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Figure 1. ORG (Object Reconstruction with Ground) simultaneously reconstructs the 3D object, the object-ground relationship, and the
camera parameters from a monocular image. During shadow and reflection generation, prior methods have floating issues or unnatural
shadows on the ground (red boxes). On the other hand, ORG achieves significantly more realistic editing and generation (blue boxes).

Abstract

Recent advancements in 3D object reconstruction from
single images have primarily focused on improving the ac-
curacy of object shapes. Yet, these techniques often fail
to accurately capture the inter-relation between the object,
ground, and camera. As a result, the reconstructed objects
often appear floating or tilted when placed on flat surfaces.
This limitation significantly affects 3D-aware image editing
applications, like shadow rendering and object pose ma-
nipulation. To address this issue, we introduce ORG (Ob-
ject Reconstruction with Ground), a novel task aimed at
reconstructing 3D object geometry in conjunction with the
ground surface. Our method uses two compact pixel-level
representations to depict the relationship between camera,
object, and ground. Experiments show that the proposed
ORG model can effectively reconstruct object-ground ge-
ometry on unseen data, significantly enhancing the qual-
ity of shadow generation and pose manipulation compared
to conventional single-image 3D reconstruction techniques.
The project page can be found at this website.

1. Introduction

The task of reconstructing an object in conjunction with a
physically plausible ground, while not extensively explored,

is of significant importance. This is particularly relevant
in the realm of image editing applications, where it influ-
ences key aspects like controllable shadow/reflection syn-
thesis and object view manipulation. In this work, we aim
at predicting an accurate and grounded representation of
objects in 3D space from a single image, specifically un-
der unrestricted camera conditions. Recent single-view ap-
proaches have demonstrated considerable promise in tack-
ling object reconstruction [26, 34,39, 57, 61]. However, due
to the lack of integrated object-ground modeling, objects re-
constructed using these methods often appear to be “float-
ing” or tilted when placed on a flat surface, which greatly
hinders the realistic rendering.

More specifically, recent works on monocular depth es-
timation [6, 7, 34, 61] has shown great performance. They
aim to recover the 3D information of an object from a
single-view image by directly estimating the pixel-level
depth values. Their models have been trained on large-
scale datasets, and thus can generalize well on in-the-wild
images. However, as pointed out by [61], to project the
depth map into 3D point clouds, additional camera param-
eters are needed. In some cases, off-the-shelf estimators
can provide a rough estimate of these parameters, but this
approach can limit the flexibility and effectiveness of ob-
ject reconstruction in uncontrolled environments. More-
over, the unknown shift in the depth or disparity map will
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Figure 2. Without modeling object-ground correlation, existing
single-view 3D estimation method [34] generates 3D models float-
ing or tilted on the ground.

cause distortion in the 3D reconstruction (see Figure 2 top
row). Without an explicit modeling of the object-ground
relationship, recovered 3D objects are often hard to place
on a flat support plane (see Figure 2 bottom row). These
challenges are also present in recent category-specific 2D-
to-3D methods that recover 3D shape from latent embed-
ding space [9, 38, 39, 46, 53] and zero-shot novel-view
synthesis methods [25, 26, 29, 33, 43, 57], where they of-
ten just assume a simple orthographic camera model, or as-
sume the camera parameter being given as input to avoid
over-complication of the problem, which on the other hand
limits their application in unconstrained scenarios.

To address these challenges, we propose ORG (Object
Reconstruction with the Ground), a new formulation for
representing objects in relation to the ground. Given a sin-
gle image, our objective is to simultaneously deduce the 3D
shape of the object, its positioning relative to the ground
plane, and the camera parameters. We compare our method
with three existing research strands: depth estimation, latent
embedding reconstruction, and diffusion-based novel-view
synthesis, in addition to multi-view reconstruction tech-
niques, as detailed in Table 1. Existing single-view meth-
ods often fail to maintain the object-ground relationship and
usually presuppose known camera parameters or rely on
overly simplistic camera models, leading to suboptimal per-
formance for tasks like efficient shadow generation. In stark
contrast, the output of our model supports the intricate in-
terplay between object, ground, and camera (see Figure 1),
facilitating superior shadow generation and pose-aware ge-
ometric reconstruction. To this end, we model the object
as consisting of its front (visible) and back surfaces, and
predict two pixel-level height map between the object and
the ground [41], along with a dense camera parameter de-
scriptor [16]. Our results demonstrate that such a simplified
representation of objects is not only adequate for generating
3D-realistic shadows but also yields convincing reconstruc-
tion for a wide array of commonly encountered objects.

We create our training data from Objaverse [10], ren-
dering six images for each object with diverse focal length
and camera viewpoint. We evaluate our method across two
unseen datasets, including objects and humans, and show
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Multi-view Latent Depth NVS Owurs

single image X 4 4 4 v
category-free 4 X 4 4 v
camera-aware v X X X v
ground-aware X X X X v

Table 1. ORG processes multiple advantages from flexibility to
generalization against multi-view reconstruction work and other
single-view work including generation from latent embedding,
monocular depth estimation, and novel-view synthesis (NVS)
methods.

qualitative results on random unseen web images. Our pro-
posed method outperforms existing methods in terms of ac-
curacy, robustness, and efficiency in various scenarios. Re-
sults show that our method achieves superior performance
and provides a more comprehensive and light-weight solu-
tion to the challenges of single-view object geometry esti-
mation. In summary, our main contributions are as follows.

* A novel framework ORG, for in-the-wild single-view
object-ground 3D geometry estimation. To the best of
our knowledge, this is the first method to jointly model
object, camera, and ground plane from single image.

* We propose a perspective field guided pixel height re-
projection module to efficiently convert our estimated
representations into depth maps and point clouds.

* ORG achieves outstanding shadow generation and re-
construction performance on unseen real-world images,
demonstrating great robustness and generalization ability.

2. Related Work

Single-view Depth Estimation. There has been significant
progress made in recent times in the estimation of monoc-
ular depth [7, 8, 12, 34, 44, 61]. Given metric depth su-
pervision, some work directly trains their model to regress
the depth objective [12, 24, 60, 61]. While these methods
achieve great performance on various datasets, the difficulty
of obtaining metric ground truth depth hinders the use of di-
rect depth supervision. Instead, another line of work relies
on ranking losses, which evaluates relative depth [0, 54],
or scale- and shift-invariant losses [34, 44] for supervision.
The latter methods produce particularly robust depth pre-
dictions without heavy annotation efforts, but the models
are not able to reason object-ground relationship and of-
ten produce unrealistic results when using depth map for
downstream image editing tasks. In light of this, a recent
work [41] proposes another annotation-friendly represen-
tation, pixel height, for better object shadow generation.
However, this method has strict constraints on the camera
viewpoint. We repurpose the representation for monocular
3D reconstruction and loosen the viewpoint by joint model-
ing camera with object geometry.

Single-view 3D Geometry Reconstruction. Reconstruct-
ing object shapes from single-view image is a challeng-
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ing but well-established problem, with one of its semi-
nal work [37] optimizing for 6-DoF poses of objects with
known 3D models. In the ensuing decades, learning-based
methods have begun to propose category-specific networks
for 3D estimation that span a wide range of objects with [4,
18] and without direct 3D supervision [14, 17, 20, 58],
and using neural implicit representations [30, 59]. With
robust 3D supervision, recent methods have demonstrated
the feasibility of learning 3D geometry with limited mem-
ory. Pixel2Mesh [46] offers a method to reconstruct the
3D shape with mesh using a single image input. Mean-
while, PIFu [38, 39] offers an efficient implicit function to
recover high-resolution surfaces of humans, including pre-
viously unseen and occluded regions. While achieving great
performance, some of these works rely on learning priors
specific to a certain object category, hindering its general-
izabilty in the wild. Recently, advances in text-to-3D gen-
eration [5, 22, 32, 50] also inspire image-to-3D generation
using diffusion prior [25, 26, 29, 33, 43, 57]. Masked au-
toencoders are also used to object reconstruction from sin-
gle image [52]. In comparison, our method is the first one
to model the object geometry with respect to the ground for
efficient image editing and 3D reconstruction.

Camera Parameter Estimation. An essential aspect of
single-view monocular 3D object comprehension is to re-
trieve the focal length of a camera and the camera pose
relative to the object and the ground plane. Classic meth-
ods leverage reference image components, including cali-
bration grids [62] or vanishing points[11], to estimate cam-
era parameters. Recently, data-driven approaches have been
proposed to use deep neural networks to infer the focal
length [15, 51] and camera poses [19, 28, 55] directly from
in-the-wild images, or to use dense representation [16] to
encode camera parameters for a more robust estimation. In
contrast, our method ORG jointly estimates intrinsic and
extrinsic camera parameters together with object geometry
and ground positions, achieving a self-contained pipeline
for 3D-aware image editing and reconstruction.

3. Approach

ORG considers single-view object geometry estimation by
joint pixel height and perspective field prediction. We pro-
vide an overview of our framework in Figure 3. Model-
ing object geometry and camera parameters as dense fields,
we first introduce the background knowledge of the dense
object-ground and dense camera representations (Sec 3.1).
We learn a pyramid vision transformer (PVT) [48, 49]
to predict the dense representation fields (Sec 3.2), and
prove that they can be repurposed for reconstruction task
by proposing a perspective-guided pixel height reprojection
method (Sec 3.3).

3.1. Object, Ground, and Camera Representations

Pixel Height Representation. Proposed for single-image
shadow generation [41, 42], pixel height is a dense repre-
sentation defined as the pixel distance between a point on
an object and its ground projection, namely its vertical pro-
jection on the ground in the image, as we can see in Fig-
ure 3. It is a pixel-level scalar which measures the distance
between object and its supporting plane in the image coor-
dinate (number of pixels, rather than meters). Pixel height
possesses many advantages over the depth representation
in modeling the object geometry. First, it is disentangled
from the camera model, and thus can be directly inferred
from the images context without additional camera infor-
mation. Moreover, it models the object and ground rela-
tionship, which is pivotal in generating realistic 3D models
for real-world image applications, as objects almost always
have a canonical position on the ground plane.

While photo-realistic shadows can be generated from
pixel height map with projective geometry, we see more po-
tential in this new representation. Constraining the object
location with respect to a 2D plane, the pixel height repre-
sentation plays a critical role in reconstructing 3D shape of
objects on top of the ground. Moreover, strict requirements
are enforced on camera viewpoints for pixel height [41], and
only the front surface of a object is considered. Therefore,
we propose to loosen this condition by modeling both front
and back surfaces of the object, and jointly predicting cam-
era intrinsic and pose relative to the ground. In the end, the
field-of-view (FoV) is used to lift pixel distances into metric
distance, and camera viewpoint helps align the object into
the canonical pose relative to the ground.

Perspective Field Representation. As shown in Fig-
ure 3, the perspective field representation of a given image
is composed of two dense fields, a latitude field represented
by blue contour lines, and a up-vector field represented
by green arrows [16]. Specifically, assuming a camera-
centered spherical coordinate system where the zenith di-
rection is opposite to gravity. The camera model /C projects
a 3D position X € R3 in the spherical coordinate into the
image frame x € R?. For each pixel location z, the up-
vector is defined as the projection of the tangential direction
of X along the meridian towards the north pole, the latitude
is defined as the angle between the vector pointing from the
camera to X and the ground plane. In other words, the lati-
tude field and the up-vector field encode the elevation angle
and the roll angle of the points on the object, respectively.
Both perspective fields and pixel height map are invariant or
equivariant to image editing operations like cropping, rota-
tion and translation. As a result, they are highly suitable for
neural network models designed for dense prediction tasks.
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Figure 3. ORG Paradigm. Our proposed method is able to take a single-view object-centric image as input, and jointly estimate two
dense representations, the pixel height and perspective field, encoding the object-ground relationship and camera parameters, respectively.
A Perspective Field Guided Pixel Height Re-projection module is proposed to repurpose the two predicted dense fields into depth map

estimation and point cloud generation.

3.2. Dense Field Estimation

We present a neural network model to estimate the two
dense fields from a single image. The per-pixel structure
and translation-invariant nature of the pixel height and per-
spective field representations make them highly suitable for
neural network prediction. Following [34, 61], we formu-
late the dense field estimation task as a regression problem.
Specifically, for each image pixel of the pixel height field,
assuming a ray starting from a camera pointing towards the
pixel travels through the object, there will be an entry point
on the front surface of the object p¢ and an exit point on
the back surface of the object p,. When the ray passes the
surfaces of object multiple times, we only consider the first
entry and last exit. The model is then asked to predict the
pixel height for both pr and py,. Moreover, we normalize
it with the height of the input image. For latitude field, we
normalize the original [—7 /2, 7/2] range into [0,1]. And
for the up-vector field, each angle 6 can range from 0 to 27,
so direct normalization and regression pose ambiguity for
the model since 0 and 27 represent the same angle. Hence,
we represent each angle 6 with a tuple (sin 6, cos6), and
train the model to regress to a two-channel vector map. All
regression tasks are trained with loss £5.

Model Architecture and Training Details. We use the
architecture of PVTv2-b3 [49] as our backbone to extract
joint feature map. We use SegFormer [56] with the Mix
Transformer-B3 as our decoder. Residual connection is
added before the decoder to include lower-level context
from the 2-layer CNN block. We find that transformer-
based encoder is suitable for our task as it effectively main-
tains global consistency in the two dense representation

fields. We further make modifications to the decoder head,
enabling it to produce a regression value for the pixel height
map, up field map, and latitude field map. We use PVTv2-
b3 pretrained on COCO dataset [23] as the backbone of our
architecture. The model is trained with AdamW [27] op-
timizer with learning rate 0.0005 and weight decay le-2
for 60K steps with batch size 8 on a 4-A100 machine. We
schedule the multi-step training stages at step 30K, 40K,
and 50K, with learning rate decreases by 10 time at each
stage. We resize the image to (512, 512) before using hor-
izontal flipping, random cropping, and color jittering aug-
mentation during training.

3.3. Perspective-Guided Pixel Height Reprojection

After predicting two dense representations, we prove that
they encode sufficient information to be efficiently con-
verted into depth maps and point clouds for downstream
tasks and for fair comparison with existing methods. First,
since the perspective field can be generated from camera pa-
rameters, we discretize the continuous parameter range and
use a grid search optimization strategy to estimate camera
field-of-view « and extrinsic rotation matrix R as row and
pitch angles. Afterwards, the camera focal length is calcu-
lated as f = W, where H is the height of the input
image. Then the intrinsic matrix K is also estimated as:

f 0 c
K=0 f ¢, (1)
0O 0 1

where (cg, ¢y ) is the principle point of the image and is usu-
ally estimated to be the center of the image.
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Figure 4. Perspective-Guided Pixel Height Reprojection. PField
and PixHt are perspective field and pixel height, respectively.

Derivation. An illustration is provided in Figure 4. Given
one pixel p'™ = (x,7) € R2, we known its vertical projec-
tion point p'™ = (Z,7) € R? on the ground in the image
frame, given by the estimated pixel height map. Recall that
intrinsic and extrinsic matrices can be used to project a 3D
point P; in the world coordinate into an image pixel p;.
More specifically, given intrinsic matrix K and extrinsic ro-
tation matrix R, we have the following equations describing
the correspondence between a pixel p'™ on the object and
its corresponding 3D points PV°'d in the world coordinate:

object: R'K'(d-p™) =P =d.(X,Y,Z) (2
ground: R'K " '(d-p™) =P ™M =4d.(X,Y,Z2) ()

where d is the depth value of the point. Here, the point
p™ in Eq. (3) is the vertical projection of the ground of
p™ in Eq. (2). For a given pixel p'™, its corresponding
P™ can be obtained from our estimated vertical direction
(perspective field) and the estimated pixel height. Note that
the world coordinate has its Z axis pointing vertically up-
wards, and its XY plane parallel to the ground plane. The
objective is to obtain the location of the reconstructed 3D
point PV°'!d = ¢. (XY, Z), and to eliminate the unknown
depth d, we need two additional constraints with the help
of Eq. (3). The constraint one is that all 3D points P*'ld
on the ground have a constant z-axis value. Without loss
of generality, we assume that the constant is one, to obtain
a scale-invariant 3D point cloud. This gives us d=1 / Z,

which then leads to the normalized PY°rld:
Pyl = (X/Z,Y/Z,1) = (X, Ya, 1) @

Then the constraint two is that the 3D point P¥°"'! and its
vertical ground projection PV°''Y have identical XY co-
ordinates. With this, we know that d = 2o = Yo  We

X Y
calculate d = *2Y» for numerical robustness, and the final
normalized 3D point is

XnY
Pyt = 22 (XY, Z 5
n XY ( ) ? ) ( )

where X, Y, Z, X,,, Y,, are calculated from Egs. (2) to (4).

4. Experiments

In this section, we conduct extensive qualitative and quanti-
tative experiments to demonstrate the effectiveness and gen-
eralizability of ORG. We evaluate our model with the clas-
sic depth estimation metric and point cloud reconstruction
metric on both object-centric images and human-centric im-
ages. We show that repurposing two dense representation
predictions leads to a very robust 3D reconstruction frame-
work for diverse categories and viewpoints of images.

4.1. Data Rendering

Existing object-centric datasets [1, 36] do not provide accu-
rate depth map and object-ground rotation information si-
multaneously. Hence, we render a large-scale dataset from
Objaverse [10]. Objaverse is a large-scale object-centric
dataset consisting of over 800K high-quality 3D models.
For each object in the dataset, we randomly sample 6 sets
of camera intrinsic and extrinsic parameters (FoV and ro-
tation matrix), each is used to render an RGB image with
pixel height and perspective field ground truth maps. The
image dimension is (512,512). The camera always points
at the center of the object and the z-axis of world coor-
dinates points orthogonally to the ground plane. We use
a physically-based renderer Blender [3] to render realistic
surface appearance and develop a CUDA-based ray-tracer
to efficiently render front and back surface pixel heights.
We perform corrupt data filtering to remove images with
incorrect annotations and images with objects that are too
small on the canvas. This results in 3,364,052 images in the
dataset in total. We split the objects into train/val/test sets in
8:1:1. We also randomize the intensity, position, number of
light sources, and distance between camera and object to in-
crease the diversity of the dataset. We will release our data
rendering script and rendered dataset. More details of the
implementation and the dataset are in the supplementary.

4.2. Baselines

We compare our method with single-view depth estima-
tion, image-to-3D reconstruction, and camera parameter es-
timation work. For depth estimation work, we compare
with LeReS [61], MiDasS [2, 34, 35], and MegaDepth [21],
which are single-view generic depth estimation methods
pretrained on large-scale datasets. For image-to-3D recon-
struction work, we compare with Zero-123 [26], a single-
image novel-view synthesis and reconstruction method also
pretrained on Objaverse dataset [10]. For camera parame-
ter estimation, we compare with the state-of-the-art off-the-
shelf camera estimator CTRL-C [19] and a heuristic method
we implemented by eyeballing a rough FoV and pitch angle
for all evaluation samples in the test set to get the camera
focal length and rotation matrix. Using estimated camera
parameters, we can convert the predicted depth map into
point clouds. Note that in order to generate depth map and
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Figure 5. Qualitative results of shadow and reflection generation on the ground, as well as object-ground reconstruction and depth estima-
tion. We show comparison with the depth-based estimation method LeReS [61] and monocular novel view synthesis method Zero-123 [26].
ORG maintains great object-ground relationship compared with prior methods which leads to much more realistic shadow and reflection
generation, as shown in the blue boxes. Our method runs very fast and can easily output representations like depth map and point cloud.

point clouds for objects, we use image mask to remove the
background region of our prediction, as well as for exist-
ing methods, as we can see in Figure 5. More details are
provided in the supplementary.

Metrics. For a fair comparison with existing methods, we
evaluate our method on depth estimation and point cloud
reconstruction tasks. In the meantime, we visualize the es-
timated ground plane together with reconstruction objects
to validate the object-ground correlation. For depth esti-
mation, following previous methods [34, 61], we use the
absolute mean relative error (AbsRel) and the percentage
of pixels with §; = max(%, %) < 1.25. We follow Mi-
DaS [34] and LeReS [61] fo align the scale and shift be-
fore evaluation. For point cloud estimation, following prior
work [8, 61], we use Locally Scale Invariant RMSE (LSIV)
and Chamfer Distance (CD). In addition, we also evaluate
our direct estimation on pixel height, latitude-vector field,
and up-vector field using mean-square error (MSE) and ab-
solute error (L1).

small medium large

Baseline 0.23 0.37 0.72
ORG (Ours) 0.21 0.28 0.45
diff —0.02 -0.09 -0.27

Table 2. ORG achieves higher improvement against baseline
model (DPT-BeiT [2, 35] + Ctrl-C [19]) when objects have larger
viewpoint diversity. We report results on point clouds LSIV met-
rics on validation set. Small, medium, and large stand for different
levels of viewpoint diversity of the samples.

4.3. Shadow, Reflection, and Reconstruction

We show results for 3D reconstruction, shadow generation,
and reflection generation on unseen objects in Figure 5.
We compare generation performance with the monocular
depth estimation method [61] and the novel view synthesis
method [26]. For both methods, we use Ctrl-C [19] to pre-
dict camera parameters. Since these methods do not model
the ground explicitly, we use the estimated pitch angle to
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Figure 6. Reconstructed object in the realistic background. Blue:
novel view synthesis and realistic background composition with
our method. Red: direct background composition.

Object Geometry Camera Parameters LSIV] diff
depth OFS estimator  1.25

depth perspective field 1.01 —0.24
pixel height OFS estimator  0.98 —0.27
pixel height perspective field 0.81 —0.44

Table 3. Our proposed joint estimation of pixel height and perspec-
tive field contribute to the final performance. We report results on
point clouds LSIV metrics. OFS stands for off-the-shelf, and we
use Ctrl-C as the OSF estimation in this experiment.

obtain the ground plane by assuming that it passes through
the object’s lowest point (point with smallest height value).
For the baseline for novel view synthesis, we use SJC [45]
to reconstruct the shape of the object. As depicted in Fig-
ure 5, notably, there is a marked improvement in the qual-
ity of shadows and reflections, particularly at contact points
on the ground, as highlighted in the designated boxes. Our
research also includes object-ground reconstructions and
depth map conversions. The 3D shape of the reconstructed
models in our work is not only realistic but also maintains
an accurate vertical alignment with the ground plane. This
visualization effectively demonstrates our model’s versatil-
ity, showcasing its exceptional performance across a wide
array of object categories, poses, and viewpoints.

4.4. Novel View Synthesis and Image Composition

We demonstrate applications such as object view manipu-
lation, shadow generation, and image composition in Fig-
ure 6. In the red box, we show direct copy-and-paste
composition as a comparison, and performance of ORG in
shown in the blue box. We notice that the simple copy-
pasting method does not match the camera perspective of
the new object and its supporting plane in the background,
creating unrealistic visual effects. Our method, on the other
hand, estimate the background perspective, reconstruct the
object into 3D and re-render it from the target perspective,
and generate photo-realistic shadow from the estimated ob-
ject shape, achieving better visual alignment and realism.

!

Figure 7. More qualitative results of ORG in depth map generation
and object-ground reconstruction. Our method generalizes well to
unseen in-the-wild images.

More Qualitative Results. Moreover, Figure 7 illus-
trates additional qualitative results from our study, focusing
on depth map generation and object-ground reconstruction.
Our methodology exhibits remarkable proficiency in recon-
structing ground-supported objects of various types, under-
scoring the robustness of our approach.

4.5. Object with Diverse Viewpoints

We also break down the evaluation into subsets of samples
with different range of camera angles. More specifically, we
divide the difficulty level by the pitch angle because natural
images usually have more diverse pitch angles but close to
zero roll angles. Taking the mean pitch angle of the entire
dataset, samples with a pitch angle smaller than 10 degrees
difference than the mean angle are marked as small view-
point diversity. Samples with a pitch angle difference be-
tween 10 and 30 degrees are marked as medium viewpoint
diversity, and samples with a pitch angle difference greater
than 30 degrees are marked as large viewpoint diversity.
The results in Table 2 show that ORG achieves a higher im-
provement compared to the baseline model (LeReS [61] +
Ctrl-C [19]) when objects have greater viewpoint diversity.
This is because the traditional viewpoint estimation model
struggles for object-centric images, especially for samples
with extreme pitch angles.

4.6. Importance of Joint Estimation

The results in Table 3 show that the joint learning of pixel
height and perspective field leads to the best reconstruction
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Depth Map Point Clouds Pixel Height Lati-Vector Up-Vector
camera parameters AbsRel| 617 LSIV] CDJ L1} L1} L1}
MegaDepth [21] 394 537 1.60 1.73 36.8
NDDepth [40] 358 542 149 1.65 30.9
MiDaS [2, 34, 35] heuristic const. 227 779 131 1.45 26.0 8.77 3.02
LeReS [61] 300 63.1 1.11 1.34 24.5
ORG (Ours) 246 712 1.07 1.39 15.4
MegaDepth [21] 394 537 151 1.64 31.1
NDDepth [40] 358 542 146 1.60 28.3
MiDaS [2, 34, 35] Ctrl-C [19] 227 779 122 1.39 20.7 5.45 1.79
LeReS [61] 30,0 63.1 1.05 1.31 20.4
DUSIt3R [47] 179 795 095 1.29 15.9
ORG (Ours) 21.1  76.0 0.99 1.27 15.4
ORG (Ours) Ours 19.1 812 093 1.26 154 4.94 1.45

Table 4. ORG perform consistently the best in both depth estimation and point cloud estimation tasks of object-centric images under all
metrics. We use two off-the-shelf camera estimation algorithms to make up for the unknown camera parameters. Pixel Height metric is
reported in absolute error of number of pixels, Latitude-vector Field and Up-Vector Field are reported in degrees.

performance compared to the depth estimation and off-the-
shelf camera parameter estimator. More specifically, with-
out modifying the model architecture, we change the objec-
tive of our model from pixel height estimation to depth esti-
mation following the loss used in LeReS [61]. Trained with
the same dataset and scheduler, the pixel height represen-
tation is able to achieve better point-cloud reconstruction
than depth-based learning. We argue that this is because
the representation focuses more on object-ground geometry
rather than object-camera geometry, which is more natural
and easier to infer from object-centric images. This obser-
vation further validates that the superior generalizability of
ORG comes from the better representation design and the
joint training strategy, rather than the dataset.

4.7. Qualitative Evaluation on Reconstruction

We compare the depth map estimation, point cloud gener-
ation, and the prediction of our representations with four
state-of-the-art monocular depth estimation and 3D recon-
struction methods on the held-out test set. We use the state-
of-the-art camera parameter estimation model Ctrl-C [19]
and a heuristic estimation to compensate for missing intrin-
sic and extrinsic information from previous methods. We
convert the raw output into depth map and point clouds
for a fair comparison with existing methods. As shown
in Table 4, our method performs consistently the best in
both depth estimation and point cloud estimation tasks for
object-centric images under all metrics. We also try using
the other two alternative camera parameter estimators to re-
construct the point cloud from the pixel height estimation.
And we can see that using the same off-the-shelf camera es-
timator, ORG can still outperform existing methods on both
two tasks. We make sure that no samples in the evaluation
dataset are seen by prior methods or our method during the

training phase, in order to create a zero-shot evaluation sce-
nario. The results show that ORG achieves a great general-
ization ability in the object-centric 3D reconstruction task.

Furthermore, we also break down the evaluation into
pixel height, latitude vector, and up-vector estimation, and
evaluate with mean absolution error in the generic space
of all three predictions (number of pixels for pixel height
and degrees for two perspective fields). For prior methods,
we use Ctrl-C and the heuristic constant (by grid search) to
estimate elevation angle, roll angle, and camera FoV, and
convert them into perspective field representations for com-
parison. Their pixel height estimations are also converted
using depth estimation and camera parameter estimations.
As we can see in Table 4, our method outperforms the base-
lines in the three tasks. These experiments demonstrate the
robustness and generalizability of ORG over prior methods
in object 3D estimation and reconstruction.

For evaluations on non-symmetric object front- and
back-surface reconstruction, and the pixel height, depth
map, and perspective field visualization, please refer to the
supplementary material.

5. Conclusion

In this paper, we proposed ORG, to our knowledge, the first
data-driven architecture that simultaneously reconstructs
3D object, estimates camera parameter, and models the
object-ground relationship from a monocular image. To
achieve this, we propose a new formulation for represent-
ing objects in relation to the ground. Qualitative and quan-
titative results on unseen object and human datasets as well
as web images demonstrate the robustness and flexibility of
our model, which marks a significant step towards in-the-
wild single-image object geometry estimation.
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