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Abstract

Complex 3D scene understanding has gained increasing attention, with scene
encoding strategies built on top of visual foundation models playing a crucial
role in this success. However, the optimal scene encoding strategies for various
scenarios remain unclear, particularly compared to their image-based counterparts.
To address this issue, we present the first comprehensive study that probes various
visual encoding models for 3D scene understanding, identifying the strengths and
limitations of each model across different scenarios. Our evaluation spans seven
vision foundation encoders, including image, video, and 3D foundation models.
We evaluate these models in four tasks: Vision-Language Scene Reasoning, Visual
Grounding, Segmentation, and Registration, each focusing on different aspects of
scene understanding. Our evaluation yields key intriguing findings: Unsupervised
image foundation models demonstrate superior overall performance, video models
excel in object-level tasks, diffusion models benefit geometric tasks, language-
pretrained models show unexpected limitations in language-related tasks, and
the mixture-of-vision-expert (MoVE) strategy leads to consistent performance
improvement. These insights challenge some conventional understandings, provide
novel perspectives on leveraging visual foundation models, and highlight the
need for more flexible encoder selection in future vision-language and scene
understanding tasks.

1 Introduction

Recently, complex 3D scene understanding has emerged as a pivotal area in computer vision,
encompassing tasks such as scene generation [25, 26, 27, 34, 77, 96], reasoning [5, 36, 55, 58], and
interaction [37, 112]. Leveraging large-scale vision foundation models, many approaches [44, 67,
71, 87, 94] have achieved promising results in various downstream tasks, thereby enabling a wide
range of real-world applications, from autonomous driving [57, 78, 82, 117], robotics [60, 112], to
multimodal agents [1, 81].

While numerous studies [6, 70, 103] have provided guidance on the use of vision foundation models
for 2D image-based tasks, the strategies for 3D scenarios remain unclear. A systematic understanding
of complex real-world scenarios involves not only semantic and depth awareness [6], which is
possible to evaluate within the 2D domain, but also geometric awareness and the ability to align with
multimodal information for reasoning and grounding tasks. To address this gap, our work evaluates
the use of different types of visual foundation models for complex scene understanding and seeks to
identify the strengths and limitations of each model in different scenarios. Ultimately, this study aims
to contribute to the development of more effective and efficient scene understanding systems.
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Figure 1: Evaluation settings and major results of different vision foundation models (VFMs)
for complex 3D scene understanding. We assess the performance of VFMs on multimodal scene
reasoning, grounding, segmentation, and registration tasks.

Concretely, we aim to address several key questions. First, given that most vision foundation models
are trained on image or video data, we want to determine whether 2D foundation models can
effectively interpret 3D scenes. Second, since video models inherently contain temporal information
that captures aspects of the 3D structure as well, we investigate whether they lead to better 3D feature
representations compared to image models. Finally, we seek to identify the most suitable scenarios
for different foundation models trained under various settings.

To answer these questions, we design a unified paradigm to systematically probe visual encoding
models for complex 3D scene understanding from different perspectives. Our evaluation spans
seven vision foundation models in images, videos, and 3D-based models, as shown in Table 1. Our
evaluation is conducted among four diverse tasks: Vision-Language Scene Reasoning assesses
the model’s ability to reason about scenes based on textual descriptions, evaluating scene-level
representation; Visual Grounding tests the model’s capacity to associate language with specific
objects within a scene, reflecting object-level representation; Segmentation evaluates the model’s
ability to assign semantic labels to each pixel, assessing semantic understanding; Registration
measures the performance of aligning different views of a scene, testing geometric capacity. Through
these tasks, our aim is to explore the strengths and weaknesses of different vision foundation models
in 3D scene understanding, providing insights into their applicability in various scenarios. With the
major results demonstrated in Figure 1, our key findings include:

• Image or video foundation models achieve promising results for 3D scene understanding.
Among them, DINOv2 [61] demonstrates the best overall performance, showing strong
generalizability and flexibility, which is consistent with the observation in 2D scenarios [6].
Our evaluation further verifies its capability in global and object-level 3D vision-language
tasks. It can serve as a general backbone for 3D scene understanding.

• Video models, benefiting from temporally continuous input frames, excel in object-level and
geometric understanding tasks by distinguishing instances of the same semantics in a scene.

• Visual encoders pretrained with language guidance (e.g., CLIP [68]) do not necessarily
perform well in other language-related evaluation tasks, challenging the common practice of
using such models as default encoders for vision-language reasoning tasks.

• Generative pretrained models, beyond their well-known semantic capacity, also excel in
geometrical understanding, offering new possibilities for scene understanding.

• The mixture-of-vision-expert (MoVE) strategies, including combining multi-layer features
from the same visual model, and concatenating features from multiple visual models, both
lead to a consistent boost of performance across different tasks.

Our work, Lexicon3D, provides a unified probing architecture and the first comprehensive evaluation
of 3D scene understanding with visual foundation models. The key findings we have achieved above,
in conjunction with other interesting observations, suggest exploring more flexible encoder selections
in future vision-language tasks to optimize performance and generalization.
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Model Input Modality Architecture Supervision Dataset

DINOv2 [61]

Image

ViT-L/14 SSL LVD-142M
LSeg [46] ViT-L/16 VLM LSeg-7Mix
CLIP [68] ViT-L/14 VLM WIT-400M
StableDiffusion [73] UNet Generation LAION

V-JEPA [11] Video ViT-L/16 SSL VideoMix2M
StableVideoDiffusion [12] UNet Generation LVD-F

Swin3D [97] 3D Points Swin3D-L Segmentation Structure3D

Table 1: Details of the seven evaluated VFMs. In supervision signals, we use “SSL” to represent
self-supervised learning, and use “VLM” to represent vision-language modality alignment. A more
detailed explanation of the evaluated VFMs is provided in the supplementary material A.

2 Related Work

Our work is closely related to methods that focus on extraction of features from images, videos, and
3D assets, as well as learning joint representation spaces for vision-language fusion. A large body
of recent literature has explored the representation learning for multimodal visual inputs and their
complementary performance in image understanding. In contrast, our study presents a comprehensive
analysis of the use of pretrained visual encoders for zero-shot 3D scene understanding. To the best of
our knowledge, we are the first to examine pretrained video encoders on 3D scene understanding
tasks and to compare image, video, and 3D point encoding strategies in this context.

Image self-supervised learning. In recent years, learning robust and generalizable pretrained image
representations has become a prevalent research direction in computer vision and multimodal research.
One line of work focuses on learning task-agnostic image features using self-supervised learning
(SSL) signals, which include pretext tasks such as colorization [104], inpainting [65], transformation
prediction [28], and self-distillation [14, 18, 19, 30, 31]. The recent development of the patch-based
image tokenizer, ViT [23], has also led to the emergence of mask autoencoder architectures (MAEs)
for feature extraction [8, 32, 115]. Of particular interest, DINOv2 [61], combining a masked-image
modeling loss and an invariance-based self-distillation loss, has become one of the most scalable
and competitive self-supervised learning architectures that uses only image signals. Another line of
work proposes learning image features with text guidance, i.e., using textual descriptions to guide
the pretraining of the image encoders [39, 56]. Building upon the powerful image-text encoder
CLIP [68], LSeg [46] and BLIP [47, 48] extend the image pretraining objective to more complex
visual perception tasks by incorporating pixel-level semantic understanding and encouraging better
alignment with large language models (LLMs) [13, 69, 106, 107], respectively.

Video and 3D representation learning. Self-supervised representation learning has also been
explored in the context of videos and 3D point clouds. Extending the success of the CLIP ar-
chitecture [68] from images to videos, a body of work proposes to pretrain a video encoder by
aligning the feature space with textual guidance extracted from video captions [3, 88, 92, 101].
Other pretext tasks used in video representation learning include next frame prediction [10] and
MAE [29, 83, 86]. Among them, V-JEPA [11] adapts the MAE-inspired joint embedding prediction
architecture (JEPA) [4, 45] to the spatio-temporal domain, achieving state-of-the-art performance
on a wide spectrum of video and image tasks. Despite extensive research on 2D visual foundation
encoders, pretrained models for 3D point clouds are significantly fewer due to the lack of large-scale
3D datasets. Existing work has explored contrastive pretraining [38, 91, 109] and masked signal
modeling [50, 62, 90, 95, 100, 105] for point representation learning. Recently, benefiting from the
rapid advancement of 3D data rendering and large synthetic datasets [21, 113], Swin3D [97] and
Uni3D [116] have outperformed other pretraining methods by a significant margin with large-scale
pretraining for scene-level perception and object-level understanding, respectively.

Generation and mixture of experts (MoE) for feature extraction. With the success of diffusion-
based generative models [33, 73, 79], a line of research has begun to explore their role in image
perception tasks. These methods extract feature maps or attention maps of a given image from the
U-Net architectures of diffusion models and perform various downstream tasks, including depth
estimation [24, 74, 111], semantic segmentation [9, 54, 59, 89, 111], object detection [17], and
panoptic segmentation [93]. Another line of work [63, 102, 103] investigates the complementary
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Figure 2: Our unified probing framework to evaluate visual foundation models on various tasks.
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Figure 3: Visualization of extracted scene features from different visual foundation models. We
use principal component analysis (PCA) to compress the feature embeddings into three dimensions.
The clear distinction between colors and patterns demonstrates the behaviors of different models.

nature of different embeddings extracted by multiple foundation backbones and their joint effect on
downstream tasks [6, 70]. However, these investigations have been limited to the 2D domain, leaving
the potential of leveraging pretrained encoders for perception and reasoning tasks in complex 3D
scenes [5, 22, 35, 36, 41, 55, 58, 66, 118] largely unexplored.

3 Probing Visual Encoders for Scene Understanding

The objective of Lexicon3D is to evaluate different visual foundation models in complex scene under-
standing tasks. We first construct a unified architecture capable of probing different visual foundation
models on a spectrum of downstream tasks. Then, we break down the 3D scene understanding
task into four sub-tasks, including (1) vision-language reasoning, (2) visual grounding, (3) semantic
understanding, and (4) geometric understanding, for a more detailed evaluation.

3.1 A Unified Probing Framework

We design a unified framework, as shown in Figure 2, to extract features from different foundation
models, construct a 3D feature embedding as scene embeddings, and evaluate them on multiple
downstream tasks. For a complex indoor scene, existing work usually represents it with a combination
of 2D and 3D modalities. For realistic scenarios [15, 20, 98], videos are usually first captured
with handheld cameras and then 3D points are obtained from reconstruction algorithms such as
COLMAP [75]. For digital and synthetic scenarios [72, 113], 3D assets are designed and generated
first, before images and/or videos are rendered within the created space. Given a complex scene
represented in posed images, videos, and 3D point clouds, we extract their feature embeddings with a
collection of vision foundation models. For image- and video-based models, we project their features
into the 3D space for subsequent 3D scene evaluation tasks with a multi-view 3D projection module.
Following [22, 35, 36, 66], for a point cloud P, this module produces features fp for each point
p ∈ P given image features f and the pose and camera information K,R. We first project all points
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onto the image plane to obtain their corresponding pixel features. Concretely, for a point p, we obtain
its projected pixel u on the image i with

ũ = KiRip̃, ũ, p̃ represent homogeneous coordinates of u,p, respectively. (1)

In addition, we use an indicator function I(p, i) to represent whether a point p is visible in the image
of the i-th frame. After finding corresponding pixels of the given point in all image frames, we use
mean pooling as an aggregation function ϕ to fuse all pixel features to form the point feature fp.
Assuming there are M images in total, the projection and aggregation process is represented as:

fp = ϕM
i=1(I(p, i) · fi(KiRip̃)). (2)

After projection, we obtain 3D feature fields represented as point cloud feature embeddings for each
VFM, and use them as input to the shallow probing heads to evaluate various downstream tasks.
To minimize the effect of the model finetuning process, we freeze the parameters for the encoding
models to be evaluated, and only tune the linear or shallow probing heads for all tasks.

Models. In this work, we focus primarily on evaluating visual foundation models that are frequently
leveraged by recent complex scene understanding and multimodal reasoning models. A complex
scene can often be represented in posed 2D images and videos or in 3D point clouds. The image and
video modalities sacrifice explicit geometry information, but they preserve rich and dense semantic
and textural information of a scene. Conversely, the point cloud modality offers the opposite trade-
offs. Additionally, the 2D modalities benefit from strong foundation models trained on vast amounts
of data, while 3D point backbones only leverage much smaller datasets.

We categorize visual foundation models into three categories, with an overview of the evaluated
models provided in Table 1. For image encoders, we evaluate DINOv2 [61], LSeg [46], CLIP [68],
and StableDiffusion (SD) [73]. For the video modality, we evaluate V-JEPA [11], the state-of-the-art
video understanding model succeeding VideoMAE [83, 86] for a wide spectrum of perception and
reasoning tasks, as well as StableVideoDiffusion (SVD) [12], a video generative model. The lack
of large-scale 3D scene-level datasets hinders the development of strong zero-shot generalizable
3D foundation models as opposed to their 2D counterparts. However, for comparison, we evaluate
Swin3D [97], a 3D backbone that achieves leading performance in zero-shot perception tasks in
multiple evaluation datasets compared to previous methods [38, 91, 109]. Swin3D is pretrained on
Structured3D [113], a dataset 10 times larger than ScanNet [20]. In addition, we also evaluate the
SAM model [43], an open-world instance segmentation model pretrained on the SA-1B [43] dataset,
and the Uni3D model [116], which is an object-centric 3D foundation model pretrained on a mixture
of datasets proposed by OpenShape [52]. The detailed results of the evaluation of these two models
are provided in the supplementary material.

Feature visualization. Figure 3 visualizes the features of representative scenes extracted by the
vision foundation models. To visualize a high-dimensional feature space with C channels, we apply
principal component analysis (PCA) to reduce the feature dimensions to three, normalize them to
the range [0, 1], and interpret them as RGB color channels. We demonstrate several representative
foundation models’ feature visualization, which reveals many intuitive findings. The image mod-
els, DINOv2 and LSeg, demonstrate strong semantic understanding, with LSeg exhibiting clearer
discrimination due to its pixel-level language semantic guidance. The diffusion-based models, SD
and SVD, in addition to their semantic modeling, excel at preserving the local geometry and texture
of the scenes because of the generation-guided pretraining. The video models, SVD and V-JEPA,
showcase a unique ability to identify different instances of the same semantic concepts, such as the
two trees in the first scene and the chairs in both scenes. The 3D model, Swin3D, also exhibits strong
semantic understanding. However, due to limited training data and domain shift, its quality is not on
par with the image foundation models, despite being pretrained on perfect semantic annotations.

3.2 Vision-Language Reasoning

The vision-language reasoning task requires a model to engage in dialogues or answer questions
about global understanding and local concepts related to a given complex 3D indoor scene. Following
existing methods [36, 112], we formulate this as a visual-question answering (VQA) task using large
language models (LLMs) as the backbone – given a 3D scene from multi-view images and point
clouds, and a user-prompt question, the LLMs are asked to generate the answer to the question in
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ScanQA (higher means better for all metrics) SQA3D (higher means better for all metrics)

Model BLEU-1 BLEU-4 METEOR ROUGE CIDEr EM-1 BLEU-1 METEOR ROUGE CIDEr

3D-LLM [36] (for ref.) 39.3 12.0 14.5 35.7 69.4 48.1 47.3 35.2 48.6 124.5

DINOv2 39.2 13.4 15.3 36.8 73.2 50.1 49.5 35.6 50.7 129.1
LSeg 36.8 11.5 14.6 36.0 71.0 47.4 46.5 33.2 47.8 122.5
CLIP 36.4 10.7 14.4 36.0 70.3 48.1 47.3 34.6 48.6 124.5
StableDiffusion 35.5 11.7 14.1 34.9 68.2 47.7 47.2 33.6 48.3 124.0

V-JEPA 37.4 12.1 14.7 36.7 71.4 48.4 48.1 34.8 50.0 125.7
StableVideoDiffusion 38.5 12.5 14.5 35.4 70.6 48.5 47.9 34.4 49.0 127.7

Swin3D 36.1 10.5 13.9 35.4 70.0 48.3 48.0 34.1 47.3 123.9

Table 2: Evaluation of vision-language reasoning on ScanQA [5] and SQA3D [55] datasets. The top-2 results
for each metric are shown in red and green, respectively. The 3D-LLM results [36] are shown for reference,
indicating the relative position of our evaluation results with respect to the leading models trained on this task.

Figure 4: Evaluation curves on the ScanQA benchmark. The x-axis demonstrates models trained for different
epochs. DINOv2 exhibits clearly superior performance.

an auto-regressive way. This task encompasses universal language-guided reasoning of the complex
indoor scene, ranging from global layout to local details.

Datasets and optimization. We evaluate the performance on two challenging indoor 3D VQA
datasets: ScanQA [5] and SQA3D [55]. Following the evaluation methodology of [5, 36, 55, 58], we
report the metrics BLEU [64], ROUGE [49], METEOR [7], and CIDEr [85]. We finetune a Q-Former
module [48] to align features from different encoders to the LLM input space. More dataset and
optimization details are provided in the supplementary material.

Evaluation results. Table 2 and Figure 4 present the results of our evaluation. We observe that
image and video encoders generally outperform the 3D point encoder, with DINOv2 achieving
the best performance, followed closely by V-JEPA and SVD. Interestingly, we find that for LSeg
and CLIP, which are pretrained by language guidance, their advantage in language alignment does
not translate into superior performance on the LLM-guided VQA task. This finding challenges
the common practice of using language-pretrained VFMs [46, 47, 48, 68] as default encoders for
LLM-based vision-language reasoning tasks. Instead, it suggests the importance of considering a
wider range of encoders, such as DINOv2 and V-JEPA, to support such tasks.

3.3 Visual Grounding

Visual grounding is the task of locating an object in a 3D scene based on a text description. Compared
to the 3D VQA task, visual grounding places a greater emphasis on object-level reasoning and
matching capabilities. The task can be broken down into two sub-tasks: object detection and target
discrimination (matching the text description with the target object). Although some methods focus
on learning models to tackle both tasks [16, 108], others primarily focus on the discrimination
problem [2] by assuming access to ground-truth bounding boxes. For simplicity and to prevent task
entanglement, we adopt the latter setting in our evaluation. More specifically, given a 3D scene in
the form of multi-view images and point clouds, a free-form language description of objects, and
the ground-truth 3D bounding boxes of all objects in the scene, our model’s objective is to find the
correct objects in the scene that match the language description. We believe that the object detection
task requires semantic information from the visual encoder, which is similar in nature to the semantic
segmentation task and will be analyzed in Section 3.4.

For the target discrimination task, we first obtain the feature for each object in the scene by taking the
average pooling of all points inside its ground truth bounding box. Following Multi3DRefer [108],
we use a CLIP text encoder to tokenize the text description, and adopt the attention head in [108] to
fuse the text and visual embeddings from the previous steps and output an object score.
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DINOv2 LSeg StableDiffusion V-JEPA StableVideoDiffusion Swin3DGTRGB CLIP

Figure 5: Visualization of 3D semantic segmentation on ScanNet [20]. Image encoders obtain better
performance.

Dataset. We evaluate on the ScanRefer [16] dataset, which provides 51K text descriptions of 11K
objects in 800 ScanNet scenes [20]. We report accuracy for unique, multiple, and overall categories,
with unique referring to instances that have a unique semantic class in a given scene (easier).

Optimization. The model is trained with a cross-entropy loss using the AdamW [53] optimizer
following [108]. We train our models for 30 epochs until convergence.

Model Unique ↑ Multiple ↑ Overall ↑
M3DRef [108] (for ref.) 88.0 46.1 54.3

DINOv2 87.0 43.4 52.0
LSeg 88.1 41.2 50.4
CLIP 86.5 41.6 50.4
StableDiffusion 86.4 41.9 50.6

V-JEPA 85.6 44.9 52.9
StableVideoDiffusion 88.0 46.5 54.7

Swin3D 85.7 43.2 51.6

Table 3: Evaluation of 3D object grounding on ScanRe-
fer [16]. Video models exhibit significant advantages.

Evaluation results. Table 3 presents our re-
sults, which show that video encoding models
demonstrate significant advantages over image
and 3D encoders. The performance gap primar-
ily lies in the multiple category, indicating that
these models excel at discriminating the correct
object among multiple objects of the same se-
mantic category. This capability largely stems
from the temporally continuous input frames,
which provide instance-aware multi-view con-
sistent guidance. In comparison, the image en-
coder LSeg, with its language-guided pretrain-
ing features aligned with language semantics, can also achieve high accuracy in the unique category.
However, its performance drops significantly in the multiple category.

Insights from vision-language tasks. Our evaluation of vision-language reasoning and visual
grounding reveals several key findings: (1) The DINOv2 unsupervised image learning model demon-
strates strong generalizability and flexibility in global and object-level vision-language tasks. (2)
Video encoders benefit from temporally continuous input frames and learn to distinguish instances
of the same semantics in a scene, which is highly valuable for object-level understanding tasks. (3)
Visual encoders pretrained with language guidance do not necessarily lead to strong performance in
other language-related evaluation tasks. These findings suggest exploring a more flexible encoder
selection in future vision-language tasks to optimize performance and generalization.

3.4 Semantic Segmentation

Semantic segmentation is the task of predicting semantic labels at each 3D position, which requires
fine-grained semantic awareness of the scenes. As mentioned in Section 3.1, all types of features are
unified in the form of point clouds; therefore, semantic labels are predicted for each point within the
point cloud in our setting. More specifically, given a 3D scene in the form of multi-view images and
point clouds, the objective in this task is to predict the semantic label for every point in the cloud.

Dataset. We conduct the experiments on the ScanNet [20] segmentation dataset which has 1,201 and
312 scenes for training and validation, respectively, with a total of 20 semantic classes for evaluation.

Optimization. To make the semantic prediction performance better reflect the fine-grained semantic
understanding capability of different features, we use a single linear layer followed by a Sigmoid
function to perform a linear probe to predict the probability distribution y ∈ RN×C for all the labels
from the foundation model feature x ∈ RN×d: y = Sigmoid(FC(x)), where N is the number of
points in each point cloud, d is the feature dimension, and C is the number of classes for segmentation.

7



Model RR@0.05m (%) ↑ RR@0.1m (%) ↑ RR@0.2m (%) ↑ RRE (◦) ↓ RTE (m) ↓
DINOv2 82.1 93.9 96.8 1.72 0.14
LSeg 4.8 23.7 63.8 9.80 0.59
CLIP 18.6 51.3 78.2 7.96 0.44
StableDiffusion 91.7 96.8 98.4 1.15 0.09

V-JEPA 90.4 96.5 99.4 1.37 0.10
StableVideoDiffusion 96.8 99.0 99.7 0.83 0.06

Swin3D 60.3 81.1 91.3 3.60 0.23

Table 5: Evaluation of partial scene registration on ScanNet [20]. We employ Registration Recall (RR) at various
RMSE thresholds, Relative Rotation Error (RRE), and Relative Translation Error (RTE) as evaluation metrics. A
higher RR indicates better performance, while lower RRE and RTE values signify superior results.

We adopt the standard Adam optimizer [42] with a learning rate of 1e-4 and use a cross-entropy loss
to train the linear layer for 20 epochs.

Model Acc ↑ mAcc ↑ mIoU ↑
GrowSP [110] (for ref.) 73.5 42.6 31.6

DINOv2 82.5 75.4 62.8
LSeg 78.2 58.5 47.5
CLIP 39.7 7.2 3.4
StableDiffusion 77.2 55.5 42.6

V-JEPA 58.7 13.2 8.1
StableVideoDiffusion 71.5 40.5 30.4

Swin3D 78.0 44.8 35.2

Table 4: Evaluation of semantic segmentation
on ScanNet [20] benchmark.

Evaluation results. Table 4 and Figure 5 demonstrates
that image encoders have better performance than video
and 3D encoders on 3D semantic segmentation tasks.
The reason is that image encoders like DINOv2 and LSeg
gain their semantic awareness during training with con-
trastive objectives via either SSL or language-driven guid-
ance. In comparison, video encoders have the risk of
over-smoothing the multi-view information during multi-
frame integration, which may harm the fine-grained se-
mantic understanding capability. As for 3D encoders
like Swin3D, the data scarcity in 3D compared to 2D for
training the foundation models leads to inferior performance on semantic understanding.

3.5 Registration: Geometric Correspondence

To evaluate the geometric information contained in the VFM features, we design the following new
task, partial scene registration, based on the point cloud registration [51, 99] task that performs
homography estimation between two point clouds. From a complete point cloud representing
the entire scene, we sample two point clouds P1 ∈ RN1×3 and P2 ∈ RN2×3 within the scene,
corresponding to two sets of consecutive viewpoints which have a certain amount of overlapped
region but are displaced with a homography transformation. Our goal is to find the homography
matrix H that correctly transforms the points in P1 to register with P2. Compared to the semantic
segmentation task evaluated in Section 3.4, the partial scene registration task requires the foundation
model features to have the capability of finding geometric correspondence for registration, which
cannot be achieved simply by finding the correspondence according to semantic understanding. For
example, in semantic correspondence, we may find two semantically similar points, one on the left
side of the sofa in P1, while the other on the right side of the sofa in P2. As a result, if we register
the two partial point clouds solely based on semantic correspondence, we will fail to find the correct
homography to align one point cloud with the other. The VFMs need to be equipped with geometric
understanding capability to achieve decent performance on our partial scene registration task.

Dataset. We build our partial scene registration benchmark based on ScanNet [20] dataset. For each
scene in ScanNet, we choose views #0 ∼ #31 and views #32 ∼ #63 to render P1 and P2, respectively,
so that they can have a certain level of overlap that allows the registration of two partial point clouds.
Afterwards, P2 is transformed by a homography H that consists of a rotation R ∈ SO(3) and a
translation t ∈ R3. R is created by a randomly generated quaternion q ∈ R4 for each scene, while
each component of t is randomly sampled from the uniform distribution [−1.0m, 1.0m].

Optimization. We follow REGTR [99] to adopt a transformer cross-encoder module to enable cross-
reasoning of the foundation model features from two point clouds, followed by a lightweight decoder
to obtain the corresponding position of every point in the other point cloud for all the N1 +N2 points
in both point clouds, forming altogether N1 +N2 pairs of correspondences, where N1 and N2 are
the number of points in P1 and P2, respectively. Afterward, the rotation R and the translation t can
be obtained in a closed-form solution solved by a weighted version of the Kabsch-Umeyama [40, 84]
algorithm. We use Adam [42] for optimization and train our model for 30 epochs, and follow REGTR
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Model Time (sample) Time (scene) Mem.

DINOv2 25.0 ms 7.5 sec 1.19 G
LSeg 291.2 ms 87.4 sec 2.51 G
CLIP 34.5 ms 10.4 sec 1.19 G
StableDiffusion 42.7 ms 12.8 sec 5.08 G

V-JEPA 175.1 ms 3.3 sec 1.31 G
StableVideoDiffusion 667.1 ms 12.5 sec 11.70 G

Swin3D 937.4 ms 0.9 sec 1.34 G

Table 6: Complexity analysis of visual foundation models.
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circle and be positioned in the upper left.
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Figure 7: Evaluation on different video downsampling strategies for V-JEPA on the segmentation task. Keyframe
Sampling samples every N frames to form a new video sequence, while Clip Sampling directly samples
consecutive video clips. The performance before downsampling is regarded as 100%. Keyframe sampling
demonstrates less performance drop with the same level of downsampling.

to adopt Registration Recall (RR), Relative Rotation Error (RRE), and Relative Translation Error
(RTE) as evaluation metrics.

Evaluation results. Table 5 demonstrates the results for the partial scene registration. We can
observe that StableDiffusion and StableVideoDiffusion showcase superior geometric capability in our
partial scene registration task. It demonstrates that the pretraining objective of generation empowers
the foundation models to have a decent capability of finding geometric correspondences in 3D scenes.
Another observation is that video encoders generally perform better than image encoders. The reason
is that video foundation models have a better understanding of object shapes and geometry within the
scenes from the multi-view input frames.

4 Analysis

The purpose of this section is to provide additional exploration towards the optimal usage of visual
foundation models. The selection of encoding methods requires consideration of the trade-off between
memory usage, running time, and performance. We will dive into complexity analysis and the study
of design choices for various and a combination of foundation models. More visualization, ablation
experiments, and elaboration on the limitations, broader impact, and future direction are presented in
the supplementary material.

4.1 Complexity Analysis

We compare memory usage, computation time, and model performance (vision-language reasoning
on ScanQA) in Table 6 and Figure 6. Our findings show that image encoders generally require less
time to process a sample compared to video and 3D encoders. And diffusion-based models, when used
for feature extraction, require significantly more memory than other discriminative models. However,
the drawbacks in running time become evident for 2D backbones, especially image encoders, when
attempting to obtain a scene embedding by aggregating multi-view image embeddings. To illustrate
this, we consider a 300-frame video as an exemplar of posed 2D information for a complex scene
(a 10-second video at 30 FPS). As the length of the video increases, 2D methods, which necessitate
feature extraction for each image frame, rapidly consume a substantial amount of time to process
a single scene. In contrast, a 3D point encoder requires significantly less time to process a scene.
Nevertheless, 3D encoders exhibit relatively poor model performance, which can be attributed to the
scarcity of training data. To fully demonstrate their potential in scene understanding tasks, efforts
should be directed toward enhancing the generalizability of 3D foundation models. All analyses and
computations are performed on an NVIDIA A100 GPU.
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Stable Diffusion BLEU-1↑ BLEU-4↑ METEOR↑ ROUGE↑ CIDEr↑
Evaluation of noise level t
t = 1 step 35.3 11.6 14.0 34.5 68.5
t = 25 steps 35.6 11.5 14.0 34.2 68.3
t = 100 steps 35.5 11.7 14.1 34.9 68.2
t = 200 steps 34.3 10.9 13.9 33.9 66.6

Evaluation of feature layer l
l = 0 33.6 10.5 13.3 32.6 65.9
l = 1 35.5 11.7 14.1 34.9 68.2
l = 2 34.9 11.4 14.0 34.5 68.0

Table 7: Evaluation of diffusion noise level and feature layers when using StableDiffusion [73] for
feature extraction. The settings we choose are highlighted with the grey color.

4.2 Ablation Study – Insights into Optimal Usage of Visual Foundation Models

Video downsampling strategy. Long and high frame-per-second videos take a lot of space to store
and time to process. We explore two straightforward ways of conducting temporal downsampling to
achieve more efficient processing without sacrificing too much performance. As shown in Figure 7,
we explore the keyframe sampling (blue) and clip sampling (orange) strategies. We can observe that
keyframe sampling is a better strategy than clip sampling in this setting, more wisely balancing the
trade-off between video processing overhead and task performance.

25

35

45

55

1 1+2 1+3 2+32 3 1+2+3

mIoU (↑)

Figure 8: Evaluation on the segmen-
tation task with (1) LSeg, (2) SD, (3)
Swin3D, and their combinations.

Combination of multiple encoders. We explore whether
a mixture of foundation models (experts) has the potential to
strengthen the capability of 3D scene understanding. We exper-
iment on the 3D semantic segmentation task with three feature
sources: LSeg, StableDiffusion, and Swin3D. When combin-
ing different feature sources, we concatenate all features along
the channel dimension for every point in the point cloud. The
results are shown in Figure 8. After combining features from
different sources, there exists a potential that the semantic un-
derstanding capability can be boosted in a mixture of experts
manner. However, it is not necessarily true that combining the
best features will lead to the best performance. For example,
LSeg (1) has stronger capability on semantic segmentation than StableDiffusion (2) and Swin3D
(3) individually, but it is StableDiffusion + Swin3D (2+3) that reaches the best performance when
combining two features together.

4.3 Diffusion Noise Level and Feature Layer

In Table 7, we evaluate the effect of different noise level (noise steps) and different feature layers in
the decoder module in leveraging StableDiffusion (SD) [73] for feature extraction. The results show
that for SD, adding noise t < 100 steps in general leads to the best performance. When t increases
beyond 100 steps, the performance starts to downgrade. As for decoder layers, the decoding portion
of the UNet consists of 4 blocks. We skip the final layer closest to the output and consider layers 0,
1, and 2. The results demonstrate that the output features of the layer one decoder lead to the best
performance. These observations are consistent with the study in [6, 103].

5 Conclusion

This paper presents the first comprehensive analysis of leveraging visual foundation models for
complex 3D scene understanding. We explore the strengths and weaknesses of models designed for
various modalities and trained with different objectives. Our study reveals the superior performance
of DINOv2, the advantages of video models in object-level tasks, and the benefits of diffusion models
in geometric registration tasks. Surprisingly, we find limitations of language-pretrained models in
language-related tasks. The extensive analysis suggests that a more flexible encoder selection and
fusion can play a crucial role in future scene understanding and multimodal reasoning tasks.
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