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Abstract

There is an upward trend of deploying distributed energy re-
source management systems (DERMS) to control modern
power grids. However, DERMS controller communication
lines are vulnerable to cyberattacks that could potentially im-
pact operational reliability. While a data-driven intrusion de-
tection system (IDS) can potentially thwart attacks during
deployment, also known as the evasion attack, the training
of the detection algorithm may be corrupted by adversarial
data injected into the database, also known as the poisoning
attack. In this paper, we propose the first framework of IDS
that is robust against joint poisoning and evasion attacks. We
formulate the defense mechanism as a bilevel optimization,
where the inner and outer levels deal with attacks that occur
during training time and testing time, respectively. We verify
the robustness of our method on the IEEE-13 bus feeder model
against a diverse set of poisoning and evasion attack scenarios.
The results indicate that our proposed method outperforms the
baseline technique in terms of accuracy, precision, and recall
for intrusion detection.

Introduction

With the rapid digitization of societal-scale infrastructures,
power systems are gradually being transformed into cyber-
physical power systems (CPPSs), also known as smart grids.
The use of distribution energy resources (DERs) such as
rooftop photovoltaic and energy storage systems introduces
variability in operations—uncontrolled variations in power
injection can induce abrupt fluctuations in nodal voltages,
jeopardizing system reliability (Liu and Stewart 2021; ul Ab-
deen et al. 2024). Thus, distributed energy resource manage-
ment systems (DERMS) are increasingly deployed to man-
age the potential adverse impacts of DERs on distribution
feeder voltages (Jain, Sahani, and Liu 2021). The centralized
DERMS controller receives data streams from advanced me-
tering infrastructure (AMI) and then decides upon optimal
real and reactive power dispatch settings for inverter-based
DERs (Dall’ Anese, Dhople, and Giannakis 2014). However,
the heavy reliance on communications exposes the system
to cyberattacks (Case 2016). By targeting the DERMS com-
munication channels, attackers can initiate falsified dispatch
commands that cause severe voltage disturbances and dam-
age substations or household equipment.
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Cyber-vulnerability makes it imperative to study assess-
ment and defense strategies (Ike et al. 2022). The denial-of-
service (DoS) attack (Chen et al. 2022) and false data injec-
tion attack (FDIA) (Jafarigiv et al. 2021) are two commonly
analyzed attacks on the DERMS controller. Methods to detect
and mitigate these attacks in the cyber-layer have also been
investigated (Huseinovi¢ et al. 2020; Raja et al. 2022), includ-
ing recent works with machine learning (Guo et al. 2021; Has-
nat and Rahnamay-Naeini 2021; Nguyen et al. 2021). Besides
DoS and FDIA, a relatively low-probability but high-severity
attack involves modifications to the DERMS controller algo-
rithm after gaining unauthorized access (Jain, Sahani, and
Liu 2021). As the software can be altered to disguise mali-
cious command data packets, such attacks can be difficult
to detect with a centralized method (Sun et al. 2021). To
counteract, decentralized inverter-based IDSs are proposed in
(Jain, Sahani, and Liu 2021; Urbina et al. 2016); specifically,
a regression model for expected control commands is trained
with historical data and the prediction error is subsequently
leveraged for evasion attack detection. Nevertheless, a crucial
vulnerability persists: the historical data may be adversarially
manipulated by a data poisoning attack; as a consequence,
the trained model may trigger false alarms or miss attack
events when deployed in test time (Tian et al. 2022). This
calls for an IDS that is robust to attacks that may occur at
different stages.

In this paper, we focus on the challenging scenario where
both poisoning (training phase) and evasion (testing phase)
attacks can be staged. For the development of the defense
mechanism, our key insight is that as the trained model will
be used subsequently for evasion attack detection, such model
should be trained robustly and in an end-to-end fashion. The
contributions are summarized as follows:

* Development of a model-based IDS against joint poison-
ing and evasion attacks on DERMS;

* Formulation of a bilevel optimization problem, where the
inner level robustly learns a model and the outer level
finds an optimal threshold for the model-based prediction
error;

* Evaluation of the proposed method in a range of attack sce-
narios and demonstration of improved robustness against
the baseline method.

Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Cyber-physical power system and its vulnerability.

The rest of the paper is organized as follows. Section
presents related works on cyber-defense mechanisms for
power grids. Section discusses backgrounds on CPPS and
the attack model. The defense strategy is presented in Sec-
tion . Section conducts numerical evaluation of the proposed
method and discusses the results. Finally, Section concludes
the work.

Related work

Cyberattacks on power grids include DoS, delay attacks,
man-in-the-middle attacks, replay attacks, FDIAs, just to
name a few (Peng et al. 2019; Tuyen et al. 2022). Various
defense mechanisms have been proposed (Sun, Hahn, and
Liu 2018; Peng et al. 2019), among which machine learning
(ML) techniques are promising (Berghout, Benbouzid, and
Muyeen 2022). Existing data-driven IDSs can be categorized
into supervised learning (Wang et al. 2019), semi-supervised
learning (Farajzadeh-Zanjani et al. 2021), unsupervised learn-
ing (Karimipour et al. 2019), self-supervised learning (Zhang
et al. 2021), and reinforcement learning (Kurt et al. 2018). To
improve data efficiency, model-based defense mechanisms
can leverage physics and have been developed to detect eva-
sion attacks (Karimipour and Dinavahi 2017; Jain, Sahani,
and Liu 2021).

Nevertheless, the effectiveness of ML-based IDS can be
significantly reduced by poisoning attacks, which have be-
come an emerging threat (Tian et al. 2022). Different from
an evasion attack that occurs during deployment (test time),
a poisoning attack can misguide the model training by ma-
nipulating the training data, thus yielding a falsified model
for deployment. Defending against poisoning attacks is chal-
lenging and less investigated for power system cybersecurity
(Zografopoulos, Konstantinou, and Hatziargyriou 2022). Fur-
thermore, very few works have addressed the scenario of joint
poisoning and evasion attacks, leaving a substantial gap in the
literature. The challenge is to reason about the propagation of
error induced by poisoning attacks to test time performance
and then design a learning framework that is robust to such
error propagation.

The present study initiates the first study in this important
direction. Our technique hinges on bilevel optimization (Liu
et al. 2021). The methodology design is inspired by the recent
line of research on end-to-end optimization (Kotary et al.
2021), which provides a principled way to design the training

of a model in view of its consequent usage during test time.

Power system and attack model
Cyber-physical power system

The physical layer of a CPPS consists of the feeders and
DERMS controller and the cyber layer represents the infor-
mation and communication technology (ICT) or the supervi-
sory control and data acquisition (SCADA) system and the
communication paths for data exchange (see Fig. 1 for an
illustration with the IEEE-13 bus feeder model) (Jain, Sahani,
and Liu 2021). The open platform communication (OPC)
server receives measurement packets from the feeder and
prepares the data for SCADA to access in the cyber layer.
Measurement data are sent to the DERMS controller through
a firewall to check for discrepancies. The control actions,
such as the optimal real and reactive power setpoints, are
computed by the DERMS controller and sent back to the
feeder for actuation. An IDS is deployed within the cyber
layer to constantly check for the integrity of data and control
commands.

Attack model

Due to the heavy reliance on ICT, the attack surface is wide
in practice and may include data integrity injection at sub-
stations and over communication links, distributed attacks
by manipulating endpoint devices such as smart meters and
smart appliances, or even a more powerful attack such as
spear phishing attacks that gain access to communication
paths or modify the DERMS controller software (Adepu,
Kandasamy, and Mathur 2018). The goal of the attacker can
be to falsify the dispatch control commands to cause voltage
violations and exact damage to the physical systems. Never-
theless, among all the possibilities, some of the attacks can
be more severe (e.g., taking over control centers) than oth-
ers (e.g., attacking smart appliances). As a consequence, the
attack may range in severity due to the ability of the attacker.
In this study, we consider two types of threats: evasion
attacks and poisoning attacks. While these threats can be im-
plemented with one or a combination of the aforementioned
attacks, the key difference is the time when the attack is
staged: an evasion attack occurs during deployment to evade
IDS, whereas a poisoning attack may be conducted in an
earlier stage during model training to corrupt the IDS.



Our assumption of the attacker is comparable to the ex-
isting works on data integrity attacks (Liang et al. 2016); in
particular, we assume that the data used for training or during
actual operations can be maliciously manipulated. We remark
that the attacker considered in our study is stronger than some
existing works on model-based defense (Jain, Sahani, and
Liu 2021; Ghaeini et al. 2018) in the sense that prior works
focus on evasion attacks while we consider the additional
mode of poisoning attacks. This stronger attack model seems
more practical due to the increasing use of ML in modern
IDS and the various security loopholes in database systems
(Tian et al. 2022; Ike et al. 2022).

Defense strategy
Decentralized detection

In model-based IDSs, the expected command is compared
against the actual command received, and an anomaly is de-
tected when the difference between these values is larger than
a threshold (Jafarigiv et al. 2021; Jain, Sahani, and Liu 2021).
As the cyberattack may directly target the DERMS software
to make malicious data packets appear legitimate, a central-
ized IDS may be evaded, while a decentralized approach that
uses locally available measurements may be more difficult
to deceive. While our framework can incorporate more com-
plex models such as neural networks (Jafarigiv et al. 2021;
ul Abdeen et al. 2022), due to limited computational power
at the inverter level, a simple model such as linear regression
is preferred. Following (Jain, Sahani, and Liu 2021; Zeng
et al. 2021), a linear regression model is used to predict the
expected control commands based on local load and maxi-
mum charging and discharging rate values. For instance, the
expected control command for real power dispatch set point
is given by

pred __ _1,p 2,p 3,p 4,p
PD =ap +CYD *pL+aD *QL+aD *PDmaxs (1)

where pr, and g, represent the active and reactive power
demands, respectively, and pp,q, is the maximum gener-
ation limit of the inverter. Here, {3} ;=1 . 4 are coeffi-
cients of the regression model. Note that we can write (1)
as P — o .z, where © = [1,pL,qL, PDmaz) | and
a=lagP,asl a%P a P T

In the following, we denote x; as the feature vector for
data point ¢ (so « - z; is the expected command) and p; as the
actual command. For each data point (x;, p;), if the absolute
difference |« - x; — p;| between the expected and actual
commands is larger than a threshold 7, then we consider
that an anomaly has occurred; otherwise, the data point is
considered normal. Similar models can be instantiated for
other control commands, such as reactive power dispatch set
points for PV inverters and charging or discharging rates for
energy storage inverters. To streamline the presentation, we
will focus on the real power dispatch set point for illustration.

Bilevel formulation of defense

Problem setup. Let D; = {(z;,p;)};%; be an unlabeled
dataset, where ; € R* is the feature vector and p; is the

actual command. Suppose we also have access to a dataset
that contains labels regarding whether an attack has occurred,
ie., Dy = {(zi,pi,vi)}i2,, where y; € {—1,+1} is the
label with 41 indicating the anomaly and —1 indicating the
normal condition. In practice, as cyberattack data are rare and
difficult to obtain, we expect that the amount of unlabeled
data to be much larger than the amount of cyberattack data,
namely n; > no. Based on our attack model, a certain (but
unknown) percentage of the dataset D; may be poisoned; thus
the actual measurements p; cannot be trusted. We assume
that the labels y; in D5 are authentic, since they are often
carefully cross-checked by experts, although it is possible to
extend our framework to consider corrupted labels as well.

Due to the presence of poisoned data during training, the
conventional pipeline that first estimates the model parameter
«a with D1 U D5 and then uses the learned model to detect
evasion attacks may no longer be effective (Jain, Sahani, and
Liu 2021; Jafarigiv et al. 2021). Our strategy is differentiated
from prior works in two-fold: /) the training algorithm to
obtain o* should be robust to poisoning attacks on Dy, and 2)
as o™ is used in the downstream decision task—evasion attack
detection—so the search of the prediction model should be
aware of this task. We address these two aspects as follows.

Robust training against poisoning attacks. To design a
robust training algorithm, we formulate the following opti-
mization problem:

argming > (acai—pi+ 6P 4 NS @
(wi,pi)€D1

where || - ||; is the ¢; norm, A is a hyperparameter, and

§ = [81,...,06,,]" is hypothetical bad data vector, which

is introduced to counterbalance the potential attacks on p;.
The training loss consists of two terms: the squared loss of
reconstruction error and a penalty on the sparsity of . The
overall problem is convex; in fact, it is strongly convex due
to the presence of the squared loss, thus the optimal solution
is unique. Under certain conditions, it has been shown that
we can exactly recover the poisoned data by solving (2) (Jin
et al. 2020). However, it is difficult to determine the best way
to set A—a larger value may induce a sparser ¢ but also a
higher loss on the reconstruction error, and vice versa. While
prior works set this number by hand, we propose to set this
number so that it supports the ultimate task assigned for the
model: evasion attack detection.

Task-aware learning for evasion attack detection. The
model parameter « is used to detect evasion attacks by check-
ing the prediction error, which provides a proper goal to guide
the search of hyperparameter A. Furthermore, the detection
threshold 7 needs to be tuned to support this task. To this end,
a bilevel optimization problem is formulated:

un Z Ula-z; — pil = 7, u:)
(%i,yi,pi)ED2 3)
s.t.  (@,0") is the optimal solution to (2)
where £(t,y) = log(1l 4+ exp(—ty)) is the logistic loss. In

the above formulation, the inner level determines the model
parameters & and hypothetical bad data vector §*, while the



outer level determines the hyperparameter A used within the
inner level and the detection threshold 7. The optimal 7 de-
pends on the learned model &, which in turn depends on the
hyperparameter \. Since the inner-level problem variable is
included in the upper-level problem, in the case of poisoning
attacks, the attack error may propagate into the evasion attack
performance. Thus, the outer level also plays a role in rectify-
ing the learned model to ensure that 7 properly accounts for
the potential corrupted model. Above all, the outer-level has
fewer decision parameters than the inner-level, which agrees
with the imbalanced data sizes (ny > no).

Algorithm

To solve (3), we can use gradient descent on the outer-
level variables, while solving the inner-level problem ex-
actly in each iteration (see Algorithm 1). Let L(\,7) =
2 (s s piyeps L& i — pi| = 7,y;) denote the outer-level
objective. The gradients of L with respect to A and 7 are
given by:

oL yi exp(—yi(|ri| — 7))
DD R
or (x4,9:,pi)€D2 1+ eXp(_yl(‘Tz‘ o T))
and
oL _ > —yisign(r,) exp(—yi(|ri| = 7)) +9a())
8)\ (:m.,ynpi)EDz 1 + exp(_yiuril - T)) 8)\
(5)

where r; = & - x; — p; and sign(r;) = 1if r; > 0 and 0
otherwise. As & is a function of ), the key is to obtain the
gradient 22

Implicit gradient. The difficulty of obtaining the implicit
gradient from the usual Karush—-Kuhn-Tucker (KKT) condi-
tions is due to the presence of ||-||1, which is not differentiable.
In the following, we provide a closed-form solution to the

implicit gradient ag.(/\)\) . We start with a proposition that re-

formulate the inner-level problem as an optimization over the
Huber loss:

122 <A
er TA) = 22 |Z|_ .
st = {30y 535

Proposition 1. Suppose that (&, §*) is the solution to (2)
and let &' be the solution to ming Y-, 5 cn fruber(
x; — pi; A). Then, we have & = &', and the i-th component
of 6* is given by:

6; = sign(p; — & - z;) max(0, & - z; — pi| — A).

The implication of the above result is that we can elimi-
nate the inner-level variable ¢ and exclusively focus on « by
changing the loss function. The following result provides the
closed-form solution to the implicit gradient.

Theorem 1. Suppose that (@, 6*) is the solution to (2). Let
Li={i:|a-z—p| <A}, La={i:a -z —p; < -A},
and Iy ={i:a -z, —p; > )\} be partition of dataset D;.
Additionally, let A=}, x; z] € R¥? and suppose that
A is invertible. Then, we have that

>

a——)\A <Z$Z
=

i€Zo

(6)

7

Algorithm 1: Bilevel optimization algorithm for (3)

Input: stepsize 5, and 3, iterations K, initial values of 7
and \;
1: for k=1,
. Solve the lower level problem (2) to obtain o
3:  Obtain gL and 2L Sy at 7 and Ay using 4 and 5, respec-

, K do

tively
4:  Update the value of 7 and \ using gradient descent
oL
Tht1 = Tk — 57*,
6L
Akt1 = Ak — /BA
5: end for
6: Output: 7 and oy

Numerical evaluation

Experimental setup. We follow the same procedure as (Jain,
Sahani, and Liu 2021) to obtain the datasets, with n; = 1000
for the unlabeled dataset D1 and no = 200 for the labelled
dataset Ds. In Dy, we consider the cases where 10% and
30% of the data are poisoning attacked. Dataset D5 consists
of 20% of data with label +1, i.e., anomaly. We also vary
the levels of corruption by changing the true measurement of
p; by the percentages of 40%,70%, and 100%, with random
noises of small magnitudes added upon the obtained values.

During the training stage, we solve (3) with the datasets
D; and Ds, to obtain the solution (a*,7*). During testing,
we use the decentralized detection method outlined in Sec.
to detect evasion attacks. We evaluate the performance of our
method in terms of metrics including the accuracy, precision
and recall. Specifically, let TP, TN, FP, and FN denote the true
positives, true negatives, false positives, and false negatives,
respectively. Then, we have that

TP+TN
T e ————
ACCUIACY = b/ TN+FP+FN’
. TP TP
precision = ———, recall = .
TP+FP TP+FN

Baseline method. As a comparison, we also implement
the approach from (Jain, Sahani, and Liu 2021). To briefly
recap their method, a model parameter « is first learned by
solving a standard least-square regression problem on Dj.
Then, the threshold 7 is manually designed based on the
obtained &. To make a fair comparison, we also fine-tune the
threshold based on Ds.

Results and discussions. Tables 1 and 2 show the perfor-
mance metrics of our proposed approach and the baseline
method corresponding to 10% and 30% of poisoning attacks
on Dy, respectively. We report the mean and the standard
deviation over 10 independent runs. In general, it can be
observed that the proposed method has improved accuracy,
precision, and recall compared to the baseline. The improve-
ment is more substantial in the case where 30% of D; are
poisoning attacked (Table 2). This is expected as the baseline
method uses linear regression to learn the model, which is
well-known to be vulnerable to outliers or adversarial data.



As the evasion attack magnitudes increase from 40% to
100%, an interesting trend can be observed that the perfor-
mance of each method (ours and baseline) increases. This is
because for attacks with larger magnitudes, the differences
between the expected and actual commands may easily sur-
pass the detection threshold, even if the prediction model is
not reliable.

As the poisoning attack magnitudes increase from 40% to
100%, there is a clear trend that the performance of the base-
line method drops. In contrast, in many cases, we can actually
observe a slight increase in performance as the poisoning at-
tack magnitudes increase from 40% to 70%. This benefits
from the robust training procedure in the inner-level problem,
which can more easily detect adversarial data with a large
deviation from normal. However, as the attack magnitude
further increases from 70% to 100%, even a few undetected
outliers may significantly bias the training outcome, thus we
can see a slight decrease in performance in some cases.

For both methods, we observe a higher precision than the
recall. This can be attributed to the fact that the datasets D;
and D, have imbalanced labels—the amount of anomaly data
is fewer that the amount of normal data. This is generally to
be expected, as anomalies often occur rarely. It may be an
interesting direction for future work to test methods such as
cost-sensitive learning or X-risk optimization to optimize for
compositional measures (Yang 2022).

Last, we visualize the performance of the IDSs in a case
with 70% and 100% attack magnitudes by evasion and poi-
soning attacks, respectively, as shown in Fig 2. As shown in
the top figure that plots the difference between actual and ex-
pected commands, there are many instances of disagreements
between our method and the baseline. Further examinations
in the bottom two subplots indicate that in most cases, our
method is able to accurately detect anomalies while avoiding
false positives. In contrast, the baseline methods create multi-
ple instances of false positives and false negatives, due to the
corrupted prediction model affected by the poisoning attacks.

Conclusion

Cybersecurity is a tug of war—as the attacker’s capability
grows, so should the defender’s, and it has strategic value in
assuming a strong attacker so the defense can be assessed
and designed commensurately. In this paper, we envisioned
joint poisoning and evasion attacks on both the cyber and
physical layers of a power system, a scenario that has not
been systematically studied in the literature. As a counter-
measure, we design a defense mechanism by formulating
a bilevel optimization problem, where the inner level and
outer level work jointly but with different goals. In particular,
the inner-level problem accounts for robust training against
poisoning attacks, whereas the outer-level problem addresses
evasion attacks by guiding the inner-level training through
implicit gradients. The robustness of the method is evalu-
ated under different attack scenarios and compared with a
baseline model. In the future, we plan to evaluate our model
on a real-time digital simulator for power systems. Another
interesting direction is to learn a nonlinear model through
convexification to account for AC power flows (Jin, Lavaei,
and Johansson 2018).
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Figure 2: Visualization of the detection performance. Top
plot: time series of the difference between predicted and ac-
tual commands (blue: ours, red: baseline). Middle/bottom
plots: detection of anomaly based on the proposed method-
/baseline technique (stem plots). The ground truth is marked
with the square wave.

Acknowledgment

This project is funded by This research was supported in
part by the C3.ai Ditial Transformation Institute, and by the
Director of Cybersecurity, Energy Security, and Emergency
Response, specifically through the Cybersecurity for Energy
Delivery Systems program of the U.S. Department of Energy
under contract DE-CR0000021.

References

Adepu, S.; Kandasamy, N. K.; and Mathur, A. 2018. Epic:
An electric power testbed for research and training in cyber
physical systems security. In Computer Security, 37-52.
Springer.

Berghout, T.; Benbouzid, M.; and Muyeen, S. 2022. Machine
learning for cybersecurity in smart grids: A comprehensive
review-based study on methods, solutions, and prospects.
International Journal of Critical Infrastructure Protection,

100547.

Case, D. U. 2016. Analysis of the cyber attack on the
Ukrainian power grid. Electricity Information Sharing and
Analysis Center (E-ISAC), 388: 1-29.

Chen, X.; Zhou, J.; Shi, M.; Chen, Y.; and Wen, J. 2022.
Distributed resilient control against denial of service attacks
in DC microgrids with constant power load. Renewable and
Sustainable Energy Reviews, 153: 111792.

Dall’ Anese, E.; Dhople, S. V.; and Giannakis, G. B. 2014.
Optimal dispatch of photovoltaic inverters in residential dis-



40% evasion attack magnitude

70% evasion attack magnitude

100% evasion attack magnitude

method poisoning  accuracy precision recall accuracy precision recall accuracy precision recall
proposed 40% 86.4(2.4) 93.9(1.25) 59.3(3.5) 93.8(3.8) 96.3(2.2) 85.5(6.0) 93.1(2.5) 96.0(1.5) 82.1(5.7)
approach 70% 84.4(3.7) 91.8(1.8) 60.7(4.3) 94.5(2.5) 96.8(1.4) 85.0(7.1) 95.4(1.7) 97.3(1.0) 88.0(3.7)
100% 85.1(3.1) 92.2(1.7) 61.5(3.1) 92.6(1.8) 95.8(1.0) 79.5(5.1) 94.6(2.0) 96.8(1.1) 86.9(5.7)
baseline 40% 85.3(2.5)  86.2(16.7) 55.8(4.2) 93.6(3.9) 96.3(2.2) 85.1(5.5) 92.2(3.3) 95.6(1.9) 80.0(6.5)
approach 70% 82.9(3.5) 78.7(22.0) 56.7(5.3) 93.8(2.1) 96.5(1.4) 83.6(6.0) 95.0(1.4) 97.1(1.0) 87.0(2.8)
100% 82.5(3.2) 78.6(21.6) 54.4(3.2) 91.1(1.3) 95.1(1.0) 79.5(5.2) 93.4(2.1) 95.7(2.0) 84.4(4.9)

Table 1: Performance of the proposed method and baseline method with 10% of dataset D; under poisoning attacks. Each row
indicate the performance of the corresponding method when the training data is poison attacked with magnitude 40%, 70%, or
100%. The mean and the standard deviation (in paranthesis) are reported over 10 independent runs. We mark better performance

measures by boldface.

40% evasion attack magnitude

70% evasion attack magnitude

100% evasion attack magnitude

method poisoning  accuracy precision recall accuracy precision recall accuracy precision recall
proposed 40% 82.8(3.4) 91.06(1.8) 58.8(4.3) 94.1(2.2) 96.6(1.3) 83.7(4.1) 94.0(2.8) 96.5(1.7) 84.7(5.3)
approach 70% 82.6(4.1) 90.8(2.1) 61.0(3.4) 95(1.31) 97.1(0.7) 85.6(3.6) 92.0(3.5) 95.3(2.1) 82.1(4.8)
100% 83.6(2.4) 91.3(1.2) 63.2(3.2) 93.4(2.3) 96.2(1.2) 83.2(6.3) 92.9(2.5) 95.9(1.4) 81.6(6.5)
baseline 40% 81.5(3.6) 84.3(16.5) 55.6(3.4) 91.8(3.6) 95.4(2.0) 78.0(5.6)  93.7(3.0) 96.4(1.8) 84.1(5.2)
approach 70% 75.3(5.4)  48.1(18.5) 48.8(2.2) 87.5(4.2) 79.8(11.2) 73.4(8.5) 89.2(4.0) 91.8(4.7) 76.9(5.4)
100% 71.1(3.6) 44.5(2.4) 47.3(1.6)  76.9(9.9) 65.3(11.7) 59.0(10.1) 83.5(4.9) 75.3(9.2) 69.4(8.2)

Table 2: Performance of the proposed method and baseline method with 30% of dataset D; under poisoning attacks. See Table 1

for other descriptions.

tribution systems. IEEE Transactions on Sustainable Energy,
5(2): 487-497.

Farajzadeh-Zanjani, M.; Hallaji, E.; Razavi-Far, R.; Saif, M.;
and Parvania, M. 2021. Adversarial semi-supervised learn-
ing for diagnosing faults and attacks in power grids. IEEE
Transactions on Smart Grid, 12(4): 3468-3478.

Ghaeini, H. R.; Antonioli, D.; Brasser, F.; Sadeghi, A.-R.;
and Tippenhauer, N. O. 2018. State-aware anomaly detection
for industrial control systems. In Proceedings of the 33rd
Annual ACM Symposium on Applied Computing, 1620-1628.
Guo, L.; Zhang, J.; Ye, J.; Coshatt, S. J.; and Song, W. 2021.
Data-Driven Cyber-Attack Detection for PV Farms via Time-
Frequency Domain Features. IEEE Transactions on Smart
Grid, 13(2): 1582-1597.

Hasnat, M. A.; and Rahnamay-Naeini, M. 2021. Detecting
and locating cyber and physical stresses in smart grids using
the k-nearest neighbour analysis of instantaneous correlation
of states. IET Smart Grid, 4(3): 307-320.

Huseinovié, A.; Mrdovi¢, S.; Bicakci, K.; and Uludag, S.
2020. A survey of denial-of-service attacks and solutions in
the smart grid. IEEE Access, 8: 177447-177470.

Ike, M.; Phan, K.; Sadoski, K.; Valme, R.; and Lee, W. 2022.
SCAPHY: Detecting Modern ICS Attacks by Correlating
Behaviors in SCADA and PHYsical. In 2023 IEEE Sympo-
sium on Security and Privacy (SP), 362-379. IEEE Computer
Society.

Jafarigiv, D.; Sheshyekani, K.; Kassouf, M.; Seyedi, Y.;
Karimi, H.; and Mahseredjian, J. 2021. Countering FDI
Attacks on DERs Coordinated Control System Using FMI-
Compatible Cosimulation. IEEE Transactions on Smart Grid,
12(2): 1640-1650.

Jain, A. K.; Sahani, N.; and Liu, C.-C. 2021. Detection of
Falsified Commands on a DER Management System. /EEE
Transactions on Smart Grid, 13(2): 1322-1334.

Jin, M.; Lavaei, J.; and Johansson, K. H. 2018. Power grid
AC-based state estimation: Vulnerability analysis against

cyber attacks. IEEE Transactions on Automatic Control,
64(5): 1784-1799.

Jin, M.; Lavaei, J.; Sojoudi, S.; and Baldick, R. 2020. Bound-
ary defense against cyber threat for power system state es-
timation. /IEEE Transactions on Information Forensics and
Security, 16: 1752-1767.

Karimipour, H.; Dehghantanha, A.; Parizi, R. M.; Choo, K.-
K. R.; and Leung, H. 2019. A deep and scalable unsupervised
machine learning system for cyber-attack detection in large-
scale smart grids. IEEE Access, 7: 80778-80788.

Karimipour, H.; and Dinavahi, V. 2017. Robust massively
parallel dynamic state estimation of power systems against
cyber-attack. IEEE Access, 6: 2984-2995.

Kotary, J.; Fioretto, F.; Van Hentenryck, P.; and Wilder, B.
2021. End-to-end constrained optimization learning: A sur-
vey. arXiv preprint arXiv:2103.16378.

Kurt, M. N.; Ogundijo, O.; Li, C.; and Wang, X. 2018. Online
cyber-attack detection in smart grid: A reinforcement learning
approach. IEEE Transactions on Smart Grid, 10(5): 5174—
5185.

Liang, G.; Zhao, J.; Luo, F.; Weller, S. R.; and Dong, Z. Y.
2016. A review of false data injection attacks against modern
power systems. I[EEE Transactions on Smart Grid, 8(4):
1630-1638.

Liu, C.-C.; and Stewart, E. M. 2021. Electricity Transmission
System Research and Development: Distribution Integrated
with Transmission Operations.

Liu, R.; Gao, J.; Zhang, J.; Meng, D.; and Lin, Z. 2021.
Investigating bi-level optimization for learning and vision
from a unified perspective: A survey and beyond. IEEE
Transactions on Pattern Analysis and Machine Intelligence.



Nguyen, B. L.; Vu, T. V.; Guerrero, J. M.; Steurer, M.;
Schoder, K.; and Ngo, T. 2021. Distributed dynamic state-
input estimation for power networks of Microgrids and active
distribution systems with unknown inputs. Electric Power
Systems Research, 201: 107510.

Peng, C.; Sun, H.; Yang, M.; and Wang, Y.-L. 2019. A survey
on security communication and control for smart grids under
malicious cyber attacks. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 49(8): 1554-1569.

Raja, D. J. S.; Sriranjani, R.; Parvathy, A.; and Hemavathi,
N. 2022. A Review on Distributed Denial of Service Attack
in Smart Grid. In 2022 7th International Conference on
Communication and Electronics Systems (ICCES), 812-819.
IEEE.

Sun, C.-C.; Hahn, A.; and Liu, C.-C. 2018. Cyber security
of a power grid: State-of-the-art. International Journal of
Electrical Power & Energy Systems, 99: 45-56.

Sun, R.; Mera, A.; Lu, L.; and Choffnes, D. 2021. SoK:
Attacks on industrial control logic and formal verification-
based defenses. In 2021 IEEE European Symposium on
Security and Privacy (EuroS&P), 385-402. IEEE.

Tian, Z.; Cui, L.; Liang, J.; and Yu, S. 2022. A Comprehen-
sive Survey on Poisoning Attacks and Countermeasures in
Machine Learning. ACM Computing Surveys (CSUR).
Tuyen, N. D.; Quan, N. S.; Linh, V. B.; Vu, T. V.; and Fu-
jita, G. 2022. A Comprehensive Review of Cybersecurity
in Inverter-based Smart Power System amid the Boom of
Renewable Energy. IEEE Access.

ul Abdeen, Z.; Yin, H.; Kekatos, V.; and Jin, M. 2022.
Learning neural networks under input-output specifications.
In 2022 American Control Conference (ACC), 1515-1520.
IEEE.

ul Abdeen, Z.; Zhang, X.; Gill, W.; and Jin, M. 2024. Enhanc-
ing Distribution System Resilience: A First-Order Meta-RL
algorithm for Critical Load Restoration. In 2024 IEEE In-
ternational Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm),
129-134. IEEE.

Urbina, D. L.; Giraldo, J. A.; Cardenas, A. A.; Tippenhauer,
N. O.; Valente, J.; Faisal, M.; Ruths, J.; Candell, R.; and
Sandberg, H. 2016. Limiting the impact of stealthy attacks
on industrial control systems. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security, 1092-1105.

Wang, D.; Wang, X.; Zhang, Y.; and Jin, L. 2019. Detection of
power grid disturbances and cyber-attacks based on machine
learning. Journal of information security and applications,
46: 42-52.

Yang, T. 2022. Algorithmic Foundation of Deep X-Risk
Optimization. arXiv preprint arXiv:2206.00439.

Zeng, Y.; Chen, S.; Park, W.; Mao, Z. M.; Jin, M.; and Jia,
R. 2021. Adversarial unlearning of backdoors via implicit
hypergradient. arXiv preprint arXiv:2110.03735.

Zhang, J.; Pan, L.; Han, Q.-L.; Chen, C.; Wen, S.; and Xiang,
Y. 2021. Deep learning based attack detection for cyber-
physical system cybersecurity: A survey. IEEE/CAA Journal
of Automatica Sinica, 9(3): 377-391.

Zografopoulos, I.; Konstantinou, C.; and Hatziargyriou, N. D.
2022. Distributed Energy Resources Cybersecurity Outlook:
Vulnerabilities, Attacks, Impacts, and Mitigations. arXiv
preprint arXiv:2205.11171.

Proofs
Proof of Proposition 1

Given «, the optimization with respect to § can be decom-
posed into a series of smaller optimization problems:

1
H}sm 5(01 ‘@i — pi +0;)% + Ml )

for each ¢ = 1, .., n1, which has a closed-form solution
0 =sign(p; — o z;) max(0, |a- z; —pi| — A).  (8)

Plugging in the above into the objective (7), we can see that
the objective is equal to:

1
§(a cxi — pi +6:)% + M| = frwver (a2 — Pz A), (9)

Proof of Theorem 1
Note that the subgradient of Huber loss is given by:

o z |z| < A
@fHuber(Z; )\) =¢-A z< =) (10)
A z> A

Then, by the KKT conditions:
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Hence, by taking the differentials of the above condition, we
can obtain the closed-form solution (6).



