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Figure 1: (Left) Quantitative analysis of representation biases in Vision Foundation Models
(VFMs), including DINOv2, CLIP, and SAM, on the PASCAL-Context dataset across five vision
tasks, all using the ViT-B backbones with pretrained parameters frozen. VFMs exhibit advantages
and disadvantages across different downstream tasks when compared to a conventional ImageNet-
pretrained backbone. Our SAK model, distilled from these VFM teachers, achieves the best average
performance with more balanced improvements, as indicated by its larger ratio of mean improvement
to standard deviation (µ/σ). (Right) Qualitative comparison of representation biases through rep-
resentative examples from semantic segmentation and boundary detection tasks. DINOv2 captures
localized features but occasionally confuses semantic categories; CLIP excels in object-level under-
standing but lacks fine pixel-level details; SAM produces precise masks in both tasks due to higher
input resolution but struggles with semantic knowledge. Our SAK successfully combines the pre-
cise boundary detection of SAM with the accurate semantic understanding of DINOv2 and CLIP.
Further details are discussed in Section 2.

ABSTRACT

Vision Foundation Models (VFMs) have demonstrated outstanding performance
on numerous downstream tasks. However, due to their inherent representation bi-
ases originating from different training paradigms, VFMs exhibit advantages and
disadvantages across distinct vision tasks. Although amalgamating the strengths
of multiple VFMs for downstream tasks is an intuitive strategy, effectively ex-
ploiting these biases remains a significant challenge. In this paper, we propose
a novel and versatile “Swiss Army Knife” (SAK) solution, which adaptively dis-
tills knowledge from a committee of VFMs to enhance multi-task learning. Un-
like existing methods that use a single backbone for knowledge transfer, our ap-
proach preserves the unique representation bias of each teacher by collaborat-
ing the lightweight Teacher-Specific Adapter Path modules with the Teacher-
Agnostic Stem. Through dynamic selection and combination of representations
with Mixture-of-Representations Routers, our SAK is capable of synergizing the
complementary strengths of multiple VFMs. Extensive experiments show that our
SAK remarkably outperforms prior state of the arts in multi-task learning by 10%
on the NYUD-v2 benchmark, while also providing a flexible and robust frame-
work that can readily accommodate more advanced model designs. Project page:
https://innovator-zero.github.io/SAK/.

∗Equal Contribution
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1 INTRODUCTION

Vision Foundation Models (VFMs), such as DINOv2 (Oquab et al., 2024), CLIP (Radford et al.,
2021), and SAM (Kirillov et al., 2023), have gained significant attention due to their impressive
performance on various downstream tasks. This underscores the importance of integrating VFMs
into Multi-Task Learning (MTL) (Caruana, 1997; Zhang & Yang, 2021; Yu et al., 2024), which
aims to jointly learn multiple tasks with a single network, thereby enhancing model efficiency and
performance, with broad applications in areas like autonomous driving (Ishihara et al., 2021).

In computer vision, multi-task models typically use a shared encoder to extract general features for
all tasks, as they share a common interpretation of visual input (Ye & Xu, 2023a). A straightforward
approach is to directly replace the encoder backbone with a VFM. However, VFMs are pretrained
on diverse datasets, image resolutions, and objectives, introducing representation biases when ap-
plied as feature extractors for downstream tasks. Our empirical study in Figure 1 reveals that these
inherent biases yield both advantages and disadvantages across different tasks, with no single model
achieving consistently superior performance across all domains. These findings highlight the chal-
lenge of accomplishing comprehensive improvements in MTL using VFMs, pointing to the demand
for collaborative utilization of multiple VFMs to exploit their complementary strengths.

Several existing works attempt an intuitive solution by extracting image features through multiple
VFMs and then concatenating or fusing these features for later decoding (Lin et al., 2023; Kar et al.,
2024; Zong et al., 2024; Tong et al., 2024a;b; Man et al., 2024). While this enhances visual encoding,
it comes with a major drawback: The inference of all vision encoders drastically increases compu-
tational costs, along with the memory and storage requirements due to the large-scale parameters,
rendering it less practical for real-world applications.

Therefore, recent works (Ranzinger et al., 2024b; Shang et al., 2024; Sariyildiz et al., 2024) propose
more efficient frameworks by distilling multiple VFM teachers into a single student model, which
can deliver competitive results on downstream benchmarks. Despite the progress, this many-to-
one distillation risks eliminating the representation biases of the VFM teachers, potentially limiting
the model’s ability to capitalize on their individual strengths for specific tasks. Zong et al. (2024)
further point out that biased information from VFMs can lead to performance degradation when
naively fused. Moreover, when matching one student to multiple teachers, reconciling diverse biases
in shared parameters could induce optimization conflicts. Our pilot study in Table 2 shows that
the student trained by many-to-one distillation does not consistently surpass the teachers in their
respective proficient tasks.

To overcome these limitations, we propose a novel approach named SAK, with the goal to build a
Swiss Army Knife model from a committee of VFMs to synergize their complementary strengths
and enhance performance across multiple downstream tasks. Considering the key challenge of pre-
serving the representation biases while ensuring model efficiency for deployment, we introduce a
multi-teacher knowledge distillation framework. This framework incorporates a shared Teacher-
Agnostic Stem alongside multiple Teacher-Specific Adapter Path modules, which produce special-
ized representations aligned with each corresponding VFM teacher. During distillation, the Teacher-
Agnostic Stem is optimized simultaneously by gradients from all VFM teachers, thereby capturing
universal knowledge. Meanwhile, the Teacher-Specific Adapter Paths accommodate the heteroge-
neous representation biases of each teacher, explicitly learning their diverse model characteristics.

Building on the reproduction of representation biases, the next step is to amalgamate the committee’s
expertise by exploiting the individual biases. Specifically, we treat each group of representations as
a knowledgeable expert and design a Mixture-of-Representations Router. This router dynamically
weighs and combines the most relevant representations, bridging the gap between general-purpose
knowledge and task-specific characteristics. The collaboration of these modules allows the student
to harness both commonalities and differences of the teachers, facilitating smoother and more com-
prehensive knowledge transfer. Furthermore, SAK is a highly flexible framework that can further
benefit from more advanced architectural designs (e.g., stronger task-specific decoders) and more
powerful models (e.g., larger teachers), offering a general solution to multi-task visual learning.

Our contributions are summarized as follows:
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Table 1: Comparison of Vision Foundation Models. Although all utilize the same Vision Trans-
former (ViT) backbone, they greatly differ in their training paradigms, including data, image reso-
lutions, and training objectives, which lead to diverse representation biases.

Model Training Dataset Dataset Size Resolution Objective

ViT (Dosovitskiy et al., 2021) ImageNet-1k/21k 1.2M/14.2M 384 Supervised classification
DINOv2 (Oquab et al., 2024) LVD-142M 142M 518 Discriminative self-supervised learning
CLIP (Radford et al., 2021) WebImageText 400M 224 Image-text contrastive learning

OpenCLIP (Cherti et al., 2023) LAION-2B 2B 384 Image-text contrastive learning
SAM (Kirillov et al., 2023) SA-1B 11M+1B 1024 Supervised promptable segmentation

• We systematically analyze the distinct representation biases of Vision Foundation Models, which
result in varying advantages and disadvantages across tasks, underscoring the importance of pre-
serving these biases during distillation from multiple VFM teachers.

• We propose SAK, an efficient and effective solution that distills knowledge from VFM teach-
ers into a Teacher-Agnostic Stem with Teacher-Specific Adapter Path modules, sharing common
knowledge while retaining the biases. We also introduce Mixture-of-Representations Routers to
adaptively amalgamate the complementary and specialized strengths for downstream tasks.

• We evaluate SAK on two widely-used multi-task benchmarks, PASCAL-Context and NYUD-v2,
showing it remarkably outperforms previous multi-teacher VFM distillation methods and state-of-
the-art multi-task models in both performance and robustness.

• SAK offers high flexibility and scalability, supporting a broad variety of VFM teachers and down-
stream tasks, and is compatible with various adapter, router, or decoder head architectures.

2 REPRESENTATION BIASES IN VISION FOUNDATION MODELS

In this section, we investigate the representation biases of Vision Foundation Models on multiple
downstream tasks through empirical studies. We select three representative state-of-the-art VFMs:
(1) DINOv2 (Oquab et al., 2024), which claims to excel in dense prediction tasks such as semantic
segmentation and depth estimation; (2) CLIP (Radford et al., 2021) and its reproduction, Open-
CLIP (Cherti et al., 2023), which are recognized for capturing language-aligned semantics and em-
ployed as vision encoders in vision-language models; and (3) SAM (Kirillov et al., 2023), which
achieves outstanding performance in promptable segmentation. For CLIP and SAM, we use only
their image encoders for representation learning.

As summarized in Table 1, although all these VFMs utilize Vision Transformers (ViT) (Dosovitskiy
et al., 2021) as backbones, they differ significantly in their training paradigms regarding datasets,
dataset sizes, image resolutions, and training objectives. Consequently, the representations learned
by these models embed heterogeneous biases, causing each model to focus on different aspects of
image features and exhibit strengths and weaknesses in specific tasks.

We conduct comprehensive quantitative and qualitative experiments using the three VFMs on five
dense prediction tasks from the PASCAL-Context dataset (Mottaghi et al., 2014). Among these
tasks, intuitively, semantic segmentation and human parsing require high-level semantics of objects
and localized features to generate accurate masks. Saliency detection demands an overall under-
standing of the image to identify its main contents, while surface normal estimation and object
boundary detection depend more on fine-grained representations for precise predictions.

We further provide a pilot study to show the inferiority of ignoring representation biases in knowl-
edge distillation from multiple VFM teachers, which validates the significance of addressing this
problem and motivates the development of our methodology.

2.1 QUANTITATIVE ANALYSIS

To quantitatively analyze the representation biases, we evaluate the performance of the three VFMs
directly transferred to each downstream task. We first freeze the models to generate image repre-
sentations based on their pretrained knowledge, and then train a decoder head to produce final pre-
dictions for each task. DINOv2 and CLIP operate at a resolution of 512 on the downstream dataset,
while SAM uses an input size of 1,024 as required by its pipeline. All feature maps are resized to
1/4 of the output resolution before being passed to the head. To quantify the advantages of VFMs
over the conventional ImageNet-pretrained ViT backbone, we calculate their relative improvement
over ViT for each task.
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Table 2: Comparison of a student model trained by many-to-one distillation without preserv-
ing representation biases and the oracle derived from VFM teachers. The oracle selects the
best result from the three teachers for each task. The student’s 2.34% average underperformance
demonstrates the critical importance of maintaining these biases during distillation.

Model
Semseg Parsing Saliency Normal Boundary
mIoU↑ mIoU↑ maxF↑ mErr³ odsF↑

Oracle of teachers 81.18 (DINOv2) 74.38 (DINOv2) 81.48 (CLIP) 16.21 (SAM) 75.89 (SAM)
Student w/o biases 80.18 (³ 1.23%) 69.13 (³ 7.06%) 82.72 (↑ 1.52%) 16.00 (↑ 1.30%) 71.16(³ 6.23%)

Figure 1(Left) illustrates how the representation biases in VFMs manifest in varying strengths and
weaknesses in different downstream tasks. Specifically, DINOv2 shows significant improvements
in two segmentation tasks, particularly excelling in human parsing with a performance gain of over
30%. It also performs well in object boundary detection, benefiting from its strongly localized fea-
tures learned from the combination of image-level contrastive objective (Caron et al., 2021) and
patch-level reconstructive objective iBOT (Zhou et al., 2022). While CLIP achieves lower accu-
racy than DINOv2 in these three tasks, it still exceeds the baseline by a notable margin of over 5%.
Despite being pretrained on a segmentation task, SAM surprisingly underperforms ViT in semantic
segmentation, showing a 30% drop, because of its limited semantic understanding—SAM considers
solely the object masks and ignores their semantic labels in its promptable segmentation task. How-
ever, SAM is the best in surface normal estimation and object boundary detection, exhibiting strength
in capturing pixel-level details and object edges. We also compute the ratio of mean improvement µ
to standard deviation σ across tasks, which can measure the consistency of improvements. A higher
ratio indicates better outcomes, as it reflects larger average improvements with smaller dispersion.
We can observe that while DINOv2 demonstrates stronger average enhancement, CLIP attains more
balanced results, whereas SAM is inferior in both perspectives.

2.2 QUALITATIVE ANALYSIS

To validate our quantitative findings, we visualize the final predictions for semantic segmentation
and boundary detection using an example image in Figure 1(Right). We observe that DINOv2, while
being effective at capturing localized features, is less effective than CLIP in semantic perception, as
illustrated in the yellow box of Semseg results. In this case, DINOv2 confuses a chair with a sofa,
resulting in misclassification as the background (the holes). Although CLIP excels in object-level
understanding with its rich semantic knowledge from the language domain, it falls short in gen-
erating fine-grained pixel-level masks. This shortcoming arises because CLIP’s training objective
prioritizes image-level contents that are represented only by the class token, which possibly accounts
for its lower performance than DINOv2 in the quantitative analysis.

On the other hand, SAM produces exceptional details in both tasks due to its high input resolution,
as demonstrated in the red and cyan boxes. In the red box, a complex scene shows a foreground
flower blending into the background, yet SAM accurately detects and labels the background in the
segmentation mask. Notably, the background is not annotated in the ground truth, as such precise
masking requires significant time and effort. We regard SAM’s high resolution as its representation
bias, as it stems directly from the model’s training paradigm. However, SAM’s limitation lies in
its semantic knowledge, particularly when integrating semantics from multiple objects. This makes
it difficult to attain high-quality semantic segmentation results, even with highly precise masks,
echoing the quantitative analysis. We provide additional analysis and discussions in Appendix A.

2.3 IMPORTANCE OF PRESERVING REPRESENTATION BIASES

In summary, the inherent representation biases in VFMs result in their uneven performance across
tasks, with no single model achieving the best results in all areas, as reflected in our quantitative
analysis. This motivates the idea of combining multiple VFMs to achieve optimal performance in
all tasks. Existing methods (Ranzinger et al., 2024b; Shang et al., 2024; Sariyildiz et al., 2024)
propose a solution by distilling multiple VFMs into a single student model. However, given that
the student model is shared by several teachers, an important question naturally arises: Should we
respect their individual representation biases when combining diverse VFMs?
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Figure 2: Overview of our proposed SAK framework, which distills foundational knowledge from
a committee of frozen VFM teachers into an efficient student model. The student model operates
like a Swiss Army Knife, with the Teacher-Agnostic Stem (TAS) serving as the main branch to
learn universal knowledge among teachers. Each Teacher-Specific Adapter Path (TSAP) acts as a
specialized tool to preserve the inherent representation bias of each teacher. Task-specific Mixture-
of-Representations (MoR) Routers are then employed to synergize the complementary strengths of
the teachers’ biases, adaptively combining multi-level representations from both TAS and TSAP to
generate tailored features for each task.

To answer this question, we conduct a pilot study where a student model is distilled from three
aforementioned VFMs, using only linear aligners to match the student’s features with those of the
teachers, following the setup of the state-of-the-art method (Ranzinger et al., 2024b). In this ap-
proach, the representation biases are not explicitly preserved during distillation, leading the student
to learn a unified representation aimed at simultaneously matching all three teachers. We then eval-
uate its performance on downstream tasks with the same settings as in quantitative analysis in Sec-
tion 2.1. We compare the student without biases to an oracle derived from the teachers by selecting
the best-performing teacher for each task, which represents the optimal performance of teachers.

From Table 2, the answer is clearly YES. While the distilled student surpasses the oracle in Saliency
and Normal, somewhat validating the effectiveness of prior methods, it suffers from drastic perfor-
mance degradation in Parsing and Boundary, with a drop of over 6%. Given that both the teachers
and student utilize a ViT-B backbone in this study, the performance gap would likely widen with
larger models. This demonstrates the limitation of naively transferring knowledge from multiple
teachers into a student and highlights the importance of preserving the individual biases, leading us
to the key question: Can we preserve the representation biases of multiple VFMs during distil-
lation to maximize multi-task performance? Our methodology provides a positive answer to this
challenge in the following sections.

3 METHODOLOGY

3.1 OVERVIEW

The overall framework of the proposed SAK is depicted in Figure 2. As a multi-teacher distilla-
tion approach, it employs a committee of VFM teachers, including DINOv2, CLIP, and SAM. The
student model comprises a Teacher-Agnostic Stem (TAS) and multiple Teacher-Specific Adapter
Path (TSAP) modules. TAS produces general representations shared across all branches, while each
TSAP adapts the common representations to align with the specialized domain of its corresponding
teacher via distillation. In this approach, the TSAP modules are optimized explicitly to replicate the
unique representation biases of the teachers, all in a parameter- and computationally-efficient man-
ner. The resulting feature sets are then passed through task-specific Mixture-of-Representations
(MoR) Routers for adaptive combination and are finally processed by prediction heads to generate
outputs for multiple tasks. We utilize multi-level representations for both the distillation and task
decoding procedures, an essential aspect for dense prediction tasks (Ye & Xu, 2022).
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3.2 TEACHER-AGNOSTIC STEM & TEACHER-SPECIFIC ADAPTER PATH

We adopt an off-the-shelf Vision Transformer (ViT) (Dosovitskiy et al., 2021) as the Teacher-
Agnostic Stem (TAS) and design a lightweight network branch called Teacher-Specific Adapter
Path (TSAP) parallel to the main stem. Given a TAS with L blocks, the forward pass for an input
image X is expressed as:

Z0 = PatchEmbed(X); Zl = bl(Zl−1), l ∈ {1, 2, . . . , L}, (1)

where bl represents the l-th block, and Zl ∈ R
n×d denotes its intermediate outputs with n tokens of

dimension d. Each TSAP module consists of L+1 adapters {al}, l ∈ {0, 1, . . . , L}, with one adapter
parallel to each patch embedding layer or transformer block. These adapters process intermediate
features to adapt them to the teacher-specific representations Rl ∈ R

n×d in a residual manner:

R0 = a0(Z0); Rl = al(Rl−1 +Zl), l ∈ {1, 2, . . . , L}. (2)

We utilize the standard adapter structure (Houlsby et al., 2019), which includes a down-projection
layer Wdown ∈ R

d×r, a GELU non-linearity (Hendrycks & Gimpel, 2016), and an up-projection
layer Wup ∈ R

r×d, where r j d is the reduced dimension. As in prior works (Chen et al., 2022;
Mercea et al., 2024), we integrate a learnable scaling factor α and a residual connection from the
input Rin ∈ R

n×d to the output Rout ∈ R
n×d, which can be formulated as:

Rout = αGELU(RinWdown)Wup +Rin. (3)

For a committee of N VFM teachers, we assign a TSAP module with adapters {ai
l
}, l ∈

{0, 1, . . . , L} to the i-th teacher. We then select four evenly distributed blocks from its outputs
{Ri

l
} to form multi-level representations {Ri}s = {Ri

l
}, l ∈ Ls = {L/4, L/2, 3L/4, L}. Simi-

larly, we have shared multi-level representations {Z}s from TAS. Benefiting from the lightweight
adapters, our distilled student model maintains original efficiency, as each TSAP module accounting
for less than 5% of the TAS parameters. Consequently, our SAK framework is able to preserve the
representation biases from the teachers without significant increases in computational cost, memory
usage, or storage, as shown in detailed discussions in Appendix D.1.

3.3 MIXTURE-OF-REPRESENTATIONS ROUTER

As depicted in Figure 2, we treat the representations from TAS {Z}s as a shared expert providing
common knowledge, while the representations from each TSAP {Ri}s, i ∈ {1, 2, . . . , N} serve
as proxy experts of VFMs with representation biases mirroring the teachers, resulting in a total of
N + 1 experts. To optimize the multi-task performance, we leverage the Mixture-of-Experts (MoE)
mechanism (Jacobs et al., 1991), which adaptively produces task-specific features from this pool of
general-purpose and specialized representations.

To facilitate this, task-specific router networks are trained to generate gate scores for each expert
representation, which serve as the weights for a linear combination. As shown in Figure 6, the rep-
resentations from different VFMs exhibit substantial variation in norm magnitudes. Thus, applying
different weights for individual patches within an image can be less effective, as it may disturb the
inherent patterns. To address this, we design a Mixture-of-Representations (MoR) Router, which
differs from prior works by generating a global gating score across all patches.

Specifically, for each selected level l ∈ Ls and downstream task t ∈ T, our MoR Router rt
l

takes

the teacher-agnostic representation Zl ∈ R
n×d as input, projects its channel dimension to N + 1

through a two-layer MLP, and then averages over n patches to get a feature vector ht

l
∈ R

N+1. To
improve stability, we incorporate the noisy gating technique (Shazeer et al., 2017) by generating a
noise vector et

l
∈ R

N+1 through an additional MLP. Then we compute the gating score gt

l
∈ R

N+1:

gt

l
= Softmax(ht

l
+N (0, 1)Softplus(et

l
)). (4)

The output gating scores are used to calculate the weighted sum of representations at each output
level. The fused features are then passed through task-specific heads for final predictions.

3.4 TRAINING PARADIGM

Our training paradigm contains two stages, with teacher parameters always frozen. In the first stage,
we train the student model on the ImageNet-1k dataset (Deng et al., 2009; Russakovsky et al.,
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2015), focusing on aligning the outputs of the TSAP modules with their respective VFM teachers.
ImageNet is chosen due to its diverse and extensive image samples, providing a strong basis for
effective knowledge transfer. To maintain fairness—given that conventional ViT backbones are also
pretrained on ImageNet—we opt not to use other larger datasets like those utilized in VFMs and
RADIO (Ranzinger et al., 2024b). Following previous findings (Ranzinger et al., 2024b; Shang
et al., 2024), we employ a combination of cosine distance and smooth-L1 losses for distillation. Let
T i

l
be the i-th teacher’s representation at a selected level l ∈ Ls, the overall distillation loss is:

Ldistill(X) =
∑

l∈Ls

N
∑

i=1

(

αLcos(R
i

l
,T i

l
) + βLsmooth-L1(R

i

l
,T i

l
)
)

. (5)

where α = 0.9 and β = 0.1 are weighting coefficients.

In the second stage, we continue training on the downstream multi-task datasets. The distillation
loss is still included, allowing the VFM teachers to transfer more specialized knowledge related to
the downstream data domain. This ensures that the representation biases are further secured in the
student model; otherwise the biases could potentially be diminished due to the issue of catastrophic
forgetting (French, 1999) during downstream fine-tuning. The overall loss is then formulated as:

L(X) = γLdistill(X) +
∑

t∈T

wtLt(X,Yt), (6)

where Lt(X,Yt) is the task-specific loss for task t, computed using the ground truth Yt. The
hyperparameter γ balances the distillation loss and the task losses, with a default value of 1.0 for
simplicity, while wt adjusts the importance of each task. We set fixed wt values following the
standard practice in MTL (Maninis et al., 2019; Kanakis et al., 2020).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two widely-used multi-task datasets: PASCAL-Context (Mot-
taghi et al., 2014) with five vision tasks and NYUD-v2 (Silberman et al., 2012) with four tasks.
Details can be found in Appendix B.2.

Implementation. We employ a pretrained ViT backbone for TAS and use simple task-specific heads
consisting of MLP and convolution layers for decoding. The VFM teachers are DINOv2, CLIP, and
SAM with the ViT-L backbones, unless otherwise stated. More implementation details are provided
in Appendix B to ensure reproducibility.

Baselines. To evaluate the effectiveness of our method, we consider three categories of baselines:
(1) Single-task baseline, where individual models are trained for each task using the same ViT-
initialized architecture, and multi-task baseline, where a shared encoder and task-specific heads are
trained jointly. (2) Multi-teacher VFM distillation approaches, namely RADIO (Ranzinger et al.,
2024b) and Theia (Shang et al., 2024). We use their released models as encoder backbones, coupled
with the same task heads as ours. (3) State-of-the-art MTL models, which involves complicated
encoder or decoder designs. We assess the overall performance of each model with MTL Gain
∆m by calculating the average relative difference across all tasks compared to the single-task base-
line (Maninis et al., 2019).

4.2 MAIN RESULTS

Figure 3 presents a comparison between our proposed SAK and representative baseline methods on
both PASCAL-Context and NYUD-v2 datasets, with all methods using the ViT-B backbones. On
PASCAL-Context, SAK greatly boosts the performance in Semseg and Parsing, achieving an over-
all improvement of 1.66% over the previous SOTA. On NYUD-v2, our method establishes a new
milestone across all four tasks, increasing the MTL Gain metric from the previous best of 6.33%
to 11.11%. We provide more comprehensive comparisons on both datasets using the ViT-L back-
bones in Tables 5 and 6, and ViT-S/Swin-S backbones in Appendix C. Our approach consistently
outperforms previous methods, achieving the best results on 7 out of 9 tasks and both MTL Gain
metrics. Notably, SAK significantly surpasses the SOTAs in MTL (BFCI (Zhang et al., 2023b),
MLoRE (Yang et al., 2024d)) by nearly 10% on NYUD-v2, all while using fewer parameters.
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Figure 3: Performance comparison on
two datasets, based on ViT-B backbones.
MTL Gain ∆m on two datasets are shown
in the legend, respectively.

Table 3: Ablation of proposed modules. ‘↑’: higher
is better; ‘³’: lower is better; ‘∆m’: MTL Gain w.r.t.
single-task baseline. ‘Rep Sim’ denotes the average co-
sine similarity between the representations of student
and corresponding teachers on the ImageNet-1k vali-
dation set.

TSAP MoR
Rep Semseg Parsing Saliency Normal Boundary

∆m% ↑
Sim↑ mIoU↑ mIoU↑ maxF↑ mErr³ odsF↑

; ; 0.3344 80.97 69.71 84.64 14.11 72.82 -1.21
7 ; 0.8708 81.26 69.92 84.31 14.45 71.41 -2.03
7 7 0.8708 81.65 72.38 84.87 14.05 73.23 -0.03

Table 4: Ablation of our two-stage training
paradigm. ‘Distill’: distillation loss; ‘Task’: task-
specific losses.

Stage1
Stage2 Semseg Parsing Saliency Normal Boundary

∆m% ↑
Distill Task mIoU↑ mIoU↑ maxF↑ mErr³ odsF↑

; ; 7 76.76 65.26 84.39 13.98 70.37 -4.04
; 7 7 77.06 65.08 84.67 13.83 70.74 -3.63
7 ; 7 80.48 71.16 85.04 13.92 72.60 -0.60
7 7 7 81.65 72.38 84.87 14.05 73.23 -0.03

Table 5: Comparison with state of the arts on PASCAL-Context, based on ViT-L backbones.

Model Backbone #Param
Semseg Parsing Saliency Normal Boundary

∆m% ↑
mIoU↑ mIoU↑ maxF↑ mErr³ odsF↑

Single-task baseline ViT-L 1573M 81.61 72.77 83.80 13.87 75.24 0.00
Multi-task baseline ViT-L 357M 79.26 68.28 84.16 14.06 71.59 -2.97

PAD-Net (Xu et al., 2018) ViT-L 330M 78.01 67.12 79.21 14.37 72.60 -4.95
MTI-Net (Vandenhende et al., 2020) ViT-L 851M 78.31 67.40 84.75 14.67 73.00 -3.81

ATRC (Brüggemann et al., 2021) ViT-L 340M 77.11 66.84 81.20 14.23 72.10 -4.71
InvPT (Ye & Xu, 2022) ViT-L 423M 79.03 67.61 84.81 14.15 73.00 -2.81

InvPT++ (Ye & Xu, 2024) ViT-L 421M 80.22 69.12 84.74 13.73 74.20 -1.19
TaskPrompter (Ye & Xu, 2023b) ViT-L 401M 80.89 68.89 84.83 13.72 73.50 -1.24

TaskExpert (Ye & Xu, 2023a) ViT-L 420M 80.64 69.42 84.87 13.56 73.30 -0.97
BFCI (Zhang et al., 2023b) ViT-L 477M 80.64 70.06 84.64 13.82 72.96 -1.32
3D-aware (Li et al., 2024a) ViT-L 430M 79.53 69.12 84.94 13.53 74.00 -1.08
TSP (Wang et al., 2024b) ViT-L 423M 81.48 70.64 84.86 13.69 74.80 -0.22

MLoRE (Yang et al., 2024d) ViT-L 407M 81.41 70.52 84.90 13.51 75.42 0.16

RADIO (Ranzinger et al., 2024b) ViT-L 372M 81.11 71.50 85.17 13.49 74.80 0.29
SAK (Ours) ViT-L 407M 84.01 76.99 84.65 13.82 76.27 2.30

4.3 IN-DEPTH ANALYSIS

We conduct extensive experiments to validate the effectiveness and generalization of our proposed
SAK framework. All experimental analyses are based on the ViT-B backbones for both teachers and
student and the PASCAL-Context dataset unless otherwise specified.

Ablation study. An ablation study is conducted to discern the individual contributions of the main
components in SAK, namely TSAP and MoR Router, as outlined in Table 3. We consider two model
variants: (1) a model without the TSAP and MoR Router modules (row 1), which corresponds to
the student distilled naively regardless of representation biases, as studied in Table 2; (2) a model
distilled with TSAP in the first stage but trained without MoR Routers in the second stage (row
2), where the biased representations from multiple VFMs are simply added together. Firstly, our
results confirm that our proposed TSAP effectively preserves the representation biases from the
teachers as indicated by a higher average similarity between the student and teachers. Additionally,
we prove that a simple fusion of diverse biased knowledge does not lead to an overall improvement
and may even fall behind compared to the student without biases. With the synergization of TSAP
and MoR Router, our proposed SAK not only preserves and reproduces the representation biases
after distillation but also optimally capitalizes on these biases to maximize multi-task performance.
The upper-bound results of teacher amalgamation are presented in Appendix C.

Table 4 reports another ablation on our training paradigm, highlighting the contributions of each
stage. The results show that Stage 1, which distills knowledge from VFM teachers on ImageNet,
is a primary factor of performance enhancement. Meanwhile, incorporating the distillation loss
during Stage 2 consistently boosts final outcomes, regardless of whether Stage 1 is applied. This
underscores the effectiveness of transferring specialized knowledge in the downstream data domain.
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Table 6: Comparison with state of the arts on NYUD-v2, based on ViT-L backbones.

Model Backbone #Param
Semseg Depth Normal Boundary

∆m% ↑
mIoU↑ RMSE³ mErr³ odsF↑

Single-task baseline ViT-L 1259M 54.19 0.5560 19.22 78.09 0.00
Multi-task baseline ViT-L 346M 52.42 0.5413 19.29 76.50 -0.76

InvPT (Ye & Xu, 2022) ViT-L 402M 53.56 0.5183 19.04 78.10 1.64
InvPT++ (Ye & Xu, 2024) ViT-L ∼402M 53.85 0.5096 18.67 78.10 2.65

TaskPrompter (Ye & Xu, 2023b) ViT-L 392M 55.30 0.5152 18.47 78.20 3.36
TaskExpert (Ye & Xu, 2023a) ViT-L 400M+ 55.35 0.5157 18.54 78.40 3.33

BFCI (Zhang et al., 2023b) ViT-L 400M+ 55.51 0.4930 18.47 78.22 4.46
3D-aware (Li et al., 2024a) ViT-L 409M 54.87 0.5006 18.55 78.30 3.74
TSP (Wang et al., 2024b) ViT-L 402M 55.39 0.4961 18.44 77.50 4.07

MLoRE (Yang et al., 2024d) ViT-L 552M 55.96 0.5076 18.33 78.43 4.26

RADIO (Ranzinger et al., 2024b) ViT-L 362M 59.32 0.4698 17.46 79.41 8.95
SAK (Ours) ViT-L 394M 63.18 0.4313 16.25 79.43 14.05
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Figure 4: Weights of different ex-
perts learned by MoR Routers.

Table 7: Performance w.r.t. different combinations of VFM
teachers. Integrating knowledge from three teachers leads to
the strongest overall performance.

Teachers
Semseg Parsing Saliency Normal Boundary

∆m% ↑
mIoU↑ mIoU↑ maxF↑ mErr³ odsF↑

Multi-task baseline 76.76 65.26 84.39 13.98 70.37 -4.04

DINOv2 79.05 69.55 84.29 14.07 71.14 -2.21
CLIP 80.12 67.57 83.81 14.41 70.62 -3.26
SAM 63.47 63.99 85.02 13.95 73.27 -6.74

DINOv2+CLIP 81.53 71.95 84.49 14.16 72.59 -0.60
DINOv2+CLIP+SAM 81.65 72.38 84.87 14.05 73.23 -0.03

Impact of teacher selection. To investigate whether knowledge from all teachers can be effectively
incorporated into the student model and how each teacher contributes to downstream tasks, we
experiment on different combinations of VFM teachers in Table 7. When using a single teacher,
SAK effectively learns the teacher’s representation bias, as the student distilled from DINOv2 or
CLIP performs well in segmentation tasks, while SAM’s student is better in tasks requiring finer
details. Combining DINOv2 and CLIP continues to improve segmentation tasks, potentially due to
their complementary strengths in localized feature learning and semantic understanding. Including
SAM further benefits all tasks, leading to the best overall results. We also visualize the gating
weights learned by our proposed MoR Routers at the lowest and highest levels in Figure 4. At the
lowest level, where VFM teachers share more general knowledge about the details, tasks tend to rely
on the shared TAS and SAM’s bias. Conversely, the representation biases become more pronounced
at higher levels; therefore, the teacher-specific representations are predominantly selected. Further
analysis is provided in Appendix D.3 and D.4.

Impact of downstream data size. To assess the robustness of multi-teacher VFM distillation meth-
ods, we conduct experiments using varying numbers of samples among {25%, 50%, 75%, 100%}
from the downstream dataset. As depicted in Figure 5, while all models show an upward trend as
the number of data samples increases, our SAK consistently outperforms the other two distillation
baselines across all settings. Particularly, SAK surpasses the second-best method by a clear margin
of over 3% in scenarios with substantially fewer samples such as merely 25%.

Scaling with model size. In Table 8, we explore the impact of scaling the backbone sizes of the
VFM teachers and student by forming various combinations. The results indicate that increasing the
capacity of the student model, while keeping the teacher models fixed (row 1 vs. row 2, row 3 vs.
row 4), yields remarkable improvements across nearly all tasks. Additionally, scaling up the teacher
models without altering the student (row 2 vs. 3) also proves beneficial. These results demonstrate
the versatility and robustness of our approach in adapting to models of varying sizes.

Compatibility with different decoders. It is worth noting that our SAK framework is flexible
and does not impose constraints on the design of the backbone, the adapters in TSAP, or the de-
coder heads. As shown in Table 9, we replace the simple head with the more complex MLoRE
decoder (Yang et al., 2024d). Even with a simple head, SAK surpasses MLoRE by 0.8%, and inte-
grating the MLoRE decoder further enhances overall performance by 1.72%.

9



Published as a conference paper at ICLR 2025

25% 50% 75% 100%
Percentage of downstream data

10

8

6

4

2

0

m
%

-4.02

-1.95
-1.16

-0.03

-7.43

-4.70

-3.42

-1.53

-9.20

-6.70
-5.88

-4.33

-10.32

-7.42

-6.00

-4.04

SAK (Ours)
RADIO
Theia
MT baseline

Figure 5: Performance w.r.t. downstream
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Table 8: Performance w.r.t. different settings of
teacher and student sizes. SAK shows robustness
across teachers or students with varying capacities.

Backbone Semseg Parsing Saliency Normal Boundary
Teachers Student mIoU↑ mIoU↑ maxF↑ mErr³ odsF↑

ViT-B ViT-S 78.66 68.46 84.66 14.33 70.28
ViT-B ViT-B 81.65 72.38 84.87 14.05 73.23
ViT-L ViT-B 81.88 74.30 84.79 14.02 74.09
ViT-L ViT-L 84.01 76.99 84.65 13.82 76.27

Table 9: Performance of SAK integrated with
MLoRE. SAK further benefits from stronger decoders.

Enc. Dec.
Semseg Parsing Saliency Normal Boundary

∆m% ↑
mIoU↑ mIoU↑ maxF↑ mErr³ odsF↑

ViT MLoRE 79.26 67.82 85.31 13.65 74.69 -0.83
SAK Simple 81.65 72.38 84.87 14.05 73.23 -0.03
SAK MLoRE 82.74 74.28 84.58 13.89 75.96 1.69

5 RELATED WORK

Knowledge Distillation of Vision Foundation Models. As large-scale generalists, Vision Foun-
dation Models (VFMs) show superior performance in various tasks with minimal tuning, such as
CLIP (Radford et al., 2021) for vision-language tasks, DINOv2 (Oquab et al., 2024) for fine-grained
recognition, and SAM (Kirillov et al., 2023) for promptable segmentation. To reduce their computa-
tional demands while preserving performance, knowledge distillation (Buciluǎ et al., 2006; Hinton
et al., 2014) has been widely adopted in compressing VFMs (Vemulapalli et al., 2024; Sun et al.,
2023; Yang et al., 2024a). More recently, multiple VFMs are distilled into a single student to com-
bine their strengths: SAM-CLIP (Wang et al., 2024a) merges CLIP into SAM via continual learning
and distillation. RADIO (Ranzinger et al., 2024b) learns from CLIP, DINOv2, and SAM to en-
hance performance on downstream tasks. Theia (Shang et al., 2024) further incorporates Depth
Anything (Yang et al., 2024b), showing advantages in robot learning. Different from the straightfor-
ward distillation in these methods, we adaptively transfer knowledge from multiple teachers while
retaining the unique representation biases to maximize their strengths for multiple tasks.

Multi-Task Learning. Multi-Task Learning (MTL) aims to train a single model capable of handling
multiple tasks simultaneously (Caruana, 1997; Zhang & Yang, 2021; Yu et al., 2024). MTL research
primarily falls into two categories: multi-task optimization (Kendall et al., 2018; Chen et al., 2018;
Yu et al., 2020) and model architecture design (Long et al., 2017; Wallingford et al., 2022; Lu et al.,
2024c). Considering vision tasks, most works center on designing architectures, which is further
divided into encoder-focused and decoder-focused methods (Vandenhende et al., 2021). Encoder-
focused methods develop encoders to extract features for different tasks (Misra et al., 2016; Ruder
et al., 2019; Gao et al., 2019), while decoder-focused methods introduce task-interaction modules in
decoder to better capture task-specific features (Ye & Xu, 2022; Xu et al., 2023c; Ye & Xu, 2023b).

Knowledge distillation has also been applied to enhance MTL (Li & Bilen, 2020; Jacob et al., 2023;
Ghiasi et al., 2021; Luo et al., 2020; Ye et al., 2019a). These methods train a multi-task model
to mimic multiple single-task teachers, allowing the student to gain richer information. Xu et al.
(2023d) propose directly distilling a small multi-task student from a large multi-task teacher. To
the best of our knowledge, our work is the first exploration of multi-task distillation with general-
purpose knowledge from task-agnostic VFM teachers, as opposed to task-related teachers trained on
target datasets.

6 CONCLUSION

Building on our analysis of the representation biases in VFMs, we introduce a novel framework
SAK, designed to improve multi-task learning by exploiting the complementary biases of multi-
ple VFMs. Through the integration of a Teacher-Agnostic Stem, Teacher-Specific Adapter Paths,
and Mixture-of-Representations Routers, SAK effectively preserves the unique representation bi-
ases during distillation, thereby enhancing both accuracy and robustness across multiple downstream
tasks. Our work opens possibilities for including more advanced teachers and students, and provides
a solid foundation for future advancements in multi-task visual learning with foundation models.
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David Brüggemann, Menelaos Kanakis, Stamatios Georgoulis, and Luc Van Gool. Automated
search for resource-efficient branched multi-task networks. In BMVC, 2020.
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