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Abstract

The creation of complex 3D scenes tailored to user specifications has been a tedious
and challenging task with traditional 3D modeling tools. Although some pioneer-
ing methods have achieved automatic text-to-3D generation, they are generally
limited to small-scale scenes with restricted control over the shape and texture.
We introduce SceneCraft, a novel method for generating detailed indoor scenes
that adhere to textual descriptions and spatial layout preferences provided by users.
Central to our method is a rendering-based technique, which converts 3D semantic
layouts into multi-view 2D proxy maps. Furthermore, we design a semantic and
depth conditioned diffusion model to generate multi-view images, which are used
to learn a neural radiance field (NeRF) as the final scene representation. Without
the constraints of panorama image generation, we surpass previous methods in
supporting complicated indoor space generation beyond a single room, even as
complicated as a whole multi-bedroom apartment with irregular shapes and lay-
outs. Through experimental analysis, we demonstrate that our method significantly
outperforms existing approaches in complex indoor scene generation with diverse
textures, consistent geometry, and realistic visual quality.

1 Introduction

The generation of diverse and complex 3D scenes plays a critical role in enhancing virtual and
augmented reality (VR/AR) experiences, video game development, and the advancement of human-
centric embodied AI. However, manually creating these complex 3D scenes is a tedious procedure that
requires extensive knowledge and proficiency in 3D modeling tools [13, 14]. The recent success of
2D generative models [23, 50, 55] fuels the development of a line of text-to-3D work [31, 46, 63, 66].
Although these methods have achieved impressive object generation performance, scaling from object-
level to scene-level generation presents significant challenges. It involves managing a considerably
larger space with complicated semantics while ensuring 3D consistency (in terms of shape, texture,
occlusion, etc.) across various camera perspectives.

Recent advances in scene-level 3D generation [17, 24, 37, 60, 75] have opened new pathways for
creating larger-scale virtual environments. Most work leverages image inpainting [17, 24, 75] or
multi-view diffusion methods [37, 60] to optimize a text-guided 3D scene. While generating locally
convincing textured meshes, these methods share two common drawbacks: (1) Focusing on local
coherence, they often struggle to accurately depict geometrically consistent rooms with plausible
layouts and rich semantic details. (2) Conditioned only on textual prompts, these methods fall short in
terms of offering precise control over the entire scene’s composition and arrangement. Although some
concurrent research [16, 45, 53] has explored the generation of an indoor environment conditioned
on user-defined 3D layouts, it is restricted to creating small-scale compositions involving multiple
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Figure 1: Our novel method generates complex and detailed indoor scenes from 3D spatial layouts and textual
descriptions. Given user-specified layouts represented as a “Bounding Box Scene (BBS),” our method renders
batches of 2D layouts and coarse depth maps and then transforms them into high-quality 3D scenes.

objects [12, 45], or lacks the ability to generate multiple rooms with complex layouts, shapes, and
free camera viewpoints [16, 53] due to the use of panoramic representation.

In this paper, we introduce SceneCraft, a novel method designed to generate high-quality indoor
scenes conditioned on user-specified free-form layouts. A high-level illustration of our work is shown
in Figure 1. Our method features two key innovative designs:

User-Friendly Semantic-Aware Layout Control. Central to our approach is the utilization of
3D bounding boxes to guide the layouts of the target space, namely a “bounding-box scene (BBS),”
which allows users to design complex and free-form room arrangements with simple bounding boxes.
With this layout format, users can easily define both the spatial arrangement and the placement of
objects within a room, as constructing a building in the Minecraft game. And SceneCraft leverages
this preliminary design to generate a detailed and realistic scene. We surpass previous methods
in supporting complicated indoor layouts beyond a single room, even as complicated as a whole
three-story house with multiple layers and irregular rooms.

High-Quality Complex Scene Generation with a 2D Diffusion Model. Our framework excels
in creating 3D scenes by leveraging the advanced generation capabilities of our pre-trained 2D
diffusion model, SceneCraft2D. SceneCraft2D takes the “bounding-box images (BBI)” rendered
from BBS as a condition through ControlNets [76] to generate high-fidelity views of the room that
follow the given simple prompt like “This is one view of a [style description] room.” By obtaining
high-quality multi-view images through SceneCraft2D, we successfully distill a high-resolution 3D
representation [56] of the generated indoor scene.

Trained with multi-view indoor scene datasets [49, 72], our work achieves state-of-the-art 3D indoor
scene generation performance, both quantitatively and qualitatively. We present the first effective
framework to generate complex text- and layout-guided 3D-consistent scenes with free camera
trajectories and diverse semantics. In summary, our technical contributions are threefold:

• We propose a novel layout-guided 3D scene generation framework to create complicated
indoor scenes adhering to user specifications, being the first to operate on free multi-view
trajectories and free from the constraints of using panoramas.

• We introduce the “bounding-box scene” as a user-friendly format to scratch a desired room
as easy as building homes in the Minecraft game, which provides accurate geometry control.

• We design a high-quality 2D diffusion model, SceneCraft2D, to generate high-fidelity and
high-quality rooms following the rendered “bounding-box image” from the “bounding-box
scene,” and to support the generation of various styles via text conditioning.

With all these contributions, our SceneCraft achieves high-quality generation of various fine-grained
and complicated indoor scenes that have not been supported by previous work.

2 Related Work

Learnable Scene Representation. Traditional scene representations [1, 11, 22, 28, 40, 44, 54, 64]
directly model the 3D geometry information of the scene and thus suffer from limited flexibility
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or low rendering quality. The neural radiance field (NeRF) [41] pioneers a neural network-based
scene representation, providing the ability to reconstruct a complete and precise 3D scene from only
multi-view images and corresponding camera parameters. Follow-up variants of NeRF [2, 6, 7, 20,
56, 62, 65, 67, 69, 73, 74] aim either to improve the original framework in different aspects, e.g.,
rendering quality and training efficiency, or to support additional tasks, e.g., relighting ability and
editing ability. Recently, 3D Gaussian Splatting [27] outperforms the NeRF-family representation
with high rendering quality and efficiency. In our work, we use a learnable scene representation as
the backbone to model the output. As any representation can be used in our framework, we choose
Nerfacto [56] for its high-quality rendering of complicated large-scale scenes.

Diffusion-Guided Text-to-3D Generation. The recent successful 2D diffusion-based generative
models [3, 4, 23, 50, 51, 55] have inspired a series of innovative text-to-3D methods [10, 31, 43, 46,
59, 66, 75] to distill powerful 2D pre-trained models for 3D content creation. DreamFusion [46]
proposes the score distillation sampling (SDS) module to optimize scene representations, e.g.,
NeRF [41] or Gaussian Splatting [27], of objects by denoising their rendered views. Building
on top of DreamFusion, SJC [63], Magic3D [31], and ProlificDreamer [66] alleviate the over-
saturation problem and improve the generation quality. Despite impressive results, these methods are
restricted in generating small-scale objects without complex semantic composition. More recently,
Text2Room [24], SceneScape [17], and Text2NeRF [75] propose to extend object generation to scene
generation with off-the-shelf text-image inpainting models [39, 50], where they iteratively inpaint
unseen parts of the scene from novel camera perspectives. Another work [37] proposes progressively
distilling a text-conditioned indoor panorama generation model [60] using different groups of camera
views to optimize a scene representation. However, all of these methods lack semantic control over
the generation output other than a simple text prompt. Hence, they cannot be used in the creation
of 3D scene models where users want to specify the structure and layouts of the environment. In
comparison, our work learns to generate 3D scenes that adhere to user-specified room layouts and
textual descriptions, allowing precise control over the environment.

Scene Generation with Semantic Guidance. A recent line of work has studied 2D generation
with semantic guidance for better controllability [9, 15, 18, 30, 50, 71]. Attempting to extend image
generation to 3D creation, prior work has studied single image to 3D object reconstruction [33,
34, 36, 38, 47, 57, 68] and single image to video reconstruction [5, 61]. These methods face great
challenges in 3D consistency, due to the lack of large scene-level datasets for training and the use
of the auto-regressive generation paradigm. Meanwhile, Set-the-scene [12], CompoNeRF [32],
and Compo3D [45] learn to generate object compositions from semantic layouts with the SDS
method [46]. Discoscene [70] aims to disentangle the scene and then perform object-level scene
editing leveraging the layout priors. DiffuScene [58] and GraphDreamer [19] utilize scene graphs
together with textual descriptions as conditions to generate compositional 3D scenes. However, these
methods are restricted to generating small-scale scenes composed of only several objects. They
also neglect representations of walls, doors, ceilings, and ground, which are essential in defining
indoor scenes but difficult to control in generation. Close to our work are three concurrent methods,
ControlRoom3D [53], Ctrl-Room [16], and UrbanArchitect [35]. The first two methods generate
3D room meshes from user-defined or estimated layouts with multi-view diffusion followed by a
monocular depth estimation process. While achieving outstanding generation performance, they rely
on panorama images [60] as their preliminary results, which not only simplifies the scene generation
problem, but also limits the complexity of their room layouts and diversity of their camera viewpoints.
Our method, by learning a 3D-consistent multi-view generator and a scene renderer without viewpoint
constraints, is able to generate more complex and consistent scenes with diverse camera trajectories.
UrbanArchitect [35] focuses on street-view scene generation with semantic-aware layout controls.
However, it allows for greater geometric approximation due to simpler conditions: fewer object
categories, sparser and non-overlapping object placement, and more predictable camera trajectories.
In contrast, indoor scenes feature dense objects that overlap with more fine-grained categories, which
are all effectively addressed in our method.

3 SceneCraft: Methodology

Our SceneCraft is a novel method for text- and layout-guided scene generation. As illustrated in
Figure 2, the input to SceneCraft consists of (1) a prompt as a coarse description of the target scene’s
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Figure 2: SceneCraft is a novel framework for layout-guided scene generation, which allows users to provide
the layout as a bounding-box scene (BBS, Sec. 3.1), a user-friendly layout format that guides the generation.
Our framework contains two stages: (a) pre-training of a 2D diffusion model, SceneCraft2D, to solve the 2D
version of the layout-guided scene generation task (Sec. 3.2), and (b) distillation of the SceneCraft2D to learn a
scene representation of the generated scene (Sec. 3.3).

style and content, (2) a “bounding-box scene” (BBS) serving as the layout guidance of the target
scene, and (3) a camera trajectory defined in the space of BBS. SceneCraft renders the BBS in
the camera trajectory to construct “bounding-box images” (BBI) as the layout condition for a pre-
trained 2D diffusion model “SceneCraft2D” to generate high-quality 2D images of the scene. With
the high-quality images generated by SceneCraft2D, SceneCraft is able to use an SDS-equivalent
paradigm [46] to aggregate them into a scene representation (e.g., NeRF [41] or 3D Gaussian splatting
[27]) of the generated 3D scene. Notably, our SceneCraft does not require a panoramic view. Instead,
our camera view can move freely in the 3D space, enabling the generation of much more complicated
indoor layouts consisting of multiple rooms, unlike prior work which only supports single-room
scenes.

3.1 Bounding-Box Scene (BBS): A User-Friendly Layout Interface

To provide a user-friendly format for free-form indoor layouts, we design the bounding-box scene
(BBS) representation. As shown in Figure 2, BBS is similar to the “Proxy Room” of Control-
Room3D [53], but each object in the scene can be represented by a union of several intersecting
bounding boxes in BBS with a category label, to indicate the coarse shape and category of an object.
This provides users with the ability to indicate the shape of the object, e.g., an L-shaped or even an
S-shaped desk, while still maintaining the freedom of using a single bounding box for generation.

3.2 SceneCraft2D: Layout-Guided Image Generation

BBS can be regarded as a draft or a coarse version of the scene. In order to generate the actual room
accurately conditioned on BBS, we use a distillation-guided framework. Each view of the generated
scene corresponds to a 2D generation task, conditioned on the “bounding-box image (BBI)” of the
same view in BBS, where each pixel of BBI contains both the semantic category and the depth of the
pixel in BBS. By rendering BBS into BBI on the projected camera trajectory provided, we decompose
the layout-guided 3D scene generation task into a set of layout-guided 2D image generation tasks,
with BBI as conditions. To solve these tasks, we propose SceneCraft2D, a 2D diffusion model for
high-quality layout-guided 2D image generation.

Augmented SD for BBI Conditions. Our SceneCraft2D is augmented from Stable Diffusion [50],
with an additional BBI condition at the current viewpoint, which contains both the semantic category
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map and the BBS depth map. The semantic map (converted to one-hot vectors based on the category)
and depth map are injected into the model, as conditions via two separate ControlNets [76].

Finetuning. We finetune the augmented Stable Diffusion with scenes in indoor datasets like
ScanNet++ [72] and Hypersim [49]. Each scene is converted to a generation task by generating the
prompt, converting its semantic point cloud into a BBS, and using the camera trajectory provided
by the dataset. We split the generation task into several 2D generation tasks at each view in the
dataset, and train the SD model with these tasks. During the finetuning process, instead of using
existing caption tools such as BLIP [29] to generate prompts, we use a single base prompt for all
training samples. During inference-time generation, our model supports more specific and customized
scene-specific prompts to produce the results that users desire. Note that the base prompt does not
need to contain any information describing the image content, it merely serves as a placeholder to
avoid the model overfitting to any particular word or sentence. Specifically, we use “This is one view
of a room.” as the base prompt and user-desired target prompts like “This is one view of a bedroom in
Van Gogh painting style.” for generation. The results showed that this method effectively controls the
style of the generated outputs via prompts while maintaining a good layout-conditioned generation.
After finetuning, SceneCraft2D can generate high-quality images according to the given BBI and text
prompt.

3.3 Distillation-Guided Scene Generation

Distillation Process with Annealing. To generate 3D scenes, we distill the generation ability of our
pre-trained SceneScraft2D model in a Score Distillation Sampling (SDS) [46, 63]-equivalent pipeline.
Unlike the vanilla SDS [46] that works in the latent space and directly works with gradients, our
pipeline applies an IN2N [21]-style, which is proven SDS-equivalent by HiFA [78]. In this pipeline,
we maintain a multi-view dataset for continual scene representation training while simultaneously and
iteratively replacing the multi-view dataset with newly generated images by SceneCraft2D. Through
this process, the multi-view dataset will be gradually replaced with views of the generated scenes,
which are used to fit the scene representation towards the generation.

Within this pipeline, we also propose an annealing-based distillation strategy inspired by [39, 78],
for a more efficient and high-quality distillation. Leveraging the SDEdit method [39] to control
the similarity of generated images with the currently modeled scene, we gradually decrease this
similarity along with the entire distillation procedure. In other words, at an early stage of distillation,
SceneCraft2D can freely generate the room to satisfy the BBS and the prompt; while at a later stage,
by generating similar but higher-quality images, SceneCraft2D can also serve as a refiner of the scene
representation to refine the rendering result and improve the scene representation. With this pipeline,
our SceneCraft is able to generate high-quality scenes.

Layout-Aware Depth Constraint. When generating a complex indoor scene based on free camera
trajectories, learning a reasonable geometry of the scene from scratch is both crucial and challenging.
However, we have prior knowledge of the BBS input, which allows the model to quickly capture the
geometry of the scene through the layout-aware depth constraint. Specifically, at the initial stage of
distillation, we add a normalized depth loss Ldepth, where the pseudo-supervision signal comes from
our BBS input. We set a soft threshold δ that allows the pixel depths Drender modeled by the scene
representation to fluctuate within a reasonable range around the pseudo-ground truth depths Dlayout.
This ensures that the model quickly converges to an initial coarse geometry. This loss is modeled in
the following form:

Ldepth = [max(||Drender −Dlayout|| − δ, 0)]2. (1)

Later in the distillation process, we disable this loss term to allow the model to learn more fine-grained
geometry.

Floc Removal with Periodical Migration. The images generated at the initial steps of the
distillation process have a lower consistency, which can result in blurry flocs close to the surface
and in the air when “averaging” inconsistent multi-view images on the scene representation side. At
a later stage, even when the diffusion’s output is relatively 3D-consistent with annealing, the flocs,
with condensed volume density, are still hard to remove and may result in Janus problems. Therefore,
instead of “fixing” flocs issues in the original scene representation, we propose a method to migrate
the current relatively coarse scene to another scene from scratch, to obtain a finer version. After the
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Figure 3: Generation results of SceneCraft on Hypersim [49] provided room layouts. For each sample, we
demonstrate the 3D BBS and BBI semantic maps and the generated scene RGB images and rendered depth map.
Our method is able to generate complex and free-form scenes from challenging room layouts.

first several iterations as early-stage training, we begin to maintain two scene representations, Sc and
Sf , to indicate the previous coarse representation and the mitigated fine representation, respectively.
We freeze Sc and generate new images to supervise Sf by generating images similar to Sc’s rendering
results (by only applying t < T noise adding steps), to refine Sc and store into Sf with the diffusion
model’s generation. We also periodically update Sf with Sc (with a smaller interval of training
iterations) to synchronize the latest information in both two scene representations. With the periodical
migration method, we achieve more and more fine-grained and clear scenes during the training
procedure.

Texture Consolidation. The generation of high-quality images by our SceneCraft2D ensures that
the scene representation can converge accurately to the intended scene geometry. This advancement
negates the necessity for explicit mesh exportation from scene representation as commonly required
in previous work. To assign the modeled scene with sharp and clear textures, we incorporate the use
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Figure 4: Qualitative comparisons of SceneCraft and baseline approaches. We show our generated color and
depth renderings under two common layout conditions (a bedroom and a living room) alongside three other
baselines. SceneCraft demonstrates higher credibility in following the layout conditions and is capable of
handling more complex scenarios.

of VGG [25] perceptual and stylization loss during the distillation process. This strategy allows the
scene representation to produce rendered images that share semantic meaning and stylistic elements
with SceneCraft2D-generated images, rather than striving for pixel-perfect replication, which often
leads to blurred results. By employing this loss, our SceneCraft framework emerges as a unified
model to generate scenes in a sharp and clear manner, thereby eliminating the need for labor-intensive
processes of mesh exportation and optimization.

4 Experiments

In this section, we focus on demonstrating the quality of SceneCraft generation under various layout
conditions and prompts, and compare our performance with publicly available methods quantitatively
and qualitatively. Then we present more challenging generation that is beyond the scope of the
previous methods.

Implementation and Datasets. For the development of our SceneCraft2D diffusion model, we
finetune Stable Diffusion [50] with our produced layout data. We use multi-view images from
ScanNet++ [72] and HyperSim [49] to construct BBI data. In the distillation process, we choose
Nerfacto from NeRFStudio [56] as our backbone for scene representation. During distillation, we use
a dual-GPU pipeline to parallelize diffusion generation and NeRF training. More details are provided
in Appendix Sec. A.

BBS Sources. For efficiency and effectiveness, we employ two distinct approaches to leverage
bounding-box scenes (BBS), one of which utilizes original 3D bounding boxes (axis-aligned or
oriented) by directly rendering them into 2D images. This straightforward method is already sufficient
for the generation in our experiment, as we applied on Hypersim [49] data. Another approach
enhances traditional bounding boxes by voxelizing them into a more detailed collection of smaller,
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fine-grained voxels. This method is particularly adept at capturing the nuances of more complex
geometries and arrangements within a scene, such as L-shaped tables or S-shaped desks, which often
pose challenges for more simplistic modeling techniques. We find that this significantly improves the
model’s ability to accurately represent and understand the spatial dynamics and intricate designs of
various objects within a scene. We use this strategy for realistic and challenging scenes [72].

4.1 Layout-Guided Scene Generation

Baselines. Most existing work does not generate scenes conditioned on user-specified layouts [17,
24, 37]. The only two concurrent scene generation methods that support layout guidance have not
released their codebases [16, 53] for comparison. Hence, we make our best effort to create a fair
comparison with open-sourced scene generation methods and demonstrate the effectiveness of our
method through ablation study (Sec. 4.2). Text2Room [24] uses a text-conditioned inpainting model
to construct the scene frame by frame. Following their original instructions, we change the text
prompt along the trajectory to reflect which objects are visible in the current frame. Similarly, for
MVDiffusion [60], we construct different prompts for each of the eight views that make up the
panorama image. For Set-the-scene [12], we follow their official guidelines, using 3D modeling
software (e.g., Blender) to create the same layout input for training and set the same prompts as
SceneCraft.

Qualitative Results. In Figure 3, we demonstrate qualitative generation results of SceneCraft on
Hypersim [49] provided room layouts. These illustrations vividly demonstrate the model’s proficiency
in crafting detailed, complex, and free-form scenes, showcasing its application across both the realistic
and synthetic datasets. Not only does it highlight the technical prowess of SceneCraft in navigating
the intricacies of scene generation, but also its adaptability to the diverse requirements of real-world
and artificially constructed environments. In Sec. 4.3, we demonstrate more challenging generation,
which includes extremely challenging cases for panorama-based methods, but naturally supported by
our framework.

Table 1: Quantitative comparisons of SceneCraft against
baselines.

Method
2D Metrics 3D Quality

CS↑ IS↑ 3DC↑ VQ↑

Text2Room [24] 22.98 4.20 3.11 3.06

MVDiffusion [60] 23.85 4.36 3.20 3.35

Set-the-scene [12] 21.32 2.98 3.53 2.41

SceneCraft (Ours) 24.34 3.54 3.71 3.56

Quantitative Results. We present
quantitative comparisons with base-
line methods [12, 24, 60] using both
2D and 3D metrics in Tab. 1. For 2D
metrics, we compute the CLIP Score
(CS) [48] and the Inception Score
(IS) [52], which do not require ground
truth scenes from the dataset, and
therefore are agnostic to the dataset
used in training. We also measure
3D quality by conducting a user study
with 32 participants, who scored 3D
consistency (3DC) and overall visual
quality (VQ) of rooms generated by
different methods on a scale of 1 to 5. Our experimental design follows previous work [51]. The
quantitative results highlight that our method consistently outperforms prior approaches in terms of
the CLIP Score, 3D consistency, and visual quality. Regarding the Inception Score, we anticipate that
our diffusion model’s finetuning with fixed categories slightly limits generation diversity. However,
this is not a major concern for our task, as previous work has struggled to achieve both high consis-
tency and visual quality while being controlled by layout prompts. Additionally, we did not provide
other common metrics on generative tasks, e.g., Fréchet Inception Distance (FID) Score, since it is
dependent on the ground truth dataset and would result in unfair and inaccurate comparison if applied
to our experiments.

Comparison with Existing Methods. In Figure 4, we present our results compared with three
baselines under two common layout conditions. SceneCraft significantly outperforms previous
methods. For panorama-based methods (MVDiffusion), the biggest limitation lies in the inability
to model rooms with complex shapes, such as L- or S-shaped structures. When using prompts
to describe layout conditions, MVDiffusion fails to generate the desired results accurately. For
inpainting-based methods (Text2Room), although they support free camera trajectories, their iterative
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Figure 5: Generation results of SceneCraft in complex scenes. We demonstrate SceneCraft’s ability
to generate more complex indoor scenes leveraging arbitrary camera trajectories. Such non-regular
shape of rooms cannot be naturally achieved by previous work.

generation nature often results in repetitive or contradictory frames. In the example shown in Figure 4,
Text2Room generates four beds in that room simply because the prompt contains the word “bedroom,”
completely failing to adhere to the specified layout conditions. For NeRF-composition methods
(Set-the-scene), the main drawback is the inability to generate objects with significant size differences.
Set-the-scene trains and combines different objects within the unified NeRF space. In Figure 4,
Set-the-scene fails to generate objects hanging on walls, such as blinds or televisions. Our model,
however, addresses all these issues: it can generate scenes of any scale and complexity following the
given layout conditions and can also be adjusted via prompts.

4.2 Ablation Study

We conduct various ablation studies to validate our methods. Specifically, we test the effect of the
base prompt used in finetuning, the layout-aware depth constraint, and the texture consolidation. The
appendix section offers a comprehensive introduction to all of our evaluated models and additional
experimental details, and includes further visualization and ablation experiments. We also elaborate
on the limitations, failure cases, broader impacts, and future directions of our work. Please refer to
Appendix Sec. B.1 for more details.
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Figure 6: Effect of Base Prompt. Using our base prompt successfully avoids the overfitting and maintains the
inherent power of pre-trained Stable Diffusion, while using BLIP2 captions leads to control failure.

Figure 7: Style variants on the fixed layouts of SceneCraft. We show three variants A/B/C with
different appearances while the geometries remain unchanged.

Effect of Base Prompt. To verify the effectiveness of using our base prompt, we test different
prompt settings: e.g., generating image captions from BLIP2 [29] with user-defined specific prompts.
In Figure 6, we show that our method successfully achieves the control of the generation style through
prompts, while maintaining a good layout-following ability. Considering the failure of the BLIP2
prompt and the complexity of our layout conditions, we believe that the more complex the condition,
the more general the prompt we should take. In our case, we use “This is one view of a room.” to
generally guide the model to fit the entire dataset of the indoor scene, rather than focusing on a
particular class or object.

4.3 More Generation Results

Generation on Irregular Shape. In Figure 5, we showcase the results of more complex scene
generation with fully customized layout on the free-camera trajectory. In the first example (Scene
A), we customize an indoor layouts input where a bedroom is connected to a living room, along
with the corresponding arbitrary camera trajectory. Theoretically, we can generate indoor scenes of
any scale, for example, complex indoor room systems composed of multiple interconnected small
rooms (Scenes B-D of Figure 5). Such tasks are not well-supported by methods based on panorama
generation [60] or NeRF composition [12]. Although some other work [24] supports arbitrary camera
trajectories, it performs poorly in establishing reasonable scene geometry and controlling the scene
content.

Style Variants Generation with Fixed Layouts. In Figure 7, we show three variants of generation
with the same room layout and different appearance, simply achieved by using different prompts.
The results demonstrate the various control abilities of SceneCraft, allowing us to accurately define
the shape and appearance of generation.

5 Conclusion

This work has introduced SceneCraft, an innovative method for generating complex and detailed
indoor scenes from textual descriptions and spatial layouts. By leveraging a rendering-based operation,
and a layout-conditioned diffusion model, our work effectively converts 3D semantic layouts into
multi-view 2D images and learns a final scene representation that is not only consistent and realistic
but also adheres closely to user specifications. Experimental results show the superiority of our
model over existing state-of-the-art methods, highlighting its ability to generate diverse textures and
maintain geometric consistency across complex indoor scenes.
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