances solution correctness with efficiency defined in

(2).

This optimization can be accomplished through various RL

algorithms developed for language models. Trust Region

Policy Optimization (TRPO) (Schulman et al., 2015), Prox-

imal Policy Optimization (PPO) (Schulman et al., 2017;

Ziegler et al., 2019; Ouyang et al., 2022) and REINFORCE

leave-one-out (RLOO) (Ahmadian et al., 2024) have all

demonstrated success in language model alignment tasks.

Each algorithm offers different tradeoffs between training

stability, computational efficiency, and implementation com-

plexity.

The key distinction of our approach lies in the reward struc-

ture rather than the specific RL algorithm choice. Our re-

ward function provides clear, objective feedback about both

solution correctness and length efficiency, eliminating the

need for learned reward models or complex advantage esti-

mation schemes. This simplification allows us to focus on

the core challenge of finding shorter valid solutions without

introducing additional training complexity. In our experi-

ments later, we will utilize RLOO.

To maintain stability during RL training, we employ a refer-

ence model (the SFT model) to ensure the optimized policy

does not deviate too far from learned planning behaviors.

This constraint can be implemented through various mecha-

nisms depending on the chosen RL algorithm, such as KL di-

vergence penalties or direct probability ratio clipping. In our

setting, the KL divergence has the added benefit of entropy

regularization, popular in general RL setting. It is known

to help with mode collapse, an unwanted phenomenon that

occurs when the model exploits without enough exploration,

leading to suboptimal policies (Williams & Peng, 1991;

Ziebart et al., 2008; Mnih, 2016).

The training process samples planning problems from our

dataset and allows the model to generate complete solutions,

receiving rewards based on both correctness and solution

length. This creates a direct optimization pressure toward

finding more efficient solutions while maintaining the fun-

damental planning capabilities established during the SFT

stage.

5. Experimental Results

We evaluate AoT-O3 across two challenging planning bench-

marks: Game of X and N-Puzzle. Our experiments utilize

three open-source models of varying sizes: Gemma2-2B,

Llama3-1B, and Llama3-3B. We compare our approach

against two baselines: traditional Chain-of-Thought with su-

pervised fine-tuning (CoT-SFT) and Algorithm of Thoughts

with supervised fine-tuning (AoT-SFT). Our evaluation fo-

cuses on both solution accuracy and efficiency, measured by

the number of reasoning steps required to reach a solution.

5.1. Problem Setups

Game of X. We introduce a generalized variant of the

Game of 24, which presents a significantly more challeng-

ing planning problem. In our version, five numbers are

randomly sampled, and players must construct mathemat-

ical expressions using arbitrary combinations of addition,

subtraction, multiplication, and division operations to reach

a target value. This formulation creates a substantially larger

search space compared to the traditional Game of 24, requir-

ing more sophisticated planning and arithmetic reasoning

capabilities.

N-Puzzle. We utilize the classic 8-puzzle variant of the

sliding tile puzzle, where eight numbered tiles are arranged

on a 3×3 grid with one empty space. Each puzzle instance

is generated by starting from the goal state (tiles arranged

in numerical order) and applying a random sequence of

80-120 valid moves to ensure solvability. The objective is

to return the tiles to their original ordered configuration by

sliding tiles into the empty space. This creates a challenging

planning problem with a branching factor of up to 4 at each

step and requires careful consideration of move sequences

to avoid cycles or dead ends.

Word Ladder. We implement the classic word ladder

puzzle, where the objective is to transform one word into

another by changing a single letter at a time, with each inter-

mediate step forming a valid English word. Our dataset is

constructed using the NLTK base words dataset, focusing on

7



LLMs Can Reason Faster Only If We Let Them

Problem Method
Accuracy (%) Solution Length (steps)

Gemma2-2B Llama3-1B Llama3-3B Gemma2-2B Llama3-1B Llama3-3B

Game of X

CoT-SFT 32 24 35 4 4 4

AoT-SFT 63 55 66 33.5 31.9 37.2

AoT-O3 (κ = 0) 74 71 79 18.3 11.6 15.0

AoT-O3 78 72 82 16.3 9.7 14.5

N-Puzzle

CoT-SFT 34 36 42 8.1 8.3 7.9

AoT-SFT 66 64 71 24.8 26.0 33.1

AoT-O3 (κ = 0) 71 68 71 18.0 14.9 17.0

AoT-O3 73 68 75 17.9 14.2 15.7

W-Ladder

CoT-SFT 11 5 14 6.3 5.5 6.6

AoT-SFT 59 47 63 32.0 26.1 31.7

AoT-O3 (κ = 0) 59 51 66 18.6 16.2 20.1

AoT-O3 61 52 66 18.2 13.8 16.0

Table 2. Performance comparison of CoT-SFT, AoT-SFT, and AoT-O3 across different model sizes on Game of X, N-Puzzle and Word-

Ladder benchmarks. Results show both accuracy (percentage of successfully solved problems) and solution length (average number of

reasoning steps). AoT-O3 consistently achieves higher accuracy while requiring significantly fewer steps across all models and tasks.

words ranging from 4 to 10 letters in length. Test instances

are generated by first selecting random word pairs of equal

length from this corpus, then verifying that a valid solution

path exists between them with lengths ranging from 4 to

10 steps. This formulation creates a challenging planning

problem where the actions require language knowledge, and

success requires careful navigation through the lexical graph

while avoiding invalid words or circular paths.

5.2. Training and Testing Protocols

For both benchmarks, we implement a two-phase training

approach. The supervised fine-tuning (SFT) phase consists

of 500 training steps with a batch size of 128 and a learning

rate of 1e-5. This is followed by the reinforcement learning

phase using RLOO (REINFORCE leave-one-out), where we

employ a smaller batch size of 32 due to VRAM constraints

and a reduced learning rate of 1e-6. During the RL phase, we

generate 4 samples per problem to estimate policy gradients

while maintaining reasonable computational requirements.

Additionally, we set β = −0.5 and κ = 0.2. Further details

are given in Appendix B.

5.3. Results and Analysis

Table 2 presents comprehensive results comparing AoT-O3

against CoT-SFT and AoT-SFT baselines across three bench-

marks and multiple model sizes. Our results demonstrate

consistent improvements in both accuracy and solution ef-

ficiency. In the Game of X benchmark, AoT-O3 achieves

substantial improvements across all models, with solution

length reductions ranging from 51.3% to 62.4% while simul-

taneously improving accuracy by 11-17 percentage points.

The most notable improvement is observed with Llama3-

1B, reducing solution length from 31.9 to 9.7 steps while

improving accuracy from 55% to 72%. For the N-Puzzle

benchmark, we observe moderate but consistent improve-

ments. AoT-O3 achieves solution length reductions between

27.8% and 46.0% while maintaining or improving accuracy.

The smaller efficiency gains compared to Game of X can be

attributed to N-Puzzle’s larger state space and more complex

state transitions. The Word-Ladder results are particularly

interesting as they demonstrate AoT-O3’s effectiveness in

domains where actions must be derived from the LLM’s

prior knowledge of valid English words. Despite this addi-

tional complexity, AoT-O3 achieves a 47.1% reduction in

solution length (from 26.1 to 13.8 steps) while improving

accuracy from 47% to 52% on Llama3-1B. This suggests

that our approach effectively combines the model’s learned

knowledge with efficient planning strategies. These im-

provements in efficiency do not come at the cost of accuracy

- we observe consistent accuracy gains across all models and

benchmarks. This indicates that our approach not only pro-

motes more efficient solutions but also helps models develop

more robust planning strategies through focused exploration

of the solution space. The results are particularly promising

for applications where context window limitations or com-

putational resources are constrained, as AoT-O3 can achieve

better performance with significantly fewer tokens.

6. Conclusion

In this work, we introduced AoT-O3, an RL-enhanced AoT

framework that improves the efficiency of LLM-driven plan-

ning. By using a reward model that optimizes for both

accuracy and conciseness, our approach reduces reasoning

steps while maintaining quality. Results show up to 80%

reduction in solution length across benchmarks, demonstrat-

ing how structured learning and reinforcement fine-tuning

can make LLM planning more scalable and efficient.

8



LLMs Can Reason Faster Only If We Let Them

Impact Statement

This work has significant environmental and accessibility

implications for AI deployment. By reducing token usage by

up to 80% while maintaining or improving performance, our

method could substantially decrease the energy consump-

tion and carbon footprint of large-scale LLM deployments.

Given current LLM usage patterns, even a 30% reduction in

tokens could save tens of gigawatt-hours annually, equiva-

lent to the electricity usage of thousands of homes. However,

such efficiency gains could also accelerate LLM adoption

and lead to higher net resource consumption through the

Jevons paradox. Additionally, while improved planning

capabilities may enhance AI systems’ problem-solving abil-

ities, this could accelerate automation in ways that affect

human employment. We recommend careful consideration

of these tradeoffs as the technology is deployed, along with

continued research into techniques that balance computa-

tional efficiency with societal impact.

Acknowledgments

This work was supported in part by the National Science

Foundation under grants ECCS-233177 and IIS-2312794,

the Amazon-Virginia Tech Initiative for Efficient and Robust

Machine Learning, and the Commonwealth Cyber Initiative.

Bilgehan Sel acknowledges support through a grant from the

Amazon-Virginia Tech Initiative for Efficient and Robust

Machine Learning. Lifu Huang acknowledges the support

by the award No. 2238940 from the Faculty Early Career

Development Program (CAREER) of the National Science

Foundation (NSF). Naren Ramakrishnan acknowledges the

support by the awards, US NSF grants IIS-2312794, CMMI-

2240402.

References

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,

Anadkat, S., et al. Gpt-4 technical report. arXiv preprint

arXiv:2303.08774, 2023.

Agency, I. E. Ai, cryptocurrency, and data centers: Projected

energy consumption by 2026. Data Center Frontier, 2024.

URL https://www.datacenterfrontier.

com/energy/article/33038469///

iea-study-sees-ai-cryptocurrency/

/-doubling-data-center-energy-/

/consumption-by-2026. Accessed: 2025-01-30.

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,

J., Pietquin, O., Üstün, A., and Hooker, S. Back

to basics: Revisiting reinforce style optimization for

learning from human feedback in llms. arXiv preprint

arXiv:2402.14740, 2024.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,

Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-

non, C., et al. Constitutional ai: Harmlessness from ai

feedback. arXiv preprint arXiv:2212.08073, 2022.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-

stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,

Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:

Solving elaborate problems with large language models.

In Proceedings of the AAAI Conference on Artificial In-

telligence, volume 38, pp. 17682–17690, 2024.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,

Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., et al. Language models are few-shot learners.

Advances in neural information processing systems, 33:

1877–1901, 2020.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,

Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,

G., et al. Evaluating large language models trained on

code. arXiv preprint arXiv:2107.03374, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,

G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,

Gehrmann, S., et al. Palm: Scaling language modeling

with pathways. Journal of Machine Learning Research,

24(240):1–113, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,

A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,

A., et al. The llama 3 herd of models. arXiv preprint

arXiv:2407.21783, 2024.

Earth.Org. Generative ai is exhausting the

power grid. Earth.Org, 2024. URL https:

//earth.org/generative-ai-is-/

/exhausting-the-power-grid/. Accessed:

2025-01-30.

Felner, A., Goldenberg, M., Sharon, G., Stern, R., Beja,

T., Sturtevant, N., Schaeffer, J., and Holte, R. Partial-

expansion a* with selective node generation. In Proceed-

ings of the AAAI Conference on Artificial Intelligence,

volume 26, pp. 471–477, 2012.

Huang, J. and Chang, K. C.-C. Towards reasoning in

large language models: A survey. arXiv preprint

arXiv:2212.10403, 2022.

Jiang, J., Wang, F., Shen, J., Kim, S., and Kim, S. A survey

on large language models for code generation. arXiv

preprint arXiv:2406.00515, 2024.

Jin, M., Sel, B., Hardeep, F., and Yin, W. Democratizing

energy management with llm-assisted optimization aut-

oformalism. In 2024 IEEE International Conference on

Communications, Control, and Computing Technologies

9



LLMs Can Reason Faster Only If We Let Them

for Smart Grids (SmartGridComm), pp. 258–263. IEEE,

2024.

Kahneman, D. Thinking, fast and slow. Farrar, Straus and

Giroux, 2011.

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M.,

Stechly, K., Bhambri, S., Saldyt, L., and Murthy, A. Llms

can’t plan, but can help planning in llm-modulo frame-

works. arXiv preprint arXiv:2402.01817, 2024a.

Kambhampati, S., Valmeekam, K., Guan, L., Verma, M.,

Stechly, K., Bhambri, S., Saldyt, L. P., and Murthy, A. B.

Position: Llms can’t plan, but can help planning in llm-

modulo frameworks. In Forty-first International Confer-

ence on Machine Learning, 2024b.

Kamoi, R., Zhang, Y., Zhang, N., Han, J., and Zhang, R.

When can llms actually correct their own mistakes? a

critical survey of self-correction of llms. arXiv preprint

arXiv:2406.01297, 2024.

Katz, D. M., Bommarito, M. J., Gao, S., and Arredondo, P.

Gpt-4 passes the bar exam. Philosophical Transactions

of the Royal Society A, 382(2270):20230254, 2024.

Kim, G., Baldi, P., and McAleer, S. Language models can

solve computer tasks. Advances in Neural Information

Processing Systems, 36, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,

Y. Large language models are zero-shot reasoners. Ad-

vances in neural information processing systems, 35:

22199–22213, 2022.

Lei, B., Liao, C., Ding, C., et al. Boosting logical reasoning

in large language models through a new framework: The

graph of thought. arXiv preprint arXiv:2308.08614, 2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J.,

Leblond, R., Eccles, T., Keeling, J., Gimeno, F., Dal Lago,

A., et al. Competition-level code generation with alpha-

code. Science, 378(6624):1092–1097, 2022.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,

M., Petroni, F., and Liang, P. Lost in the middle: How

language models use long contexts. Transactions of the

Association for Computational Linguistics, 12:157–173,

2024.

Long, J. Large language model guided tree-of-thought.

arXiv preprint arXiv:2305.08291, 2023.

Ma, X., Mishra, S., Beirami, A., Beutel, A., and Chen,

J. Let’s do a thought experiment: Using counter-

factuals to improve moral reasoning. arXiv preprint

arXiv:2306.14308, 2023.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao,

L., Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S.,

Yang, Y., et al. Self-refine: Iterative refinement with self-

feedback. Advances in Neural Information Processing

Systems, 36, 2024.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,

Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of

demonstrations: What makes in-context learning work?

arXiv preprint arXiv:2202.12837, 2022.

Mnih, V. Asynchronous methods for deep reinforcement

learning. arXiv preprint arXiv:1602.01783, 2016.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,

Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,

M., Luan, D., et al. Show your work: Scratchpads for

intermediate computation with language models. arXiv

preprint arXiv:2112.00114, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,

Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,

et al. Training language models to follow instructions

with human feedback. Advances in neural information

processing systems, 35:27730–27744, 2022.

Paul, D., Ismayilzada, M., Peyrard, M., Borges, B., Bosse-

lut, A., West, R., and Faltings, B. Refiner: Reasoning

feedback on intermediate representations. arXiv preprint

arXiv:2304.01904, 2023.

Radford, A. Improving language understanding by genera-

tive pre-training. 2018.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,

Sutskever, I., et al. Language models are unsupervised

multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-

mon, S., and Finn, C. Direct preference optimization:

Your language model is secretly a reward model. Ad-

vances in Neural Information Processing Systems, 36,

2024.

Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. Deep-

speed: System optimizations enable training deep learn-

ing models with over 100 billion parameters. In Proceed-

ings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pp. 3505–3506,

2020.

Russell, S. J. and Norvig, P. Artificial intelligence: A mod-

ern approach. 1995.

Samsi, S., Zhao, D., McDonald, J., Li, B., Michaleas, A.,

Jones, M., Bergeron, W., Kepner, J., Tiwari, D., and

Gadepally, V. From words to watts: Benchmarking the

energy costs of large language model inference. In 2023

10



LLMs Can Reason Faster Only If We Let Them

IEEE High Performance Extreme Computing Conference

(HPEC), pp. 1–9. IEEE, 2023.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and

Moritz, P. Trust region policy optimization. In

Bach, F. and Blei, D. (eds.), Proceedings of the 32nd

International Conference on Machine Learning, vol-

ume 37 of Proceedings of Machine Learning Research,

pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

URL https://proceedings.mlr.press/v37/

schulman15.html.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017.

Sel, B., Shanmugasundaram, P., Kachuee, M., Zhou, K.,

Jia, R., and Jin, M. Skin-in-the-game: Decision making

via multi-stakeholder alignment in llms. arXiv preprint

arXiv:2405.12933, 2024a.

Sel, B., Tawaha, A., Khattar, V., Jia, R., and Jin, M. Algo-

rithm of thoughts: Enhancing exploration of ideas in large

language models. In Salakhutdinov, R., Kolter, Z., Heller,

K., Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.

(eds.), Proceedings of the 41st International Conference

on Machine Learning, volume 235 of Proceedings of Ma-

chine Learning Research, pp. 44136–44189. PMLR, 21–

27 Jul 2024b. URL https://proceedings.mlr.

press/v235/sel24a.html.

Sel, B., Jia, R., and Jin, M. Llms can plan only if we

tell them. 2025. URL https://arxiv.org/abs/

2501.13545.

Valmeekam, K., Marquez, M., and Kambhampati, S. Can

large language models really improve by self-critiquing

their own plans? arXiv preprint arXiv:2310.08118, 2023.

Valmeekam, K., Stechly, K., and Kambhampati, S. Llms

still can’t plan; can lrms? a preliminary evaluation of ope-

nai’s o1 on planbench. arXiv preprint arXiv:2409.13373,

2024.

Vaswani, A. Attention is all you need. Advances in Neural

Information Processing Systems, 2017.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,

S., Chowdhery, A., and Zhou, D. Self-consistency im-

proves chain of thought reasoning in language models.

arXiv preprint arXiv:2203.11171, 2022.

Webb, P. System 3 Thinking: How to Choose Wisely

when Facing Doubt, Dilemma, Or Disruption. Inten-

tional Training Concepts Pty Limited, 2021. ISBN

9781922553560. URL https://books.google.

com/books?id=M1G6zgEACAAJ.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,

E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting

elicits reasoning in large language models. Advances in

neural information processing systems, 35:24824–24837,

2022.

Williams, R. J. and Peng, J. Function optimization using

connectionist reinforcement learning algorithms. Con-

nection Science, 3(3):241–268, 1991.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,

K., and Cao, Y. React: Synergizing reasoning and acting

in language models. arXiv preprint arXiv:2210.03629,

2022.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,

and Narasimhan, K. Tree of thoughts: Deliberate problem

solving with large language models. Advances in Neural

Information Processing Systems, 36, 2024.

Yao, Y., Li, Z., and Zhao, H. Beyond chain-of-thought,

effective graph-of-thought reasoning in language models.

arXiv preprint arXiv:2305.16582, 2023.

Yoshizumi, T., Miura, T., and Ishida, T. A* with par-

tial expansion for large branching factor problems. In

AAAI/IAAI, pp. 923–929, 2000.

Yuan, A., Coenen, A., Reif, E., and Ippolito, D. Wordcraft:

story writing with large language models. In Proceedings

of the 27th International Conference on Intelligent User

Interfaces, pp. 841–852, 2022.

Zelikman, E., Lorch, E., Mackey, L., and Kalai, A. T. Self-

taught optimizer (stop): Recursively self-improving code

generation. arXiv preprint arXiv:2310.02304, 2023.

Zelikman, E., Harik, G., Shao, Y., Jayasiri, V., Haber, N.,

and Goodman, N. D. Quiet-star: Language models can

teach themselves to think before speaking. arXiv preprint

arXiv:2403.09629, 2024.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Automatic

chain of thought prompting in large language models.

arXiv preprint arXiv:2210.03493, 2022.

Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y.,

Min, Y., Zhang, B., Zhang, J., Dong, Z., et al. A survey of

large language models. arXiv preprint arXiv:2303.18223,

2023.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang,

X., Schuurmans, D., Cui, C., Bousquet, O., Le, Q., et al.

Least-to-most prompting enables complex reasoning in

large language models. arXiv preprint arXiv:2205.10625,

2022.

11



LLMs Can Reason Faster Only If We Let Them

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.

Maximum entropy inverse reinforcement learning. In

Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B., Radford,

A., Amodei, D., Christiano, P., and Irving, G. Fine-tuning

language models from human preferences. arXiv preprint

arXiv:1909.08593, 2019.

12



LLMs Can Reason Faster Only If We Let Them

A. Energy and Token Usage Calculations

In this appendix, we provide a detailed estimation of the current token usage in ChatGPT and the potential energy savings

from reducing token counts. All values and references herein are approximate but illustrate the magnitude of efficiency

gains possible at scale.

A.1. Estimating Token Usage

User Base and Queries. As of December 2024, ChatGPT has over 300 million weekly active users, with users sending

more than 1 billion messages daily.2 Assuming each message involves an average of 400 tokens — encompassing both user

input and model output — we can estimate the total token usage.

Total Daily and Yearly Token Count. Given over 1 billion messages daily, the total daily token amounts to 400 billion.

Extrapolating to a full year results in approximately 146 trillion tokens per year.

A.2. Energy Usage per Token

Energy consumption per token varies with model size, hardware, and data-center efficiency. Research estimates that models

like LLaMA 65B consume about 3–4 joules per token (Samsi et al., 2023). Since 1 joule = 2.77778 × 10−7 kWh, 3–4

joules per token converts to roughly 8.33 × 10−7 kWh/token to 1.11 × 10−6 kWh/token. We use the midpoint 9.72 ×
10−7 kWh/token for our calculations.

A.3. Daily and Annual Energy Consumption

Using the midpoint estimate, we see 400 billion tokens/day × 9.72× 10−7 kWh/token ≈ 388.8 MWh/day.

Over one year, we see 388.8 MWh/day × 365 ≈ 141.9 GWh/year.

A.4. Potential Savings from Token Reduction

Reducing token usage by 30% results in approximately 42.6 GWh/year.

If we cut token counts by half, we see approximately 71 GWh/year savings in energy usage.

A.5. Contextualizing the Energy Savings

Residential Electricity Usage. According to the U.S. Energy Information Administration (EIA), the average annual

electricity consumption for a U.S. residential utility customer was about 10,791 kWh in 2022.3 Hence:

• 42.6 GWh/year savings ≈ electricity usage of 42.6×106 kWh
10,791 kWh/home

≈ 3,948 homes for a year.

• 71 GWh/year savings ≈ electricity usage of about 71×106 kWh
10,791 kWh/home

≈ 6,580 homes for a year.

Carbon Emission Reductions. Using an estimate of 0.81 pounds (0.367 kg) of CO2 emitted per kWh in the U.S.4:

• 42.6 GWh → 42.6 ×106 kWh × 0.367 kg CO2/kWh ≈ 15,634 metric tons CO2.

• 71 GWh → 71 ×106 kWh × 0.367 kg CO2/kWh ≈ 26,057 metric tons CO2.

These quantities correspond to removing thousands of gasoline-powered cars from the road or preserving thousands of acres

of forest in terms of carbon offsets (see Fig. 3).5

2https://www.theverge.com/2024/12/4/24313097/chatgpt-300-million-weekly-users
3https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
4https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
5https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

13



LLMs Can Reason Faster Only If We Let Them

Scenario 1: 

30% token reduction

Energy savings:

42.6 GWh/year

Carbon emission reduction:

15,634 metric tons/year

gasoline-powered passenger 

vehicles driven for one year 3,647 6,078

Scenario 2: 

50% token reduction

Energy savings:

71 GWh/year

Carbon emission reduction:

26,057 metric tons/year

pounds of coal burned 17,366,480 2,932,036

tons of waste recycled 

instead of landfilled 5,524 9,207

tree seedlings grown 

for 10 years 258,510 430,855

acres of U.S. forests in 

one year 15,682 26,137

*Greenhouse Gas 

Equivalencies Calculator

https://www.epa.gov/energy/greenhouse-

gas-equivalencies-calculator

Figure 3. Illustration of two scenarios—a 30% (pink) vs. 50% (green) reduction in token usage—and illustrates their equivalent environ-

mental impacts (e.g., cars off the road, coals burned, waste recycled, seedlings grown, acres of forest). These numbers contextualize the

calculations by showing how modest efficiency gains can yield significant benefits for emissions and resource consumption.

Overall, these estimates highlight the potential environmental and cost impact that arises from large-scale LLM inference.

Even moderate gains in token efficiency (e.g., 30–50%) can translate to tens of gigawatt-hours saved annually and

correspondingly meaningful CO2 reductions.

Key Assumptions and Limitations In these estimates, data center energy efficiency (often quantified by Power Usage

Effectiveness, or PUE) plays a major role. An ultra-efficient center with a PUE near 1.1 uses roughly 10% extra overhead

(e.g., cooling and networking), whereas a PUE above 1.5 can raise total consumption by 50% or more. Thus, even if token

usage shrinks by 30–50%, the real reduction in total energy may be proportionally less depending on the facility’s PUE.

Moreover, the uniform-token-savings assumption—that energy reduction scales linearly with fewer tokens—overlooks fixed

overheads (e.g., loading the model into memory each query) that may blunt the full benefits of shorter outputs. Finally,

unaccounted training energy can weigh in daily inference usage when models are re-trained frequently or undergo large-scale

fine-tuning cycles. Hence, while reducing tokens helps, it alone cannot capture AI’s entire environmental footprint. We also

did not account for the complex Jevons paradox, i.e., technological improvements increase the efficiency of resource use,

which may paradoxically lead to an overall increase in the consumption of that resource.

B. Experiment Details

This appendix provides comprehensive details about our experimental setup, hyperparameters, and implementation choices

to ensure reproducibility of our results.

B.1. Model Specifications

We conducted experiments using three open-source language models:

• Gemma2-2B: 2 billion parameters, using bfloat16 data type.

• Llama3-1B: 1 billion parameters, using bfloat16 data type.

• Llama3-3B: 3 billion parameters, using bfloat16 data type.

14



LLMs Can Reason Faster Only If We Let Them

All models were trained on 8x NVIDIA H100 GPUs with 80GB memory. For multi-GPU training, we utilized DeepSpeed

(Rasley et al., 2020) with a suitable gradient accumulation step of to maintain effective batch sizes while managing memory

constraints for the various models we trained.

B.2. Dataset Construction

For each benchmark, we constructed datasets following these specifications:

Game of X

• Training set: 64,000 examples

• Test set: 100 examples

• Numbers sampled uniformly from [1, 100]

• Target values sampled uniformly from [1, 100]

• Filtered to ensure each problem has at least one valid solution

N-Puzzle

• Training set: 64,000 examples

• Test set: 100 examples

• Initial states generated with 80-120 random moves from goal state

• Manhattan distance from initial to goal state ranging from 15 to 30

Word Ladder

• Training set: 32,000 examples

• Test set: 100 examples

• Word length range: 4-10 characters

• Solution path length range: 4-10 steps

• Dictionary: NLTK Words Corpus (filtered for common English words)

B.3. Training Protocol

Our training process consisted of two phases: Supervised Fine-tuning (SFT) and Reinforcement Learning (RL). Here we

detail the specific parameters and protocols for each phase.

B.3.1. SUPERVISED FINE-TUNING PHASE

Optimization Parameters

• Optimizer: AdamW

• Base learning rate: 1e-5

• Weight decay: 0.01

• Gradient clipping: 0.1 (max norm)

• Batch size: 128 (effective, after gradient accumulation)

15



LLMs Can Reason Faster Only If We Let Them

• Training steps: 500

• Warm-up steps: 50

• Learning rate scheduler: Cosine annealing

Implementation Details

• Mixed precision training (BF16)

• Gradient checkpointing enabled

• Token sequence length: 2048

• Padding: Dynamic batching with attention masking

B.3.2. REINFORCEMENT LEARNING PHASE

We utilized trl library from huggingface, however, we needed to have a custom RLOO trainer implementation with minor

but crucial differences to the original library due to it being designed for LLM reward models.

RLOO Implementation

• Algorithm: REINFORCE leave-one-out

• Base learning rate: 1e-6

• Batch size: 32

• Samples per problem: 4

• KL penalty coefficient: 0.1

• Value loss coefficient: 0.5

Reward Model Parameters

• Step penalty factor (α): 0.02

• Minimum reward cutoff (β): -0.5

• Solution path bonus (κ): 0.2

Training Schedule

• Total steps: 50

• Warm-up steps: 50

• Learning rate schedule: Cosine annealing

B.4. Evaluation Protocol

During evaluation, we used the following settings:

Inference Parameters

• Temperature: 0.0

• Top-p (nucleus sampling): 0.0

• Maximum new tokens: 1024

• Repetition penalty: No

16


