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Abstract: While the global greening associated with climate change is well documented on land, 15 

similar trends in the ocean have not been thoroughly identified. Using satellite observations of 

ocean chlorophyll a (Chl) concentration, we show that the surface ocean experienced a poleward 

greening from 2003 to 2022. Contemporaneously, the subtropical regions of the northern 

hemisphere experienced a decrease in Chl. As such, the latitudinal disparity in Chl, as 

documented by an inequality index, has been increasing over the past two decades, particularly 20 

in the northern hemisphere. Rising water temperatures may primarily influence the Chl trends. 

The increasing Chl inequality—marked by “greener green and bluer blue” waters—has the 

potential to cascade to higher trophic levels with implications for the fisheries and economies of 

coastal nations. 
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Main Text: Earth greening refers to an increasing trend in global leaf area, an indication of 

enhanced photosynthetic activity on land. Numerous studies since the 1990s have reported this 

phenomenon across high-latitude, temperate, and tropical regions, and have attributed it to 

climate and land use change (1–4). In 2023, nearly 63% of global vegetated areas exhibited 

positive normalized difference vegetation index (NDVI) anomalies, the third highest record since 5 

2000, indicating a continuous increase in terrestrial greenness (5). Given that the ocean 

contributes to about half of the Earth’s primary production, a similar analysis of trends in global 

ocean photosynthesis in response to climate change is critical, yet remains elusive. 

Observing secular trends in the ocean has been challenging due to the strong natural variability 

in marine ecosystems (6–9). As on land, photosynthesis in the marine environment is influenced 10 

by several factors including light availability, temperature, and nutrient supply. However, the 

impact of these factors in the ocean is complicated by its fluidity: phytoplankton, which are the 

primary photosynthesizers in the ocean, can be mixed into or away from the photic zone and/or 

experience sharp temperature changes due to advection. The nutrient supply is similarly affected. 

Upwelling and downwelling driven by large-scale winds, as well as local mixing and advection, 15 

place strong constraints on the nutrient supply to the surface waters. This complexity hinders a 

simple projection as to how marine photosynthesis will respond to a warming world. 

Driven by the broad pattern of wind-driven upwelling and downwelling, the spatial distribution 

of nutrients in the ocean is largely characterized by latitudinal differences (10, 11). As such, we 

focus on the identification of latitudinal trends in chlorophyll a (Chl) concentration (a metric for 20 

phytoplankton biomass), a choice also intended to reduce the signal-to-noise ratio in our trend 

estimates. We aim to elucidate whether regional changes reported elsewhere (12–15) are 

reflective of a broader global redistribution in Chl. To that end, we use the 20-year record of Chl 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite 

(hereafter referred to as MODIS-Aqua). MODIS-Aqua began collecting data in July 2002 and 25 

stands as the longest-serving solitary sensor in operation. The latest 2022 Reprocessing version 

(R2022) released by NASA, which includes instrument calibration updates that address 

degradation issues, now provides a stable data source for the past two decades. Challenges arise 

from the inherent characteristics of the Chl product, including a low signal-to-noise ratio and 

gaps in observations. To mitigate these issues, we first interpolate the Chl data using an 30 

algorithm that has recently been shown to improve the time series of global Chl in the open 

ocean. We then spatially aggregate the data averaging measurements over latitudinal bands to 

detect underlying large-scale trends (Methods).   

We start by showing the well-known and distinctive spatial distribution of climatological Chl 

(Fig. 1a, b). The elevated Chl (mean of 0.38 mg m-3) in the subpolar regions (40 – 60°) stands in 35 

sharp contrast to the relatively low Chl (mean of 0.074 mg m-3) in the oligotrophic gyres of the 

mid-latitudes (10 – 30°). In the tropics (0 – 10°), characterized by strong upwelling that boosts 

phytoplankton growth, the mean Chl is again elevated (mean of 0.14 mg m-3). To explore 

latitudinal trends, we calculate the annual mean Chl of each 2° latitudinal band between 60°S – 

80°N from 2003 to 2022 and then use the Sen’s slope estimator to determine trends (Methods). 40 

We find that Chl has significantly decreased at an average rate of 0.55% yr-1 in the northern 

subtropical region (20 – 40°N) (Fig 1c). In contrast, Chl shows increasing trends in both northern 

and southern subpolar regions at a rate of 0.28% yr-1 and 0.44% yr-1, respectively. Moreover, 

consistent with previous studies (16, 17), we find that the Arctic Ocean (66 – 80°N) has 

experienced a significant increase in Chl at a rate of 1.99% yr-1. Collectively these results 45 
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indicate a broad pattern whereby Chl is decreasing in the low Chl waters of the subtropical and 

tropical regions while increasing in the high Chl waters at higher latitudes (>40°).  

To assess the relative contribution of these latitudinal bands to the total Chl in each hemisphere 

we use a Lorenz curve and the corresponding Gini index, which were originally developed for 

economic analysis (Methods). We examine the Northern Hemisphere (NH) and Southern 5 

Hemisphere (SH) separately because of the well-known differences in the dynamics that govern 

the high latitudes in these hemispheres. Given the unique environmental conditions in the Arctic 

Ocean and previous work in this region, we hereafter focus on analyzing the open ocean between 

60°S and 60°N (see the study (16) for Arctic-specific trends). As seen by the Lorenz curve, in 

which the 30 latitudinal bands are ranked in ascending order according to their contribution to 10 

the cumulative chlorophyll in each hemisphere, the subpolar latitudes (40 – 60°N) place in the 

top 10 latitudinal bands in the NH (Fig. 2a), contributing 55.6% to the total. In contrast, the 

latitudinal bands between 20 – 30°N fall in the 20th percentile, contributing only 8.1%. In the 

SH, the latitudinal bands with the largest contribution (28.3%) to the cumulative total are 

between 40 – 50°S. They are followed by latitudes between 30 – 40°S (18.8%), between 50 – 15 

60°S (18.2%), and 0 – 10°S (15.9%) (Fig. 2c). As seen here, the NH has a greater latitudinal 

disparity than the SH mainly because Chl in the NH subpolar region exceeds that in the 

comparable SH region. This difference is likely mainly attributable to the known iron deficiency 

that limits phytoplankton biomass (18) in the high nutrient-low chlorophyll Southern Ocean.  

From the Lorenz curve, we next calculate trends in the Gini index of area-integrated Chl over 20 

each latitudinal band from 2003 to 2022 for each hemisphere (Methods, similar trends are 

observed with latitudinal averaged Chl, see fig.S1). We find a growing latitudinal disparity in 

Chl in the NH, as measured by a significant increase of 0.20% yr-1in the Gini index. The 

significant increase of the Gini index tends to occur in winter and autumn seasons (fig. S2), 

indicating a seasonal difference in the latitudinal disparity of Chl. In the SH, the increase is not 25 

statistically significant (despite an increase in Chl concentrations in the SH subpolar latitudes). 

One reason for this difference is that Chl has decreased significantly in the northern subtropical 

regions where the relatively low Chl has become lower over the same period, whereas no such 

trends are detected in the SH. We note that our latitudinal binning masks a myriad of variability 

in Chl trends at regional and biome scales, with spatial heterogeneity in the magnitude and sign 30 

of linear trends, particularly in the southern subtropical regions. While a local analysis is beyond 

the scope of our study, contrasting trends at the local level likely explain the absence of trends in 

certain latitudinal bands (e.g. SH subtropics). For further context, a comparison with recent 

literature on global ocean color trends that focus on region is provided in the supplementary 

material (Table S1). 35 

As a first approximation, we examine the trends of four environmental factors (Fig. 3) believed 

to critically influence Chl concentrations: sea surface temperature (SST), mixed layer depth 

(MLD), photosynthetically available radiation (PAR), and wind speed (WS), and then determine 

the observed sensitivity of Chl to these factors. A few patterns stand out from the comparison of 

trends.  In the northern subpolar regions (40 – 60°N), where significant increases in Chl are 40 

primarily detected from October to February at a rate of 0.88 ± 0.41% yr-1 (Fig. 3a), we note 

concurrent increases in SST and PAR (Fig. 3b, d), as well as a shoaling in the MLD (Fig. 3c). In 

the northern subtropical region (20 – 40°N), where Chl shows a year-round decreasing trend at a 

rate of -0.75 ±0.25% yr-1, with significant changes observed in 56.7% of the region (Fig. 3a), 

SST shows significant increases throughout the year in 79.2% of the grids (Fig. 3b). Finally, in 45 

the southern subpolar regions (40 – 60°S), where Chl has increased significantly in the months of 
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April to August at a rate of 1.24 ± 0.64% yr-1, a few concurrent SST trends are also observed 

(Fig. 3a, b).  

The observed sensitivity of Chl trends to trends in the four environmental variables suggests that 

SST is a dominant factor for Chl changes in the subpolar region of both hemispheres and in the 

subtropics of the northern hemisphere (Fig. 4). The increase in Chl in the subpolar regions is 5 

likely associated with the observed increase in autumn and winter blooms (19, 20), consistent 

with projected increases in NPP driven by sea ice retreat, shoaling of mixed layers, and a 

reduction in light limitation (16, 21, 22), all tightly linked to the surface warming observed here. 

In the northern hemisphere subtropics, the decreasing Chl trend and concurrent increasing SST 

trend are supported by in situ observations at the Bermuda Atlantic Time-series site (BATS).  10 

Previous study (23) found that rising SST reduces phytoplankton productivity in the oligotrophic 

ocean, putatively through a reduction in nutrient supply, a result consistent with increased 

stratification observed in recent years (24). The southern hemisphere subtropics do not exhibit a 

clear sensitivity to any of the variables, likely because the Chl trends here are the weakest across 

all latitudes (Fig. 3a).  Finally, the lack of significant trends in the tropics for all environmental 15 

variables (Fig. 3b–e) precludes any attribution of the decreasing Chl trend observed there (Fig. 

4).   

As mentioned above, complex dynamics in the ocean environment complicate the attribution of 

Chl changes. While our analysis suggests that broad scale SST changes are likely driving 

latitudinal Chl changes, our results are inconclusive for the three other variables studied here. 20 

Regional studies provide additional insights to this global analysis. For example, wind speed 

emerges as a significant factor in annual Chl variation across both tropical regions and eastern 

boundary currents (25, 26). In the tropical Indian Ocean, reduced wind speeds have been 

correlated with increased stratification, which suppresses nutrient upwelling, thus contributing to 

declining Chl. Conversely, in the California Current System, elevated wind speeds have been 25 

found to facilitate upwelling, thus enhancing phytoplankton biomass and fostering a "greening" 

effect. Modeling studies that incorporate these variables, and others such as turbulent mixing and 

aerosol deposition (7, 8), are needed to further elucidate the mechanisms driving the latitudinal 

Chl trends observed here.   

It remains to be established whether the significant trends over the 20-year record reported here 30 

stem from natural variability over the satellite era or are driven by a changing climate. Previous 

studies suggest that satellite time series would need to be ~30 – 40 years in length to distinguish 

climate-driven Chl trends from internal variability (12, 27, 28). Because variations in Chl reflect 

both biomass and physiology (6), we cannot attribute the Chl trends changes in phytoplankton 

biomass. However, our observations of poleward greening and increasing latitudinal disparity 35 

align with 21st century projections of a sustained decrease in NPP in the low- and mid-latitudes 

that is coupled with an increase in high latitude areas (29, 30). Through trophic amplification, the 

decline in phytoplankton biomass associated with climate warming will have a more pronounced 

impact on biomass at higher trophic levels (31, 32, 33) with a projected decline in fish 

production and fisheries in the tropics, and an increase in the high latitudes (34, 35, 36). More 40 

than 50% of the global fish catch comes from tropical and subtropical regions, with significant 

contributions from coastal fisheries. While our study focuses on open ocean waters, any 

persistent changes in these areas could profoundly impact low- and middle-income nations, such 

as Pacific Island Nations, that rely on fisheries for sustenance and economic development. (38, 

39). Future investigations should focus on these regions to provide a more comprehensive 45 

understanding. In particular, it will be important to investigate how climate change, and climate 
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mitigation through iron fertilization (40), could synergistically impact air-sea CO2 fluxes, and 

exacerbate fisheries inequity. 
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Supplementary Materials 

Materials and Methods 

Satellite Chl observation 10 

We obtained level-3, daily, 4 km-binned Chl data derived from MODIS-Aqua from the ocean 

color website (https://oceancolor.gsfc.nasa.gov/) for the period of Jan 1, 2003 to Dec 31, 2022. 

NASA has reprocessed all ocean color products several times during the mission’s operation to 

account for MODIS-Aqua degradation issues. The current version is R2022, in which the sensor 

drift issue has been corrected to the end of 2022 15 

(https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/noaa20/).  Compared to previous 

versions, R2022 shows a significant change in the MODIS-Aqua time series Chl, with a decrease 

on the order of 10 – 20% for the recent 5 years  

(https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/aqua/). By the time we submitted the 

article, multi-sensor datasets such as OC-CCI 6.0 had not incorporated NASA R2022 products 20 

(CMEMS-OC-QUID-009-107to108), thereby reducing the accuracy of Chl trends. Furthermore, 

recent studies have revealed possible biases in detecting Chl trends using multi-sensor products 

due to the inconsistencies between missions (13, 41). North of 65oN, we use the dataset of Lewis, 

et al. (16). This dataset has been produced using a modified version of the standard empirical 

algorithm (AO.emp). It is developed by using coincident measurements of in situ and remote 25 

sensing reflectance in order to account for the unique bio-optical properties of the Arctic Ocean. 

DINEOF+ 

We aggregated Chl values by spatially averaging over 2 degree grids and then applying 

DINEOF+ to interpolate data gaps in the open ocean. DINEOF+ is a variant of learning 

algorithms that uses singular value decomposition (SVD) to address missing data. It has recently 30 

been shown to be an effective interpolation method to increase data coverage of global Chl 

observations. The reconstructed Chl time series also demonstrates a higher correlation to in situ 

observations compared to the original product (42). The boundary for the open ocean is based on 

climatological criteria developed by Fay and McKinley (43), who classified 17 open-ocean 

biomes according to observations of Chl, SST, and MLD. This boundary excludes coastal 35 

regions characterized by high Chl variance and complex water constituents due to strong 

upwelling and land influence. This choice also reduces the impact of high Chl variance on 

DINEOF+ performance as well as the influence of known biases in ocean color data for Case 2 

waters. Using the reconstructed daily Chl, we generated a 20-year time series of monthly and 

annual Chl concentrations.  40 

Datasets on ocean surface conditions: temperature, PAR, wind, and mixed layer depth 

Monthly average datasets of SST, PAR, wind, and mixed layer depth were analyzed for the 

period Jan 2003 – Dec 2022: (1) SST and PAR: MODIS-Aqua level-3 bin datasets at 4 km 

https://oceancolor.gsfc.nasa.gov/l3/
https://data.marine.copernicus.eu/product/WIND_GLO_PHY_L4_MY_012_006/services
https://github.com/zhprm1992/DINEOF-plus.git
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/noaa20/
https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/aqua/
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spatial resolution from NASA’s ocean color website. (2) Sea surface wind: ECMWF ERA5 

based level-4 at 0.25 degree spatial resolution from Copernicus Marine Service 

(https://marine.copernicus.eu/). Bias corrections are performed by using scatterometer 

observations from satellites (44). (3) MLD: 0.25 degree spatial resolution derived from the 

ECCO-Darwin model (45). All datasets are spatially averaged to a 2-degree grid, then averaged 5 

to latitudinal bands. 

Lorenz curve and Gini index 

The Lorenz curve is commonly used in economics to visually illustrate the distribution of income 

or wealth within a society. It plots the cumulative percentage of total income received by the 

cumulative percentage of population. In this study, we take the sea surface area-integrated Chl 10 

concentration of each latitudinal band as a discrete unit and plot the cumulative Chl (x%) against 

the cumulative number of latitudinal bands (y%) by the ascending order of Chl level from lowest 

to highest. The resulting plot shows the inequality of Chl distribution among latitudinal bands 

(Fig. 2a, c). 

The Gini index is a metric that summarizes the level of inequality represented by the Lorenz 15 

curve. It has previously been used to evaluate the unevenness of distributions, including soil 

moisture and phytoplankton blooms in a large lake (46 47). We calculate the Gini index (G) to 

quantify the disparity level of Chl in both hemispheres.  

The classic definition of G is: 

G =
∑ ∑ |xi − xj|

n
j=1

n
i=1

2n2x̅
 (1) 20 

where 𝑥𝑖 is the average value of Chl concentration of the ith latitude band, 𝑛 is the number of 

latitudinal bands and 𝑖 is the rank of values in ascending order. When x values are placed in 

ascending order, the formulation is: 

G =
∑ (2i − n − 1n

i=1 )xi

n ∑ xi
n
i=1

(2) 

G ranges between 0, where there is perfect equality in the latitudinal distribution of global Chl, 25 

and 1, where Chl is concentrated in a single latitudinal band.  

 

Statistical analysis 

We use the Man-Kendall (MK) test with Sen’s slope method (48) to detect the trend in annual 

Chl of each latitudinal band and to estimate the slope 𝛽. The Sen’s estimator is a nonparametric 30 

method that uses the median slope of all lines through sample points (Eq. 3).  

𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑖 − 𝑥𝑗

𝑡𝑖 − 𝑡𝑗
) (3) 

where 𝑡1 < 𝑡2 ⋯ < 𝑡20, 𝑥𝑖 and 𝑥𝑗 are observed values at times 𝑡𝑖 and 𝑡𝑗 respectively, 1 ≤ 𝑖 < 𝑗 ≤

20. 

Alternatively, 𝛽 may be estimated by using least square regression. However, the trend detected 35 

in this way is sensitive to outliers. In addition, it has been noted that Chl time series are not 

normally distributed with constant variance over the global ocean (12). Compared to the linear 

https://marine.copernicus.eu/
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regression method, the Sen’s estimator of slope is less sensitive to outliers and provides an exact 

confidence interval without assuming normality and constant variance. To correct for serial 

autocorrelation in the MK test’s statistical significance, we apply the modified MK test to data of 

significant autocorrelation at 95% confidence limit. This approach developed by Hamed and Rao 

is effective for data with arbitrary autocorrelation structure by modifying the variance of the MK 5 

statistic (49). 

We define the observed sensitivity as the ratio of Chl trend slope to the trend slope of the driving 

factor under consideration (i.e., SST, MLD, PAR or WS), multiplied by the ratio of the 2003 

annual means of driving factors (DF) and Chl (Eq. 4). Doing so allows us to compare the 

changing rate of Chl relative to different driving factors (50).  We use: 10 

𝛼𝑖 =
𝛽𝐶ℎ𝑙

𝛽𝐷𝐹𝑖

×
𝐷𝐹2003

𝐶ℎ𝑙2003

(4) 

where overlines indicate annual mean. 𝛼𝑖 is the standardized observed sensitivity of Chl trend to 

trend of the driving factor. 𝛽𝐶ℎ𝑙 , 𝛽𝐷𝐹𝑖
 are the estimated slopes of the trends in Chl and the 

driving factor 𝐷𝐹𝑖 (i.e., SST, MLD, PAR, and WS), respectively. Only significant trends (p < 

0.05) are used for calculating the observed sensitivity. We note that the observed sensitivity is 15 

statistical and does not necessarily reflect causation.  

 

Figs. S1 to S2 

 

 20 
fig. S1 Latitudinal disparity in Chl concentration. (A, C) Lorenz curves of climatological Chl 

concentration of 2° latitudinal bands in the Northern (0 – 60°N) and Southern Hemispheres (0 – 

60°S). Bars represent the cumulative latitudinal mean Chl concentration, ordered in ascending 
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averaged Chl concentration. (B, D) Interannual variability of the Gini index during the 2003 – 

2022 period with significant trends (p < 0.05) indicated by an asterisk. 

 

 
fig. S2 Long-term trends in the Gini index in seasons. (A–D) Northern Hemisphere (0 – 5 

60°N). (E–H) Southern Hemisphere. Dots represent the annual Gini index of latitudinal and 

season- averaged Chl concentration. Dashed line displays the annual Sen’s slope with Mann-

Kendall (MK) test significance (* p < 0.05) 

 

 10 

 

 

 

Fig. 1. Global distribution and latitudinal trends of surface Chl at 2° resolution. (A) 

Climatological mean Chl between 60S – 60N (2003 – 2022), and north of 60°N (2003 – 2020). 15 
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Coastal regions and areas south of 60°S are excluded. (B) Median of the climatological Chl 

(thick line) and the 10th and 90th percentiles (thin lines) as a function of latitude. (C) Annual 

Sen’s slope of the climatological Chl with Mann-Kendall (MK) test significance (° p < 0.1, * p < 

0.05, ** p < 0.01, *** p < 0.001) indicated.  Color represents R-squared values. 

 5 

 

Fig. 2. Latitudinal disparity in area-integrated surface Chl concentration. (A, C) Lorenz 

curves of climatological Chl area-integrated over 2° latitudinal bands in the Northern (0 – 60°N) 

and Southern Hemispheres (0 – 60°S) during the 2003 – 2022 period. Bars represent the 

cumulative percentage of surface Chl integrated over 2° latitudinal bands, ordered in ascending 10 
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contribution of Chl to the total. (B, D) Interannual variability of the Gini index from 2003 to 

2022 with significant trends (p < 0.05) indicated by an asterisk. 

 

 

Fig. 3. Long-term trends of variables grouped by month and latitude. (A–E) Trends for Chl, 5 

SST, MLD, PAR and WS. Each grid in the panels represents an estimated slope of a linear trend 

of the year-to-year monthly variable at that particular latitudinal band. Asterisk indicates grids 

with significant trend. Black grids indicate regions where no data is available. 

 

Fig. 4. Observed sensitivity of Chl to driving factors. (A) SST, (B) MLD, (C) PAR, and (D) 10 

WS. Circles represent the standardized observed sensitivity (Methods) of grids with concurrent 



 

15 

 

significant trends of Chl and driving factors. Bars represent the median observed sensitivity of 

grids grouped in the same season and particular latitudinal band. 
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