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Abstract: While the global greening associated with climate change is well documented on land,
similar trends in the ocean have not been thoroughly identified. Using satellite observations of
ocean chlorophyll a (Chl) concentration, we show that the surface ocean experienced a poleward
greening from 2003 to 2022. Contemporaneously, the subtropical regions of the northern
hemisphere experienced a decrease in Chl. As such, the latitudinal disparity in Chl, as
documented by an inequality index, has been increasing over the past two decades, particularly
in the northern hemisphere. Rising water temperatures may primarily influence the Chl trends.
The increasing Chl inequality—marked by “greener green and bluer blue” waters—has the
potential to cascade to higher trophic levels with implications for the fisheries and economies of
coastal nations.
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Main Text: Earth greening refers to an increasing trend in global leaf area, an indication of
enhanced photosynthetic activity on land. Numerous studies since the 1990s have reported this
phenomenon across high-latitude, temperate, and tropical regions, and have attributed it to
climate and land use change (/—4). In 2023, nearly 63% of global vegetated areas exhibited
positive normalized difference vegetation index (NDVI) anomalies, the third highest record since
2000, indicating a continuous increase in terrestrial greenness (J). Given that the ocean
contributes to about half of the Earth’s primary production, a similar analysis of trends in global
ocean photosynthesis in response to climate change is critical, yet remains elusive.

Observing secular trends in the ocean has been challenging due to the strong natural variability
in marine ecosystems (6—9). As on land, photosynthesis in the marine environment is influenced
by several factors including light availability, temperature, and nutrient supply. However, the
impact of these factors in the ocean is complicated by its fluidity: phytoplankton, which are the
primary photosynthesizers in the ocean, can be mixed into or away from the photic zone and/or
experience sharp temperature changes due to advection. The nutrient supply is similarly affected.
Upwelling and downwelling driven by large-scale winds, as well as local mixing and advection,
place strong constraints on the nutrient supply to the surface waters. This complexity hinders a
simple projection as to how marine photosynthesis will respond to a warming world.

Driven by the broad pattern of wind-driven upwelling and downwelling, the spatial distribution
of nutrients in the ocean is largely characterized by latitudinal differences (10, /7). As such, we
focus on the identification of latitudinal trends in chlorophyll a (Chl) concentration (a metric for
phytoplankton biomass), a choice also intended to reduce the signal-to-noise ratio in our trend
estimates. We aim to elucidate whether regional changes reported elsewhere (/2—15) are
reflective of a broader global redistribution in Chl. To that end, we use the 20-year record of Chl
from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite
(hereafter referred to as MODIS-Aqua). MODIS-Aqua began collecting data in July 2002 and
stands as the longest-serving solitary sensor in operation. The latest 2022 Reprocessing version
(R2022) released by NASA, which includes instrument calibration updates that address
degradation issues, now provides a stable data source for the past two decades. Challenges arise
from the inherent characteristics of the Chl product, including a low signal-to-noise ratio and
gaps in observations. To mitigate these issues, we first interpolate the Chl data using an
algorithm that has recently been shown to improve the time series of global Chl in the open
ocean. We then spatially aggregate the data averaging measurements over latitudinal bands to
detect underlying large-scale trends (Methods).

We start by showing the well-known and distinctive spatial distribution of climatological Chl
(Fig. 1a, b). The elevated Chl (mean of 0.38 mg m™) in the subpolar regions (40 — 60°) stands in
sharp contrast to the relatively low Chl (mean of 0.074 mg m™) in the oligotrophic gyres of the
mid-latitudes (10 — 30°). In the tropics (0 — 10°), characterized by strong upwelling that boosts
phytoplankton growth, the mean Chl is again elevated (mean of 0.14 mg m™). To explore
latitudinal trends, we calculate the annual mean Chl of each 2° latitudinal band between 60°S —
80°N from 2003 to 2022 and then use the Sen’s slope estimator to determine trends (Methods).
We find that Chl has significantly decreased at an average rate of 0.55% yr'! in the northern
subtropical region (20 — 40°N) (Fig 1c¢). In contrast, Chl shows increasing trends in both northern
and southern subpolar regions at a rate of 0.28% yr'! and 0.44% yr’!, respectively. Moreover,
consistent with previous studies (/6, 17), we find that the Arctic Ocean (66 — 80°N) has
experienced a significant increase in Chl at a rate of 1.99% yr™'. Collectively these results
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indicate a broad pattern whereby Chl is decreasing in the low Chl waters of the subtropical and
tropical regions while increasing in the high Chl waters at higher latitudes (>40°).

To assess the relative contribution of these latitudinal bands to the total Chl in each hemisphere
we use a Lorenz curve and the corresponding Gini index, which were originally developed for
economic analysis (Methods). We examine the Northern Hemisphere (NH) and Southern
Hemisphere (SH) separately because of the well-known differences in the dynamics that govern
the high latitudes in these hemispheres. Given the unique environmental conditions in the Arctic
Ocean and previous work in this region, we hereafter focus on analyzing the open ocean between
60°S and 60°N (see the study (/6) for Arctic-specific trends). As seen by the Lorenz curve, in
which the 30 latitudinal bands are ranked in ascending order according to their contribution to
the cumulative chlorophyll in each hemisphere, the subpolar latitudes (40 — 60°N) place in the
top 10 latitudinal bands in the NH (Fig. 2a), contributing 55.6% to the total. In contrast, the
latitudinal bands between 20 — 30°N fall in the 20th percentile, contributing only 8.1%. In the
SH, the latitudinal bands with the largest contribution (28.3%) to the cumulative total are
between 40 — 50°S. They are followed by latitudes between 30 —40°S (18.8%), between 50 —
60°S (18.2%), and 0 — 10°S (15.9%) (Fig. 2¢). As seen here, the NH has a greater latitudinal
disparity than the SH mainly because Chl in the NH subpolar region exceeds that in the
comparable SH region. This difference is likely mainly attributable to the known iron deficiency
that limits phytoplankton biomass (/&) in the high nutrient-low chlorophyll Southern Ocean.

From the Lorenz curve, we next calculate trends in the Gini index of area-integrated Chl over
each latitudinal band from 2003 to 2022 for each hemisphere (Methods, similar trends are
observed with latitudinal averaged Chl, see fig.S1). We find a growing latitudinal disparity in
Chl in the NH, as measured by a significant increase of 0.20% yr'in the Gini index. The
significant increase of the Gini index tends to occur in winter and autumn seasons (fig. S2),
indicating a seasonal difference in the latitudinal disparity of Chl. In the SH, the increase is not
statistically significant (despite an increase in Chl concentrations in the SH subpolar latitudes).
One reason for this difference is that Chl has decreased significantly in the northern subtropical
regions where the relatively low Chl has become lower over the same period, whereas no such
trends are detected in the SH. We note that our latitudinal binning masks a myriad of variability
in Chl trends at regional and biome scales, with spatial heterogeneity in the magnitude and sign
of linear trends, particularly in the southern subtropical regions. While a local analysis is beyond
the scope of our study, contrasting trends at the local level likely explain the absence of trends in
certain latitudinal bands (e.g. SH subtropics). For further context, a comparison with recent
literature on global ocean color trends that focus on region is provided in the supplementary
material (Table S1).

As a first approximation, we examine the trends of four environmental factors (Fig. 3) believed
to critically influence Chl concentrations: sea surface temperature (SST), mixed layer depth
(MLD), photosynthetically available radiation (PAR), and wind speed (WS), and then determine
the observed sensitivity of Chl to these factors. A few patterns stand out from the comparison of
trends. In the northern subpolar regions (40 — 60°N), where significant increases in Chl are
primarily detected from October to February at a rate of 0.88 + 0.41% yr'! (Fig. 3a), we note
concurrent increases in SST and PAR (Fig. 3b, d), as well as a shoaling in the MLD (Fig. 3c). In
the northern subtropical region (20 — 40°N), where Chl shows a year-round decreasing trend at a
rate of -0.75 £0.25% yr’!, with significant changes observed in 56.7% of the region (Fig. 3a),
SST shows significant increases throughout the year in 79.2% of the grids (Fig. 3b). Finally, in
the southern subpolar regions (40 — 60°S), where Chl has increased significantly in the months of
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April to August at a rate of 1.24 £ 0.64% yr'!, a few concurrent SST trends are also observed
(Fig. 3a, b).

The observed sensitivity of Chl trends to trends in the four environmental variables suggests that
SST is a dominant factor for Chl changes in the subpolar region of both hemispheres and in the
subtropics of the northern hemisphere (Fig. 4). The increase in Chl in the subpolar regions is
likely associated with the observed increase in autumn and winter blooms (79, 20), consistent
with projected increases in NPP driven by sea ice retreat, shoaling of mixed layers, and a
reduction in light limitation (16, 21, 22), all tightly linked to the surface warming observed here.
In the northern hemisphere subtropics, the decreasing Chl trend and concurrent increasing SST
trend are supported by in situ observations at the Bermuda Atlantic Time-series site (BATS).
Previous study (23) found that rising SST reduces phytoplankton productivity in the oligotrophic
ocean, putatively through a reduction in nutrient supply, a result consistent with increased
stratification observed in recent years (24). The southern hemisphere subtropics do not exhibit a
clear sensitivity to any of the variables, likely because the Chl trends here are the weakest across
all latitudes (Fig. 3a). Finally, the lack of significant trends in the tropics for all environmental
variables (Fig. 3b—e) precludes any attribution of the decreasing Chl trend observed there (Fig.
4).

As mentioned above, complex dynamics in the ocean environment complicate the attribution of
Chl changes. While our analysis suggests that broad scale SST changes are likely driving
latitudinal Chl changes, our results are inconclusive for the three other variables studied here.
Regional studies provide additional insights to this global analysis. For example, wind speed
emerges as a significant factor in annual Chl variation across both tropical regions and eastern
boundary currents (25, 26). In the tropical Indian Ocean, reduced wind speeds have been
correlated with increased stratification, which suppresses nutrient upwelling, thus contributing to
declining Chl. Conversely, in the California Current System, elevated wind speeds have been
found to facilitate upwelling, thus enhancing phytoplankton biomass and fostering a "greening"
effect. Modeling studies that incorporate these variables, and others such as turbulent mixing and
aerosol deposition (7, 8), are needed to further elucidate the mechanisms driving the latitudinal
Chl trends observed here.

It remains to be established whether the significant trends over the 20-year record reported here
stem from natural variability over the satellite era or are driven by a changing climate. Previous
studies suggest that satellite time series would need to be ~30 — 40 years in length to distinguish
climate-driven Chl trends from internal variability (12, 27, 28). Because variations in Chl reflect
both biomass and physiology (6), we cannot attribute the Chl trends changes in phytoplankton
biomass. However, our observations of poleward greening and increasing latitudinal disparity
align with 21st century projections of a sustained decrease in NPP in the low- and mid-latitudes
that is coupled with an increase in high latitude areas (29, 30). Through trophic amplification, the
decline in phytoplankton biomass associated with climate warming will have a more pronounced
impact on biomass at higher trophic levels (37, 32, 33) with a projected decline in fish
production and fisheries in the tropics, and an increase in the high latitudes (34, 35, 36). More
than 50% of the global fish catch comes from tropical and subtropical regions, with significant
contributions from coastal fisheries. While our study focuses on open ocean waters, any
persistent changes in these areas could profoundly impact low- and middle-income nations, such
as Pacific Island Nations, that rely on fisheries for sustenance and economic development. (38,
39). Future investigations should focus on these regions to provide a more comprehensive
understanding. In particular, it will be important to investigate how climate change, and climate

4



10

15

20

25

30

35

40

mitigation through iron fertilization (40), could synergistically impact air-sea CO; fluxes, and
exacerbate fisheries inequity.
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Supplementary Materials
Materials and Methods
Satellite Chl observation

We obtained level-3, daily, 4 km-binned Chl data derived from MODIS-Aqua from the ocean
color website (https://oceancolor.gsfc.nasa.gov/) for the period of Jan 1, 2003 to Dec 31, 2022.
NASA has reprocessed all ocean color products several times during the mission’s operation to
account for MODIS-Aqua degradation issues. The current version is R2022, in which the sensor
drift issue has been corrected to the end of 2022
(https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/noaa20/). Compared to previous
versions, R2022 shows a significant change in the MODIS-Aqua time series Chl, with a decrease
on the order of 10 — 20% for the recent 5 years
(https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/aqua/). By the time we submitted the
article, multi-sensor datasets such as OC-CCI 6.0 had not incorporated NASA R2022 products
(CMEMS-0OC-QUID-009-107to108), thereby reducing the accuracy of Chl trends. Furthermore,
recent studies have revealed possible biases in detecting Chl trends using multi-sensor products
due to the inconsistencies between missions (/3, 47). North of 65°N, we use the dataset of Lewis,
et al. (/6). This dataset has been produced using a modified version of the standard empirical
algorithm (AO.emp). It is developed by using coincident measurements of in sifu and remote
sensing reflectance in order to account for the unique bio-optical properties of the Arctic Ocean.

DINEOF+

We aggregated Chl values by spatially averaging over 2 degree grids and then applying
DINEOF+ to interpolate data gaps in the open ocean. DINEOF+ is a variant of learning
algorithms that uses singular value decomposition (SVD) to address missing data. It has recently
been shown to be an effective interpolation method to increase data coverage of global Chl
observations. The reconstructed Chl time series also demonstrates a higher correlation to in situ
observations compared to the original product (42). The boundary for the open ocean is based on
climatological criteria developed by Fay and McKinley (43), who classified 17 open-ocean
biomes according to observations of Chl, SST, and MLD. This boundary excludes coastal
regions characterized by high Chl variance and complex water constituents due to strong
upwelling and land influence. This choice also reduces the impact of high Chl variance on
DINEOF+ performance as well as the influence of known biases in ocean color data for Case 2
waters. Using the reconstructed daily Chl, we generated a 20-year time series of monthly and
annual Chl concentrations.

Datasets on ocean surface conditions: temperature, PAR, wind, and mixed layer depth

Monthly average datasets of SST, PAR, wind, and mixed layer depth were analyzed for the
period Jan 2003 — Dec 2022: (1) SST and PAR: MODIS-Aqua level-3 bin datasets at 4 km
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spatial resolution from NASA’s ocean color website. (2) Sea surface wind: ECMWF ERAS
based level-4 at 0.25 degree spatial resolution from Copernicus Marine Service
(https://marine.copernicus.eu/). Bias corrections are performed by using scatterometer
observations from satellites (44). (3) MLD: 0.25 degree spatial resolution derived from the
ECCO-Darwin model (45). All datasets are spatially averaged to a 2-degree grid, then averaged
to latitudinal bands.

Lorenz curve and Gini index

The Lorenz curve is commonly used in economics to visually illustrate the distribution of income
or wealth within a society. It plots the cumulative percentage of total income received by the
cumulative percentage of population. In this study, we take the sea surface area-integrated Chl
concentration of each latitudinal band as a discrete unit and plot the cumulative Chl (x%) against
the cumulative number of latitudinal bands (y%) by the ascending order of Chl level from lowest
to highest. The resulting plot shows the inequality of Chl distribution among latitudinal bands
(Fig. 2a, ¢).

The Gini index is a metric that summarizes the level of inequality represented by the Lorenz
curve. It has previously been used to evaluate the unevenness of distributions, including soil
moisture and phytoplankton blooms in a large lake (46 47). We calculate the Gini index (G) to
quantify the disparity level of Chl in both hemispheres.

The classic definition of G is:

_ =1 Z]n=1|Xi - le

G 1
2n?x @
where x; is the average value of Chl concentration of the ith latitude band, n is the number of
latitudinal bands and i is the rank of values in ascending order. When x values are placed in
ascending order, the formulation is:
L, 2i—n—1)x;
G = 1—1( ) 1 (2)

G ranges between 0, where there is perfect equality in the latitudinal distribution of global Chl,
and 1, where Chl is concentrated in a single latitudinal band.

Statistical analysis

We use the Man-Kendall (MK) test with Sen’s slope method (48) to detect the trend in annual
Chl of each latitudinal band and to estimate the slope 5. The Sen’s estimator is a nonparametric
method that uses the median slope of all lines through sample points (Eq. 3).

B = median(tl' — t]> (3)
i Y

where t; <'t; -+ < ty0, x; and x; are observed values at times t; and t; respectively, 1 < i <j <
20.

Alternatively, f may be estimated by using least square regression. However, the trend detected
in this way is sensitive to outliers. In addition, it has been noted that Chl time series are not
normally distributed with constant variance over the global ocean (/2). Compared to the linear
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regression method, the Sen’s estimator of slope is less sensitive to outliers and provides an exact
confidence interval without assuming normality and constant variance. To correct for serial
autocorrelation in the MK test’s statistical significance, we apply the modified MK test to data of
significant autocorrelation at 95% confidence limit. This approach developed by Hamed and Rao
is effective for data with arbitrary autocorrelation structure by modifying the variance of the MK
statistic (49).

We define the observed sensitivity as the ratio of Chl trend slope to the trend slope of the driving
factor under consideration (i.e., SST, MLD, PAR or WS), multiplied by the ratio of the 2003
annual means of driving factors (DF) and Chl (Eq. 4). Doing so allows us to compare the
changing rate of Chl relative to different driving factors (50). We use:

_ Ben o« DF2003
' BDF,: Chlzoo3

where overlines indicate annual mean. «; is the standardized observed sensitivity of Chl trend to
trend of the driving factor. Bcp; , Bpr, are the estimated slopes of the trends in Chl and the
driving factor DF; (i.e., SST, MLD, PAR, and WS), respectively. Only significant trends (p <
0.05) are used for calculating the observed sensitivity. We note that the observed sensitivity is
statistical and does not necessarily reflect causation.

(4)
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fig. S1 Latitudinal disparity in Chl concentration. (A, C) Lorenz curves of climatological Chl
concentration of 2° latitudinal bands in the Northern (0 — 60°N) and Southern Hemispheres (0 —
60°S). Bars represent the cumulative latitudinal mean Chl concentration, ordered in ascending

Lorenz Curve — — —Line of equality :Latiludinalband|

11



10

15

averaged Chl concentration. (B, D) Interannual variability of the Gini index during the 2003 —
2022 period with significant trends (p < 0.05) indicated by an asterisk.
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fig. S2 Long-term trends in the Gini index in seasons. (A—D) Northern Hemisphere (0 —

C Summer

054 10,155 yr1
R?=0.18
0.53 -p-value = 0.06

G 2008 2010 2015 2020
1.47% yr!
R?=0

0.3 - p-value =0.11

0.35

2005 2010 2015 2020

D Autumn
054 10,250 yr1 +
0.53 [R?=0.32
p-value = 0.01
0.52
0.51 \ L\
][ v
0.49 \
0.48
0.47 - -
H 2005 2010 2015
0.29
0.06% yr
0z -0
p-value < 0.6
0.27
0.26
0.25
0.2

2005 2010 2015

\-
\/

2020

2020

60°N). (E-H) Southern Hemisphere. Dots represent the annual Gini index of latitudinal and
season- averaged Chl concentration. Dashed line displays the annual Sen’s slope with Mann-

Kendall (MK) test significance (* p < 0.05)

60°E 120°E 180° 120°W 60°W 0°

mgm-* [T - .
0.01 01 02 05 1 2 5

2

.

0 02 04 06 08
e
- o
=
(=]
=]
a
o
wr
c
o
=
=
o
=
\ g
A Y
w
=
p<0.1 g
p<0.05 2
s p<0.01 2
% p<0.001 . k . L
04 086 08 11 0 1 2 3
(mg m*) (% yr")

Fig. 1. Global distribution and latitudinal trends of surface Chl at 2° resolution. (A)

Climatological mean Chl between 60S — 60N (2003 — 2022), and north of 60°N (2003 — 2020).
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10

Coastal regions and areas south of 60°S are excluded. (B) Median of the climatological Chl
(thick line) and the 10th and 90th percentiles (thin lines) as a function of latitude. (C) Annual
Sen’s slope of the climatological Chl with Mann-Kendall (MK) test significance (° p <0.1, * p <
0.05, ** p <0.01, *** p<0.001) indicated. Color represents R-squared values.
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Fig. 2. Latitudinal disparity in area-integrated surface Chl concentration. (A, C) Lorenz
curves of climatological Chl area-integrated over 2° latitudinal bands in the Northern (0 — 60°N)
and Southern Hemispheres (0 — 60°S) during the 2003 — 2022 period. Bars represent the
cumulative percentage of surface Chl integrated over 2° latitudinal bands, ordered in ascending



contribution of Chl to the total. (B, D) Interannual variability of the Gini index from 2003 to
2022 with significant trends (p < 0.05) indicated by an asterisk.
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5 Fig. 3. Long-term trends of variables grouped by month and latitude. (A—E) Trends for Chl,
SST, MLD, PAR and WS. Each grid in the panels represents an estimated slope of a linear trend
of the year-to-year monthly variable at that particular latitudinal band. Asterisk indicates grids
with significant trend. Black grids indicate regions where no data is available.
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10 Fig. 4. Observed sensitivity of Chl to driving factors. (A) SST, (B) MLD, (C) PAR, and (D)
WS. Circles represent the standardized observed sensitivity (Methods) of grids with concurrent



significant trends of Chl and driving factors. Bars represent the median observed sensitivity of
grids grouped in the same season and particular latitudinal band.



