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Abstract

Text-conditioned human motion generation has experienced significant advance-
ments with diffusion models trained on extensive motion capture data and corre-
sponding textual annotations. However, extending such success to 3D dynamic
human-object interaction (HOI) generation faces notable challenges, primarily due
to the lack of large-scale interaction data and comprehensive descriptions that align
with these interactions. This paper takes the initiative and showcases the potential
of generating human-object interactions without direct training on text-interaction
pair data. Our key insight in achieving this is that interaction semantics and dy-
namics can be decoupled. Being unable to learn interaction semantics through
supervised training, we instead leverage pre-trained large models, synergizing
knowledge from a large language model and a text-to-motion model. While such
knowledge offers high-level control over interaction semantics, it cannot grasp the
intricacies of low-level interaction dynamics. To overcome this issue, we introduce
a world model designed to comprehend simple physics, modeling how human
actions influence object motion. By integrating these components, our novel frame-
work, InterDreamer, is able to generate text-aligned 3D HOI sequences without
relying on paired text-interaction data. We apply InterDreamer to the BEHAVE,
OMOMO, and CHAIRS datasets, and our comprehensive experimental analysis
demonstrates its capability to generate realistic and coherent interaction sequences
that seamlessly align with the text directives.

1 Introduction

Text-guided human motion generation has made unprecedented progress through advancements in
diffusion models [41, 105, 106, 131], leading to synthesis outcomes that are realistic, diverse, and
controllable. This progress has ignited an increased interest in exploring expanded tasks related to text-
guided human interaction generation, such as social interaction [69] and human-scene interaction [44].
However, many of these explorations are limited in that the dynamics of objects is not involved or
text-guided. Aiming to bridge such a gap, this paper tackles a more challenging task — generating
versatile 3D human-object interactions (HOIs) through language guidance, as illustrated in Figure 1.

Although a direct solution, as suggested by the concurrent work [28, 65, 91, 107, 136, 140], would
be replicating the success observed in human motion generation and adopting a similar supervised
approach for learning text-driven HOISs, it is not scalable. As can be observed, generating social or
scene interactions is heavily dependent on extensive collections of text-interaction pair data [34, 69,
83, 130], and scaling these methods to address more complex HOISs outlined in our study could require
datasets of comparable magnitude. Achieving this goal appears unattainable by merely annotating
existing 3D HOI datasets [7, 30, 45, 47, 53, 66, 169, 170, 177, 180], which are relatively limited in
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Figure 1: InterDreamer generates vivid 3D human-object interaction sequences guided by text
descriptions, by synergizing semantics and dynamics knowledge from large-scale text-motion data
(upper left), a large language model (bottom left), human-object interaction data (upper middle),
and prior knowledge (bottom middle) from simple physics. We visualize the generated text-guided
interaction sequence ( ), with the beginning of the sequence unfolded ( ).

size. Although recent studies [28, 65, 91, 155] have annotated some of these datasets, the volume of
text-interaction pairs still lags behind that available for existing text-driven motion generation efforts.

An intriguing question naturally arises: given the limited annotations of the text, what is the potential
of learning for text-conditioned HOI generation without text supervision, which is the main focus of
this paper. However, formulating the task in such a setting presents significant challenges, primarily
due to the inability to directly learn the alignment between text and HOI dynamics. Our key
observation is that interaction semantics and dynamics can be decoupled. That is, the high-level
semantics of an interaction, aligned with its textual description, can be informed by human motion
and the initial object pose. Meanwhile, the low-level dynamics of the interaction — specifically,
the subsequent behavior of the object — is governed by the forces exerted by the human, within
the constraints of physical laws. Motivated by these insights, we introduce InterDreamer — a novel
framework that synergizes knowledge of interaction semantics and dynamics (Figure 1), both of
which do not necessarily require learning from text-interaction pairs, if they are decoupled.

The semantics of interaction, although not available through direct supervised training, can be
harnessed from prior knowledge without text-interaction pair datasets. Specifically, to acquire
semantically aligned interaction, we first consult a large language model (LLM), such as GPT-4 [88]
and Llama 2 [120], to provide understanding including how humans typically use specific body
parts in interactions with particular objects, by exploiting its in-context learning capability with
few-shot prompting [10] and chain-of-thought prompting [134]. The intermediate thoughts and the
final thought are then used to (i) generate semantically aligned human motion with a pre-trained text-
to-motion model; and (ii) identify an initial object pose that is harmonious with the generated human
pose and text description, following a philosophy similar to retrieval-augmented generation [62].

While these large models can offer high-level motion semantic modeling, they lack crucial low-level
dynamics knowledge. Nevertheless, by decoupling interaction dynamics from semantics, a key
advantage emerges in our InterDreamer framework: interaction dynamics can be learned from motion
capture data without the necessity of text annotations. We instantiate this idea by developing a world
model, which predicts the subsequent state of an object affected by the interaction. The key here is
to reach generalizable representations in different motion and objects. To do so, we exert control
over the object through the motion of vertices on the human body. These vertices are solely sampled
in regions where contact occurs, agnostic to the overall object shape and whole-body motion. Such
abstraction empowers the model to learn the simple dynamics from a publicly available 3D HOI
dataset BEHAVE [7], and generalize naturally to other datasets [47, 66]. The plausibility of the
generated interaction is further enhanced by a subsequent optimization procedure on the synthesized
human and object motion.



To summarize, our contributions are: (i) We address the task of synthesizing whole-body interactions
with dynamic objects guided by textual commands, achieving this notably without the need for paired
text-interaction data, a novel paradigm to the best of our knowledge. (ii) We introduce a framework
that decomposes semantics and dynamics, and they can be easily integrated. Specifically, it harnesses
knowledge from a large language model (LLM) and a text-to-motion model as external resources,
alongside our proposed world model. Remarkably, the only component that requires additional
training is the world model, which highlights the ease of use of our framework. (iii) Experimental
results demonstrate that our framework, InterDreamer, is capable of producing semantically aligned
and realistic human-object interactions, and generalizes beyond existing HOI datasets.

2 Related Work

Text-Conditioned Human Motion Generation. Significant progress has been witnessed in human
motion synthesis tasks, given different kinds of external conditions, including action categories [2, 36,
61, 93], past motion [5, 17, 86, 110, 149, 150, 163], trajectories [31, 50, 51, 100, 122, 145], scene
context [12, 29, 39, 44, 113, 114, 125-127, 130, 153, 175, 182, 183], and without condition [96].
Recently, human motion synthesis guided by textual descriptions [1, 6, 18, 24, 26, 34, 35, 49, 54,
57, 64,71, 71, 81, 94, 95, 97, 104, 116, 133, 160, 162, 168, 172, 174, 178, 179, 181, 185, 187] is
popular and extended to various applications, including the text-conditioned generation of multiple-
person [33, 43, 63, 75, 132] and human-scene interaction [14, 21, 44, 48]. Our goal is to model
human and object dynamics concurrently guided by text.

Human-Object Interaction Generation. Synthesizing hand-object interactions [11, 15, 20, 68,
73,79, 80, 119, 137, 161, 165, 167, 184, 186] and single-frame human-object interactions [25, 42,
56,92, 128, 143, 152, 154, 166] are popular topics and extended to zero-shot settings [52, 67, 156,
157]. Recently, researchers explore whole-body dynamic interaction generation, in kinematic-based
approaches [22, 27, 32, 38, 58-60, 66, 84, 85,99, 107-109, 111, 123, 136, 139, 140, 148, 151, 176]
and physics-based approaches [4, 8, 16, 23, 40, 72, 74, 78, 87, 89, 115, 117, 124, 129, 142, 146,
147, 158]. Current methods in HOI synthesis are often restricted by a narrow scope of actions, the
use of non-dynamic objects, and a lack of comprehensive whole-body motion. Our work aims to
generate diverse whole-body interactions with various objects, and enables control through language
input. Recent datasets [7, 30, 45, 47, 53, 66, 112, 138, 144, 155, 164, 169, 170, 180] provide the
groundwork for research in this area, and concurrent efforts [28, 65, 91] demonstrate the feasibility
of applying supervised learning methods via annotating datasets. However, the amount of data
currently available fall short when compared to more extensive text-motion datasets [34, 70, 83]. This
discrepancy in data volume limits the capability of supervised methods to capture the complexity of
human-object interactions, motivating us to investigate the potential of zero-shot generation.

External Knowledge from LLMs. Large language models (LLMs) are being used for advanced
visual tasks, such as editing images based on instructions [9]. In digital humans, they are used to
reconstruct 3D human-object interactions [128] and generate human motion [3, 46, 159, 178] as
well as human-scene interactions [141]. Our approach is inspired by [128], which uses LLMs to
infer contact body parts with a given object for reconstructing 3D human-object interactions — a
task different from ours. Our approach utilizes GPT-4 [88] or Llama 2 [120], to not only understand
contact body parts but also narrow the distribution gap between different tasks, and provide knowledge
for interaction retrieval. This is accomplished by utilizing the in-context learning capabilities of
LLMs [22] and their support for retrieval-augmented generation [62].

3 Methodology

Problem Formulation. Our goal is to synthesize a sequence of 3D human-object interactions x that
satisfies a descriptive text p. This sequence is a series of tuples [(h1,01), (h2,02), ..., (A, oar)]s
where h; represents the human pose parameters defined in the SMPL model [76], while the shape of
the human is unified the same as [34]. o; defines the pose of the rigid object in terms of its 3D spatial
position and orientation. The sequence length M is variable and is dynamically determined by our
text-to-motion model based on the input text p. We do not require text supervision for training.

Overview. Our framework, illustrated in Figure 2, can be conceptualized as a Markov decision
process (MDP). We begin by dividing the motion sequence into 7" segments, each with m frames,
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Figure 2: An overview of our InterDreamer. (i) Our high-level planning analyzes the description
using LLMs and provides guidance to the low-level control. (ii) Our low-level control includes a
text-to-motion model that translates text into human actions a1, and an interaction retrieval model
that extracts the object’s first state s;. (iii) Our world model executes actions to output the next
state s;1. We achieve this by abstracting the problem as predicting the motion of contact vertices —
represented by red spheres for humans and blue spheres for objects on the top right — using human
vertices as controls for the prediction of object vertices. An optimization process is coupled with the
dynamics model, projecting the state and action onto valid counterparts. Solid arrows mean that the
process is performed iteratively.

where M = T x m. Object motion {0;}}, can be seen as a sequence of environmental states
{s¢}1_,, and human motion {h;}}, is described as a sequence of actions {a;}._; that interact
with the environment. Under such an MDP setup, our framework starts with high-level planning
L, which deciphers textual interaction description p by ¢ = L(p) (Sec. 3.1). Then, a text-to-
motion model  translates context ¢ into human actions, modeled as a;+1 ~ 7(a¢t1|st, {ai}i_;, 9)
(Sec. 3.2). The interaction retrieval R proposes an initial object state s; ~ R(s1]a1,g), based on
the initial action a; and context g (Sec. 3.2). After that, a world model P is trained to predict future
states s¢41 ~ P(sty1|ay, 8¢, a;11) from the current action and state (Sec. 3.3). Our world model
incorporates an optimization process, for both state and action refinement (Sec. 3.4). Notably, the
text-to-motion and world models are executed iteratively until text-to-motion generates an end frame.

3.1 High-Level Planning

Leveraging LLMs’ strong reasoning capabilities and inherent common sense, our high-level plan-
ning L yields interaction details ¢ = L(p) that cannot be naively extracted in textual descriptions
p. The process undertaken by L encompasses three steps: (i) Determining the object: the LLM is
employed to translate described objects into corresponding categories from a predefined list. (ii)
Determining initial human-object contact: the LLM infers the body parts involved in the interaction,
drawing from a list defined in the SMPL model [76]. And most importantly, (iii) reducing the
distribution gap: the LLM bridges the distribution gap between the free-form textual input and the
language used within the training data of the text-to-motion model [34]. This involves standardizing
syntax and content according to designed guidelines. In Figure 2, we demonstrate the prompt we
used with the few-shot prompting [10]. We define intermediate thoughts and the final thought, i.e.,
answers to three questions, as detailed information g = L(p), which guides the subsequent procedure,
structuring the entire framework with a philosophy similar to retrieval-augmented generation [62].
Our high-level planning operates indirectly in the generation of interactions. Nonetheless, it narrows
the vast range of possible interactions in the real world into a more manageable distribution within
the capabilities of our framework. We incorporate GPT-4 [88] and Llama-2 [120] for evaluation.



3.2 Low-Level Control

With the information g derived from the description p, the low-level control aims to create a sequence
of human actions {a;}/_; by a text-to-motion model, and an initial state s; by interaction retrieval,
such that they correspond to the objectives outlined by g.

Text-to-Motion. We utilize a text-to-motion model 7 to develop actions to be executed in the world
model. At each timestep ¢, 7 receives the sequence of previous actions {a;}!_; and the text tokens
encoded from the rewritten description in ¢ = L(p), and produces a next action a1, which later in
Sec. 3.4 will be adjusted through an optimization process that intertwines actions with the object state
8¢. Thus, the overall process can be formally defined as a;11 ~ 7(a;41|st, {a;}!_;, g), while the
initial action a; ~ m(a1]|g) is influenced merely by context g without prior actions or states, which
will be used in interaction retrieval. 7 builds upon existing text-to-motion models, where we evaluate
MDM [118], MotionDiffuse [172], ReMoDiffuse [173], and MotionGPT [46].

Interaction Retrieval. The interaction retrieval component R establishes the initial state s; ~
R(s1]aq,g), based on the initial action a; generated by the text-to-motion model. We propose
a user-friendly pipeline for this purpose built on handcrafted rules. First, we create databases by
extracting HOI frames from the training sets of each target datasets — BEHAVE [7], OMOMO [66],
and CHAIRS [47]. The indexing key for retrieval is a tuple consisting of the body part in contact and
the category of the involved object. Each retrieval value is a per-frame contact map, represented by
a list of K vertex pairs {(di,d’)}X . Here, d refers to the contact vertex on the human surface,
while d! refers to the corresponding contact vertex on the object surface. This contact map is linked
to its corresponding key, creating a searchable record of interactions. During the inference stage,
using the body part and object information provided by the high-level planning (Sec. 3.1), we retrieve
all relevant contact maps from the database. We then sample one map {(d;,d?)}X | and use it to
establish the object state s; ~ R(s1]a1, g), thus initializing the interaction. Further details including
how we ensure consistency between the sampled state and human action are provided in Sec. B.1 of
the Appendix. We also discuss an alternative learning-based approach in Sec. B.1.

3.3 World Model

Our world model combines a dynamics model and the optimization process, dedicated to simulating
state transitions affected by applied actions. While drawing inspiration from similar concepts
utilized in robotics [103, 135] and autonomous driving systems [55], we use it here to generate HOI
trajectories. This model, trained on the training set of a 3D HOI dataset such as BEHAVE [7], serves
a similar role as a simulator but is much simpler — it takes the preceding object state s; along with a
pair of consecutive actions a; and a1, and predicts the subsequent object state s, 1. The interplay
between the low-level control and the world model ultimately produces a coherent interaction rollout.

In designing the dynamics model, a naive method would be directly taking raw actions, states, and
object geometry as input. However, this suffers from a severe generalization problem during inference:
the dynamics model is likely to encounter human actions and object geometry that do not exist in the
training set, since our text-to-motion model is not trained with object interaction data. To overcome
this limitation, we instead focus on encoding interactions through the contact vertices on the object,
which capture both the action and object geometry, as shown in Figure 2. This locality ensures that
the dynamics model remains focused on interactions in the contact region, without being distracted
by the motion of body parts and geometry details that are irrelevant to the interaction.

Input Representation. Specifically, at each timestep ¢, we abstract the past actions as H histor-

ical vertex trajectories {{v/ }jvzl}fil and the future actions as F' = m future vertex trajectories

{{v! ;V: 1 fi J}f;l, where non-fixed variable NV is the number of sampled contact vertices, and m

is the length of segments as mentioned in the overview of Sec 3. Note that we train our dynamics
model to forecast over a longer duration than the past motion (/' > H), only the foremost future
action will be used for autoregressive generation during the inference, as suggested in [19]. To
determine these N vertices, we start with object’s signed distance fields {sdf;}/Z; over the past
H frames, derived from the past state s;. We then sample vertices that meet the following criteria:
|sdf;(v])| < 61,sdf;(vF)| < 61,Vi=1,...,H,Vj,and |[v] — vF|| > §2,Vj # k, where §; and 0>
are two hyperparameters. The objective is to sparsely sample contact vertices while ensuring that

they are sufficient to encompass the interaction. We characterize each vertex trajectory {'vf } lH:IF




Table 1: Quantitative results on evaluating the dynamics model. Our dynamics model with vertex-
based action generates interactions of the best quality.

Methods Text-to-Interaction Interaction Prediction [148]

CMD | Pene. (1072%) | Trans. Err. (mm) | Rot. Err. (1073 rad) | Pene. (1072%) |
w/o action 0.424 533 123 256 228
contact markers as action (InterDiff [148]) 0.219 484 123 226 164
human motion as action 0.325 957 129 265 218
contact vertices as action (ours) 0.151 443 119 221 156

Table 2: Quantitative results on human motion quality given our annotation on the BEHAVE [7]
dataset. We show that our high-level planning effectively adapts single human generators into human-
object interaction generation. To evaluate R-Precision, a batch size of 16 is selected.

- a1
Methods Planning R-Precision FID* MM Dist*  Multimodality”  Diversity™
(Ours) Top 1 Top 2 Top 3
Ground Truth - 0.237+0:004 (9 392+0.004 () 496+0.005 () 024+0-000 4 259+0.006 - 6.510%0-227
x 0.153%0:016 0 279£0-026 () 398£0-016 13 979L0-217  5351£0.057  7,604+0-190 7 5080331
MDM [118] v 016350010 (.307£0.043 (40240019 10 37440304  5303+0.117  79g1+0.083 7 47740427
- ) « 02050011 (35140002 () 458%0.021 [ 9)gH0.500 4 g37+0.064 4.500%0.163 7.303+0.412
MotionDiffuse [172] v 0.216%0-032  (.36910.023 (0 472%0-027  9,(15+0.403 4 649+0.029 4.991%0-172 7.295+0.501
. X 04196i”'0“9 0'338i().ﬂll 0.448il]'()12 6'385i().201 4.855i”'029 5.88910.524 7‘160:&[1.3()6
ReMoDiffuse [173] v 0.223%£0-006 (36810015 (0 482%0-011  §237+0.174 4 784+0.053 6.350%0-411 7.001%0-318
] ) « 0.233£0.003 () 34440004 () 457%0.005  §497%0.106 5 2()5+0.027 1.062+0-211 §.316+0-204
MotionGPT [46] v 0.23410-004  (387+0.003 (g 471£0-007  4751+0.121 4 995+0.003 1.337+0.193 7.106=0-487

with a feature f7 to provide (i) human vertex coordinates at T-pose, providing information about the
position of the human vertex on the body surface; (ii) the vertex-to-object surface vector, indicating
vertex’s impact on the object as well as inherently including information related to the object’s shape;
and (iii) the vertex’s velocity relative to its nearest object vertex. Thus, the model needs to learn how
the features of human action f7 affect the evolution of the state of the object.

Architecture. As demonstrated in Figure 2, the network comprises two components: G that operates
without contact vertex conditions, applicable in scenarios where no contact occurs, and F, which
incorporates contact vertex conditions into the object trajectory when contact is present. The k-
th layer of G can be initiated as Gy (xx, ©), mapping the input feature map xj, at the k-th layer
to another feature map, with © denoting the MLP’s parameters. To incorporate human vertex

controls, we introduce a second network Fy, (yi, ©®,) operating on N vertex features {yfC }j-V:l,

where @, is its parameters. With a cross-attention layer Attn, a dynamics block is formulated as:
Tit1, {y£+1}§vzl = Attn(Gr(xr, ©), {]-'k(yi, 0,) i\le) We stack multiple dynamics blocks to
form the model. The initial input, &, corresponds to the previous state s;, while each yg represents
the feature of the vertex trajectory, containing both the trajectory {vf } lH:IF and its associated feature
vector f7. The output of this model is preliminary and subject to further optimization as introduced
in Sec. 3.4, which will yield the final future state. We utilize the Mean Squared Error loss to train the
dynamics model. For more explanations, please refer to Sec. B.2 of the Appendix.

3.4 Optimization

Optimization plays a role in introducing prior knowledge and avoiding the accumulation of errors.
During inference, we input the action a;4; and state s;;; and refine them. This refinement is
achieved through gradient descent on the human and object pose parameters. Our optimization
includes several loss terms: a fitting loss to align optimized results with their preliminary one, a
velocity loss for temporal smoothness, a contact loss to promote occurring contact, and a collision
loss to reduce penetration. We provide detailed formulations in Sec. B.3 of the Appendix.

4 Experiments

Extensive comparisons evaluate the performance of our InterDreamer across two motion-relevant
tasks. Details of the evaluation settings are provided in Sec. 4.1. We present both quantitative
(Sec. 4.2) and qualitative (Sec. 4.3) results for our approach. Additionally, we perform ablation
studies to verify the efficacy of each component within our framework. These studies also cover the



Table 3: Quantitative results on human motion quality on the OMOMO [66] dataset with their provided
annotation. We show that our high-level planning narrows the distribution gap and adapts single human generators
into human-object interaction generation. To evaluate R-Precision, a batch size of 32 is selected.

- ST
Methods Planning R-Precision FID MM Dist¢t  Multimodality’  Diversity™
(Ours) Top 1 Top 2 Top 3
Ground Truth - 0.044+0-004 (9 095+0.008 () 151£0.009 () npOE0-000 ¢ g58+0.006 - 5.660%0-110
% 0.05650005 (09620007 () 13540.006 g 63g+0.651 7 1100063 5 44620456  5.g62+0.520
MDM [118] v 0.062£0-006  (.109=0.004  ( 155£0.008  1573540.285 ¢ 8g9+0.082 2.663+0-520 6.46]£0-841
T % 0.04850.006 () 004£0.008 () 143£0.013 1544040231 5709%0.051 | 65g+0200 5 0g 0516
MotionDiffuse [172] v 0.07550-005 (14120015 (18940009  10.8150-093  50160.094 17740264 5 71g+0.522
] % 0.06250008 () 1120005 () {60E0012 547950209 5 600=0.049 | [7940.145 ¢ (370540
ReMobiffuse [173] Vo 0067E0001 12740006 0,174+0.006  14,560+0-080  5,678+0033 119340202 5368+0417
MotionGPT [46] x 0.061i0'005 0.1 14i0.006 0_152i0,006 18_472i0.528 6.358i0'076 4.553i0,244 6_726i0.156
v 0.064i0'007 0'121i0.007 0.164i0‘009 17_512i0.498 6.287i0'041 4'470i0,191 7.048i0'169
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Figure 3: Qualitative results on free-form text input. The interaction sequences, with textures
from [13], are presented through a time-series visualization.

interaction prediction task [148] to evaluate our dynamics model. Additional details and results are
presented in Sec. C and Sec. D of the Appendix. Please refer to our website for video results.

4.1 Experimental Setup

Datasets. We use BEHAVE [7], CHAIRS [47], and OMOMO [66] datasets for quantitative evaluation.
The BEHAVE dataset includes recordings of 8 individuals interacting with 20 everyday objects, and
our analysis focuses on 18 objects for which interaction sequences are available at 30 Hz. The human
pose is modeled using SMPL-H [102], with hand poses set to an average pose due fo the absence of
detailed hand pose in the dataset. We manually segment the long interaction sequences in the test
set, and annotate them with descriptions as well as their starting and ending indices, leading to 532

A person is seated on the small box with legs crossed.

A person turns to their right and steps on and over a wooden chair and steps down.

Figure 4: Qualitative results in more challenge scenarios with free-form input not from our an-
notations, showing the ability of our InterDreamer to fit object sizes and handle complex and long
sequences. Here, our synergized models are GPT-4 [88] and MotionGPT [46].
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Figure 5: Qualitative results on the CHAIRS [47] dataset. Our dynamics model trained on the
BEHAVE [7] dataset generalizes well on the CHAIRS objects unseen in training. Frames are
separately visualized. Here, our synergized models are GPT-4 [88] and MotionGPT [46].

1.yogamat; 2. shoulder; 1.yogaball; 2. right hand;

Language Planning 3. a person Is carrying an object on the shoulder. Language Planning 3 , .o <on throws an object with right hand towards the ground.

Figure 6: Results from the interaction retrieval. We demonstrate that our proposed retrieval approach
based on handcraft rules can extract diverse and realistic interactions.

subsequences for evaluation. For qualitative evaluation, we go beyond using annotations specifically
created and employ free — form text to demonstrate our model’s capability on out-of-distribution
inputs. To assess our model’s performance with novel objects, we expand our retrieval database to
include objects from the OMOMO [66] and CHAIRS [47] datasets, while we do not fine-tune the
dynamics model on them—a direct qualitative evaluation without additional adaptation.

Metrics. The evaluation metrics are divided into three categories: (i) Human motion quality: The
Fréchet Inception Distance (FID) measures the distance between the generated motion and ground
truth. The MultiModality (Multimodality) and Diversity metrics assess the variance in generated
human motion. R-Precision evaluates the consistency between the text and the generated human
motion within the latent space. MultiModal distance (MM Dist) is the distance between the motion
feature and the text feature. We follow [34] to generate motion and text features. (ii) Interaction
quality: We propose CMD to measure the distance between contact maps of real interactions and
those generated. The per-sequence contact map is defined by the percentage of time that each body
part is actively in contact. The detailed formulation is provided in Sec. C of the Appendix. We also
measure the collision (Pene. [148]), which calculates the average percentage of object vertices that
have non-negative values in the human signed distance fields [90]. (iii) Object motion accuracy: The
dynamics model’s performance in the interaction prediction task [148] is evaluated by the accuracy of
predicted object motion, including Trans. Err., the average distance between predicted and ground
truth, and Rot. Err., the average distance between the predicted and ground truth.

Someone can be seen sitting on a yogaball.

(a) Low-level control w/o planning v.s. w/ planning (b) Text feature w/ planning v.s. w/o planning

Figure 7: (a) Ablation study on the high-level planning. On the left are results from MotionGPT [46]
using free-form descriptions, and on the right are results with our planning additionally. Without
planning, the motion generative model struggles to interpret free-form HOI descriptions and generate
semantically-aligned motion. (b) We visualize CLIP [98] features of text on HumanML3D [34] via
t-SNE [82], raw HOI descriptions (“w/o planning”), and HOI descriptions processed through our
high-level planning (“w/ planning”). See Table 5 for quantitative measurements.



(a) human motion as action (b) contact vertices as action

Figure 8: Ablation study on the dynamics model. Given the text description of “A person walks
clockwise while holding a small box with left hand,” our (b) vertex-based control can synthesize
consistent contacts, which (a) the baseline fails to do.

Baselines. Most recent research on text-to-HOI synthesis follows a supervised learning approach [28,
91], making direct quantitative comparisons unfair. Therefore, we primarily focus on qualitative
comparisons with these methods. To enable quantitative evaluation, we develop a range of baselines
to assess both the overall performance of our framework and the effectiveness of its individual
components. In the context of high-level planning, we utilize GPT-4 [88] and Llama-2 [120],
illustrating the effectiveness of our prompts across different language models. For low-level motion
generation control, our baselines include MDM [1 18], MotionDiffuse [172], ReMoDiffuse [173], and
MotionGPT [46], which span a range of text-to-motion approaches trained on HumanML3D [34] and
show the generalizability of our framework. To evaluate the dynamics model, we include different
design choices: (i) unconditional dynamics model which operates object dynamics independently of
human motion; (ii) using human marker features as actions to the dynamics model, similar to [148];
(iii) using unprocessed human motion and object pointcloud motion as input to the dynamics model;
(iv) our proposed vertex-based actions where only the contacting vertices are used for control.

4.2 Quantitative Results

In Table 1, comparing our framework to baselines with unconditional dynamics model, Inter-
Dreamer achieves better interaction quality in terms of CMD and penetration scores, showing
the importance of human influence on object motion. Against methods that utilize direct raw human
motion or markers for action features, our method demonstrates enhanced performance by offering
more fine-grained guidance and extracting generalizable features for dynamics modeling. Tables 2
and 3 present a comparative analysis of our approach of combining high-level planning with low-level
control, where we adopt various text-to-motion models against their counterparts without high-level
planning on the BEHAVE and OMOMO datasets. Our approach consistently outperforms base-
lines. Specifically, InterDreamer exhibits superior motion quality, reflected by a lower FID, higher
R-Precision, and better diversity, highlighting the benefits of incorporating our planning to reduce the
distribution gap for the motion generator to generalize in the HOI synthesis task.

4.3 Qualitative Results

Figure 3 displays several results guided by the free-form text. Our method exhibits proficiency in
interpreting the textual input and synthesizing dynamic, realistic interactions, despite the absence of
training with text-interaction paired data. More importantly, as illustrated in Figure 4, we selectively
use more complex sequences of interactive descriptions that are beyond the scope of the existing HOI
dataset. Figure 5 further exemplifies our method that is able to generalize effectively to the CHAIRS
dataset, despite our dynamics model not being trained on it. Figure 6 depicts the retrieval procedure,
resulting in a diverse set of interactions that are both high-quality and semantically aligned. More
experimental results and the user study are presented in Sec. D of the Appendix.



Table 4: Ablation study on the high-level planning. Q1 and Table 5: Quantitative comparison
Q2 ask to identify the object category and the contact body of text similarity. The text processed
part, respectively. We assess the accuracy by comparing the by high-level planning is more sim-
LLM’s responses with labels we annotate. Note that the text ilar to text in HumanML3D [34] on
input to LLMs may contain ambiguities; for example, the average, while addressing the distribu-
annotation is “hand” when the motion uses “right hand.” We tional gap significantly for challeng-
include Q1 Acc* and Q2 Acc* excluding ambiguous text.  ing out-of-distributional descriptions,
compared to text without planning.

LLM (# of parameters) Ql AccT QlAcc*T Q2AcctT Q2Acc*?

GPT4 [58] 0.801 0.997 0.703 0.964 . -
Llama-2 (7B) [120] 0.073 0.147 0.436 0.689 Sim. to [34]7 Average  Out-of-Dist.
Llama-2 (13B) [120] 0.232 0.319 0.662 0.853 w/o planning 0.913 0.838
Llama-2 (70B) [120] 0.722 0.967 0.798 0.907 w/ planning 0.932 0.927

4.4 Ablation Study

Adaptability of High-Level Planning. Is our framework adaptable across different large language
models (LLMs)? As illustrated in Table 4, our analysis contains two types of language models:
GPT-4 [88], which is accessible through APIs and operates as a black box model; and Llama-2 [120],
an open-source model. We demonstrate that language models with large parameters exhibit very high
accuracy in responding to questions tailored to our prompts, validating the framework’s adaptability.

Effectiveness of High-Level Planning with Low-Level Control. In consistency with Table 2,
Figure 7 offers a qualitative comparison of text-to-motion results, contrasting results with and without
LLM-revised text descriptions. The comparison shows that motion generated without LLM-enhanced
descriptions often fails to correspond to the intended text, if the text is too challenging, e.g., not in the
distribution of HumanML3D [34], which is used to train text-to-motion models. This underscores the
LLM’s critical role in bridging the distribution gap. In Figure 7(b), we visualize the CLIP [98] features
of descriptions from HumanML3D, our raw annotations, and those processed by high-level planning.
Quantitative evidence is provided in Table 5. Text processed through high-level planning demonstrates
greater similarity to the HumanML3D dataset. Additionally, we test on more challenging out-of-
distribution text, selecting examples with an average cosine similarity to HumanML3D text of less
than 0.85. High-level planning successfully rephrases these texts, significantly increasing their
similarity. For example, in Figure 7(a), the text “Someone can be seen sitting on a yoga ball” has a
cosine similarity of 0.874 to the closest in-distribution text, while the rephrased text after planning,
“A person is seated on an object,” achieves a similarity of 0.958.

Effectiveness of World Model. In the quantitative evaluation, we show that the performance of
our framework is enhanced by the tailored design of our world model. Table 1 provides additional
evidence of the effectiveness by integrating the proposed world model, as interaction correction within
the InterDiff framework [148] in the interaction prediction task. This implementation demonstrates
enhanced conditionality in the object dynamics modeling across two tasks, attributed to the vertex-
level condition as actions. Doing so effectively removes the whole-body complexity, most of which
tends to be irrelevant to the interaction. Figure 8 further indicates that our vertex-based condition can
establish consistent interactions over time, while the condition by raw motion is not robust.

5 Conclusion

We tackle the task of text-guided 3D human-object interaction generation, aiming to accomplish this
without relying on paired text-interaction data. To this end, we present InterDreamer that decouples
interaction dynamics from semantics, formulating the task as retrieval-augmented generation and
Markov decision process, where high-level planning and low-level control are introduced to generate
semantically aligned human motion and initial object pose, while a world model is responsible for
the object dynamics guided by the interaction. Our approach demonstrates effectiveness in this novel
task, suggesting its potential for various real-world applications.

Limitations. The current utilization of dynamics modeling could be enhanced. A prospective
improvement involves incorporating model-based learning techniques, which empower the agent
to more effectively interact and learn a broader range of skills. The results may not be physically
plausible and lead to artifacts in some cases, for example, foot skating. Hand poses are rough because
they are missing from the dataset, but could be improved by integrating a physics simulator.
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